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Abstract

Several recent studies have attempted to autore-
gressively generate continuous speech represen-
tations without discrete speech tokens by com-
bining diffusion and autoregressive models, yet
they often face challenges with excessive com-
putational loads or suboptimal outcomes. In this
work, we propose Diffusion Transformer Autore-
gressive Modeling (DiTAR), a patch-based autore-
gressive framework combining a language model
with a diffusion transformer. This approach sig-
nificantly enhances the efficacy of autoregressive
models for continuous tokens and reduces com-
putational demands. DiTAR utilizes a divide-and-
conquer strategy for patch generation, where the
language model processes aggregated patch em-
beddings, and the diffusion transformer subse-
quently generates the next patch based on the
output of the language model. For inference, we
propose defining temperature as the time point
of introducing noise during the reverse diffu-
sion ODE to balance diversity and determinism.
We also show in the extensive scaling analysis
that DiTAR has superb scalability. In zero-shot
speech generation, DiTAR achieves state-of-the-
art performance in robustness, speaker similarity,
and naturalness. Audio samples are presented in
https://spicyresearch.github.io/ditar.

1. Introduction

Recently, the autoregressive language model (LM) has
demonstrated strong generative capabilities and scaling
properties(Achiam et al., 2023; Touvron et al., 2023; Yang
et al., 2024; Team et al., 2023), where discrete tokenization
is commonly used. While discretization is natural for text,
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it is not as straightforward for other modalities, such as im-
ages, video, and audio. Due to bitrate limitations, discrete
representation often fails to reconstruct complex modali-
ties with high fidelity. In comparison, continuous tokens
can better reconstruct the original information(Fan et al.,
2024; Rombach et al., 2022). To alleviate this challenge, a
two-stage strategy is commonly applied for autoregressive
multi-media generation, where a lossy discrete token is first
generated by an LM, followed by a token-based diffusion
for detail enrichment. However, such a cascaded design
suffers from error accumulation and limits the scalability of
the language model. Therefore, autoregressive modeling of
continuous representations is meaningful.

The diffusion model has been proven effective at modeling
continuous representations(Peebles & Xie, 2023; Rombach
et al., 2022; Anastassiou et al., 2024), and integrating it
with autoregressive models is a major research trend. (Li
et al., 2024a; Fan et al., 2024) proposes incorporating a
diffusion head into a language model for image generation,
pioneering a new approach. However, the performance
significantly falls short when a causal-attention language
model forms the backbone. Another approach, such as
ARDIT(Liu et al., 2024b) or Transfusion(Zhou et al., 2024),
repurposes the language model’s parameters for diffusion,
leading to substantial computational demands. This raises
the question of whether we can autoregressively predict
continuous tokens while ensuring high-quality generation
and maintaining reasonable computational demands.

To tackle this challenge, we introduce the Diffusion Trans-
former AutoRegressive (DiTAR) modeling, a framework
that seamlessly combines transformer diffusion with a lan-
guage model. We attribute the subpar performance of a
language model with a diffusion head to the unidirectional
dependency imposed by causal attention, which conflicts
with the close inter-frame correlations characteristic of con-
tinuous tokens. In DiTAR, we propose a divide-and-conquer
strategy that breaks continuous tokens into multiple patches.
A language model is responsible for inter-patch prediction,
while a diffusion transformer handles intra-patch predic-
tion. Specifically, a diffusion transformer with bidirectional
attention (DiT), noted for its state-of-the-art performance
across various generative fields(Liu et al., 2024a; Peebles &
Xie, 2023; Anastassiou et al., 2024), is employed to predict
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localized patches, named LocDiT. Furthermore, we propose
a broadly applicable guidance method and introduce histor-
ical contexts to LocDiT to further enhance its generative
capabilities. After patchification, the causal language model
handling long contexts receives shorter sequences, further
reducing computational load.

For inference, temperature-based sampling balances explo-
ration and exploitation and is crucial in discrete-valued
language models. However, its application in continuous-
valued LMs remains underexplored. We define temperature
as the point at which noise is introduced along the reverse
ODE trajectory and propose a temperature-based sampling
method for the continuous-valued AR model. Distinct from
previous SDE-based approaches(Dhariwal & Nichol, 2021;
Li et al., 2024a) that require numerous steps, our method
suits quicker ODE solvers and adeptly balances diversity
with determinism.

DiTAR, rooted in a language model, excels at zero-shot gen-
eration tasks. We apply DiTAR to zero-shot text-to-speech
(TTS) that aims to generate speech from unseen speakers’
prompts. Unlike systems(Chen et al., 2024b; 2025; Anas-
tassiou et al., 2024; Du et al., 2024) using a coarse-to-fine
pipeline, DiTAR simplifies the process by having the lan-
guage model directly predict final features, obviating the
need for multiple stages. It achieves state-of-the-art re-
sults in robustness, speaker similarity, and naturalness while
demanding far less computational power than competing
models.

In summary, our contributions to the community include:

* We introduce DiTAR, a patch-based autoregressive
framework that seamlessly blends LM and DiT, main-
taining their strengths while offering superb generative
capabilities and reduced computational demands.

* In inference, we propose a new definition of temper-
ature and a fast temperature-based sampling method
tailored for autoregressive models with diffusion loss.

* We apply DiTAR to zero-shot speech generation and
achieve SOTA performance with a much lower compu-
tational load.

2. Related Works

Integrating Autoregressive Language Model and Dif-
fusion. Language models are primarily used for discrete
representations, while diffusion excels in modeling continu-
ous distributions. Integrating them for multimodal modeling
is a crucial research direction. Some efforts (Wu et al., 2023;
Liu et al., 2024b; Chen et al., 2024a) enable diffusion to have
autoregressive capabilities by varying the denoising rates be-
tween consecutive tokens to achieve earlier predictions for

preceding tokens. Transfusion(Zhou et al., 2024) utilizes a
shared transformer for both diffusion and language models,
employing causal attention for discrete tokens and bidirec-
tional attention for continuous tokens. However, it does not
naturally support the autoregressive generation of continu-
ous tokens. These approaches repurpose language model
parameters for diffusion, which significantly increases com-
putational demands as the sequence lengthens and the lan-
guage model size grows. Most relevant to our work, Li et al.
(2024a) proposes a diffusion head for next-token prediction.
However, its application in causal language models results
in relatively poor performance.

