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Abstract

Traditional Retrieval-Augmented Generation001
(RAG) frameworks often segment documents002
into larger chunks to preserve contextual co-003
herence, inadvertently introducing redundant004
noise. Recent advanced RAG frameworks have005
shifted toward finer-grained chunking to im-006
prove precision. However, in long-document007
scenarios, such chunking methods lead to frag-008
mented contexts, isolated chunk semantics,009
and broken inter-chunk relationships, making010
cross-paragraph retrieval particularly challeng-011
ing. To address this challenge, maintaining012
granular chunks while recovering their intrinsic013
semantic connections, we propose SAKI-RAG014
(Sentence-level Attention Knowledge Integra-015
tion Retrieval-Augmented Generation). Our016
framework introduces two core components:017
(1) the SentenceAttnLinker, which constructs a018
semantically enriched knowledge repository by019
modeling inter-sentence attention relationships,020
and (2) the Dual-Axis Retriever, which is de-021
signed to expand and filter the candidate chunks022
from the dual dimensions of semantic simi-023
larity and contextual relevance. Experimen-024
tal results across four datasets—Dragonball,025
SQUAD, NFCORPUS, and SCI-DOCS demon-026
strate that SAKI-RAG achieves better recall027
and precision compared to other RAG frame-028
works in long-document retrieval scenarios,029
while also exhibiting higher information effi-030
ciency.031

1 Introduction032

RAG, initially proposed by Lewis et al. (2021),033

was designed to enhance LLMs’ performance in034

domain-specific tasks and mitigate hallucinations035

(Augenstein et al., 2023; Huang et al., 2025). Its036

core mechanism involves dynamically retrieving037

relevant text chunks from external knowledge bases038

to supplement LLMs, thereby overcoming the limi-039

tations of static training data dependency.040

As LLMs increasingly handle complex tasks041

involving long documents, directly inputting en-042

Figure 1: In long-document cross-paragraph retrieval,
Large Chunks ensure context coherence but add redun-
dancy. Fine-grained Chunks offer more precision but
risk semantic and informational loss. The solution is to
balance both, keeping chunks fine-grained yet intercon-
nected.

tire documents as context becomes impractical (Jin 043

et al., 2024). Consequently, RAG techniques are 044

employed to split long documents into chunks and 045

precisely recall relevant ones for high - quality an- 046

swers. Traditional frameworks like Naive RAG use 047

fixed length or regularized document splitting, stor- 048

ing chunks in local vector databases via embedding 049

models and retrieving them through methods like 050

BM25 (Robertson et al., 1996) or cosine similar- 051

ity (Zhang et al., 2020). Recent RAG frameworks 052

have evolved with various innovative approaches. 053

For instance, Late-Chunking (Günther et al., 2024) 054

adopts an "embedding then chunking" strategy, al- 055

lowing each chunk to retain contextual information 056

in its embeddings. Meta-Chunking (Zhao et al., 057

2024) dynamically determines chunk sizes by us- 058

ing LLMs with Margin Sampling (MSP) Chunk- 059

ing or Perplexity (PPL) Chunking. Dense X Re- 060

trieval (DXR) (Chen et al., 2024) decomposes text 061

into finer units called propositions. The RAPTOR 062

framework (Sarthi et al., 2024) treats each chunk 063

as a leaf node and constructs a tree-structured 064
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Figure 2: Framework of SAKI-RAG.

