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Abstract

The recent breakthrough of AlphaFold3 in model-
ing complex biomolecular interactions, including
those between proteins and ligands, nucleotides,
or metal ions, creates new opportunities for pro-
tein design. In so-called inverse protein fold-
ing, the objective is to find a sequence of amino
acids that adopts a target protein structure. Many
inverse folding methods struggle to predict se-
quences for complexes that contain non-protein
components, and perform poorly with complexes
that adopt multiple structural states. To address
these challenges, we present ADFLIP (All-atom
Discrete FLow matching Inverse Protein fold-
ing), a generative model based on discrete flow-
matching for designing protein sequences condi-
tioned on all-atom structural contexts. ADFLIP
progressively incorporates predicted amino acid
side chains as structural context during sequence
generation and enables the design of dynamic pro-
tein complexes through ensemble sampling across
multiple structural states. Furthermore, ADFLIP
implements training-free classifier guidance sam-
pling, which allows the incorporation of arbitrary
pre-trained models to optimise the designed se-
quence for desired protein properties. We evalu-
ated the performance of ADFLIP on protein com-
plexes with small-molecule ligands, nucleotides,
or metal ions, including dynamic complexes for
which structure ensembles were determined by
nuclear magnetic resonance (NMR). Our model
achieves state-of-the-art performance in single-
structure and multi-structure inverse folding tasks,
demonstrating excellent potential for all-atom pro-
tein design. The code is available at https:
//github.com/ykiiiiii/ADFLIP.

*Equal contribution 1MRC Laboratory of Molecular Biol-
ogy, Cambridge, UK. Correspondence to: Sjors H. W. Scheres
<scheres@mrc-lmb.cam.ac.uk>.

Proceedings of the 42 st International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
The introduction of AlphaFold2 (Jumper et al., 2021) repre-
sented a breakthrough in the prediction of three-dimensional
protein structures from amino acid sequence. AlphaFold2
also catalysed advances in de novo protein design, where
one aims to design an amino acid sequence that adopts a
given three-dimensional structure, in a process called in-
verse protein folding (Dauparas et al., 2022). Combined
with diffusion-based methods to generate protein structures
(Watson et al., 2023), inverse folding methods have opened
new frontiers in the design of proteins with specific struc-
tural and functional properties, with profound implications
for enzyme engineering (Lauko et al., 2024), antibody devel-
opment (Bennett et al., 2024), and therapeutic interventions
(Glögl et al., 2024).

Because AlphaFold2 only considered proteins, most pro-
tein design efforts to date have also focused on structures
that exclusively comprise proteins. However, many bio-
logical reactions that are necessary to sustain life employ
a much wider range of chemistry. For example, chemical
modification of the amino acids that make up proteins may
be used to signal distinct functional states; the binding of
small-molecule ligands in specific protein pockets often af-
fects function; many proteins interact with nucleic acids
that carry genetic information; and many chemical reactions
are catalysed by metal ions that are bound to enzymes. Re-
cently, AlphaFold3 (Abramson et al., 2024) expanded the
prediction of biological structures beyond proteins by mod-
elling complex assemblies that also include nucleic acids,
small molecules, metal ions, and chemical modifications
of amino acids. This advance in structure prediction again
created parallel opportunities for inverse folding (Dauparas
et al., 2023), but the design of amino acid sequences for
biomolecular complexes that contain a wide range of chem-
ical entities remains more challenging than the design of
proteins only.

An additional complication in protein design is that many
biomolecular complexes are also structurally dynamic.
Much like machines in daily life, the functional cycle of
such complexes involves multiple structural states, even
though their amino acid sequence is fixed. Although current
models for inverse folding perform relatively well on static
protein structures, they often struggle with complexes that
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adopt multiple structural states, e.g. dynamic proteins that
are studied by solution-state nuclear magnetic resonance
(NMR) (Nikolaev et al., 2024; Yi et al., 2024).

In this paper, we present ADFLIP: a discrete flow-matching
model for generating protein sequences based on the struc-
ture of bio-molecular complexes that can involve non-
protein elements. As shown in Figure 1, ADFLIP generates
sequences by jointly considering protein backbone struc-
ture and non-protein elements, such as nucleotides, ligands,
or metal ions, while progressively incorporating predicted
amino acid side chains as structural context during sequence
generation. Because amino acid side chains often provide
the chemical entities that define specific interactions with
other molecules, considering the full information of the
side chains is crucial for designing protein-ligand interac-
tions. Our approach employs a multi-scale graph neural
network as the denoising backbone, integrating both atom
and residue-level information. Our iterative flow-based sam-
pling framework enables ensemble sampling across different
structural states, and it facilitates the integration of guidance
signals to steer sample generation toward desired outcomes.
The resulting model allows the design of biomolecular com-
plexes with diverse chemical entities that adopt multiple
conformational states and with defined protein properties.

2. Related work
Inverse protein folding Predicting a sequence of amino
acids that folds to a given structure using machine learn-
ing approaches was pioneered in (O’Connell et al., 2018;
Wang et al., 2018), but the current paradigm of using graph
neural networks (Dauparas et al., 2022; Hsu et al., 2022;
Gao et al., 2023b; Yi et al., 2024; Zhu et al., 2024) was
first proposed in (Ingraham et al., 2019). These methods
typically encode the protein backbone as a graph and use
graph neural networks to extract geometric information. Re-
cently, SurfPro (Song et al., 2024) extended this approach by
incorporating desired surface properties into the sequence
design. Other methods, like LMdesign (Zheng et al., 2023)
and KWdesign (Gao et al., 2023a), have leveraged both
geometric information and information from evolutionarily
related protein homologues through the combined use of
structural information with protein language models. Saport
(Su et al., 2024) introduced a structure-aware vocabulary
to encode protein structures as discrete tokens, enabling
general protein language models to generate sequences di-
rectly from structures. While most existing methods focus
on protein-only backbone structures, LigandMPNN (Dau-
paras et al., 2023) broadened the scope of inverse folding by
considering all-atom structures that also contain non-protein
components like ligands, ions, and nucleotides.

Discrete generative model Because mapping a protein’s
structure to its sequence represents a one-to-many mapping
task, the sampling strategy for sequence generation presents
an important design choice. Protein sequences, unlike natu-
ral language, do not have an inherent left-to-right ordering.
Thus, although autoregressive generation (Ingraham et al.,
2019; Hsu et al., 2022) was initially the dominant approach,
various alternative sampling strategies have been proposed.
ProteinMPNN (Dauparas et al., 2022) employs random or-
dering for sequence generation, while PiFold (Gao et al.,
2023b) predicts amino acid probabilities in one step with
independent sampling at each position.

Discrete generative models have undergone major recent
developments. Discrete diffusion models were first in-
troduced by Austin et al. (2021) and Hoogeboom et al.
(2021), enabling diffusion-based generation of categorical
data through forward corruption processes with Markov
transition kernels. Campbell et al. (2022) extended this to
continuous time by formulating discrete diffusion through
Continuous Time Markov Chains. Recently, two indepen-
dent works by Campbell et al. (2024) and Gat et al. (2024)
proposed discrete flow matching, providing a simpler frame-
work that allows faster training convergence. Here, we fol-
low the discrete flow matching setting proposed in Campbell
et al. (2024).

3. Methods
ADFLIP is a generative model pθ(S|X), with parameters
θ, for protein sequence design that samples discrete pro-
tein sequences S ∈ {1, ..., 20}L conditioned on protein-
complex structural inputs X = {Xprotein,Xnon-protein},
where Xprotein ∈ RL×4×3 represents the protein backbone
coordinates of atoms (N,Cα, C,O), and Xnon-protein ∈
Rm×3 is the non-protein structure components with m
atoms, L is the length of protein sequence. During sam-
pling, ADFLIP progressively incorporates side chain infor-
mation χ ∈ RL×4 while generating the sequence. ADFLIP
consists of three key components: a discrete flow model
for protein sequence generation; a multi-scale graph neural
network denoiser that captures both residue-level and atom-
level information; and a property guidance mechanism that
enables controlled generation without model retraining.

