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Abstract

Despite the rapid progress of large language001
models (LLMs), their length-controllable text002
generation (LCTG) ability remains below ex-003
pectations, posing a major limitation for prac-004
tical applications. Existing methods mainly005
focus on end-to-end training to reinforce adher-006
ence to length constraints. However, the lack007
of decomposition and targeted enhancement of008
LCTG sub-abilities restricts further progress.009
To bridge this gap, we conduct a bottom-up de-010
composition of LCTG sub-abilities with human011
patterns as reference and perform a detailed er-012
ror analysis. On this basis, we propose MARK-013
ERGEN, a simple-yet-effective plug-and-play014
approach that: (1) mitigates LLM fundamental015
deficiencies via external tool integration; (2)016
conducts explicit length modeling with dynam-017
ically inserted markers; (3) employs a three-018
stage generation scheme to better align length019
constraints while maintaining content quality.020
Comprehensive experiments demonstrate that021
MARKERGEN significantly improves LCTG022
across various settings, exhibiting outstanding023
effectiveness and generalizability.024

1 Introduction025

As a fundamental attribute of text generation, ensur-026

ing controllability over text length is of great impor-027

tance (Liang et al., 2024). Different text types (e.g.,028

summary, story), user needs (e.g., preference for029

detailed or concise writing), and external require-030

ments (e.g., social media character limits) shape031

varied length constraints, which are widely present032

in real-world scenarios (Zhang et al., 2023a). With033

the rapid development of LLMs, their expanding034

range of applications has made length-controllable035

text generation (LCTG) even more crucial in cur-036

rent era (Foster et al., 2024; Gu et al., 2024b).037

However, the ongoing enhancements in LLM038

capabilities have yet to deliver the expected perfor-039

mance in LCTG while ensuring semantic integrity040

(Foster et al., 2024; Wang et al., 2024; Song et al.,041

2024). Yuan et al. (2024) reports that even ad- 042

vanced LLMs (e.g., GPT-4 Turbo (OpenAI, 2023)) 043

violate the given length constraints almost 50% 044

of the time. To address this, training-based meth- 045

ods (Park et al., 2024; Yuan et al., 2024; Jie et al., 046

2023; Li et al., 2024b) have been studied to rein- 047

force LLMs’ adherence to length constraints, yet 048

they face two key challenges: (1) Limited gener- 049

alization: Since text types are diverse and length 050

constraints vary widely (e.g., ranging from an exact 051

500 words to coarse intervals like 500–600 words 052

or below 500 words), training-based methods of- 053

ten fail to generalize effectively across different 054

settings, as demonstrated in Appendix E.1. (2) In- 055

ferior controllability: These methods strengthen 056

LCTG by enforcing implicit length modeling dur- 057

ing generation in a top-down manner via training, 058

lacking the decomposition and targeted enhance- 059

ment of LCTG sub-capabilities, thereby limiting 060

their progress (Retkowski and Waibel, 2024). 061

To fill this gap, we take humans as a reference 062

and conduct a bottom-up decomposition of sub- 063

capabilities for LCTG. When writing a 500-word 064

story, humans typically begin by planning the con- 065

tent and word allocation for each section. During 066

writing, they continuously track the word count and 067

compose the text in alignment with the plan. This 068

process progressively tests four key abilities: (1) 069

Identifying and splitting the words correctly. (2) 070

Counting the words precisely. (3) Planning the 071

word counts of each part to meet the length con- 072

straints. (4) Aligning the generated text with length 073

constraints while ensuring semantic integrity. 074

On this basis, we conduct a decoupled error 075

analysis of LCTG. The experimental results in- 076

dicate that counting error > perception error > 077

aligning error ≫ planning error. This suggests 078

that deficiencies in fundamental capabilities are 079

the primary cause of LCTG’s inferior performance. 080

Meanwhile, it further explains why training-based 081

approaches struggle to enhance LCTG effectively, 082
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Figure 1: Sub-ability decomposition of LCTG and corresponding error analysis in LLMs.