knowledge base through bottom-up soft clustering065

and summarization. Frameworks like GraphRAG066

(Edge et al., 2024), LightRAG (Guo et al., 2025),067

and nano-GraphRAG (gusye1234, 2024) extract en-068

tities from chunks and connect them using a graph069

structure. However, these methods struggle with070

long documents. Larger chunks provide more in-071

formation but lack precision, while smaller chunks072

offer precision but lose information and connec-073

tions, as shown in Figure 1.074

To address the aforementioned issues, we pro-075

pose SAKI-RAG, which consists of two compo-076

nents: SentenceAttnLinker and Dual-Axis Re-077

trieval. In the SentenceAttnLinker component, we078

adopt the SLLM proposed by An et al. (2024)079

as a critical module. The SLLM operates at the080

sentence level rather than the token level, imple-081

mented through a Sentence Variational Autoen-082

coder (Sentence-VAE) integrated by reconstructing083

the input and output layers of a standard LLM.084

After segmenting the entire document into fine-085

grained chunks, we feed them collectively into the086

SLLM. Since the SLLM processes text at the sen-087

tence level, its capacity to handle long-document088

content is significantly enhanced. We then compute089

attention contributions between sentences using the090

self-attention layer weights of the SLLM, thereby091

modeling inter-sentence correlations. In the Dual-092

Axis Retriever component, we retrieve and filter093

chunks through two dimensions. Initially, we per-094

form retrieval at the semantic similarity dimension 095

using static methods to swiftly identify relevant 096

chunks. Then, we expand the candidate pool by 097

incorporating chunks relevant at the contextual rele- 098

vance dimension, as determined by the SentenceAt- 099

tnLinker phase. Meanwhile, we bring in the LLM’s 100

deep semantic reasoning capability to dynamically 101

filter chunks according to the user’s question. This 102

approach alleviates the negative optimization issues 103

in reranking caused by the semantic deficiencies in 104

fine-grained chunks. 105

To demonstrate the superiority of our framework, 106

we conducted experiments on the Dragonball (Zhu 107

et al., 2025), SQUAD (Rajpurkar et al., 2016), NF- 108

CORPUS (Boteva et al., 2016), and SCI-DOCS 109

(Cohan et al., 2020) datasets which are filtered. 110

The evaluation metrics used were Recall@k (Mus- 111

grave et al., 2020), Precision@k, and Information- 112

Efficiency@k(IE@k). The experimental results 113

indicate that, compared to other RAG frameworks, 114

our proposed framework achieves better perfor- 115

mance in long-document retrieval scenarios. 116

Main contributions of this paper are as follows: 117

(1)We present SentenceAttnLinker, which lever- 118

ages the attention contributions of sentence-level 119

tokens from SLLM to build a chunk-relation model. 120

This effectively avoids the gap between word-level 121

tokens and sentence-level semantics. 122

(2)We propose Dual-Axis Retriever, which com- 123

bines static and dynamic methods to retrieve and fil- 124
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ter chunks across two dimensions—semantic simi-125