3.1. Discrete flow model all-atom inverse folding

We construct the sequence generating probability flow pt(st)
at time t that interpolates from a noise distribution p0(s0) to
the data distribution p1(s1) = pdata(s1). Since modelling pt
directly is complex, we instead define it through a simpler
conditional flow pt|1(·|s1) that interpolates from noise to the
target sequence. This conditional flow has a closed form:

pt|1(st|s1) = Cat(tδ{s1, st}+ (1− t)δ{m, st}),
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Figure 1. Overview of ADFLIP. ADFLIP is a flow matching generative framework for protein sequence design. Starting from t = 0, it
progressively generates the protein sequence through sequential denoising using only the protein backbone and non-protein structure as
inputs. The process begins with all amino acid positions masked (X) and gradually unmasks them to reveal the sequence. As amino acids
are sampled, their corresponding side chain structures are predicted, providing additional structural context to guide subsequent denoising
steps.

where m represents a mask token, t ∈ [0, 1] is the time
parameter, Cat is the categorical distribution, and δ{i, j}
is the delta function. At t = 0, all positions are masked,
while at t = 1, the sequence matches the target s1. With the
conditional flow model, we define the marginal distribution
pt by taking the expectation over the data distribution:

pt(st) = Epdata(s1)[pt|1(st|s1)].

To sample a sequence from p(s), we need access to a rate
matrix Rt that defines the frequency and destination of state
transitions, with the constraint that its off-diagonal elements
are non-negative. The probability that state xt will jump to
a different state j for the next infinitesimal time step dt is
Rt(st, j)dt. The transition probability can be written as:

pt+dt|t(j|st) = δ{st, j}+Rt(st, j)dt.

In practice, we simulate the sequence trajectory with finite
time intervals ∆t using Euler steps:

st+∆t ∼ Cat(δ{st, st+∆t}+Rt(st, st+∆t)∆t). (1)

We represent the rate matrix Rt(st, j) as an expectation over
a simpler conditional rate matrix:

Rt(st, j) = Ep1|t(s1|st)[Rt(st, j|s1)],

where the conditional rate matrix has the form:
Rt(st, j|s1) = δ{s1,j}δ{st,m}

1−t . Here, p1|t(s1|st) is the de-
noising distribution that predicts the clean sequence given
the noisy sequence, which we approximate using a neural
network.

Sampling As shown in Algorithm 1, we initialise all se-
quence positions with mask tokens. Given N protein back-
bone conformations and non-protein structure information,
we employ a two-stage sampling process that integrates
both sequence design and side chain packing. For each
conformation, we first estimate the conditional probability
pn(s1|st) using our denoising network fθ. These individual
predictions are then ensembled to obtain a more robust esti-
mate of the sequence probability p(s1|st). To generate the
next sequence state, we compute the rate matrix Rt(st, j)
by taking the expectation over the conditional rate matrix
with respect to our predicted p(s1|st). The next sequence
state is then sampled according to a categorical distribution
defined by the current state and the rate matrix.

Although many existing protein inverse folding methods do
not consider side chains, side chain-ligand interactions are
often crucial for designing functional proteins. Therefore,
we perform side chain packing concurrently with sequence
sampling (see Figure 1). For each sampled sequence s1, we
predict its side chain conformations χ using a dedicated side
chain packing network PIPPACK (Randolph & Kuhlman,
2024) that takes into account both the protein backbone and
the current sequence state. Then, for positions where st
contains mask tokens, we remove the corresponding side
chain atoms to maintain consistency between the sequence
and structure representations. This iterative process con-
tinues until t reaches 1, at which point we obtain our final
sequence s1.

We also propose an adaptive sampling scheme that takes
advantage of the varying uncertainty in amino acid predic-
tions across different positions. Given a backbone structure,
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Algorithm 1 ADFLIP Sampling Process
Input:
N protein and non-protein structures {x1, ..., xN}
Initial sequence s0 = (m, ...,m)
Initial side chains χ0 = ∅
Time step ∆t
Denoising network fθ, side chain packing network gη
Initialise t = 0
while t < 1 do

for n = 1 to N do
Compute pn(ŝ1) = fθ(st, xn, χt)

end for
p(ŝ1) =

1
N

∑
n p

n(ŝ1)
Sample s1 ∼ p(ŝ1)
for n = 1 to N do

Compute χn
1 = g(s1, xn)

end for
Compute Rt(st, j) = Ep1|t(s1|st)[Rt(st, j|s1)]
Sample st+∆t by Equation 1
t← t+∆t

end while
Return: Final sequence s1

many of the side chains inside the core of the protein have
constrained amino acid choices due to the available space.
These residues display peaked categorical distributions in
the denoiser’s prediction. To exploit this property, we com-
pute the purity score (maximum probability in the categor-
ical distribution) for each masked position. As shown in
Algorithm 2 (see Appendix B), positions where the purity
score exceeds a threshold τ , are sampled first, as these rep-
resent high-confidence predictions. After these positions are
sampled, their side chain conformations are predicted and
incorporated as additional structural context for subsequent
steps. The time increment is then computed proportionally
to the number of positions sampled. This process iterates
until the remaining positions reach the purity threshold or
the sampling process converges. For positions that never
achieve the confidence threshold, we perform independent
sampling at the final step. This adaptive scheme allows the
model to progress more quickly through high-confidence
positions, while expending more compute on challenging
positions. Concurrent work, such as (Peng et al., 2025),
adopts a similar strategy by using path planning to adap-
tively sample time steps, where denoiser entropy is used to
determine the next step in the diffusion process.

Training We train a denoising network, fθ(·, t), to ap-
proximate p1|t(s1|st,x, χt). The neural network takes as
input the protein complex structure x and the partial side
chain structure information χt. During training, we first
sample a noisy sequence st ∼ pt|1(st|s1) using the closed-
form conditional distribution, and we remove its current

side chains. The neural network then extracts information at
both the atom and residue level to predict the probability dis-
tribution over amino acids at each position ŝ1. We optimise
the network parameters using the cross-entropy loss:

LCE = Epdata(s1)U(t;0,1)pt|1(st|s1)

[
log pθ1|t(s1|st,x, χt)

]
3.2. Multi-scale GNN denoiser

The GNN denoiser is a multi-scale network that aims to mix
information between two different hierarchies — residues
and their constituent atoms. It takes inspiration from Al-
phaFold3 (Abramson et al., 2024) and LigandMPNN (Dau-
paras et al., 2023). The GNN has two types of nodes: residue
nodes and atom nodes. Each amino acid and nucleotide is
represented as a residue node, while each non-hydrogen
atom is represented as an atom node. Residue features have
information about the arrangement of residues in the wider
context of the protein backbone, whereas local information
about the arrangement of atoms is contained in atom fea-
tures. The network is divided into three main parts: an initial
input embedding; multiple layers of processing on both the
atom and residue features; and, finally, multiple decoding
layers to translate the features to sequence prediction logits.
Key to our approach is the information transfer between
the atom and residue node types, as we alternate between
the processing of local information on atom nodes and the
processing of global context in residue nodes (Figure 2a).

Atom encoder Information about atoms is embedded in
the Atom Encoder module, which contains Fourier embed-
dings (Abramson et al., 2024) and word embedding layers.
The Fourier embeddings embed the sequence position of
each node: atoms in their residues and residues within the
overall complex. The chain identity of each node is also
embedded through the chain index. The word embedding
layers embed categorical variables that specify the identity
of the node, such as the class of the residue, the element,
and the type of the residue — whether it is a protein, a
nucleotide, or an ion. These features are concatenated, pro-
jected and then processed by a module that is similar to the
Transition Block in AlphaFold3 (Abramson et al., 2024).
Furthermore, we encode the time step of the flow matching
process similarly to Nichol et al. (2021).