as they are unable to provide fine-grained supervi-083

sion signals for these fundamental capabilities.084

Building upon this, we propose MARKERGEN,085

a simple-yet-effective, plug-and-play method for086

achieving high-quality LCTG. Specifically, to ad-087

dress LLMs’ weaknesses in identifying and count-088

ing, we integrate external tokenizer and counter089

to track exact length information. To effectively090

convey these information to LLMs, we design an091

decaying interval insertion strategy that dynami-092

cally injects length markers during the generation093

process, enabling explicit length modeling while094

minimizing disruptions to semantic modeling. Fur-095

thermore, to mitigate alignment issues, we propose096

a three-stage decoupled generation paradigm that097

decouples semantic constraints from length con-098

straints, ensuring that length constraints are better099

met without compromising content quality.100

We conduct experiments with five LLMs on101

five benchmarks to validate the generalizability102

of MARKERGEN, covering cross-task (summa-103

rization, story generation, QA, heuristic genera-104

tion), cross-scale (from 10+ to 1000+ words), cross-105

lingual (English and Chinese) and cross-granularity106

(precise and rough constraints) settings. Exper-107

imental results demonstrate that under precise108

length constraints, MARKERGEN reduces length109

errors by 12.57% compared to baselines (with an110

average absolute error of 5.57%), while achieving111

higher quality scores and incurring only 67.6% of112

the cost. In range-based length constraints, MARK-113

ERGEN achieves a 99% acceptance rate, further114

validating its effectiveness. Finally, we probe into115

the working mechanism of MARKERGEN through116

attention analysis: shallow layers primarily handle 117

length modeling through markers, whereas deeper 118

layers concentrate more on semantic modeling. 119

2 Preliminaries 120

We model the LCTG process of LLMs by drawing 121

an analogy to human patterns in this task. Specifi- 122

cally, the model first performs content and length 123

planning based on task requirements and length 124

constraints. Under this plan, the semantic space ex- 125

pands progressively at the word level during gener- 126

ation, accompanied by an implicit counting process. 127

Meanwhile, length estimation acts as a real-time 128

constraint, dynamically regulating further exten- 129

sion. Ultimately, the model strives to align the 130

length constraints while preserving semantic in- 131

tegrity. From this perspective, the overall LCTG 132

ability of LLMs can be systematically decomposed 133

in a bottom-up manner into Identifying, Counting, 134

Planning, and Aligning sub-capabilities (Figure 135

1). Below we explore LLMs’ mastery of these abil- 136

ities through detailed error analysis on TruthfulQA 137

dataset (Lin et al., 2021). 138

2.1 Identifying Error 139

Identifying error refers to the misidentification of 140

fundamental length units (e.g., words), leading to 141

discrepancies between the model’s estimated and 142

actual text length. To systematically analyze this 143

error, we instruct the model to recognize the length 144

units of given text one by one. If we define a word 145

as the length unit, the model should output like: 146

“The [1 word] quick [2 words] fox [3 words] 147

...”. On this basis, we calculate the identifying 148

2



 

 

40

30

20

10  

Token Identifying Error

Letter Identifying Error

Word Identifying Error

14.94

24.35

 0.19

Qwen2.5-32B-
Instruct 

 
13.48

19.45

 0.00

Llama3.1-70B-
Instruct 

 0.00

12.0813.12

GPT-4o

 0.02 

11.59

18.97

GPT-4o mini

(a) Identifying error analyses

0

5

10

15

20

25

30

35

GPT-4o

en
C-word

en
C-letter

en (implicit)
C-letter

0

10

20

30

40

50

60

GPT-4o mini

1 2 4 8 16 32 64
0

20

40

60

80

100

120

140

160

Llama-3.1-70B-Instruct

1 2 4 8 16 32 64
0

10

20

30

40

50

60

Qwen2.5-32B-Instruct

en C(
%

)

n

(b) Counting error analyses

Figure 2: Error analyses of fundamental abilities in LCTG across LLMs.

error rate eI as follows:149

eI =
|N1

pred −Ntrue|
Ntrue

(1)150

where N1
pred is the model’s predicted final count151

with 1 as count interval, and Ntrue is the actual152

count. We subtract the error rate obtained when re-153

placing each word with the letter “A” (which barely154

assess the identifying ability) from eI to further155

eliminate the influence of other potential factors.156

We explore the word and token as length unit re-157

spectively, as shown in Figure 2a.158

Finding 1. LLMs exhibit notable eI with both word159

and token as unit, showcasing their deficiencies in160

fundamental identifying ability.161

Finding 2. Word yields lower eI than token, in-162

dicating that LLMs conduct length modeling pri-163

marily based on semantic perception rather than164

decoding mechanics.165

2.2 Counting Error166

Counting error refers to the inaccurate enumeration167

of length units in a given sequence, leading to de-168

viations from the intended length. We analyze this169

error by prompting LLMs to count sequences with170

varied interval n. The case of n = 1 corresponds171

to identifying error (see §2.1). A larger n poses172

a greater challenge for counting accuracy. To de-173

compose counting error from identifying error, we174

calculate enC as follows:175

enIC =
|Nn

pred −Ntrue|
Ntrue

(2)176

177
enC = enIC − eI (3)178

Since LLMs exhibit negligible identifying error179

at the letter level (Figure 2a), error of counting180

letter serves as a direct measure of pure counting181

Models eP sP ∆E (↓) ∆S (↑)

GPT-4o 0.06 4.28 -5.31 0.05
GPT-4o mini 0.33 3.90 +2.11 0.03
Llama-3.1-70B-Instruct 0.00 3.90 -0.63 0.04
Qwen2.5-32B-Instruct 0.04 4.22 -8.93 0.02

Table 1: eP and sP denote planning error and planning
quality score of LLMs. ∆E and ∆S quantify the LCTG
error reduction and text quality gain from two-stage
generation over one-stage generation.

ability. We also include a commonly used base- 182

line where the LLMs conduct implicit counting 183

(directly output the length of the entire given text). 184

The results are shown in Figure 2b. 185

Finding 3. Naive implicit counting can lead to 186

significant errors. 187

Finding 4. Explicit counting combined with fine- 188

grained intervals leads to better length modeling. 189

At smaller n, the error of explicit counting is signif- 190

icantly lower than that of implicit counting. 191

2.3 Planning Error 192

Planning error refers to the misallocation of word 193

counts across different sections, leading to a dis- 194

crepancy from target length. For given query and 195

precise length constraint Ntarget, we prompt LLMs 196

to explicitly plan both content and length for each 197

part of the response. We assess the quality 1 of the 198

plan sP, and calculate the planning error rate eP as: 199

eP =
|Nplan −Ntarget|

Ntarget
(4) 200

where Nplan denotes the total word count allocated 201

by the model. Meanwhile, we calculate the reduc- 202

tion in final length error (∆E) and the improve- 203

1We use Qwen-Plus (Yang et al., 2024) as the judge with
a scoring range of [1, 5]. See corresponding prompts in Ap-
pendix B.3
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Figure 3: Absolute contribution of LCTG sub-capability deficiency on overall LCTG error across LLMs.