larity and contextual relevance—according to users’126

questions.127

(3)Our framework delivers excellent perfor-128

mance on the Dragonball, SQUAD, NFCORPUS,129

and SCI-DOCS datasets. It demonstrates remark-130

able recall and precision along with superior infor-131

mation efficiency.132

2 Related Work133

As LLM advances, their comprehension and gener-134

ation abilities have improved. Yet, they still make135

factual errors in specialized domains (Zhao et al.,136

2025), necessitating the inclusion of relevant infor-137

mation as context alongside questions. However,138

with growing complexity of tasks and the increas-139

ing prevalence of long documents, using an entire140

long document as context is impractical, leading141

to issues like model input limitations and loss of142

attention focus.143

Langchain1 (Chase, 2024) provides various tradi-144

tional chunking strategies, such as RecursiveChar-145

acterTextSplitter and Character-TextSplitter. These146

methods, which split documents based on fixed147

lengths or rules, are better suited for scenarios148

where precision and context coherence are not crit-149

ical. They struggle with complex questions in long-150

document settings.151

Late-Chunking, a popular RAG framework,152

adopts an "embed-then-chunk" strategy. This ap-153

proach maintains chunk fine-grained while incorpo-154

rating context into each chunk’s embedding vector155

through average pooling. Nevertheless, long docu-156

ments, with their excessive tokens, often exceed the157

embedding model’s input limit. This requires batch158

processing, which can lead to context fragmenta-159

tion. Additionally, the high volume of tokens may160

dilute the informational density of the embeddings.161

Meta-Chunking integrates LLMs with MSP162

Chunking and PPL Chunking to dynamically con-163

trol chunk size for better context coherence. How-164

ever, when relevant information is dispersed across165

the text, this method may truncate necessary de-166

tails.167

Dense X Retrieval focuses on decomposing text168

into fine-grained propositions, each encapsulating169

a unique factual element. While innovative, DXR170

may struggle to capture the complex relationships171

and overall semantics within long documents, as it172

processes each proposition independently.173

1https://www.langchain.com/

To address these challenges, some RAG frame- 174

works are exploring ways to link chunks. RAP- 175

TOR, for instance, constructs a tree structure from 176

chunks as leaf nodes through soft clustering and 177

summarization. However, this approach treats all 178

chunks within a cluster as equivalent, and smaller 179

chunks can result in weaker, more easily confused 180

semantic information. 181

Frameworks such as GraphRAG, LightRAG and 182

nano-GraphRAG organize chunks into a graph 183

structure. However, large chunks may introduce 184

redundancy, causing the LLM to become "lost in 185

the middle (Liu et al., 2023)," while small chunks 186

might lack key entity information, thereby affecting 187

the quality of the generated graph. 188

3 SAKI-RAG 189

In this section, we will introduce in Section 3.1 190

how SentenceAttnLinker utilizes SLLM to calcu- 191

late the attention contributions between chunks for 192

chunk-relation model, as well as how Dual-Axis 193

Retriever performs static and dynamic retrieval and 194

filtering in the knowledge base with sentence-level 195

relevance metadata built by SentenceAttnLinker to 196

obtain the most relevant chunks. The framework is 197

shown in Figure 2. 198

3.1 SentenceAttnLinker 199

Most LLMs primarily use word-level tokens, focus- 200

ing on word-to-word attention relationships and em- 201

ploying self-attention mechanisms (Vaswani et al., 202

2023) to capture complex word dependencies in 203

text sequences. Inspired by this, we aim to apply 204

attention mechanisms to discovering relationships 205

between chunks. However, employing popular em- 206

bedding models like BGE-M3 (Chen et al., 2023) – 207

originally designed for word-level semantic interac- 208

tions through attention mechanisms – to establish 209

sentence-level relationships introduces gap. The 210

SLLM proposed by An et al. (2024) offers a use- 211

ful tool to bridge this gap. In SLLM, training and 212

encoding are sentence-level-token-based, allowing 213

long documents to be processed in one go. Since 214

it uses sentence-level rather than word-level to- 215

kens, input token limits are rarely exceeded. More- 216

over, SLLM’s attention layers are better suited for 217

sentence-level tokens processing. In SentenceAt- 218

tnLinker, we extract certain layers from SLLM as a 219

core component to build a Chunk-Relation Model 220

and local knowledge base. 221

After cleaning the long document, we use a regu- 222
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larization tool to quickly chunk the long document223

into fine-grained chunks. The resulting collection224

of sentences is denoted as S = {s1, s2, ..., sn}. We225

then employ the SentenceVAE encoder to generate226

sentence vectors {Ωi} which is determined by the227

following formula:228

Ωi = SentenceVAE − Encoder(si), (1)229

where Ωi ∈ Rd, d is the hidden layer dimension.230

After adding positional encoding to the vector231

sequence {Ωi} to create initial hidden states and232

inputting them into the SLLM, we compute, for233

each layer l of the LLM and each attention head h,234

the query matrix Q(l,h) and key matrix K(l,h). The235

attention weight matrix is generated via Softmax:236

Attn(l,h) = softmax

(
Q(l,h)(K(l,h))⊤√

d

)
∈ Rn×n

(2)237

Ultimately, we obtain attention contribution ma-238

trix A ∈ Rn×n, which serves as the chunk-relation239

model. Here, Aij represents the attention contribu-240

tion of sentence si to sj :241

Aij =
1

L ·H

L∑
l=1

H∑
h=1

Attn
(l,h)
ij , (3)242

where L is the number of LLM layers, and H is243

the number of attention heads per layer.244

For each sentence si, extract the corresponding245

attention contribution row Ai, sort related chunks246

in descending order to get {si1 , si2 , si3 , . . . }, and247

record the weights. The final storage structure is:248

Metadata[si] = [(si1 , Ai,i1),

(si2 , Ai,i2),

(si3 , Ai,i3), . . . ]