Patchification in Generative Modeling. In speech(Wang
et al., 2017; Meng et al., 2024; Chen et al., 2024b), im-
age(Peebles & Xie, 2023; Li et al., 2024b), and video gen-
eration(Liu et al., 2024a), the patchification technique is
widely applied. In these works, patchification primarily
aims to reduce the computational load by shortening the
sequence length. However, in this paper, patchification not
only lowers computational demands but also enables bidi-
rectional modeling on patches within our autoregressive
framework, further improving modeling effectiveness.

Zero-Shot Text-to-Speech. Zero-shot TTS aims to generate
speech with prompts from unseen speakers. Existing works
can be divided into two categories: multi-stage and single-
stage. Multi-stage approaches(Chen et al., 2024b; 2025; Lee
et al., 2023; Jiang et al., 2023b;a; Anastassiou et al., 2024),
represent speech using various representations, primarily
divided into coarse and fine categories. The autoregressive
language model is often adopted to predict the coarse repre-
sentations, usually in discrete values and low information,
such as semantics(Kharitonov et al., 2023; Anastassiou et al.,
2024; Hsu et al., 2021; Chung et al., 2021; Baevski et al.,
2020) and prosody(Jiang et al., 2023b;a; Ju et al., 2024).
And then another model is adopted to conduct coarse-to-fine.
Single-stage methods focus on generating high-information
continuous representations, such as Mel spectrograms or
latents of auto-encoders, which can directly reconstruct au-
dio waveforms. Diffusion based on the non-causal attention
transformer is the primary method employed(Chen et al.,
2024c; Eskimez et al., 2024; Gao et al., 2023; Le et al.,
2024). Additionally, some approaches(Meng et al., 2024;
Wang et al., 2017; Shen et al., 2018; Li et al., 2019) directly
use AR to model Mel-spectrograms of speech but often
involve using Dropout(Srivastava et al., 2014) at the input
stage to guarantee generation robustness, resulting in weaker
in-context learning capabilities. These methods are better
suited for in-set speaker TTS. This paper introduces a single-
stage autoregressive method for zero-shot TTS, achieving
SOTA generation robustness and voice similarity.



DiTAR: Diffusion Transformer Autoregressive Modeling for Speech Generation

Speech Waveform |||||||||||||||||||||II|||I|||||||||||||

LocDiT

Thi—z

LocDiT

Aggregation
Encoder

Aggregation
Encoder

“Have a good day!”
Text Condition

LocDiT
T h;_4 T h;

Causal Autoregressive Transformer

t t t t

Aggregation
Encoder

72
79
Diffusion Transformer

188884818

Historical Patch Current Patch
(diffused)

Continuous Speech Tokens

Figure 1: DiTAR is composed of an aggregation encoder for input, a causal language model backbone, and a diffusion

decoder, LocDiT, predicting local patches of tokens.

3. Method

In a nutshell, we propose DiTAR, a patch-based autore-
gressive system based on continuous representation. This
system amalgamates the strengths of the causal-attention
AR and bidirectional-attention transformer diffusion.

3.1. Overview
3.1.1. FORMULATION

DiTAR is an autoregressive model via next-token predic-
tion. Consider a sequence of continuous tokens x =
(z1,x2,...,2N), we can factorize the joint distribution of
the sequence by the chain rule of probability:

N
po(x1, 2, ..., TN) = Hpe(wi\ichm, woxicr) (1)
i=1
where 6 denotes the parameters of an AR generative model.
Noting the high similarity among adjacent continuous to-
kens, it is evident that a bidirectional dependency exists
within local regions(Tian et al., 2024). Based on this dis-
covery, we aggregate local x; into patches with a size of P,
and then employ bidirectional attention to model the tokens
inside each patch. We can divide the model into two parts,
0, and 6: 0, denotes the autoregressive model responsible
for long context learning via pg, (h;|x1, 22, ..., ;), while
0, denotes a bidirectional-attention diffusion transformer
executing next-patch prediction via pg, (®; 41, ..., Tiyp|h;),
where h; is the output of language model and condition for
diffusion.

We validate the effectiveness of DiTAR on the zero-shot
text-to-speech task. Based on the formulation, we regard

zero-shot TTS as a conditional continuation task for the AR
model like Chen et al. (2024b), where prompting texts, tar-
get text, and prompting speech are concatenated and fed into
the model as prefix context, then the model autoregressively
generates the target speech given the context.

3.1.2. OVERALL ARCHITECTURE

Li et al. (2024a) finds that the performance of the causal-
attention autoregressive model combined with diffusion loss
is significantly inferior to systems utilizing full attention. To
address the issue, we propose a divide-and-conquer strategy,
where a long sequence of continuous tokens is divided into
multiple patches. A language model is responsible for inter-
patch prediction, while a diffusion transformer handles intra-
patch prediction. As shown in Figure 1, the backbone of
our system is a causal-attention transformer with next-token
prediction. Each patch of continuous tokens is processed
with an aggregation encoder into a single vector, which is
then fed into the AR model to get the output embedding
h;. h; serves as the condition of the following diffusion
decoder, LocDiT. Following (Li et al., 2024a), a diffusion
loss is used for the output continuous tokens at training time.