ment in content quality (∆S) achieved by plan-204

ning followed by generation compared to direct205

generation. The results are shown in Table 1.206

Finding 5. LLMs exhibit strong planning ability.207

The generated plan effectively meets the length con-208

straints while achieving a quality score of around 4,209

demonstrating well-structured content allocation.210

Finding 6. Planning before generation brings211

better results. Compared to direct generation, ex-212

ecuting planning and generating sequentially for213

decomposition reduces length deviations while en-214

hancing semantic quality.215

2.4 Aligning Error216

Aligning error refers to the discrepancy between217

the model’s perceived length and the target length,218

arising from the challenge of maintaining semantic219

integrity while adhering to length constraints. We220

calculate aligning error as follows:221

enA =
|Nn

pred −Ntarget|
Ntarget

(5)222

where Nn
pred represents the model’s perceived223

length with counting interval n, i.e., the length224

the model assumes it has generated. We calculate225

and show the enA in Figure 4.226

Finding 7. Smaller counting intervals introduce227

greater aligning error. By closely analyzing cases,228

we find that frequent explicit counting interferes229

with semantic modeling, causing early termina-230

tion of generation and poor alignment. In contrast,231

larger length intervals approximate implicit count-232

ing, preserving a more natural generation process.233

2.5 LCTG Error234

LCTG error refers to the discrepancy between the235

actual length of generated text and the target length:236

E =
|Ntrue −Ntarget|

Ntarget
(6)237
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Figure 4: Aligning Error across varied length intervals.

As established above, this error is systematically 238

composed of four components: Identifying Error 239

(§2.1), Counting Error (§2.2), Planning Error 240

(§2.3), and Aligning Error (§2.4). To investigate 241

the key factors influencing LLMs’ LCTG error, 242

we calculate their absolute contributions ėni under 243

different length interval n as follows: 244

ėni =
eni

eI + enC + eP + enA
×En, i ∈ [I,C,P,A] (7) 245

The results are shown in Figure 3. Further details 246

can be found in B. 247

Finding 8. LCTG error is primarily attributed to 248

fundamental deficiencies in length modeling, fol- 249

lowing the order of Counting Error > Perception 250

Error > Aligning Error ≫ Planning Error. Thus, 251

as counting interval increases, the accumulation 252

of counting errors leads to a corresponding rise in 253

LCTG error. 254

3 Methodology 255

Based on the analyses and findings above, we pro- 256

pose MARKERGEN, a simple-yet-effective plug- 257

and-play method to help LLMs attain better LCTG 258

performance, as shown in Figure 5. This method 259

consists of two key modules: (1) Auxiliary 260

Marker Insertion Decoding mechanism, which 261

explicitly enhances length modeling during gen- 262

eration; (2) Three-Stage Decoupled Generation 263
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Figure 5: Overview of MARKERGEN.

scheme, which decouples length constraints from264

semantic content generation to further improve265

LCTG performance.266

3.1 Auxiliary Marker Insertion Decoding267

External Tool Invocation. Our analysis in §2268

reveals that LLMs exhibit significant identifying269

and counting errors, which directly contribute to270

inaccuracies in length modeling. To mitigate these271

fundamental deficiencies, we introduce external to-272

kenizer and counter for unit recognition and count-273

ing, respectively. As Finding 1 indicates that LLMs274

perceive words better than tokens, we select words275

as the length unit.276

Length Information Injection. With precise277

length information, we consider feeding it into the278

model for length modeling. Since Finding 3 indi-279

cates that LLMs’ inherent implicit length model-280

ing leads to significant errors and is inconvenient281

for incorporating external length information, we282

actively insert precise length markers during gener-283

ation to enable explicit length modeling:284

Len(x) = Counter(Tokenizer(x))

xt+1 =

{
Marker(Len(x≤t)), if S(Len(x≤t), N)

Sampling(P (xt+1|x≤t)), else
(8)285

where P (xt+1|x≤t) is the LLM’s probability dis-286

tribution for next token, Marker defines the marker287

format (e.g., [20 words], we discuss the effects of288

varied marker formats in Appendix C.1), S is the289

strategy that determines whether to insert a marker 290

based on current length Len(x) and target length 291

N . By treating the inserted markers as anchors, 292

LLMs can continuously adjust the expected length 293

of content to be generated during the generation 294

process, thereby reducing the final LCTG error. 295

Decaying Interval Marker Insertion Strategy. 296

The most naive insertion strategy involves placing 297

markers at uniform intervals, which we denote as 298

Suni. However, according to Findings 4 and 7, a 299

smaller insertion interval n improves length model- 300

ing but compromises semantic modeling, whereas 301

a larger n exhibits the opposite effect. Considering 302

this, we propose a strategy Sdec, where n decays 303

exponentially during the generation process: 304

Sdec(x,N) =

{
True, if x ∈ {N − int(2−i ×N)}i∈N

False, else
(9) 305

Taking N = 200 as an example, the maker will be 306

inserted behind the 100th, 150th, 175th, ... words. 307

At the early stage of generation, the model primar- 308

ily focuses on semantic modeling. As the genera- 309

tion progresses, it increasingly emphasizes length 310

control, ultimately leading to a smaller LCTG error. 311

Consequently, Sdec effectively balances semantic 312

modeling and length modeling. 313

3.2 Three-Stage Decoupled Generation 314

Finding 7 validates that aligning error primarily 315

arises from the inferior semantic modeling, which 316
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causes premature termination of the generation pro-317