(4)249

The sentence vectors {Ωi} are stored in a vector250

database along with the above metadata, forming251

an efficient semantic index for retrieval.252

3.2 Dual-Axis Retriever253

Traditional RAG often directly uses BM25, co-254

sine similarity retrieval, and other retrieval strate-255

gies to retrieve chunks, and then screens them256

through a Rerank Model to obtain the final Top-257

k chunks. However, chunk size poses a problem.258

Large chunks, while including more information,259

bring in redundancy that dilutes or overshadows260

key details. Fine-grained chunks, though offering261

higher precision, lose contextual links and seman- 262

tic information, like subject terms. Thus, searching 263

and filtering solely based on semantic similarity 264

may not identify the chunks most relevant to the 265

user’s question. 266

Popular RAG frameworks use LLMs to deter- 267

mine chunk relevance to the question after retriev- 268

ing chunks. But fine-grained chunks, often missing 269

subjects and other key information, make it hard 270

for LLMs to accurately assess their relevance. 271

To address these issues, we propose a Dual- 272

Axis Retriever that combines static retrieval and 273

dynamic filtering. This ensures retrieved chunks 274

have both semantic similarity and contextual rele- 275

vance to the user’s question. 276

Algorithm 1: Dual-Axis Retriever
Input: Query Q, Vector DB V , LLM M ,

Reranker R, Top_k
Output: Retrieved chunks F

1 Cinit ← V.search(Q,Top_k) // Static
semantic retrieve

2 Cfilt ← ∅
3 for c ∈ Cinit do
4 Rc ← parse(c.meta["related"])

// Get related chunks
5 for r ∈ Rc do
6 kc ← c.content⊕ r
7 p← “Determine relevance: //

Knowledge: kc
// Question: Q
// Output: 1/0”

8

9 if M(p) = 1 then
10 Cfilt ← Cfilt ∪ {kc}
11 end if
12 end for
13 end for
14 F ← R.rerank(Cfilt, Q, Top_k)

// Context-aware ranking
15 return F

16 Description: V.search(·) refers to using
retrieve methods such as BM25 and cosine
similarity to retrieve chunks.

Given a user query q, it is embedded into a vec- 277

tor. Cosine similarity is used to retrieve an initial 278

candidate set Cinit from the vector library created 279

by the SentenceAttnLinker component: 280

Cinit = {si}, ∥Cinit∥ = Top_k (5) 281
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Dataset Ave_Doc_Length
Dragonball 11436