Residue encoder Information about residues is encoded
through the Residue Encoder module, which is similar to
the encoder used in LigandMPNN (Dauparas et al., 2022).
Briefly, each protein residue receives distance and orienta-
tion information from its nearest protein residue neighbours,
together with distance information from all non-protein
atoms. Each protein residue’s k nearest neighbours are
calculated using the positions of their Cα atoms. Next, dis-
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Figure 2. Architecture of the ADFLIP denoiser. a, The information flow between residue features and atom features. Updating residue
features from atom features involves averaging over all atoms in a residue; updating atom features from residue features requires scattering
the same residue feature over all atoms in that residue. b, Schematic showing the main blocks of the graph neural network (GNN) encoder.
c, Schematic showing the inputs and output of the self-attention decoder.

tances are calculated between the backbone atoms of these
protein residues and the backbone atoms of their neighbours,
and the resulting distances are encoded through a radial ba-
sis function. Distances between the backbone atoms of each
protein residue and all non-protein atoms are calculated and
encoded similarly. In addition, for each non-protein atom,
we also calculate a tetrahedral angle with the Cα, N, and
C atoms of each protein residue. Node features for protein
residues consist of a token-encoding of the residue type,
along with a learned embedding of the distance features
described above. Node features for the non-protein atoms
include their positioning in the table of periodic elements
and an additional tokenisation that encodes the identity of
the atom in a one-hot manner. Edge features are projections
of the distance and angle features described earlier.

Processing trunk The main computation in the GNN hap-
pens in its processing trunk (Figure 2b), where information
flows between the two different types of nodes and edges.
Processing occurs in a hierarchical manner. Atom nodes
first attend to their nearest neighbours in the Local Atom
Attention module. This module is similar to AlphaFold3’s
Invariant Point Attention module, except that it also uses
frame averaging (Puny et al., 2021; Huang et al., 2024) to
make it more robust to rotations. The resulting contextual
information from nearby atoms is then propagated to the
residue features using the Atom to Residue Embedding. In
this module, the features are first processed by a linear layer
followed by a ReLU activation function (Fukushima, 1969)

and then all the atom features corresponding to a residue
are averaged and then added to the residue features. The
updated features are integrated in the GNN Block, which
is a message passing layer similar to the one used in Lig-
andMPNN. We apply diffusion-time modulation (Peebles &
Xie, 2023) to the features of this message passing network,
to condition the network to treat early time steps during
sampling and later ones differently. The updated informa-
tion from the residue nodes then feeds back to the atom
nodes through the Residue to Atom Embedder module. This
module transforms residue features using a linear layer fol-
lowed by a ReLU activation. The output is then scattered
to the atom features corresponding to each residue. This is
followed by the Transition Block and the optional Context
Block, which does message passing from the non-protein
atom features to all protein features. We included this block
to further increase the amount of information that flows
from the non-protein context to the protein residues.

Decoding layers The decoder (Figure 2c) consists of three
layers of a Transformer (Vaswani et al., 2017) with a GeLU
activation (Hendrycks & Gimpel, 2016). It is only applied
to the residue nodes. From there, the logits are predicted
using a linear layer.

3.3. Training-free guidance sampling

A key advantage of flow matching is its ability to incorpo-
rate external regressors to guide the generative process to-
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Table 1. Interaction residue recovery rate on all-atom complex
structure.

Metric / Model Ligand Nucleotide Metal Ion

Perplexity ↓
PIFOLD 4.03 7.26 7.55
PROTEINMPNN 4.46 6.48 4.59
LIGANDMPNN 3.84 4.97 2.73
ADFLIP 3.57 4.86 2.61

Recovery Rate (%) ↑
PIFOLD 59.20 38.41 47.55
PROTEINMPNN 54.48 40.29 54.09
LIGANDMPNN 59.21 46.14 69.31
ADFLIP 62.19 50.21 75.73

ward samples with desired properties. Traditional regressor-
guided generation requires training a regressor p(y | st)
(Song et al., 2021; Vignac et al., 2023; Wang et al., 2024)
to predict properties from intermediate states. However,
retraining sophisticated neural networks to handle interme-
diate states st instead of complete samples s1 is often pro-
hibitively expensive. For example, AlphaFold2’s confidence
scores are widely used in protein design to assess foldability
and protein-protein interactions (Pacesa et al., 2024), but
retraining AlphaFold2 to use masked sequences as input
would be impractical.

Here, we propose a training-free approach to leverage ex-
isting regressors pϕ(y | s1) that only operate on complete,
unmasked samples. Similar to how we define the marginal
distribution pt(st) through expectation over completions,
we estimate the property predictions for intermediate states
by taking the expectation of the regressor outputs pϕ(y | s1)
under the denoiser output pθ(s1 | st):

p̂(y | st) = Epθ(s1|st)[pϕ(y | s1)].

This approach enables leveraging powerful existing regres-
sors in a plug-and-play manner for guided generation, with-
out requiring expensive retraining or architectural modifica-
tions.

4. Experiments
We evaluated ADFLIP in three scenarios of inverse folding:
on all-protein complexes with small molecule ligands, nu-
cleotides and metal ions; on ensembles of structures from
dynamic complexes; and on protein-ligand complexes where
we guided sequence generation towards higher predicted
binding affinities.

4.1. All-atom inverse folding

Test design We evaluated ADFLIP on all-atom protein
structures from the Protein Data Bank (PDB), following

Figure 3. Comparison of the inverse folding of three structures
with nucleotides and ligands generated with ProteinMPNN, Lig-
andMPNN, and ADFLIP. The sequences are refolded (coloured)
with Chai-1 (Chai Discovery, 2024) and compared to the starting
structure (black outline). a, Comparison for a helix–loop–helix
transcriptional activator protein (PDB ID: 1AM9, see Parraga
et al., 1998), showing that ADFLIP’s integration of nucleotide con-
text information allows superior performance to ProteinMPNN. b,
Comparison for a HNH homing endonuclease (PDB ID: 1U3E, see
Shen et al., 2004) further demonstrating ADFLIP’s performance
for DNA-binding proteins. c, A close-up of the inhibitor-binding
pocket of Factor Xa (PDB ID: 2UWP, see Young et al., 2007),
demonstrating ADFLIP’s superior performance for ligand-binding
proteins. The refolded ligand (yellow) is docked closer to the
target (black outline) for the ADFLIP-designed protein, but not the
others.

the dataset curation protocol of LigandMPNN (Dauparas
et al., 2023). Specifically, we include X-ray crystallography
or cryo-EM entries that were deposited after 16 December
2022, with resolutions better than 3.5 Å, and total protein
length less than 6,000 residues. We use the same validation
and test sets as LigandMPNN for evaluation, comprising
317 protein complexes with small molecule ligands, 74
complexes with nucleic acids, and 83 proteins with bound
metal ions. Because LigandMPNN did not release their
training clusters, we cluster the remaining structures using
MMseqs2 at 30% sequence identity to prevent homology
between training and test sets.

We evaluated the quality of predicted protein sequences
using two metrics: perplexity and recovery rate. Perplexity
is calculated as the exponential of the average negative log-
likelihood of the sequence. Lower perplexity indicates a
better fit of the predicted amino acid probabilities and the
original sequence. The recovery rate measures sequence
identity between the generated sequence that is sampled
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from the predicted probabilities and the original sequence.
Both metrics are calculated only on residues that are close
to the non-protein molecules, i.e. which have atoms within
5.0 Å of any of the non-protein atoms. For each complex
structure, we sampled 10 sequences and computed the mean
sequence recovery rate.

We compared our method against several baselines. Our pri-
mary comparison was with LigandMPNN (Dauparas et al.,
2023)1, which also considers the atom-level details of non-
protein molecules. We retrained LigandMPNN with the
same clustering we used. For a more comprehensive evalua-
tion, we also included methods that only consider protein
backbone information: PiFold (Gao et al., 2023b)2, and
ProteinMPNN (Dauparas et al., 2022)3.

Sequence recovery As shown in Table 1, methods that
incorporate all-atom information of non-protein molecules
significantly outperformed backbone-only approaches. For
metal-binding sites, sequence recovery improved from 40%
with ProteinMPNN to 69% with LigandMPNN, and further
to 75% with ADFLIP. This improvement is likely due to the
highly conserved nature of metal-binding amino acids. For
example, in many natural metalloproteins, metal ions are
coordinated by the side chains of only a few amino acids,
such as histidine, cysteine, methionine, tyrosine, aspartate
or glutamate (Trindler & Ward, 2017). The inclusion of
explicit ligand information also improved performance for
ligand-binding residues, ADFLIP achieved 62.9% recovery
compared to 59.2% for LigandMPNN, 54.98% for Protein-
MPNN, and 59.2% for PiFold. Similarly, for nucleotide-
binding residues, ADFLIP reached 50.21% recovery, out-
performing LigandMPNN (46.1%), ProteinMPNN (40.2%),
and PiFold (38.1%).