cess. While the planning before generation scheme318

alleviates interference in semantic modeling by de-319

coupling the planning process (Finding 6), it still320

entangles length modeling with semantic model-321

ing. To mitigate this, we introduce a three-stage322

decoupled generation scheme to further reduce the323

alignment error and improve the text quality, as324

illustrated in Figure 5.325

Stage One: Planning. The model generates a326

reasonable plan based on the input query and length327

constraints, including the content of each section328

and the word allocation.329

Stage Two: Ensuring Semantic Integrity. The330

model focuses on semantic modeling to generate331

a high-quality response per the plan without being332

strictly required to adhere to length constraints.333

Stage Three: Aligning Length Constraints. Re-334

sponses generated in stage two are usually of high335

quality but may not meet length restrictions. To336

refine them, we use these non-compliant responses337

as input and apply the Auxiliary Marker Insertion338

Decoding mechanism for rewriting. The rewrit-339

ing requirements include: (1) Retaining the high-340

quality semantic modeling of the input content. (2)341

Strictly adhering to the specified length constraints.342

In terms of workflow, the model is required to: (1)343

Firstly analyze the previous stage’s response for344

potential improvements; (2) If its output does not345

meet the length constraints, it will be regenerated346

up to T times or until the constraints are met.347

See Appendix 2 for prompts of each stage.348

4 Experiments349

We conduct comprehensive experiments to exam-350

ine MARKERGEN. Specifically, we validate its351

effectiveness in §4.2, analyze its generalizability352

in §4.3, explore the impact of its key components353

in §4.4, and provide further insights into its mech-354

anism in §4.5. Hyperparameter choices and addi-355

tional analyses are provided in Appendix E.356

4.1 Experimental Settings357

Benchmarks We choose five benchmarks for ex-358

periments, where HelloBench includes two subsets,359

as shown in Table 2. See details in Appendix D.360

Baselines361

Benchmarks Ability Tested Length (words)

CNN/DailyMail Summarization 18-165
(Nallapati et al., 2016)
HANNA Story Generation 139-995
(Chhun et al., 2022)
TruthfulQA Question 101-294
(Lin et al., 2021) Answering
HelloBench Heuristic LCTG& 489-1450
(Que et al., 2024) Open-ended QA
GAOKAO History 71-901
(Zhang et al., 2023b) Open-ended QA

Table 2: Benchmarks Introduction.

• Ruler (Li et al., 2024b): A training-based2 362

method that defines length control templates 363

to regulate generation at the range level. 364

• Implicit (Bai et al., 2024): Conduct a plan- 365

and-generate process without explicit count- 366

ing. To ensure a fair comparison, the model 367

generates multiple responses until token count 368

outperforms MARKERGEN and the candidate 369

with the smallest LCTG error is selected. 370

Details We conduct extensive experiments using 371

Qwen2.5 series (Qwen2.5-7B/14B/32B-Instruct) 372

(Yang et al., 2024) and the Llama3.1 series (Llama- 373

3.1-8B/70B-Instruct) (Dubey et al., 2024), with 374

sampling temperature as 0.5. We experiment un- 375

der coarse-grained length constraints on the Open- 376

ended QA subset of HelloBench and assess the 377

LCTG error rate under precise length constraints 378

on other benchmarks, following Eq. (6). To eval- 379

uate the text quality, we use GPT-4o mini (Hurst 380

et al., 2024) as the judge, with a calibration al- 381

gorithm to mitigate the length bias (Zheng et al., 382

2023) (See details in Appendix E). For precise con- 383

straints, we set the length of ground truth response 384

as desired target length. We run each setting for 385

three times and report the average results. 386

4.2 Main Results 387

As shown in Table 3, the commonly used two-stage 388

implicit counting baseline results in a substantial 389

LCTG error rate E of 18.32% on average, even 390

if the best response is chosen across multiple at- 391

tempts. This intuitively demonstrates the impact 392

of the inherent limitations of LLM’s LCTG sub- 393

capability. The training-based baseline Ruler, as ob- 394

served in our preliminary experiments (Appendix 395

E.1), benefits from training on test sets that matches 396

the training domain, while performs poorly on our 397

2Ruler is the only training-based baseline for which we
can find that releases the code and training set.
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Benchmarks Methods

Qwen2.5 Series Llama3.1 Series

Costs7B 14B 32B 8B 70B

E (↓) S (↑) E (↓) S (↑) E (↓) S (↑) E (↓) S (↑) E (↓) S (↑)

CNN/DailyMail
Implicit 30.31 3.04 12.54 3.15 11.05 3.21 15.12 3.04 11.07 3.09 1.30× δ

MARKERGEN 9.92 3.07 6.06 3.16 4.82 3.25 3.36 3.18 3.18 3.36 δ

HANNA
Implicit 28.55 3.47 14.86 3.55 12.03 3.67 16.68 3.54 10.44 3.61 2.37× δ

MARKERGEN 8.49 3.50 5.22 3.55 3.57 3.72 2.98 3.60 2.58 3.63 δ

TruthfulQA
Implicit 16.7 4.29 17.9 4.44 8.7 4.45 7.21 4.22 7.64 4.46 1.75× δ

MARKERGEN 9.08 4.33 7.59 4.43 4.48 4.54 3.82 4.25 2.80 4.48 δ

Heuristic Generation
Implicit 35.69 3.42 21.34 3.80 12.02 3.80 21.91 3.72 27.89 3.74 1.06× δ

MARKERGEN 8.51 4.13 6.35 4.00 5.34 4.14 6.03 4.03 5.03 3.98 δ

Table 3: Overall Performance of MARKERGEN on Various Benchmarks. E denotes LCTG error rate (%) and S
denotes the text quality ([1, 5]) given by LLM judge. δ denotes the token cost of MARKERGEN under each setting.