SQUAD 2303
NFCORPUS 3267
SCI-DOCS 7955

Table 1: Average Document Length of Each Dataset

For each candidate sentence si in Cinit, per-282

form context expansion and relevance determina-283

tion. Extract the associated sentence set Ri =284

{ri1, ri2, . . . , riTop−k
}, which are sorted by self-285

attention weights from the metadata, and generate286

a context-enhanced candidate block ki = si ⊕Ri,287

where ⊕ denotes string concatenation.288

Then input ki and uses’ question q into a pre-289

trained large language model api, such as Qwen-290

max (Bai et al., 2023) which has strong comprehen-291

sion ability, to judge their relevance via a binary292

classification task:293

Scorerel(ki, q) = I (LLM([ki; q])→ ”1”) , (6)294

where I(·) is an indicator function that retains can-295

didates with Scorerel = 1, forming the filtered set296

Cfiltered. For detailed prompt information, please297

refer to Appendix A.1.298

For the candidates in Cfiltered, use a reranker to299

calculate the final relevance score:300

Scorefinal(ki, q) = Reranker(ki, q) (7)301

Candidates are finally ranked and recalled based302

on Scorefinal. In Algorithm 1, we show this retrieval303

strategy.304

4 Experiments305

Datasets. Experiments were conducted on four306

datasets: Dragonball, SQUAD, NFCORPUS, and307

SCI-DOCS, filtered by document length. The aver-308

age document length for each dataset is in Table 1.309

Only the Finance subset of Dragonball was used, as310

other subsets contain structured content like legal311

judgments and medical records, not coherent text.312

Embedding Model and Reranker. The frame-313

work we propose and the baseline for compar-314

ison don’t rely on specific embedding models,315

and changing embedding models doesn’t signif-316

icantly affect functionality or ranking. Thus, in317

all experiments, we used the BGE-M3 embed-318

ding model, which performs well across languages319

and domains. The batch_size was set to 32, and320

normalize_embeddings was set to True, mean- 321

ing generated embedding vectors were normalized. 322

In the experiments, we use the bge-reranker-large 323

as the reranker model, with all model parameters 324

being the default parameters of the BCERerank 325

function in the BCEmbedding repository 2. 326

LLM. In parts involving calling pre-trained 327

LLMs for entities extracting, filtering and answer 328

generation tasks, we use the LangChain-based 329

Tongyi model interface to call Qwen-max, a model 330

with strong understanding and performance, with 331

all parameters at their default settings. For Meta- 332

Chunking, we deploy Qwen-2-1.5B locally for text 333

chunking. In the SAKI-RAG framework, we use a 334

1.3B-parameter SLLM model with default settings 335

from the SentenceVAE repository3. 336

Chunks Size. To keep experimental variables 337

consistent, for frameworks requiring custom chunk 338

input like SAKI-RAG, LightRAG and RAPTOR, 339

we use a regularization tool to split documents into 340

chunks of two sentences each. For frameworks 341

needing an expected chunk size, such as Meta- 342

Chunking, we set target_size to 50, matching the 343

earlier average chunk length. Other frameworks 344

are left at their default settings. 345

Metrics. For retrieve evaluation metrics, we 346

chose Recall, Precision, and IE. For generation 347

evaluation, we use ROUGE − L (Lin, 2004) and 348

METEOR (Banerjee and Lavie, 2005). IE@k 349

measures the framework’s ability to retrieve effec- 350

tive information in search tasks, is calculated as 351

Formula 8 . 352

IE@k = Recall@k × Precision@k (8) 353

The final metric score is computed using For- 354

mula 9. 355

Metric = Metric@1 +Metric@3 +Metric@5
(9) 356

4.1 Comparative Experiments 357

In terms of retrieval performance, we compare 358

our proposed SAKI-RAG with popular RAG 359

frameworks like Late-Chunking, RAPTOR, Meta- 360

Chunking PPL, Meta-Chunking MSP, and Dense 361

X Retrieval. For generation quality, we contrast 362

it with LightRAG, an enhanced customization- 363

wise version of GraphRAG, in mix mode with 364

2https://github.com/netease-youdao/
BCEmbedding

3https://github.com/BestAnHongjun/SentenceVAE
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Dragonball SQUAD NFCORPUS SCI-DOCSMethods Rec.↑ Pre.↑ IE↑ Rec.↑ Pre.↑ IE↑ Rec.↑ Pre.↑ IE↑ Rec.↑ Pre.↑ IE↑
Late-Chunking 2.24 3.51 0.02 70.67 34.58 7.58 12.95 5.47 0.21 2.01 1.02 0.01

RAPTOR 96.14 125.07 35.79 / / / 283.14 257.86 243.09 293.05 279.36 272.81
Meta-Chunking-PPL 128.21 133.95 50.96 254.19 133.04 110.37 287.06 245.00 233.76 65.02 54.75 11.85
Meta-Chunking-MSP 97.86 125.68 36.59 257.27 133.61 111.53 283.92 252.42 238.41 288.72 264.91 264.60

Dense X Retrieval 7.46 14.16 0.32 204.19 104.21 67.07 279.78 255.96 238.48 287.22 264.60 253.12
SAKI-RAG 106.09 235.32 83.98 277.40 282.06 260.95 262.35 285.06 249.28 274.89 292.52 268.04

Table 2: Comparative Experiments on Retrieval: Due to the presence of sensitive or unsafe content in the original
documents of the SQUAD, LLMs cannot be used to build tree structures. In the table, we abbreviate the metrics,
where Rec., Pre., and IE stand for Recall, Precision, and Information Efficiency respectively.

Methods ROUGE-L↑ METEOR↑
LightRAG 0.2865 0.2852
SAKI-RAG 0.3122 0.3254

Table 3: Comparative Experiments on Generation:
Only the Dragonball dataset provides human-annotated
detailed answers, so we only conduct generation quality
experiments on it.