3.2. LocDiT: Next-Patch Bidirectional Modeling

The diffusion transformer(Peebles & Xie, 2023; Liu et al.,
2024a) has achieved success across numerous generative
fields. These approaches leverage the full receptive field
of the bidirectional transformer to generate entire samples.
In our work, we propose using a bidirectional transformer
diffusion, called Local Diffusion Transformer (LocDiT), to
generate localized continuous token patches.
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LocDiT generates the next patch of speech given the AR’s
output. However, we have found that diffusion struggles
to predict the next patch under these conditions. To cap-
italize on the context-learning potential of the diffusion
transformer, we propose a context-aware diffusion approach.
Specifically, as illustrated in the right half of Fig 1, historical
patches of tokens are utilized as prefix inputs for the LocDiT,
thereby aligning the task more closely with outpainting and
significantly improving the generation performance. De-
tailed quantitative results are discussed in Section 4.3.

Furthermore, the design also implies an inherent coarse-to-
fine manner. Current approaches(Anastassiou et al., 2024;
Du et al., 2024; Chen et al., 2024b) commonly explicitly
delineate both coarse and fine features: a language model
typically predicts the coarse feature, while another network
achieves the transition from coarse to fine. However, multi-
stage methods are prone to cumulative errors. In contrast,
DiTAR functions in a seamless end-to-end manner, con-
densing each patch of tokens into an implicit coarse feature
space that LocDiT subsequently expands into high-fidelity
continuous tokens.

3.3. LM Guidance

Classifier-free guidance (CFG)(Ho & Salimans, 2022) is
extensively employed to enhance the condition adherence
of generative models. In diffusion, the unconditional and
conditional models share parameters and are jointly trained
by intermittently omitting the condition during training. At
inference, the outputs from these two models are merged
with a parameter w balancing the trade-off between diver-
sity and fidelity. This is equivalent to sampling under such
a distribution pyg (2, ¢) < pe(zt|c)pe(c|z:)™, where 6 de-
notes the model parameters, ¢ denotes the condition and
z; denotes the noisy sample at the time of ¢. For discrete-
valued language models, classifier-free guidance(Sanchez
et al., 2023) often involves computing the language model
twice to obtain conditional and unconditional logits, which
can be computationally expensive.

For DiTAR, a model that incorporates both an LM and
a diffusion head, we propose LM guidance, an effective
approach that requires only two computations of the diffu-
sion head and one computation of the LM. Specically, the
ith output h; of the LM essentially represents all histori-
cal inputs (x1, xa, ..., x;) and we randomly replace the h;
with a dummy embedding hg along the sequence in train-
ing. At inference time, we samples from the distribution
po(2zit|®1, ..., ®i1)po(T1, .., Ti—1]2i)" by:

E@(Zii,hi) = (1 + w)ee(zi,ta hl) - we@(zi,ta h@) (2)

where z; ; denotes the ¢th noisy sample in the sequence at

the time of ¢ for diffusion, €y denotes the score estimated by
the LocDiT, hg denotes the dummy vector representing un-
conditional modeling. Operating in the velocity space with
a conditional flow-matching target is also equivalent. We
show that the approach significantly enhances the model’s
performance in Section 4.3.

3.4. Temperature for Continuous-Valued LMs

Temperature-based sampling, which strikes a balance
between exploration and exploitation, is fundamental
in discrete-valued LMs. However, its application in
continuous-valued LMs has been less extensively studied.
Li et al. (2024a) proposes a sampling method based on
the DDPM reversed process(Ho et al., 2020), which is a
first-order SDE solver, where the temperature is defined as
the noise scaling factor at each step. Due to the stochastic
nature of the Wiener process, SDE solvers require small
step sizes, necessitating a higher number of steps for con-
vergence(Song et al., 2020b). Additionally, this concept of
temperature cannot be readily extended to the more widely
used and faster ODE solvers prevalent in contemporary ap-
plications(Lu et al., 2022a;b; Song et al., 2020a). To address
these issues, we propose a new sampling method with a
new definition of temperature, which is compatible with the
ODE solvers.

We define the temperature 7 € [0,1] as the time point to
introduce noise while solving the reverse ODE of diffusion.
Specifically, consider a Gaussian diffusion forward process
defined on per-patch by xy = axy + o4&, where xg ~
Qdata(T0), € ~ N(0,I),t € [0,1], oy and oy collectively
defines the flow path. At 7 = 1, the sampling process is
equivalent to the standard ODE sampling process, where
we solve the reverse ODE dx; = vy(xy,t)dt from 1 to
0, where 1 ~ N(0,I) and vy denotes predicted vector
field. At 7 = 0, no random noise is introduced, leading to a
completely deterministic process. Considering that O is the
value with the highest likelihood in the standard Gaussian
distribution, we define the greedy sampling by sampling
from 27 = 0, thus ensuring determinism.

When 0 < 7 < 1, we introduce random noise at 7 by using
the forward process to diffuse an estimated xy. Eq 3 and 4
summarize the iterative process, where the Euler method is
used as the default ODE solver for illustration.

N(O,I) ifr=1
Ty~ ©0.1) . 3)
0 ifo<r<1
o — J Tkar— v(Tipat, t + A)AL ift £ 7 @)
k o g(Tipae, t + At) + o€ ift=r

where xy represents the estimated g, which can be de-
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rived from the estimated velocity or score through a linear
transformation. The derivation process is detailed in Ap-
pendix A.3. In Section 4.3, we demonstrate that 7 effectively
balances diversity and stability. The sampling process is
summarized in Algorithm 1.

Algorithm 1 Temperature sampling

Input: v-prediction model fo(.,.), discretized time
points t1 < to < ... < tny_1 € [0, 1), ty = 1,0DE
solver ¥(.,.,.), transformation function F, temperature 7
N« argmin |t, — 7|
n=1,2,..., N
if » = N then
Sample initial noise x;, ~ N(0,I)
else
initial noise x;, < 0
end if
forn=N —1to1do
v f@(thvtN)
if £,, = 7 then
&+ F(0)
Sample z ~ N(0,I)
T, P2
else
<+ P(0,n+1,n)
end if
end for
Output: =

3.5. Implemenations
3.5.1. CONTINUOUS SPEECH TOKENIZATION

Following LDM(Rombach et al., 2022), we use a variational
auto-encoder (VAE)(Kingma, 2013) to convert the wave-
form into the distribution of latent z, represented by mean
and variance. The encoder of the VAE consists of multi-
ple layers of the convolutional network, and the decoder’s
architecture follows BigVGAN(Lee et al., 2022). The ad-
versarial training scheme also follows Lee et al. (2022). We
adopt the multi-period discriminator (MPD) and multi-scale
discriminator (MSD) proposed by Kong et al. (2020) as
our discriminators. In our setup, the 24000hz waveform is
compressed into 40Hz latent with a dimension of 64.