Model Methods

Target Length Scales

Costs100 200 300 400

E (↓) S (↑) E (↓) S (↑) E (↓) S (↑) E (↓) S (↑)

Qwen2.5-7B-Instruct Implicit 30.97 3.45 22.91 3.53 26.12 3.28 29.63 3.08 1.26× δ
MARKERGEN 8.26 3.92 9.06 4.00 7.67 3.75 5.10 3.55 δ

Models Methods

Length Constraint Types

Costs<100 100-150 160-200 >500

Er (↓) S (↑) Er (↓) S (↑) Er (↓) S (↑) Er (↓) S (↑)

Qwen2.5-7B-Instruct Implicit 7.50 3.47 63.00 4.03 66.00 4.06 29.50 2.65 1.07× δ
MARKERGEN 0.00 3.94 0.50 4.50 3.00 4.53 0.00 3.13 δ

Table 4: Experiments with varied length scales and constraint types on Open-ended QA subset of HelloBench.

evaluated benchmarks, highlighting its limited gen-398

eralizability. In comparison, under strict length399

constraints, MARKERGEN achieves an absolute re-400

duction of 12.57% in E relative to the implicit base-401

line, bringing the final error down to just 5.57%.402

In terms of text quality, by decoupling length mod-403

eling and semantic modeling during the genera-404

tion process and employing the decaying insertion405

strategy to minimize the damage caused by length406

constraints to semantic integrity, MARKERGEN407

achieves a higher S in average. Meanwhile, this408

performance is achieved with only 64% of the to-409

kens used by the baseline.410

4.3 Generalizability411

Across LLMs and Tasks. Table 3 demonstrates412

the strong generalizability of MARKERGEN to413

LLMs and generation tasks.414

Across Length Scale. Table 3 also shows MARK-415

ERGEN’s strong performance across benchmarks416

with varying length scale (18–1450). To further417

investigate, we analyze progressively increasing418

the target length from 100 to 400. The results in419

Table 4 show a declining trend in MARKERGEN’s 420

error rate, which can be attributed to the auxiliary 421

marker insertion decoding mechanism that prevents 422

error accumulation from implicit modeling. 423

Across Constraint Types. In addition to exact 424

length constraints, users may impose range-based 425

limits. We evaluate Er, the proportion of responses 426

violating these constraints. Table 4 shows that 427

MARKERGEN maintains an Er below 3% in all 428

cases, significantly lower than the baseline. 429

Across Lingual. We further validate the effec- 430

tiveness of MARKERGEN in Chinese setting on 431

GAOKAO benchmark, as shown in Table 8. 432

4.4 Ablation Studies 433

In this section, we validate the effectiveness of 434

each module in MARKERGEN with Qwen2.5-32B- 435

Instruct on TruthfulQA, as shown in Table 5. 436

Tool Invocation. When the model is required to 437

insert markers independently without relying on 438

an external tokenizer and counter, its fundamental 439

limitations lead to a significant increase in the error 440

7



[10 words]

[20 words]

[30 words]

[35 words]

Figure 6: Attention matrices of the first (left) and last (right) layers.

Variants
Marker Insertion Interval n

1 4 16 32 64 Decaying

E (↓) S (↑) E (↓) S (↑) E S (↑) E (↓) S (↑) E (↓) S (↑) E (↓) S (↑)

w/o Tool 15.53 4.28 32.50 4.29 34.64 4.46 32.50 4.48 20.44 4.58 – –
Two Stage 3.10 4.03 1.49 4.03 4.04 4.20 3.26 4.23 3.93 4.32 2.66 4.28
Three Stage 4.84 4.28 4.20 4.29 4.89 4.45 5.45 4.48 5.18 4.57 4.48 4.54

Table 5: Ablation studies on key components.