the response_type set to output answers in a sin-365

gle paragraph without sources and references. Re-366

trieval results are in Table 2, and generation quality367

results are in Table 3.368

In this subsection’s experiments on retrieval qual-369

ity, we compare SAKI-RAG with popular recall-370

focused RAG frameworks: Late-Chunking, RAP-371

TOR, Meta-Chunking PPL, Meta-Chunking MSP,372

and Dense X Retrieval. In the table, the top two373

frameworks’ scores are highlighted in blue, with374

darker shades for the first place and lighter for the375

second. Recall scores show SAKI-RAG has decent376

results, though not the highest. However, some377

frameworks that segment documents into larger378

chunks may have artificially inflated Recall met-379

rics due to chunks containing more content. This is380

why we include Precision and IE metrics. Precision381

reflects the accuracy of recalls, and IE indicates the382

effectiveness of the recalled information. SAKI-383

RAG excels in Precision, often achieving the best384

results. More importantly, it also performs well in385

IE. This means SAKI-RAG maintains high accu-386

racy and information effectiveness while achieving387

good recall performance.388

In the four datasets of the comparative experi-389

ments, the Dragonball dataset comprises numer-390

ous cross-paragraph retrieval problems, including391

summarization and multi-hop questions. In con-392

trast, the SQUAD, NFCORPUS, and SCI-DOCS393

datasets consist of factual questions involving sin-394

gle entities. The experimental results indicate that 395

SAKI-RAG has achieved the best Precision metric 396

scores across all dataset experiments and has also 397

secured top positions in IE metric in most of the 398

dataset experiments. This demonstrates that SAKI- 399

RAG can deliver superior performance when han- 400

dling cross-paragraph retrieval problems in long- 401

document contexts while maintaining decent per- 402

formance on conventional factual questions. De- 403

spite not achieving the highest Recall scores in 404

some datasets due to the influence of chunk size 405

on answer coverage, SAKI-RAG, which adopts 406

fine-grained chunks, still attains respectable scores. 407

For more information about results of experiments, 408

please refer to the Appendix A.4. 409

To explore where SAKI-RAG performs best, 410

we divide the Dragonball dataset by question type 411

into subsets and run comparative experiments. As 412

shown in Table 4, SAKI-RAG achieves the highest 413

Precision and IE scores across all subset experi- 414

ments, particularly excelling in Non-Factual ques- 415

tions. Compared to previous experiments, SAKI- 416

RAG not only performs well in typical retrieval 417

tasks but also shows superior performance in non- 418

factual questions like Multi-hop Reasoning and 419

Summary Questions. This demonstrates SAKI- 420

RAG’s better handling of cross-paragraph retrieval 421

in long document. 422

In the generation quality experiments of this sub- 423

section, we compare SAKI-RAG with LightRAG, a 424

framework focused on answer generation. We high- 425

light better results in the table. The results show 426

that SAKI-RAG can achieve scores comparable to 427

LightRAG with a simpler framework. 428

4.2 Ablation Studies 429

SAKI-RAG is built on the SentenceAttnLinker 430

chunking method and incorporates the Dual-Axis 431

Retriever strategy. To verify the effectiveness of 432
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Dragonball-Hop Dragonball-Summary Dragonball-Non-FactualMethods Rec.↑ Pre.↑ IE↑ Rec.↑ Pre.↑ IE↑ Rec.↑ Pre.↑ IE↑
RAPTOR 137.59 159.72 65.95 55.77 107.55 18.50 88.57 136.89 36.35

Meta-Chunking-PPL 178.59 161.14 86.75 82.18 120.39 30.30 120.82 143.31 51.90
Meta-Chunking-MSP 146.91 162.60 71.83 51.31 101.13 15.77 89.62 135.70 36.42

Dense X Retrieval 10.84 19.70 0.65 3.75 12.18 0.13 6.58 16.41 0.33
Late-Chunking 2.52 3.58 0.03 1.56 4.24 0.02 1.94 3.86 0.02

SAKI-RAG 144.46 276.06 133.46 63.82 171.12 37.67 96.34 230.02 74.80

Table 4: Comparative Experiments of Different Query Types on Dragonball: The Dragonball dataset divides
questions into subtypes like Multi-hop Reasoning Question, Summary Question, and Factual Question. We conduct
further refined experiments on this dataset to explore which question type SAKI-RAG performs great on. In the
table, Dragonball-Hop, Dragonball-Summary, and Dragonball-Non-Factual respectively represent experiments
conducted exclusively on Multi-hop Reasoning Questions, Summary Questions, and question types other than
Factual Questions.