3.5.2. MODEL

DiTAR consists of three modules: aggregation encoder, lan-
guage model, and decoder (LocDiT). In our implementation,
all of them are based on a transformer architecture. Specif-
ically, both the encoder and decoder employ bidirectional
attention masks, while the LM utilizes a causal attention
mask. All transformers adopt the Pre-Norm(Xiong et al.,
2020) architecture and utilize RMSNorm(Zhang & Sennrich,
2019) and RoPE (Su et al., 2024). Each patch of continuous

tokens, together with a learnable special token positioned at
the beginning of the sequence similar to (Devlin, 2018), is
fed into the aggregation encoder. The output corresponding
to the special token’s position serves as the aggregation em-
bedding. Aggregation embeddings from different patches
form a sequence that is processed by the LM. In LocDiT,
LM’s outputs and the time embedding are added, along with
historical context patches and noisy target tokens, forming a
new sequence that serves as the input of LocDiT. When cal-
culating the loss, we only consider the output corresponding
to the position of noisy target tokens. During training, LM’s
output is randomly replaced by a vector of all zeros with a
probability of 0.1 to enable LM guidance for LocDiT.

3.5.3. DIFFUSION FORMULATION

Following Song et al. (2020b); Lu & Song (2024), we adopt
a variance-preserving diffusion process defined by

Ty = Qg + 0+€ (5)
it . 7t
= cos (2):80 + sin (2>€ (6)

where xg ~ q(xo) denotes the data, € ~ A(0, I') denotes
the standard Gaussian noise, ¢ € [0, 1]. We employ a condi-
tional flow-matching loss(Lipman et al., 2022):

Lairs = Btz [[lvo(me,t) —v(ze 1)|5] (7

where the velocity is defined as: v(x¢,t) = & = ey +
oie. At inference time, We employed the DDIM sam-
pler(Song et al., 2020a), which is essentially an Euler ODE

2
sampler with respect to signal-to-noise ratio % instead of ¢,

proved to better align with the semi-linear prtoperty of the
diffusion ODE(Lu et al., 2022a).

3.5.4. ZERO-SHOT TTS SYSTEM

The text sequence is converted into phonemes and processed
through a lookup table to obtain text embeddings. Speech
tokens are processed by the aggregation encoder to produce
speech embeddings, which are then concatenated with the
text embeddings. The embedding sequence serves as the
input of the LM of DiTAR. During training, the loss of the
text is not included. Additionally, we introduce a binary
classifier with a fully connected layer at LM’s output to
predict when to stop following Wang et al. (2017); Li et al.
(2019). The loss function for zero-shot TTS can be summa-
rized as L = Lg;55 + Lgop. During inference, text, target
text, and prompting audio are fed as prefix input to DiTAR’s
LM, which then autoregressively generates the target audio.
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Table 1: Objective evaluation results of DiTAR and other systems on two subsets of LibriSpeech test-clean. Specifically,
subset A is used and reported by NaturalSpeech3, while subset B is released by FSTTS. 4 denotes the scores reported
in NaturalSpeech3. & means the results obtained from the authors of FSTTS. # means the results are obtained via
released checkpoints. The boldface and underline indicate the best and the second-best result, respectively. 1 and |
indicate lower or higher values are better. Abbreviation: Disc.(discrete), Cont.(Continuous), AR(autoregressive model),
NAR (non-autoregressive model), NFE(number of function evaluation)

Type System #Params Training Data WER(%)| SIMt UTMOST TFLOPs|
LibriSpeech test-clean A

- Human - - 0.34 0.68 4.14 -

- Vocoder - - 0.34 0.63 4.03 -

Disc. AR + Disc. NAR  VALL-E * 0.4B Librilight 6.11 0.47 3.68 ~ 2.99

Disc. AR + Cont. NAR  MegaTTS 2 ¢ 0.5B Librilight 2.32 0.53 4.02 ~ 0.06

Disc. NARs NaturalSpeech 3 * 0.5B Librilight 1.81 0.67 4.30 ~ 8.92

Cont. NAR NaturalSpeech 2 ¢ 0.4B Librilight 1.94 0.55 3.88 ~ 12.89

Cont. NAR Voicebox (NFE=32) ¢ 0.4B Librilight 2.14 0.48 3.73 ~ 60.89

Cont. AR DiTAR (NFE=10) 0.6B Librilight 1.78 0.64 4.15 ~ 2.75
LibriSpeech test-clean B

- Human - - 2.23 0.69 4.10 -

- Vocoder resynthesized - - 2.38 0.66 3.97 -

Disc. NARs MaskGCT (NFE=50) * 1.1B Emilia 2.72 0.69 3.90 ~ 116.66

Cont. NAR E2TTS (NFE=32) * 0.3B Emilia 2.95 0.69 3.56 ~ 56.46

Cont. NAR F5TTS (NFE=32) * 0.3B Emilia 2.42 0.66 3.88 ~ 37.36

Cont. AR DiTAR (NFE=10) 0.6B Emilia 2.39 0.67 4.22 ~ 2.75

Table 2: Subjective evaluation results on LibriSpeech test-
clean subset B. We compare DiTAR with several leading
NAR systems.

System | N-MOS Q-MOS S-MOS | CMOS
Human 3.89 3.61 3.56 +0.18
E2TTS 3.27 3.44 3.15 -0.32
FSTTS 3.36 3.58 3.33 -0.04
DiTAR 3.69 3.87 3.55 0.00

4. Experiments
4.1. SOTA Performance in Zero-Shot TTS

In this subsection, we benchmark DiTAR against leading
systems and demonstrate its state-of-the-art performance.