rate, exceeding 15%.441

Decaying Interval Marker Insertion. When us-442

ing a fixed marker insertion interval n, since length443

control is inversely proportional to n, while seman-444

tic modeling is directly proportional to n (which445

induces alignment errors), we observe unstable446

LCTG error rate. In contrast, by adopting a sparse-447

to-dense insertion approach, the Decaying Interval448

Marker Insertion strategy ensures explicit length449

modeling while maximizing semantic integrity,450

leading to lower E and superior S.451

Three-Stage Decoupled Generation. The intro-452

duction of explicit length markers in the two-stage453

scheme leads to a substantial reduction in LCTG454

error relative to the implicit baseline (8.7 → 2.66).455

However, this scheme places greater emphasis on456

length modeling, which consequently diminishes457

text quality (4.45 → 4.28). In comparison, the458

three-stage scheme achieves a better balance by459

decoupling semantic and length modeling, thereby460

improving both length control and text quality.461

4.5 Working Mechanism of MARKERGEN462

To better understand how LLMs leverage the in-463

serted length markers in MARKERGEN, we visual-464

ize the attention matrices of the first and last layers465

of Llama-3.1-8b-Instruct (Figure 6). In the shallow466

layers, the attention distribution reveals a clear fo-467

cus on the length information represented by the 468

length markers (in the red box). As the model pro- 469

gresses to the deeper layers, attention shifts from 470

the length information to the adjacent semantic 471

content (in the orange box). This pattern demon- 472

strates that at shallow layers, the model uses mark- 473

ers to establish length modeling and encode precise 474

length information. At deeper layers, it relies on 475

this length information for semantic modeling, pro- 476

ducing tokens that align with the length constraints 477

while maintaining semantic integrity. 478

Conclusions 479

To improve the performance of LLMs in length- 480

controllable text generation, we conduct a bottom- 481

up error analysis of relevant sub-abilities. The re- 482

sults reveal that deficiencies in identifying, count- 483

ing, and aligning are key limitations. To fill this 484

gap, we propose MARKERGEN, which leverages 485

external tools to compensate for fundamental defi- 486

ciencies. Additionally, it introduces Decaying Inter- 487

val Marker Insertion Strategy to facilitate explicit 488

length modeling and employs Three-Stage Decou- 489

pled Generation mechanism to balance semantic 490

coherence and length control. Comprehensive ex- 491

periments demonstrate the strong generalizability 492

and effectiveness of MARKERGEN in enhancing 493

length control and preserving semantic integrity. 494

8



Limitations495

In this work, we conduct a bottom-up sub-496

capability analysis in the LCTG ability and propose497

the MARKERGEN method, achieving strong LCTG498

performance. One major limitation of MARKER-499

GEN is that it is currently only applicable to open-500

source models and cannot yet be used with closed-501

source models. To address this, we will release our502

code, allowing closed-source model providers in-503

terested in adapting MARKERGEN to benefit from504

our method in enhancing LCTG performance.505

Ethics Statement506

All of the datasets used in this study were publicly507

available, and no annotators were employed for our508

data collection. We confirm that the datasets we509

used did not contain any harmful content and was510

consistent with their intended use (research). We511

have cited the datasets and relevant works used in512

this study.513
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A Related Work662

LCTG Methods Text length is a fundamental663

aspect of natural language that carries semantic664

information, making LCTG a task of balancing665

length and semantic constraints. Achieving precise666

length control remains a challenge for LLMs due667

to limitations in their architecture, such as position668

encoding (Butcher et al., 2024; Kazemnejad et al.,669

2024; Chang and Bisk, 2024) and decoding mecha-670

nisms(Huang et al., 2025). Consequently, existing671

methods focus on injecting length information to672

help LLMs model length accurately, which can673

be categorized into training-based and inference-674

based approaches.675

Training-based methods inject varying levels676

of length signals during fine-tuning or reinforce-677

ment learning. For instance, Jie et al. (2023);678

Li et al. (2024b) use prompt templates to teach679

LLMs the mapping between length and textual680

content, while Song et al. (2024); Wang et al.681

(2024) design fine-grained datasets to guide cor-682

rect length modeling. Other methods, like Yuan683

et al. (2024); Jie et al. (2023), utilize reward func-684

tions to align length preferences during training.685

While effective in certain scenarios, these methods686

suffer from limited generalization across diverse687

LCTG tasks, including varying length constraints688

and instructions.Inference-based methods adjust689

inputs multiple times during generation to inject,690

such as through prompt-based Automated Revi-691

sions and Sample Filtering (Retkowski and Waibel,692

2024; Juseon-Do et al., 2024), or length-controlled693

importance sampling during decoding (Gu et al.,694

2024b). Although these approaches can better gen-695

eralize length alignment, they still struggle with696

achieving precise control.697

While both approaches enhance LCTG, they of-698

ten apply a top-down strategy that lacks deep un-699

derstanding and targeted enhancement of LCTG700

sub-capabilities. This limits progress in meeting701

length constraints accurately. Furthermore, many702

methods neglect semantic constraints, and injecting703

length information may degrade text quality. There-704

fore, we propose MARKERGEN to bridge this gap705

for precise length control and preserving semantic706

integrity.707

B Detailed Sub-ability Error analyses in 708

LCTG 709

B.1 Identifying Error 710

Identifying error refers to the misidentification of 711

fundamental length units. To systematically ana- 712

lyze this error, we design a counting experiment in 713

which the model is prompted to sequentially rec- 714

ognize and accumulate length units, then compare 715

its predicted count with the ground truth. Experi- 716

mental results confirm that in the one-by-one ac- 717

cumulation setting, counting errors do not occur, 718

meaning that the final length error entirely arises 719

from identifying error (as shown in Figure 7). 720

B.2 Counting Error 721

Counting error refers to the inaccurate enumeration 722

of units in a given sequence, leading to deviations 723

from the intended length. Therefore, in the setting 724

where n > 1 in the counting experiment, the final 725

counting result error is caused by both identifying 726

error and counting error. In this case, counting error 727

can be decoupled by resolving identifying errors 728

in the accumulation process, where errors result 729

from the accumulation step.We also conducted the 730

same counting experiment as in Section 2.2 on the 731

CNN/DailyMail summarization dataset, as shown 732

in Figures 8. 733

From the figure, we can further validate the same 734

conclusions as in Findings 1, 2, 3, and 4 in Section 735

2, revealing that the length errors in the generated 736

results of the LCTG task stem from significant 737

errors in the LLM’s perception and modeling of 738

length. 739

B.3 Planning Error 740

Planning error refers to the misallocation of word 741

counts across different sections, leading to a dis- 742

crepancy from target length.The planning ability 743

of LLMs encompasses not only length planning 744

but also semantic planning. To effectively assess 745

the quality of LLM’s semantic planning, we use 746

Qwen-Plus (Yang et al., 2024) as the judge, with 747

a scoring range of [1, 5]. The specific evaluation 748

prompt is as follows: 749

You are tasked with evaluating the qual- 750

ity of a generated answer plan for a Truth- 751

fulQA question. The evaluation should 752

focus on the truthfulness, logical coher- 753

ence, and adherence to the given prompt 754

and instructions. Rate the answer plan 755

on a 5-point scale as follows: 756
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Word 
Dictionary

Word Definition 
A word is defined as any standalone word, number, or symbol, 
including punctuation and special symbols.