Foldability An important metric in inverse folding is the
foldability, which measures whether the predicted structure
for a generated sequence matches the original structure. We
used Chai-1 (Chai Discovery, 2024) without MSA infor-
mation to predict structures for the sequences generated by
both ADFLIP and LigandMPNN. We assessed structural
similarity to the reference structure from the PDB using
RMSD and TM-score metrics (Mukherjee & Zhang, 2009),
alongside the confidence scores from the structure predic-
tion (pLDDT). We define a generated sequence as foldable
if its predicted structure achieves a TM-score matching or
exceeding 0.5 when compared to its reference structure. Our
evaluation spanned all protein complexes in the test dataset
with fewer than 5 ligands.

As shown in Table 2, both ADFLIP and LigandMPNN

1https://github.com/dauparas/LigandMPNN
2https://github.com/A4Bio/PiFold
3https://github.com/dauparas/ProteinMPNN

showed good performance for complexes with small
molecule ligands, achieving average RMSD scores below
1.3 Å, TM-scores above 0.95, and foldability exceeding 98%.
For nucleotide complexes, we observed higher RMSDs
(around 5 Å), with 78-79% of the generated sequences suc-
cessfully folding into structures similar to the reference. For
complexes with metal ions, both methods achieve RMSDs
around 2 Å and foldability scores above 80 %. Notably,
both methods achieved high pLDDT scores (bigger than
95%), indicating high confidence in structure prediction.
Across all three types of complexes, ADFLIP outperformed
LigandMPNN, with RMSD reductions of 0.06 Å for small
molecule ligands, 0.44 Å for nucleotides, and 0.1 Å for
metal ions.

Table 2. Numerical comparison between generated sequence struc-
ture and the native structure.

Model RMSD (Å) TM-score pLDDT Foldability

Small Molecule
LigandMPNN 1.21 0.95 94.6 98.8%
ADFLIP 1.15 0.96 90.6 100.0%

Nucleotide
LigandMPNN 5.99 0.76 84.7 79.4%
ADFLIP 5.55 0.77 87.5 83.5%

Metal Ions
LigandMPNN 2.37 0.79 97.85 83.7%
ADFLIP 2.27 0.78 98.38 85.1%

4.2. Inverse folding on structure ensembles

Test design To assess the performance of ADFLIP for
inverse folding of structurally dynamic complexes, we
constructed a new dataset of protein structure ensembles
that were determined by solution-state NMR spectroscopy.
Specifically, we selected PDB entries that were deposited
after January 2015, which contained more than 100 residues,
and at least two conformational states. We used MMseqs2-
based clustering (Steinegger & Söding, 2017) at 30% se-
quence identity to remove redundant ensembles. Our final
curated dataset comprised 219 ensembles, with an average
of 18 conformational states per structure.

We again assessed performance using perplexity and se-
quence recovery rate, comparing the use of a single structure
from the ensemble with the use of the entire ensemble for
sequence generation. For sequence generation with a single
structure, we selected the structure that exhibits the most
extensive interactions with the non-protein elements from
the ensemble.

Sequence recovery As shown in Table 3, incorporating
multiple conformational states improved sequence recovery
rates: 8.6% for small molecule interactions and 5.8% for
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Table 3. Recovery rate performance of NMR dataset.

Metric / Model Ligand Nucleotide Metal Ion

Perplexity ↓
LIGANDMPNN 7.82 9.37 3.27
ADFLIP(SINGLE) 7.34 8.71 3.12
ADFLIP(MULTIPLE) 5.58 6.91 2.69

Recovery Rate (%) ↑
LIGANDMPNN 40.58 32.63 64.82
ADFLIP(SINGLE) 41.48 34.48 65.44
ADFLIP(MULTIPLE) 50.08 40.33 68.01

Table 4. Numerical comparison between generated sequence struc-
ture and the native structure for NMR dataset. Single indicates se-
quence generation using an individual conformational state, while
Multiple indicates sequence generation using the complete ensem-
ble of NMR conformational states.

Model RMSD (Å) TM-score pLDDT Foldability

LIGANDMPNN 8.34 0.68 78.4 84.5%
ADFLIP (Single) 9.10 0.67 79.5 81.7%
ADFLIP (Multiple) 7.21 0.69 80.19 82.5%

nucleotide interactions. These improvements were achieved
using the same model, without fine-tuning, demonstrating
ADFLIP’s inherent ability to integrate information from
multiple structural states during sequence generation. For
metal ion interactions, we observed a more modest improve-
ment of 2.6% in sequence recovery. This is likely because
metal-binding sites in proteins typically maintain relatively
stable conformations, even in the dynamic protein ensem-
bles captured by NMR (which was also reflected in the
higher overall recovery rates for metal-binding proteins in
the NMR test set).

Foldability We assessed the foldability of the generated
sequences by predicting their structures using Chai-1. We
compared the predicted structure with the structure from
the original NMR ensemble that had the lowest RMSD with
the predicted structure. Although generating sequences for
dynamic protein complexes remains difficult (as evidenced
by high RMSDs, low TM-scores, low pLDDT scores and
low foldabilities), using ensemble information in ADFLIP
reduces the average RMSD from 9.11 to 7.61 Å compared
to using a single structure (see Table 4).

4.3. Guidance by binding affinity

We assessed guidance-based sequence generation in AD-
FLIP by incorporating DSMBind (Jin et al., 2024) predic-
tions of ligand binding affinity. DSMBind is an unsuper-
vised, deep learning-based predictor of binding affinity that
takes as input the complex structure (including side chain
information), protein sequences, and ligand information. By

Table 5. Ligand binding affinity guided results

Model Affinity gain Foldability

ADFLIP (Unguided) 41.9% 100%
ADFLIP (Guided) 58.1% 91.4%

incorporating DSMBind predictions in the flow matching
process, we aimed to guide the generation process towards
sequences that are predicted to have higher binding affinity
for their target ligands.

We tested our guidance-based approach using the subset of
210 protein-ligand complexes from the test set described
in Section 4.1 that contain a single ligand. First, we used
DSMBind to establish baseline binding affinities for the
wild-type sequences. We then set our generation target to
achieve a 10% improvement over the wild-type binding
affinities. For each structure, we generated 10 different
sequences and evaluated their predicted binding affinities
using DSMBind. To assess the effectiveness of our guidance
approach, we compared guided and unguided sequences
generated by ADFLIP.

We evaluated the effectiveness of our approach using two
metrics: (1) affinity gain — whether the generated se-
quence’s predicted binding affinity exceeds that of the wild-
type sequence and (2) foldability — whether the generated
sequence’s predicted structure maintains structural similar-
ity to the input backbone, i.e. with TM-score ≥ 0.5.

As shown in Table 5, our guidance-based approach signif-
icantly improves the success rate of generating sequences
with enhanced binding affinity from 41.9% to 58.1%, while
maintaining foldability above 90%. However, we note that
by using a fixed protein backbone structure, and limited
side chain sampling, the ability of DSMBind to achieve
better binding affinity is currently limited. Refinement of
the backbone structure in our method may yield further
improvements in the future.

5. Discussion
The ultimate goal of protein design is to create proteins with
improved or new functionalities compared to those existing
in nature. Because protein functionality is typically cou-
pled to conformational change, and it often involves a wide
range of chemistry, the design of new protein functional-
ity will need to consider both all-atom structures and the
requirement of a single sequence to adopt multiple confor-
mations. ADFLIP represents a step in this direction. Its
all-atom model improves sequence recovery rates compared
to current state-of-the-art for protein complexes with lig-
ands, nucleotides, or metal ions. Leveraging the flexibility
of discrete flow matching, ADFLIP also allows incorpo-
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rating multiple conformational states in the sequence gen-
eration process, as demonstrated for structure ensembles
determined by NMR. Moreover, the flow matching process
allows steering sequence generation towards desired prop-
erties through training-free guidance sampling, as demon-
strated by the design of higher affinity ligand binders using
DSMBIND (Jin et al., 2024) as a plug-in regressor.