4.1.1. SETUP

To ensure a fair evaluation of zero-shot TTS, it is essential
to consider prompt audio, texts, and tools. We standard-
ize these variables to facilitate a more objective and fair
comparison between systems.

Training and Evaluation Dataset. We consider two open-
source datasets as our training dataset. 1) Librilight(Kahn
et al., 2020), containing 60K hours of English speech data
from LibriVox audiobooks. 2) Emilia(He et al., 2024), a mul-
tilingual dataset containing around 100k hours of speech.

We adopt three open-source datasets for evaluation: 1) Lib-

riSpeech(PC)(Panayotov et al., 2015; Meister et al., 2023)
test-clean, containing 40 distinct English speakers and a 5.4-
hour speech. We employ two established subsets: subset
A from NaturalSpeech3, featuring 40 three-second speech
prompts and 40 target samples, and subset B from F5TTS,
which includes 40 prompts and 1127 samples. 2) Seed-ZH:
a subset from DiDiSpeech 2(Guo et al., 2021), a Chinese
speech dataset, containing 1088 prompts and targets. 3)
Seed-EN: a subset from Common Voice(Ardila et al., 2019),
a crowdsourcing English speech dataset with diverse ac-
cents, containing 2020 prompts and targets.

Evaluation Metrics. We evaluate four objective metrics:
1) Word Error Rate (WER), which assesses generation ro-
bustness. For consistency, we use the same ASR setups
as previous studies to transcribe generated speech across
different test sets. Specifically, we adopt a Hubert-based
model' and Faster-whisper-large-v3 ?(Radford et al., 2022)
for the subset A and B of Librispeech test-clean, respec-
tively, Whisper-large-v3? for Seed-EN and Paraformer-zh
for Seed-ZH. 2) Speaker similarity to the prompt audio
(SIM). Specifically, we employed WavLM-large(Chen et al.,
2022) to compute the cosine distance between the generated
and reference speech. 3) UTMOS(Saeki et al., 2022), an
automatic predicted mean opinion score (MOS) to evaluate
speech quality. 4) Floating point operations (FLOPs), mea-

"https://huggingface.co/facebook/hubert-large-1s960-ft

2https://huggingface.co/Systran/faster-whisper-large-
v3,version:0.10.1

3https://huggingface.co/openai/whisper-large-v3
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suring the computational load of models. The calculation
process is detailed in Appendix A.4.

For subjective evaluation, we employ four MOS metrics: 1)
N-MOS for naturalness, 2) Q-MOS for sound quality, 3) S-
MOS for speaker voice similarity 4) CMOS for side-by-side
comparison with human audios.

Model Setup and Baselines. We benchmark DiTAR against
diverse zero-shot TTS systems with varying architectures,
including both multi-stage and single-stage schemes that
operate in discrete or continuous value spaces. We con-
duct comparisons using DiTAR with 0.6 billion parameters
and a patch size of 4. During inference, DiTAR’s LocDiT
uses an NFE (Number of Function Evaluations) of 10. Spe-
cific details about the parameters of DiTAR are provided in
Appendix A.2.

4.1.2. EXPERIMENTAL RESULTS

We conduct a multi-dimensional comparison of DiTAR with
other baseline works. For objective metrics, Table 1 presents
the evaluation results on LibriSpeech test-clean. For sub-
jective evaluation, we invite 10 English experts to rate the
generated audio. For N-MOS, Q-MOS, and S-MOS met-
rics, the generated audios are rated on a scale of 1 to 5.
For CMOS, experts compare the generated audio against the
ground truth (GT) and assign scores from -2 to 2. Subjective
results are detailed in Table 2.

Generation Robustness. As shown in Table 1, under two
different training data configurations and test sets, DITAR
consistently delivered the best WER, showcasing robust syn-
thesis performance matched by NAR systems with phone-
level duration models. Table 3 further details DiTAR’s
comparison with models trained on proprietary data, high-
lighting its superior synthesis stability.

Speaker Similarity. We perform both objective and sub-
jective assessments of speaker similarity. Objectively, as
Table 1 illustrates, DiITAR delivers strong SIM scores, on
par with NAR systems. Subjectively, as detailed in Table 2,
DiTAR outperforms leading NAR systems in S-MOS scores,
demonstrating excellent in-context learning capabilities.

Naturalness. We assess speech naturalness using the sub-
jective metrics N-MOS and CMOS. As detailed in Table
2, DiTAR excels over leading NAR systems, achieving the
highest scores for naturalness.

Audio Quality. We use the objective metric UTMOS and
the subjective metric Q-MOS to evaluate audio quality. Ta-
ble 1 demonstrates that DiTAR achieves competitive UT-
MOS scores on the LibriSpeech test-clean dataset, ranking
second only to NaturalSpeech3 in subset A while outper-
forming all other systems in subset B.. Subjectively, as
shown in Table 2, DiTAR exceeds even the ground truth

Table 3: Objective evaluation results of DiTAR and various
systems on Seed-EN and Seed-ZH.

System Seed-EN Seed-ZH
WER(%)] SIMT WER(%)] SIMT
Human 2.06 0.73 1.254 0.750
Seed-TTSpir 1.733 0.790 1.178 0.809
Cosy Voice 4.29 0.609 3.63 0.723
Cosy Voice 2 2.57 0.652 1.45 0.748
CosyVoice 2-S 2.38 0.654 1.45 0.753
FireRedTTS 3.82 0.46 1.51 0.63
MaskGCT 2.623 0.717 2.273 0.774
E2TTS 2.19 0.71 1.97 0.73
FSTTS 1.83 0.67 1.56 0.76
DiTAR 1.685 0.735 1.023 0.753
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Figure 2: The performance of DiTAR consistently improves
with increases in either training data or model size. The star
marker indicates performance that surpasses human levels.

in Q-MOS scores, highlighting the superior quality of its
outputs.