The [1 words] quick [2 words] brown [3 words] fox [4 words] jumps [5 words] over [6 words] 
3 [7 words] lazy [8 words] dogs [9 words] , [10 words] running [11 words] swiftly [12 words] 
across [13 words] the [14 words] park [15 words] .[16 words]  ###16

couting......
dogs is a word

...
8+1 = 9

...

identify accumulate

The [1 words] quick [2 words] brown [3 words] fox [4 words] jumps [5 words] over [6 words] 
3 [7 words] lazy [8 words] dogs,[9 words]  running [10 words] swiftly [11 words] across [12 
words] the [13 words] park. [14 words]  ###14

Figure 7: Schematic diagram of counting experiment under the condition of n = 1

• 5: Outstanding - The plan is highly757

truthful, logically coherent, and per-758

fectly adheres to the prompt and in-759

structions.760

• 4: Very Good - The plan is mostly761

truthful and coherent, with only mi-762

nor issues in details or adherence to763

instructions.764

• 3: Good - The plan is acceptable765

but has noticeable shortcomings in766

truthfulness or coherence.767

• 2: Poor - The plan has significant768

issues in truthfulness or logical co-769

herence and does not adequately fol-770

low the instructions.771

• 1: Unacceptable - The plan is772

largely untruthful, incoherent, or773

fails to follow the prompt instruc-774

tions entirely.775

Please provide the overall score in the776

following format: ###score X777

Question:778

+ prompt779

Generated Answer Plan:780

+ generated_plan781

Evaluate the answer plan based on the782

above criteria.783

Since the LCTG task requires meeting both784

length and semantic constraints, utilizing the785

LLM’s superior planning ability for explicit plan-786

ning before generation, as opposed to direct gen-787

eration, helps to clearly define the modeling space788

for length and the semantic extension range. This 789

not only contributes to improved text generation 790

quality but also reduces length errors. 791

B.4 Aligning Error 792

Aligning error refers to the discrepancy between 793

the model’s perceived length and the target length, 794

arising from the challenge of maintaining semantic 795

integrity while adhering to length constraints.As 796

shown in Figure 4, aside from Finding 7, we 797

observe significant differences in aligning error 798

across models. Qwen2.5-32B-Instruct and GPT- 799

4o mini exhibit larger alignment errors under fine- 800

grained length modeling. As discussed in Section 801

2, “length estimation acts as a real-time constraint, 802

dynamically regulating further extension. Ulti- 803

mately, the model strives to align the length con- 804

straints while preserving semantic integrity.” High- 805

frequency length perception updates pose greater 806

challenges for the natural expansion of the seman- 807

tic space, which explains why some models with 808

weaker robustness in semantic expansion show sig- 809

nificant alignment errors. These errors become a 810

primary source of LCTG inaccuracies (as shown in 811

Figure 9). This further emphasizes that LCTG is a 812

task of balancing length and semantic constraints. 813

B.5 LCTG Error 814

Based on the above decomposition of sub-abilities 815

in LCTG and the corresponding error analysis, we 816

can clearly quantify the contribution of each de- 817

coupled error to the final LCTG error. As shown 818

in Figure 1, the quantification results in the right 819

figure represent the average values of four models 820

under various n conditions. The conclusion we can 821

draw is that the primary cause of significant length 822
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              Qwen2.5-72B-Instruct

              Llama3.1-70B-Instruct

              Qwen2.5-32B-Instruct

              Llama3.1-8B-Instruct

                     Qwen2.5-72B-Instruct
Qwen2.5-72B-Instruct (Implicit)

                     Llama3.1-70B-Instruct
Llama3.1-70B-Instruct (Implicit)

                     Qwen2.5-32B-Instruct
Qwen2.5-32B-Instruct (Implicit)

                     Llama3.1-8B-Instruct
Llama3.1-8B-Instruct (Implicit)

Figure 8: Error analyses of fundamental abilities in LCTG on CNN/DailyMail.

Figure 9: Absolute contribution of LCTG sub-capability
deficiency of GPT 4o-mini.

errors in current mainstream LLMs on LCTG tasks823

is the lack of bottom-up identification and counting824

capabilities required for accurate length modeling.825

C Exploration of Interval Marker826

Insertion Strategy Variants827

C.1 Length Marker Forms828

We explored the impact of different forms of length829

marker insertion on performance, such as the num-830

ber of words generated "[k]", the semantic marker831

"[k words]", and the remaining words to be gener-832

ated "[ Ntarget - k]" (remaining words). As shown833

in Table 6, we used Llama-3.1-8B-Instruct on the834

CNN/DailyMail dataset to investigate the effects of835

various marker forms under multiple n conditions836

on generation error and text quality. The results837

show that using a semantic length marker repre-838

senting the number of words generated achieved839

the best performance in both length error and text840

quality.841

D Detailed Benchmarks Introduction842

The benchmarks used in our experiments are as843

follows:844

Marker Form E (↓) S (↑)

[k] 18.28 3.10
[k words] 15.74 3.14
[Ntarget − k] 27.92 3.09

Table 6: Comparison of Length Marker Forms and Their
Performance

• CNN/DailyMail(Nallapati et al., 2016): A 845

summarization dataset of news articles, with 846

500 randomly sampled items. (18–165 words) 847

• HANNA(Chhun et al., 2022): A long-form 848

story generation dataset with 200 selected 849

items. (139–995 words) 850

• TruthfulQA(Lin et al., 2021): A bench- 851

mark for factual accuracy in open-domain QA. 852

(101–294 words) 853

• HelloBench(Que et al., 2024): A long-text 854

generation benchmark. We selected subsets 855

from heuristic text generation (e.g., argumen- 856

tative and roleplaying writing, covering five 857

types) and open-ended QA (spanning ten do- 858

mains). (489–1450 words) 859

• GAOKAO-Bench(Zhang et al., 2023b): A 860

benchmark collected from the Chinese col- 861

lege entrance examination (GAOKAO). We 862

selected the 2010-2022 History Open-ended 863

Questions subset. (71–901 words) 864

E Detailed Experimental Results 865

E.1 Performance and Generalization Study of 866

Training-based Methods 867

To investigate the performance and generalization 868

of training-based methods in diverse, real-world 869

LCTG task scenarios, we selected Ruler, a training- 870

based method that defines length control templates 871
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TLG dataset

benchmark Method Model PM (↑) FM (↑)