Although ADFLIP shows strong performance in sequence
recovery for complexes with small molecule ligands, and
particularly with metal ions, lower recovery rates for com-
plexes with nucleotides highlight opportunities for future
advances. Work by Joshi et al. (2024) and Nori & Jin (2024)
demonstrates that incorporating conformational dynamics
benefits the design of RNA structures. It is possible that the
inherently increased conformational dynamics of nucleotide
complexes is not captured sufficiently by a single conforma-
tional state. Whereas we show that ADFLIP can condition
on multiple conformational states, it is not yet clear how
one would best obtain a range of useful conformational
states, for protein-nucleotide complexes specifically, or any
biologically active complex in general.

One future direction is to integrate structural refinement into
the sequence generation process, similar to the RNAflow
(Nori & Jin, 2024) approach in RosettaFold2NA. As men-
tioned in section 4.3, performing structure refinement during
the sampling of sequences will also be beneficial for guiding-
based sampling. Future versions of ADFLIP could therefore
incorporate backbone flexibility to allow for a more compre-
hensive exploration of protein sequence-structure relation-
ships, and hence the design of better protein functionality.

Acknowledgements
We are grateful to Xiongwen Ke for helpful discussion and
Bogdan Toader for critical reading of the paper. We also
thank Jake Grimmett, Toby Darling and Ivan Clayson for
help with high-performance computing. This work was
supported by the Medical Research Council, as part of
the UK Research and Information (MC UP A025 1013 to
S.H.W.S.).

Impact Statement
This paper contributes to the field of all-atom protein design
by enabling sequence generation for complex and dynamic
biomolecular assemblies. Our work advances generative
modelling for molecular design, with potential applications
in synthetic biology, and biotechnology. While ADFLIP-
designed sequences have not yet been experimentally vali-
dated, such validation is essential for any real-world appli-
cation.

References
Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T.,

Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J.,
Bambrick, J., et al. Accurate structure prediction of
biomolecular interactions with alphafold 3. Nature, pp.
1–3, 2024.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and Van
Den Berg, R. Structured denoising diffusion models in
discrete state-spaces. Advances in Neural Information
Processing Systems, 34:17981–17993, 2021.

Bennett, N. R., Watson, J. L., Ragotte, R. J., Borst, A. J.,
See, D. L., Weidle, C., Biswas, R., Shrock, E. L., Leung,
P. J., Huang, B., et al. Atomically accurate de novo design
of single-domain antibodies. bioRxiv, 2024.

Campbell, A., Benton, J., De Bortoli, V., Rainforth, T., Deli-
giannidis, G., and Doucet, A. A continuous time frame-
work for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Campbell, A., Yim, J., Barzilay, R., Rainforth, T., and
Jaakkola, T. Generative flows on discrete state-spaces:
Enabling multimodal flows with applications to protein
co-design. In Forty-first International Conference on
Machine Learning, 2024.

Chai Discovery. Chai-1: Decoding the molec-
ular interactions of life. bioRxiv, 2024. doi:
10.1101/2024.10.10.615955. URL https:
//www.biorxiv.org/content/early/2024/
10/11/2024.10.10.615955.

Dauparas, J., Anishchenko, I., Bennett, N., Bai, H., Ragotte,
R. J., Milles, L. F., Wicky, B. I., Courbet, A., de Haas,
R. J., Bethel, N., et al. Robust deep learning–based pro-
tein sequence design using proteinmpnn. Science, 378
(6615):49–56, 2022.

Dauparas, J., Lee, G. R., Pecoraro, R., An, L., Anishchenko,
I., Glasscock, C., and Baker, D. Atomic context-
conditioned protein sequence design using ligandmpnn.
Biorxiv, pp. 2023–12, 2023.

Fukushima, K. Visual feature extraction by a multilayered
network of analog threshold elements. IEEE Transactions
on Systems Science and Cybernetics, 5(4):322–333, 1969.

Gao, Z., Tan, C., Chen, X., Zhang, Y., Xia, J., Li, S., and
Li, S. Z. Kw-design: Pushing the limit of protein design
via knowledge refinement. In The Twelfth International
Conference on Learning Representations, 2023a.

Gao, Z., Tan, C., and Li, S. Z. Pifold: Toward effective and
efficient protein inverse folding. In International Confer-
ence on Learning Representations, 2023b. URL https:
//openreview.net/forum?id=oMsN9TYwJ0j.

9

https://www.biorxiv.org/content/early/2024/10/11/2024.10.10.615955
https://www.biorxiv.org/content/early/2024/10/11/2024.10.10.615955
https://www.biorxiv.org/content/early/2024/10/11/2024.10.10.615955
https://openreview.net/forum?id=oMsN9TYwJ0j
https://openreview.net/forum?id=oMsN9TYwJ0j


All-atom inverse protein folding through discrete flow matching

Gat, I., Remez, T., Shaul, N., Kreuk, F., Chen, R. T., Syn-
naeve, G., Adi, Y., and Lipman, Y. Discrete flow match-
ing. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.
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A. Dataset
We follow the dataset generation process used in LigandMPNN, collecting protein assemblies from the Protein Data
Bank (PDB) as of December 16, 2022, that were determined by X-ray crystallography or cryo-electron microscopy at a
resolution better than 3.5 Å and contain fewer than 6,000 residues. Residues introduced solely to aid crystallisation (e.g.,
ZMR, Z9D) were removed. Following the AlphaFold3 paper, such residues are parsed as glycans. A full list of excluded
crystallisation-aid residues and glycan residues is provided in Appendix D.

We cluster each protein chain at a 30% sequence identity threshold using MMseqs2 (Steinegger & Söding, 2017). We
hold out a non-overlapping subset of clusters corresponding to distinct interaction contexts: 317 protein–small molecule
complexes, 74 protein–nucleotide complexes, and 83 protein–metal ion complexes. The full list of held-out PDB entries is
available in Appendix D. The resulting training dataset comprises 27,818 clusters. For both training and evaluation, we use
the same PDB collection as in the LigandMPNN repository4.

B. Purity Sampling
The following algorithm describes the adaptive time step sampling strategy used in ADFLIP. Starting from a fully masked
sequence, the method employs a denoising network fθ to predict amino acid distributions. Unlike fixed-timestep approaches,
this method adaptively selects high-confidence positions for sampling based on a purity threshold τ . Only positions
exceeding this threshold are updated at each step, allowing for progressive and focused refinement. A side chain packing
network gη is then applied to model side chains at the newly sampled positions. The process iterates until all positions are
resolved, the model’s confidence saturates, or the maximum number of iterations K is reached. If unresolved positions
remain at the end, they are sampled in a final fallback step.

Algorithm 2 ADFLIP Adaptive Sampling Process
Input:
N protein backbone conformation and non-protein structures x1, ..., xN

Initial sequence s0 = (m, ...,m)
Initial side chains χ0 = ∅
Purity threshold τ , maximum iterations K
Denoising network fθ, side chain packing network gη
Initialise t = 0, M = positions still masked, k = 0
while M > 0 and t < 1 and k < K do

for n = 1 to N do
Compute pn(ŝ1) = fθ(st, xn, χt)

end for
p(ŝ1) =

1
N

∑
n p

n(ŝ1)

Compute purity scores ϕi = maxj p(ŝ
(i)
1 = j) for masked positions

I = i : ϕi > τ {Positions to sample}
Sample s

(i)
1 ∼ p(ŝ

(i)
1 ) for i ∈ I

for n = 1 to N do
Compute χn

1 = g(s1, xn) for positions in I
end for
M ←M − |I| {Update mask count}
t← t+ |I|/L {L is sequence length}
k ← k + 1

end while
if k = K and M > 0 then

Let J = j : s
(j)
t = m {Remaining masked positions}

Sample s
(j)
1 ∼ p(ŝ

(j)
1 ) for j ∈ J

end if
Return: Final sequence s1

4https://github.com/dauparas/LigandMPNN/
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C. Training-free classifier Guidance Sampling
The following algorithm outlines the training-free classifier guidance sampling strategy used in ADFLIP. Starting from a
fully masked sequence, the method uses a denoising network fθ to produce amino acid distributions p(ŝ1) conditioned
on the input structures. Unlike standard sampling-based approaches, we do not sample a sequence from this distribution.
Instead, we directly feed the probability distribution p(ŝ1) into a regressor network hϕ to predict the target property value ŷ.
The guidance signal is derived from the discrepancy between the predicted value and the desired target y, approximated as a
pseudo-gradient −∇s1∥y − ŷ∥2, which is used to reweight the sequence distribution. This guides the sampling process
toward sequences more likely to yield the desired property. A side chain packing network gη assigns side chains for each
structure. Reverse-time sampling with a fixed time step ∆t is performed iteratively (e.g., using Eq. 1) until the full sequence
is generated.