Computaional Load. Table 1 indicates that DiTAR not
only ensures high-quality audio generation but also dra-
matically cuts computational demands by approximately
3 ~ 43x compared to other NAR systems. Although hy-
brid systems require less computational power, they tend to
produce lower-quality outputs. Further details on inference
efficiency are discussed in 4.4.2.

4.1.3. COMPARISON WITH ADDITIONAL MODELS

To assess the upper-bound performance of DiTAR, we train
DiTAR with 1 billion parameters on 280k-hour data and
further compare DiTAR against a wider range of models, in-
cluding some closed-source systems, such as Seed-TTS. We
conduct tests on datasets for two languages, namely Seed-
EN and Seed-ZH. As shown in Table 3, DiTAR achieves the
best generation robustness and excellent speaker similarity.
All results of other systems are reported in their papers.

4.2. Scaling Behaviors

In this subsection, we explore DiTAR’s scaling properties
for zero-shot speech generation, focusing on model archi-
tecture and training data, using Seed-EN as the test set.



DiTAR: Diffusion Transformer Autoregressive Modeling for Speech Generation

Table 4: Scaling behavior of different components.

System WER(%), | SIM?T
DiTAR (0.4B) 1.876 0.716
Encoder size x4 1.821 0.72

Language model size x4 1.695 0.727
LocDiT size x4 1.785 0.726

Table 5: The impact of the number of historical patches in
LocDiT. * indicates that many samples fail to stop during
generation.

Patch Size | # Historical Patches | WER(%)| | SIM?
2 3.334 0.716

1 1 6.131 0.692

0 (not used) 53* 0.34*

2 1.809 0.73

4 1 1.736 0.72

0 (not used) 22.874* 0.56*

The performance of DiTAR consistently enhances as
either data size or model size increases. We conduct
scaling experiments concerning both data and model size.
We expand the training data from 20k to 280k hours with a
0.6B model to assess performance changes. For model size,
we scale from 0.1B to 1B parameters using 280k hours of
training data, simultaneously increasing the parameters of
the encoder, language model, and LocDiT. For the detailed
setups see Table 8. As shown in Figure 2, the model’s WER
and SIM consistently improve as training data and model
parameters increase.

The language model and diffusion decoder benefit more
from scaling. We scale the encoder, language model, and
decoder (LocDiT) individually to assess their impacts, start-
ing with a 0.4B parameter model trained on 280k hours
data . Given that the encoder and decoder process shorter
sequences, we allocated more parameters to the language
model empirically. Table 4 demonstrates that enlarging
the language model and LocDiT enhances performance,
whereas increasing the encoder size has little effect on out-
comes.

4.3. Method Analysis and Ablation Study

In this subsection, we conduct a detailed analysis of the
various components of DiTAR. Unless specified otherwise,
we default to using DiTAR with 0.6 billion parameters, a
patch size of 4, and NFE=10, tested on the Seed-EN dataset.

Patch Size. LocDiT utilizes bidirectional attention to gener-
ate the next patch. To investigate the impact of patch size,
we vary it while keeping the model’s total parameter count
constant. As illustrated in Figure 3, performance declines
when patch sizes are either too large or too small. Ex-
cessively small patches diminish the model’s bidirectional
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Figure 3: The impact of the patch size of LocDiT.
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Figure 4: The impact of LM guidance under different NFE
setups. w = 0 indicates that guidance is not used.

attention capability, forcing reliance on causal-attention AR
and degrading performance. This may explain the poor per-
formance of causal AR with diffusion loss as noted in Li
et al. (2024a). Conversely, overly large patches turn LocDiT
into a bottleneck, necessitating increased parameters.

The Number of Historical Patches of LocDiT. We ex-
periment with different numbers of historical patches and
confirm the critical role of LocDiT’s context. Table 5 in-
dicates that without historical context, the model’s perfor-
mance drastically worsens. Integrating historical context
shifts LocDiT’s function from mere generation to outpaint-
ing, markedly improving synthesis results. For larger patch
sizes, such as 4, choosing a single historical context strikes
the best balance between computational efficiency and per-
formance.

LM Guidance. Figure 4 illustrates that LM guidance signif-
icantly enhances the diffusion decoder’s inference process.
Without guidance (w = 0), both WER and SIM deterio-
rate significantly. Conversely, an excessively large guidance
scale can also impair outcomes. Additionally, even with
extremely low NFE (such as 2), DiTAR still performs well
on WER and SIM when combined with LM guidance.

4.4. Inference Analysis

4.4.1. THE IMPACT OF TEMPERATURE

Temperature is vital for balancing diversity and determin-
ism during language model inference, yet its definition for
continuous-valued LMs remains underexplored. In this
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Figure 6: The impact of temperature on generation diversity.

study, we define temperature 7 as the point at which random
sampling is introduced during the reverse ODE solution.

To explore how 7 balances diversity and stability, we syn-
thesize the same text 500 times under different 7 settings
to assess voice diversity. We use only the text as DiTAR’s
prefix input, prompting the model to generate speech in
random voices autoregressively. We then use WavLM-large
to extract speaker embeddings from these samples. Follow-
ing this, we conduct Principal Component Analysis (PCA),
previously fitted on the training set, on the embeddings, and
visualize the first two components. Figure 6 demonstrates
that as 7 increases, so does the diversity of the speaker
voices.

We further test how the model’s objective metrics change
under various temperatures. As shown in Table 6, across
different temperatures, the model consistently achieves fa-
vorable objective metrics on a large-scale test set. There is
a trend that higher temperatures yield slightly better SIM
scores, whereas lower temperatures result in better WER
scores. The underlying reason may be that simulating the
voice of unseen speakers requires greater diversity from
the model, while pronunciation robustness demands more
determinacy and stability from the model.

4.4.2. EFFICIENCY

We consider multiple inference metrics, including: 1)
throughput: the duration of audio generated per unit time. 2)
Real Time Factor (RTF): the ratio of the generation time to
the audio length. 3) latency: the time required to output the
first frame of audio (excluding the vocoder). We compare

Table 6: Objective evaluation results under different temper-
ature values and NFE.