TLG dataset before training Llama-3.1-8B-Instruct 5.55 10.20
RULER Llama-3.1-8B-Instruct-ruler 41.75 55.10

Precise Length Constraint Benchmark

Benchmarks Methods Models E (↓) S (↑)

CNN/DailyMail Ruler Llama-3.1-8B-Instruct-ruler 78.21 3.10
MARKERGEN Llama-3.1-8B-Instruct 3.36 3.18

HANNA Ruler Llama-3.1-8B-Instruct-ruler 68.21 2.87
MARKERGEN Llama-3.1-8B-Instruct 2.98 3.60

TruthfulQA Ruler Llama-3.1-8B-Instruct-ruler 44.93 3.27
MARKERGEN Llama-3.1-8B-Instruct 3.82 4.25

Heuristic Generation Ruler Llama-3.1-8B-Instruct-ruler 66.17 2.94
MARKERGEN Llama-3.1-8B-Instruct 6.03 4.03

Table 7: Combined Benchmark Evaluation Table

Methods Models E (↓) S (↑)

Implicit Qwen2.5-14B-Instruct 27.41 3.47
MARKERGEN Qwen2.5-14B-Instruct 7.71 3.55

Table 8: GAOKAO-History Chinese Dataset Results

to regulate generation at the range level. This872

choice is based on the fact that Ruler is the only873

training-based baseline for which the code and874

training set are publicly available. We followed875

the exact setup provided in the repository and veri-876

fied the correctness of our replication by achieving877

significant performance improvements on the given878

test set, as shown in Table 7.879

Next, we tested the trained model, referred to as880

Llama-3.1-8B-Instruct-ruler, across four selected881

benchmarks with varying tasks, length scales, and882

instructions, under cost-alignment conditions. The883

experimental results revealed substantial errors and884

a decline in text quality, even when compared to885

the implicit method’s results without training (as886

shown in Table 3). This finding demonstrates the887

limited generalization capability of the method,888

highlighting its struggle to cope with the complex-889

ity and diversity of real-world LCTG scenarios.890

E.2 Length Bias Correction in891

LLMs-as-a-Judge892

It has been demonstrated that LLMs-as-a-judge893

exhibit a noticeable length bias (Li et al., 2024a; Gu894

et al., 2024a). To evaluate the quality of generated895

text objectively and accurately for LCTG tasks, it896

is essential to correct for this length bias. We adopt897

the length-controlled evaluation method outlined898

in AlpacaEval (Dubois et al., 2024) and Yuan et al. 899

(2025). 900

To derive unbiased judge scores, we use a Mul- 901

tiple Regression model. Specifically, we set the 902

judge score as the dependent variable, with the 903

generator categories as dummy variables, and the 904

length of the generated text as a covariate. The 905

model is formulated as follows: 906

f(i) = β0+βM ·C(Method)+βm·C(Model)+βl·Length+ϵ
(10) 907

where f(i) denotes the judge score for the gen- 908

erated text Gi, C(Method) and C(model) are cate- 909

gorical variables representing the method and the 910

model used, respectively, and Length is the actual 911

length of the generated text. The coefficients βM, 912

βm, and βl represent the adjustments made to the 913

raw judge score f(i), helping to eliminate length 914

bias. These adjusted scores serve as the metrics for 915

faithfulness and alignment. 916

E.3 Residual Length Error Analysis in 917

MARKERGEN 918

This subsection focuses on analyzing the resid- 919

ual length errors in the MARKERGEN framework. 920

Building upon the sub-decomposition of LCTG 921

errors presented in Section 2, we eliminate identi- 922

fying and counting errors through Auxiliary Length 923

Marker Insertion Decoding 3.1. Moreover, by em- 924

ploying the Three-Stage Decoupled Generation 925

strategy 3.2, we effectively reduce aligning errors, 926

thus improving the robustness of all models in se- 927

mantic expansion under precise length modeling 928

with explicit length markers. This approach ensures 929
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Figure 10: Attention Entropy across layers.

semantic integrity while enhancing text generation930

quality through a clearer, more in-depth analysis of931

LLM’s LCTG sub-capabilities. Ultimately, resid-932

ual LCTG errors are primarily driven by minimal933

aligning errors.934

E.4 Cross-layer Attention Analysis from the935

MARKERGEN Perspective936

In this section, we perform a cross-layer attention937

analysis from the MARKERGEN perspective. By938

examining attention patterns across different layers939

of the model, we aim to gain a better understand-940

ing of how length and semantic information are941

processed at various stages of generation, provid-942

ing insights into improving the accuracy of LCTG943

tasks.944

Combining the analyses from Figures 6 and 10,945

we infer that in the shallow layers, attention is pri-946

marily focused on the length information repre-947

sented by the length markers. This suggests that948

the model’s early stages prioritize processing and949

understanding the input length. The higher entropy950

in these layers indicates that the model needs to951

integrate various details and information to effec-952

tively comprehend the input. As the model pro-953

gresses to deeper layers, attention shifts from the954

length information to the adjacent semantic content.955

The lower entropy in these layers indicates that the956

model refines its focus, extracting key features and957

generating more relevant output.958

This pattern of attention distribution aligns with959

the findings from (Moon et al.), which emphasize960

that length modeling in the early layers serves as961

a foundation for semantic processing in the later962

layers. Our analysis further supports the notion 963

that LCTG tasks depend on a dynamic interaction 964

between length control and semantic generation, 965

where early layers focus on length constraints and 966

deeper layers prioritize semantic coherence. 967
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