Algorithm 3 Training-free classifier Guidance Sampling Process
Input:
N protein and non-protein structures {x1, ..., xN}
Initial sequence s0 = (m, ...,m)
Initial side chains χ0 = ∅
Time step ∆t
Denoising network fθ, side chain packing network gη , regressor network hϕ

Target value y
Initialise t = 0
while t < 1 do

for n = 1 to N do
Compute pn(ŝ1) = fθ(st, xn, χt)

end for
p(ŝ1) =

1
N

∑
n p

n(ŝ1)
Compute ŷ by p(ŝ1): ŷ = hϕ(p(ŝ1))
Approximate p(y|s1) ≈ −∇s1 ||y − ŷ||2
Sample s1 ∼ p(ŝ1)p(y|ŝ1)
for n = 1 to N do

Compute χn
1 = g(s1, xn)

end for
Compute Rt(st, j) = Ep1|t(s1|st)[Rt(st, j|s1)]
Sample st+∆t by Eq 1
t← t+∆t

end while
Return: Final sequence s1

D. PDB IDs and CCD codes
PDB IDs for the small molecule interaction benchmark 1A28, 1BZC, 1DRV, 1E3G, 1ELB, 1ELC, 1EPO, 1F0R, 1G7F, 1G7G, 1GVW, 1GX8, 1I37, 1KAV, 1KDK,
1KV1, 1L8G, 1LHU, 1LPG, 1NC1, 1NFX, 1NHZ, 1NL9, 1NNY, 1NWL, 1ONY, 1PYN, 1QB1, 1QKT, 1QXK, 1R0P, 1SJ0, 1SQN, 1V2N, 1XJD, 1XWS, 1YC1, 1YQJ, 1Z95, 1ZP8, 2AYR, 2B07, 2B4L,
2BAJ, 2BAK, 2BAL, 2BSM, 2CET, 2E2R, 2F6T, 2FDP, 2G94, 2HAH, 2IHQ, 2IWX, 2J2U, 2J34, 2J4I, 2J94, 2J95, 2O0U, 2OAX, 2OJG, 2OJJ, 2P4J, 2P7G, 2P7Z, 2POG, 2QBP, 2QBQ, 2QBS, 2QE4,
2QMG, 2UWL, 2UWO, 2UWP, 2V7A, 2VH0, 2VH6, 2VKM, 2VRJ, 2VW5, 2VWC, 2W8Y, 2WC3, 2WEB, 2WEC, 2WEQ, 2WGJ, 2WUF, 2WYG, 2WYJ, 2XAB, 2XB8, 2XDA, 2XHT, 2XJ1, 2XJ2, 2XJG,
2XJX, 2Y7X, 2Y7Z, 2Y80, 2Y81, 2Y82, 2YDW, 2YEK, 2YEL, 2YFE, 2YFX, 2YGE, 2YGF, 2YI0, 2YI7, 2YIX, 2ZMM, 3ACW, 3ACX, 3B5R, 3B65, 3BGQ, 3BGZ, 3CKP, 3COW, 3COY, 3COZ, 3D7Z,
3D83, 3EAX, 3EKR, 3FV1, 3FV2, 3FVK, 3GBA, 3GBB, 3GCS, 3GCU, 3GY3, 3HEK, 3I25, 3IOC, 3IPH, 3IW6, 3K97, 3LPI, 3LPK, 3LXK, 3M35, 3MYG, 3N76, 3NQ3, 3NYX, 3O5X, 3O8P, 3PWW,
3ROC, 3TFN, 3U81, 3UEU, 3UEV, 3UEW, 3UEX, 3VHA, 3VHC, 3VHD, 3VJE, 3VVY, 3VW1, 3VW2, 3WHA, 3WZ6, 3WZ8, 3ZC5, 3ZM9, 3ZZE, 4A4V, 4A4W, 4A7I, 4AG8, 4AP7, 4B6O, 4B9K, 4CD0,
4CGA, 4CMO, 4DA5, 4E5W, 4E6D, 4E9U, 4EA2, 4EGK, 4ER1, 4FCQ, 4FFS, 4FLP, 4G8N, 4GNY, 4GU6, 4HGE, 4IGT, 4K0Y, 4K9Y, 4KAO, 4KCX, 4LYW, 4M0R, 4M12, 4M13, 4MUF, 4NH8, 4NWC,
4O04, 4O05, 4O07, 4O09, 4O0B, 4P5Z, 4PMM, 4POP, 4QEV, 4QEW, 4QYY, 4RFM, 4RWJ, 4TWP, 4UYF, 4V01, 4W9F, 4W9L, 4WA9, 4WKN, 4X6P, 4XIP, 4XIR, 4Y79, 4YBK, 4YMB, 4YML, 4YNB,
4YTH, 4Z0K, 4ZAE, 5AA9, 5ACY, 5D26, 5D3H, 5D3J, 5D3L, 5D3T, 5DLX, 5DQC, 5DWR, 5E74, 5EGM, 5ENG, 5EQP, 5EQY, 5ER1, 5EXM, 5EXN, 5F9B, 5FTO, 5FUT, 5HCV, 5I3V, 5I3Y, 5I9X, 5I9Z,
5IE1, 5IH9, 5JQ5, 5KZ0, 5L2S, 5LLI, 5LNY, 5LSG, 5NEB, 5NW1, 5NYH, 5OP5, 5OQ8, 5QQP, 5T19, 5TPX, 5V82, 5YFS, 5YFT, 6C2R, 6CJR, 6CPW, 6DGQ, 6DGR, 6DYU, 6DYV, 6EL5, 6ELO, 6ELP,
6EY9, 6EYB, 6F1N, 6GE7, 6GF9, 6GFS, 6GHH, 6I61, 6I64, 6I67, 6MD0, 6MH1, 6MH7, 6N7A, 6N8X, 6NO9, 6NV7, 6NV9, 6OLX, 6QI7

PDB IDs for the nucleotide interaction benchmark 1A0A, 1AM9, 1AN4, 1B01, 1BC7, 1BC8, 1DI2, 1EC6, 1HLO, 1HLV, 1I3J, 1PVI, 1QUM, 1SFU, 1U3E, 1XPX,
1YO5, 1ZX4, 2C5R, 2C62, 2NQ9, 2O4A, 2P5L, 2XDB, 2YPB, 2ZHG, 2ZIO, 3ADL, 3BSU, 3FC3, 3G73, 3GNA, 3GX4, 3LSR, 3MJ0, 3MVA, 3N7Q, 3OLT, 3VOK, 3VWB, 3ZP5, 4ATO, 4BHM, 4BQA,
4E0P, 4NID, 4WAL, 5CM3, 5HAW, 5MHT, 5VC9, 5W9S, 5YBD, 6BJV, 6DNW, 6FQR, 6GDR, 6KBS, 6LFF, 6LMJ, 6OD4, 6WDZ, 6X70, 6Y93, 7BCA, 7C0G, 7EL3, 7JSA, 7JU3, 7KII, 7KIJ, 7MTL,
7Z0U, 8DWM