T NFE=2 NFEE=10
WER(%), SIMT WER(%)| SIMT

0 1.666 0.717 1.623 0.719
0.5 1.669 0.722 1.699 0.727
1 1.686 0.72 1.689 0.727

Table 7: Comparison of latency and RTF under batch sizes
of 500 and 1.

System Latentcy(s)] RTF]
Batch size = 500
NAR 50 5.03
DiTAR (P=4) 0.14 1.39
DiTAR (P=2) 0.11 2.17
Batch size = 1

NAR 0.37 0.037
DiTAR (P=4) 0.066 0.66
DiTAR (P=2) 0.064 1.28

the inference performance of NAR (a diffusion transformer)
and DiTAR under the same parameter sizes. During infer-
ence, all systems use CFG with NFE = 10. We evaluate all
metrics by inferring 10 seconds of audio on an A100 GPU.

As shown in Figure 5, with small batch sizes, NAR achieves
higher throughput due to lacking autoregressive computa-
tions. As batch sizes grow, NAR’s high FLOPs demands hin-
der throughput gains, while DiTAR’s throughput increases
rapidly and is significantly superior to NAR.

DiTAR, blending a language model with a diffusion trans-
former, inherits features from both components. As shown
in the Table 7, DiTAR always has lower latency than NAR
due to its autoregressive nature. In terms of RTF, NAR has
high parallelism and can achieve fast speed with a small
batch size. In DiTAR, the degree of parallelism can be ad-
justed by changing the patch size, allowing for a trade-off
between latency and RTF.

5. Conclusion

In this work, we propose DiTAR, a patch-based autore-
gressive framework combining a language model with a
diffusion transformer. This approach significantly enhances
the efficacy of autoregressive modeling for continuous to-
kens and reduces computational demands. For inference,
we introduce temperature as the introduction time point for
noise while solving the reverse diffusion ODE. Applied to
zero-shot speech synthesis, DiTAR achieves SOTA robust-
ness, speaker similarity, and naturalness with substantially
lower computational requirements.
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Impact Statement

When DiTAR is applied to zero-shot voice synthesis, due to
the realistic quality and high fidelity of the generated speech,
there is a potential risk of its misuse for malicious purposes.
When implementing in applications, it is crucial to strictly
control the voices being cloned, such as through manual or
automated review processes.
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A. Implementation Details
A.1. Training Details

Regarding data processing for LibriLight, since it lacks transcriptions, we use our internal ASR system to transcribe this
dataset and then convert the text into phonemes for use. For Emilia, we perform Grapheme-to-Phoneme (G2P) conversion
on the official transcriptions provided.

We utilize 16 A100 GPUs, each processing a batch size of 15K tokens, and train DiTAR for 0.5M steps. The AdamW
optimizer is employed with a constant learning rate of le-4, 8; = 0.9, and 52 = 0.99. For DiTAR with 1B parameters, we
utilize 32 A100 GPUs with a batch size of 7.5k per GPU.

A.2. Model Configuration for Scaling

During the validation of DiTAR’s scaling behavior, we trained models of four different sizes, ranging from 0.1 billion to 1
billion parameters. Specific hyperparameter configurations are detailed in Table 8.

Table 8: Configurations of DiTAR with different sizes.

Model size ~01B ~04B ~06B ~ 1B
Hyper-parameters Value
Number of layers 4 4 6 8
Encoder Hidden dim 512 1024 1024 1024
Number of heads 8 16 16 16
FFN dim 2048 4096 4096 4096
Number of layers 24 24 36 24
Language Model Hidden dim 512 1024 1024 1536
Number of heads 8 16 16 24
FFN dim 1024 4096 4096 6144
Number of layers 4 4 6 8
LocDiT Hidden dim 512 1024 1024 1024
Number of heads 8 16 16 16
FEN dim 2048 4096 4096 4096

A.3. Derivation of xy in Temperature Sampling for Different Parameterized Diffusion

As previously discussed in Eq. 5, z¢ denotes the predicted data, which can be derived under different parameterizations of
diffusion. Consisdering a diffusion process defined by x; = ayxo + o1&, where 2y ~ ¢(xg) denotes the data, e ~ N(0,T)
denotes the standard Gaussian noise, ¢ € [0, 1].

For e-prediction mode,
Ty — op€g (X, T
zo(we,t) = 2 = 9160 (21, 1) (®)
Qi
For xo-prediction mode, x¢ (x4, t) is exactly the model’s prediction.

For v-prediction mode, also known as flow-matching. Next, we will proceed with a step-by-step deduction. Based on the
definition of v, we can derive the following:

V= o + 01 ©)]

. o(Ty — azx
:atmo—i—it( t 20) (10)

Ot

= (dy — 2%+ Lty (1)

Ot Ot

After rearanging v and z, we get: '

2o = Oty — OV (12)
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Thus,
Gy — o4vg (T4, 1)

xg(ze,t) = (13)

o0y — 00y
A.4. Calculation of FLOPs

When calculating FLOPs for all systems, we use a 3-second audio prompt to synthesize 10 seconds of audio. Assuming a
text frame rate of 7Hz, the prompt’s text length is 21, and the target text length is 70. We focus solely on the computationally
dominant components, including causal transformers, non-causal transformers, and convolutional layers. For causal
transformers, calculations account for the use of KV cache. The multi-head setup does not impact FLOPs, so we uniformly
assume that the number of heads is 1. Considering that bias and normalization layers contribute minimally to the overall
FLOPs of the transformer, we will temporarily disregard them. Matrix multiplication involves an equal number of additions
and multiplications, so the result should be multiplied by 2. For the diffusion part, the corresponding FLOPs need to be
multiplied by the Number of Function Evaluations (NFE). Additionally, Classifier-Free Guidance (CFG) incurs double the
computational cost.