PDB IDs for the metal interaction benchmark 1DWH, 1E4M, 1E6S, 1E72, 1F35, 1FEE, 1JOB, 1LQK, 1M5E, 1M5F, 1MOJ, 1MXY, 1MXZ, 1MY1, 1NKI, 1QUM,
1SGF, 1T31, 1U3E, 2BDH, 2BX2, 2CFV, 2E6C, 2NQ9, 2NQJ, 2NZ6, 2OU7, 2VXX, 2ZWN, 3BVX, 3CV5, 3F4V, 3F5L, 3FGG, 3HG9, 3HKN, 3HKT, 3I9Z, 3K7R, 3L24, 3L7T, 3M7P, 3MI9, 3O1U, 3U92,
3U93, 3U94, 3WON, 4AOJ, 4DY1, 4HZT, 4I0F, 4I0J, 4I0Z, 4I11, 4I12, 4JD1, 4NAZ, 4WD8, 4X68, 5F55, 5F56, 5FGS, 5HEZ, 5I4J, 5L70, 5VDE, 6A4X, 6BUU, 6CYT, 6IV2, 6LKP, 6LRD, 6WDZ, 6X75,
7DNR, 7E34, 7KII, 7N7G, 7S7L, 7S7M, 7W5E, 7WB2
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PDB IDs for the NMR benchmark 8VOH, 8WLS, 8X8T, 8XZ2, 9ATN, 9C5E, 9GAG, 5K5G, 5L85, 5LSD, 5M1G, 5M8I, 5M9D, 5MPG, 5MPL, 5N8M, 5NF8, 5NKO, 5NOC,
5NWM, 5OEO, 5OGU, 5OR5, 5OWI, 5TM0, 5TMX, 5TN2, 5U4K, 5U5S, 5U9B, 5US5, 5VTO, 5W4S, 5WYO, 5X29, 5X3Z, 5XV8, 5XZK, 5YAM, 2NBV, 5ZAU, 5ZUX, 6B1G, 6B7G, 6BA6, 6WA1,
6WLH, 6XFL, 6XOR, 6Y8V, 6YP5, 6ZDB, 7A0O, 7ACT, 7B2B, 7CLV, 7CSQ, 7DEE, 7DFE, 7JQ8, 7K3S, 7K7F, 6CTB, 7LOI, 7MLA, 7ND1, 7OVC, 7PJ1, 7PKU, 7Q4L, 7QDE, 7QRI, 7QS6, 7QUU,
7RNO, 7RPM, 2MY2, 2MYJ, 2MZ1, 2MZC, 2MZD, 2MZP, 2N01, 2N0S, 2N0Y, 2N18, 2N1A, 2N1D, 2N1G, 2N1T, 2N2A, 2N2H, 2N2J, 2N3J, 2N3O, 2NBW, 2N54, 2N55, 2N5E, 2N5G, 2N64, 2N73,
2N74, 2N8A, 2N9B, 2N9P, 2N9X, 2NAO, 7S5J, 7SFT, 7T2F, 7VBG, 7VRL, 7VU7, 7WJ0, 7X5C, 7YWQ, 7ZAP, 7ZE0, 7ZEY, 7ZEX, 8BA1, 8CA0, 8COO, 8DPX, 8DSB, 8DSX, 8FG1, 8HEP, 8HEQ,
8HER, 8HPB, 8J4I, 8K2R, 8K2T, 8K31, 8ONU, 8OX2, 8PEK, 8PXX, 8R1X, 8RAJ, 8S8O, 8SG2, 8TT7, 8U9O, 2NB1, 2NBJ, 2NDG, 2NDP, 2RVN, 5B7J, 5GWM, 5H7P, 5I8N, 5IAY, 5ID3, 5IXF, 5J6Z,
5JPW, 5JTL, 5JYN, 5JYV, 6C44, 6CLZ, 6DMP, 6DSL, 6E5N, 6E8W, 6EVI, 6F0Y, 6FDT, 6G04, 6G8O, 6GBE, 6GBM, 6GC3, 6GVU, 6H8C, 6HPJ, 6IVU, 6IWJ, 6JXX, 6K3K, 6L8V, 6LMR, 6LQZ, 6LUL,
6LXG, 6M78, 6N2M, 6NHW, 6O0I, 6OQJ, 6OSW, 6Q2Z, 6QTC, 6R5G, 6RH6, 6S3W, 6SAI, 6SDW, 6SDY, 6SNJ, 6SO9, 6TDM, 6TDN, 6TL0, 6TV5, 6TVM, 6TWR, 6U19, 6U4N, 6U6P, 6U6S, 6UHW,
6UJV, 6UT2, 6V88

Crystallisation aids SO4, GOL, EDO, PO4, ACT, PEG, DMS, TRS, PGE, PG4, FMT, EPE, MPD, MES, CD, IOD

Other ligands excluded 144, 15P, 1PE, 2F2, 2JC, 3HR, 3SY, 7N5, 7PE, 9JE, AAE, ABA, ACE, ACN, ACT, ACY, AZI, BAM, BCN, BCT, BDN, BEN, BME, BO3, BTB, BTC, BU1, C8E,
CAD, CAQ, CBM, CCN, CIT, CL, CLR, CM, CMO, CO3, CPT, CXS, D10, DEP, DIO, DMS, DN, DOD, DOX, EDO, EEE, EGL, EOH, EOX, EPE, ETF, FCY, FJO, FLC, FMT, FW5, GOL, GSH, GTT,
GYF, HED, IHP, IHS, IMD, IOD, IPA, IPH, LDA, MB3, MEG, MES, MLA, MLI, MOH, MPD, MRD, MSE, MYR, N, NA, NH2, NH4, NHE, NO3, O4B, OHE, OLA, OLC, OMB, OME, OXA, P6G, PE3,
PE4, PEG, PEO, PEP, PG0, PG4, PGE, PGR, PLM, PO4, POL, POP, PVO, SAR, SCN, SEO, SEP, SIN, SO4, SPD, SPM, SR, STE, STO, STU, TAR, TBU, TME, TPO, TRS, UNK, UNL, UNX, UPL, URE

CCD codes defining glycans 045, 05L, 07E, 07Y, 08U, 09X, 0BD, 0H0, 0HX, 0LP, 0MK, 0NZ, 0UB, 0V4, 0WK, 0XY, 0YT, 10M, 12E, 145, 147, 149, 14T, 15L, 16F, 16G, 16O, 17T,
18D, 18O, 1CF, 1FT, 1GL, 1GN, 1LL, 1S3, 1S4, 1SD, 1X4, 20S, 20X, 22O, 22S, 23V, 24S, 25E, 26O, 27C, 289, 291, 293, 2DG, 2DR, 2F8, 2FG, 2FL, 2GL, 2GS, 2H5, 2HA, 2M4, 2M5, 2M8, 2OS, 2WP,
2WS, 32O, 34V, 38J, 3BU, 3DO, 3DY, 3FM, 3GR, 3HD, 3J3, 3J4, 3LJ, 3LR, 3MG, 3MK, 3R3, 3S6, 3SA, 3YW, 40J, 42D, 445, 44S, 46D, 46Z, 475, 48Z, 491, 49A, 49S, 49T, 49V, 4AM, 4CQ, 4GC, 4GL,
4GP, 4JA, 4N2, 4NN, 4QY, 4R1, 4RS, 4SG, 4UZ, 4V5, 50A, 51N, 56N, 57S, 5GF, 5GO, 5II, 5KQ, 5KS, 5KT, 5KV, 5L3, 5LS, 5LT, 5MM, 5N6, 5QP, 5SP, 5TH, 5TJ, 5TK, 5TM, 61J, 62I, 64K, 66O, 6BG,
6C2, 6DM, 6GB, 6GP, 6GR, 6K3, 6KH, 6KL, 6KS, 6KU, 6KW, 6LA, 6LS, 6LW, 6MJ, 6MN, 6PZ, 6S2, 6UD, 6YR, 6ZC, 73E, 79J, 7CV, 7D1, 7GP, 7JZ, 7K2, 7K3, 7NU, 83Y, 89Y, 8B7, 8B9, 8EX, 8GA,
8GG, 8GP, 8I4, 8LR, 8OQ, 8PK, 8S0, 8YV, 95Z, 96O, 98U, 9AM, 9C1, 9CD, 9GP, 9KJ, 9MR, 9OK, 9PG, 9QG, 9S7, 9SG, 9SJ, 9SM, 9SP, 9T1, 9T7, 9VP, 9WJ, 9WN, 9WZ, 9YW, A0K, A1Q, A2G, A5C,
A6P, AAL, ABD, ABE, ABF, ABL, AC1, ACR, ACX, ADA, AF1, AFD, AFO, AFP, AGL, AH2, AH8, AHG, AHM, AHR, AIG, ALL, ALX, AMG, AMN, AMU, AMV, ANA, AOG, AQA, ARA, ARB, ARI,
ARW, ASC, ASG, ASO, AXP, AXR, AY9, AZC, B0D, B16, B1H, B1N, B2G, B4G, B6D, B7G, B8D, B9D, BBK, BBV, BCD, BDF, BDG, BDP, BDR, BEM, BFN, BG6, BG8, BGC, BGL, BGN, BGP, BGS,
BHG, BM3, BM7, BMA, BMX, BND, BNG, BNX, BO1, BOG, BQY, BS7, BTG, BTU, BW3, BWG, BXF, BXP, BXX, BXY, BZD, C3B, C3G, C3X, C4B, C4W, C5X, CBF, CBI, CBK, CDR, CE5, CE6,
CE8, CEG, CEZ, CGF, CJB, CKB, CKP, CNP, CR1, CR6, CRA, CT3, CTO, CTR, CTT, D1M, D5E, D6G, DAF, DAG, DAN, DDA, DDL, DEG, DEL, DFR, DFX, DG0, DGO, DGS, DGU, DJB, DJE, DK4,
DKX, DKZ, DL6, DLD, DLF, DLG, DNO, DO8, DOM, DPC, DQR, DR2, DR3, DR5, DRI, DSR, DT6, DVC, DYM, E3M, E5G, EAG, EBG, EBQ, EEN, EEQ, EGA, EMP, EMZ, EPG, EQP, EQV, ERE,
ERI, ETT, EUS, F1P, F1X, F55, F58, F6P, F8X, FBP, FCA, FCB, FCT, FDP, FDQ, FFC, FFX, FIF, FK9, FKD, FMF, FMO, FNG, FNY, FRU, FSA, FSI, FSM, FSW, FUB, FUC, FUD, FUF, FUL, FUY, FVQ,
FX1, FYJ, G0S, G16, G1P, G20, G28, G2F, G3F, G3I, G4D, G4S, G6D, G6P, G6S, G7P, G8Z, GAA, GAC, GAD, GAF, GAL, GAT, GBH, GC1, GC4, GC9, GCB, GCD, GCN, GCO, GCS, GCT, GCU, GCV,
GCW, GDA, GDL, GE1, GE3, GFP, GIV, GL0, GL1, GL2, GL4, GL5, GL6, GL7, GL9, GLA, GLC, GLD, GLF, GLG, GLO, GLP, GLS, GLT, GM0, GMB, GMH, GMT, GMZ, GN1, GN4, GNS, GNX, GP0,
GP1, GP4, GPH, GPK, GPM, GPO, GPQ, GPU, GPV, GPW, GQ1, GRF, GRX, GS1, GS9, GTK, GTM, GTR, GU0, GU1, GU2, GU3, GU4, GU5, GU6, GU8, GU9, GUF, GUL, GUP, GUZ, GXL, GXV,
GYE, GYG, GYP, GYU, GYV, GZL, H1M, H1S, H2P, H3S, H53, H6Q, H6Z, HBZ, HD4, HNV, HNW, HSG, HSH, HSJ, HSQ, HSX, HSY, HTG, HTM, HVC, IAB, IDC, IDF, IDG, IDR, IDS, IDU, IDX,
IDY, IEM, IN1, IPT, ISD, ISL, ISX, IXD, J5B, JFZ, JHM, JLT, JRV, JSV, JV4, JVA, JVS, JZR, K5B, K99, KBA, KBG, KD5, KDA, KDB, KDD, KDE, KDF, KDM, KDN, KDO, KDR, KFN, KG1, KGM,
KHP, KME, KO1, KO2, KOT, KTU, L0W, L1L, L6S, L6T, LAG, LAH, LAI, LAK, LAO, LAT, LB2, LBS, LBT, LCN, LDY, LEC, LER, LFC, LFR, LGC, LGU, LKA, LKS, LM2, LMO, LNV, LOG, LOX,
LRH, LTG, LVO, LVZ, LXB, LXC, LXZ, LZ0, M1F, M1P, M2F, M3M, M3N, M55, M6D, M6P, M7B, M7P, M8C, MA1, MA2, MA3, MA8, MAB, MAF, MAG, MAL, MAN, MAT, MAV, MAW, MBE,
MBF, MBG, MCU, MDA, MDP, MFB, MFU, MG5, MGC, MGL, MGS, MJJ, MLB, MLR, MMA, MN0, MNA, MQG, MQT, MRH, MRP, MSX, MTT, MUB, MUR, MVP, MXY, MXZ, MYG, N1L, N3U,
N9S, NA1, NAA, NAG, NBG, NBX, NBY, NDG, NFG, NG1, NG6, NGA, NGC, NGE, NGK, NGR, NGS, NGY, NGZ, NHF, NLC, NM6, NM9, NNG, NPF, NSQ, NT1, NTF, NTO, NTP, NXD, NYT, OAK,
OI7, OPM, OSU, OTG, OTN, OTU, OX2, P53, P6P, P8E, PA1, PAV, PDX, PH5, PKM, PNA, PNG, PNJ, PNW, PPC, PRP, PSG, PSV, PTQ, PUF, PZU, QDK, QIF, QKH, QPS, QV4, R1P, R1X, R2B, R2G,
RAE, RAF, RAM, RAO, RB5, RBL, RCD, RER, RF5, RG1, RGG, RHA, RHC, RI2, RIB, RIP, RM4, RP3, RP5, RP6, RR7, RRJ, RRY, RST, RTG, RTV, RUG, RUU, RV7, RVG, RVM, RWI, RY7, RZM,
S7P, S81, SA0, SCG, SCR, SDY, SEJ, SF6, SF9, SFU, SG4, SG5, SG6, SG7, SGA, SGC, SGD, SGN, SHB, SHD, SHG, SIA, SID, SIO, SIZ, SLB, SLM, SLT, SMD, SN5, SNG, SOE, SOG, SOL, SOR, SR1,
SSG, SSH, STW, STZ, SUC, SUP, SUS, SWE, SZZ, T68, T6D, T6P, T6T, TA6, TAG, TCB, TDG, TEU, TF0, TFU, TGA, TGK, TGR, TGY, TH1, TM5, TM6, TMR, TMX, TNX, TOA, TOC, TQY, TRE,
TRV, TS8, TT7, TTV, TU4, TUG, TUJ, TUP, TUR, TVD, TVG, TVM, TVS, TVV, TVY, TW7, TWA, TWD, TWG, TWJ, TWY, TXB, TYV, U1Y, U2A, U2D, U63, U8V, U97, U9A, U9D, U9G, U9J, U9M,
UAP, UBH, UBO, UDC, UEA, V3M, V3P, V71, VG1, VJ1, VJ4, VKN, VTB, W9T, WIA, WOO, WUN, WZ1, WZ2, X0X, X1P, X1X, X2F, X2Y, X34, X6X, X6Y, XDX, XGP, XIL, XKJ, XLF, XLS, XMM,
XS2, XXM, XXR, XXX, XYF, XYL, XYP, XYS, XYT, XYZ, YDR, YIO, YJM, YKR, YO5, YX0, YX1, YYB, YYH, YYJ, YYK, YYM, YYQ, YZ0, Z0F, Z15, Z16, Z2D, Z2T, Z3K, Z3L, Z3Q, Z3U, Z4K,
Z4R, Z4S, Z4U, Z4V, Z4W, Z4Y, Z57, Z5J, Z5L, Z61, Z6H, Z6J, Z6W, Z8H, Z8T, Z9D, Z9E, Z9H, Z9K, Z9L, Z9M, Z9N, Z9W, ZB0, ZB1, ZB2, ZB3, ZCD, ZCZ, ZD0, ZDC, ZDO, ZEE, ZEL, ZGE, ZMR
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