For a one-dimensional convolution network with N layers, a hidden channel size of C, a kernel size of K, a stride size of 1,
and the input length of T, the FLOPs can be calculated as follows:

FLOPs = [C, KT] x [KT,C] x N = 2C*KTN (14)

For a non-causal transformer with N layers, a hidden size of C, an FFN intermediate hidden size of Cy,q4, and the input
length of T, the FLOPs can be calculated as follows:

QKV = [T, C] x [C,3C] = [T,3C] = 6TC? (15)

Attention = QKT = [T,C] x [C,T] = [T, T) = 2T*C (16)

V = [T,T] x [T,C] = [T, C] = 2T?C (17)

=[I.C] x [C,C] = [T, C] = 2TC* (18)

FFN_FC1 = [T, C] x [C, Cia] = [T, Ciia] = 27CCryia (19)

FFN_FC2 = [T, Cnia] X [Ciia, C] = [T, C] = 2TCChia (20)

Transformer FLOPs(N, C, T, Cnia) = (QKV + Attention + V + FC + FFN_FC1 + FEN_FC2) x N 21
(22)

For a causal transformer with IV layers, a hidden size of C, an FFN intermediate hidden size of Ciq, a prefix input length of
Tpre, and the input length of T, the FLOPs can be calculated as follows:

Prefix FLOPs = Transformer FLOPs(N, C, Ty, Cmia) X N (23)

QKV = [1,C] x [C,3C] = [1,3C] = 6C* (24)

Attention = QKT = [1,C] x [C,t] = [1,t] = 2t3C (25)

V=[1,1 x [t,C] = [1,0] = 2t*C (26)

=[1,0] x [C,C] = [1,C] = 2C? 27)

FFN_FC1 = [1,C] X [C, Cria] = [1, Cimia) = 2CChuia (28)

FFN_FC2 = [1, Chia] X [Ciia, C] = [1,C] = 2CChuia (29)
T+Thre

ARFLOPS(N, C, T, Tiye, Cria) = > (QKV + Attention + V + FC + FFN_FCI + FFN_FC2) x N

t=1+Tpe

. (30

AR _Transformer FLOPS(N, C, T', Tyre, Cia) = Prefix FLOPs + AR_FLOPs 31)

14
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B. Subjective Evaluation

Apart from objective metrics, we employ many subjective metrics to comprehensively evaluate the generation ability of
different systems. In the process of evaluation, raters are presented with 2 audios for comparison and 1 audio as a reference.
Each rater is asked to score after comparing the two audios (CMOS) and to also rate each audio individually (N-MOS,
Q-MOS, S-MOS). The user interface is shown in Figure 7 and 8.

Description
If you were the speaker of the reference audio, which audio would you think that clones your voice better and can represent your voice, audio A or audio B? Please select the corresponding reasons. Then, please score the similarity, naturalness, audio quality and degree of
nativeness of the two audios respectively, which should not be directly related to the judgement of your preference.

Text
Itis the head of a parrot with a little flower in his beak from a picture of Carpaccio’s, one of his series of the Life of Saint George.

Reference Audio

<« > 00:00/00:04

Audio A Audio B

<< » 00:00/00:08 P

Figure 7: The user interface for subjective evaluation.

Q1:If you are the owner of this reference audio, which audio do you thinkclone your voice better and which one do you prefer to represent you? Please score from -2 to +2 based on the reference audio and your choices.
2: audio A is much better than audio B
1: audio A is better than audio B
0: no difference in quality/naturalless
-1: audio A is not good as audio B

-2: audio A is much worse than audio B

Q2 select the for your ji above.

The better one’s iation is clearer and has less pronunciation errors than the worse one.
Sentence stress: The better one’s sentence stress performs more natural than the worse one.
Intonation & Tone: The better one’s intonation is more natural than the worse one.
Pause & Pace & Speaking speed: The better one’s pace, pause and speaking rate are more reasonable and natural than the worse one.
Expressiveness: The better one is more expressive than the worse one.
Audio quality: The better one’s audio quality is clearer than the worse one with less noise.
Emotion: The better one's emotion matches with the text better.
Voice Similarity: The better one's voice is more like the person in the reference audio.
Speaking Style Similarity: The better one's speaking style is more like the person in the reference audio.
Accent Similarity: The better one's accent is more like the speaker in the reference audio.
They sound no difference.
Others -> Fill in the comments.

comment

Q3: please score the similarity of the two audios to the

Audio A: 1 15 2 25 3 35 4 4.5 5
Audio B: ) | 1.5 2 25 3 35 4 4.5 5
Q4: please score the naturalness of the two audios respectively [required]

Audio A: ) 15 2 25 3 35 4 4.5 5
Audio B: i) 1.5 2 25 3 35 4 4.5 5
Q5: please score the audio quality of the two audios respectively [required]
Audio A: 1 15 2 25 3 3.5 4 4.5 5

Audio B: ) 15 ) 25 3 35 4 4.5 5

Figure 8: The rating interface and questions presented to raters.
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C. Comparison with Other Autoregressive Diffusion Works

Different systems have varying design philosophies. MAR and DiTAR offload the computation of diffusion to the diffusion
head, while ARDIT applies diffusion throughout the entire model. DiTAR structurally resembles a causal language model
and becomes a continuous-valued LLM when scaled.

MAR & Fluid:
A ? ? Attention mask
N N e EEEEEEEEE
4 i A Ell 1
Bidirectional Transformer ] ———————— >
u
166 6 2 6 é & 6 =IIIIIIII
ARDIT: : Diffusion module

@GO : Continous token for prediction
Attention mask

7Y ammOO0000 QO : Special mask token
1\ ? ? EERO0000d
oo : Noisy/Diffused token
Block-Causal Transformer
B : Allowed to attend
S S
: Not allowed to atten:
0 O© O© O [ : Not allowed d

DiTAR
? ? ? Attention mask
Bidirectional L
Transformer 777 > == =
Causal Transformer ] ........ S 1=
Bidirectional Bidirectional EEE
Transformer Transformer |  -------2 > ===

T N §

Figure 9: Comparison of different frameworks.
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