Dragonball SQUAD NFCORPUS SCI-DOCSMethods Rec.↑ Pre.↑ IE↑ Rec.↑ Pre.↑ IE↑ Rec.↑ Pre.↑ IE↑ Rec.↑ Pre.↑ IE↑
Naive 92.09 128.61 34.75 273.81 146.03 130.91 288.63 144.15 135.67 283.18 264.20 249.23

Naive+SAL 105.84 227.30 81.47 277.93 265.87 246.47 285.10 282.04 268.07 282.73 280.81 264.65
SAKI 106.09 235.32 83.98 277.40 282.06 260.95 262.35 285.06 249.28 274.89 292.52 268.04

Table 5: Ablation Studies: In the table, "Naive" stands for Naive RAG, which maintains a consistent chunk
size, directly embeds chunks into vector space, and retrieves chunks via cosine similarity. "SAL" refers to using
SentenceAttnLinker for chunking and Embedding while still employing cosine similarity for retrieval. "SAKI"
denotes SAKI-RAG, which incorporates the Dual-Axis Retriever strategy in addition to SentenceAttnLinker.

each component in the framework, ablation experi-433

ments are conducted on the datasets in this section.434

The results are shown in Table 5.435

In the ablation study of the SAKI-RAG frame-436

work, we thoroughly analyze its components, es-437

pecially focusing on the performance differences438

across various datasets. The experimental results439

show that on the Dragonball and SQUAD datasets,440

as the components were gradually improved, the441

Recall, Precision, and IE metrics show a positive442

upward trend, with Precision and IE being partic-443

ularly prominent. On the NFCORPUS and SCI-444

DOCS datasets, although Precision and IE metrics445

show an upward trend, the Recall metric decline.446

In the Dragonball and SQUAD datasets, our447

framework demonstrated effective handling of448

cross-paragraph retrieval problems. This is at-449

tributed to its ability to integrate multiple relevant450

paragraphs in the context of long documents. The451

SentenceAttnLinker is able to capture sentence-452

to-sentence relationships, and the Dual-Axis Re-453

triever further enhance retrieval accuracy through454

its dual-dimensional filtering mechanism, leading455

to the framework’s superior performance on these456

datasets. However, in the NFCORPUS and SCI-457

DOCS datasets, the type of questions and the char-458

acteristics of the dataset content become key fac- 459

tors affecting the metric performance. For detailed 460

dataset information, please refer to Appendix A.5. 461

For more information about results of experiments, 462

please refer to the Appendix A.3 463

Unlike Dragonball, which involve cross- 464

paragraph retrieval problems with multiple entities, 465

the NFCORPUS and SCI-DOCS datasets consist 466

of factual questions involving only a single entity. 467

In the SAL, on the one hand, chunk concatenation 468

leads to longer chunk content, which dilutes the 469

original semantic information to some extent. As 470

a result, after reranking based on the user’s query, 471

the correct chunks rank lower. On the other hand, 472

chunk concatenation may introduces semantic in- 473

formation relevant to the user’s question. However, 474

the chunks themselves are incorrect answers, caus- 475

ing the reranked incorrect chunks to rise in ranking 476

and ultimately leading to a decline in the Recall 477

metric of SAL. 478

Compared to others, NFCORPUS and SCI- 479

DOCS are more specialized datasets. For instance, 480

NFCORPUS is a medical-information dataset. The 481

LLM filtering mechanism introduced in SAKI may 482

have certain limitations in processing the seman- 483

tic information of professional academic terms. 484
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The LLM may have deviations in understanding485

domain-specific terminology and complex logical486

structures in academia, causing some chunks that487

should have been recalled to fail the screening and488

thus leading to a decline in the Recall metric. On489

the other hand, the content expansion caused by490

chunk concatenation dilutes or obscures some cor-491

rect key semantic information, resulting in incor-492

rect screening by the LLM.493

5 Conclusions494

In this paper, we present SAKI-RAG to main-495

tain chunk fine-grained and connections for bet-496

ter long document retrieval. It has two key com-497

ponents: SentenceAttnLinker and Dual-Axis Re-498

triever. SentenceAttnLinker innovatively uses at-499

tention mechanisms with SLLM to build a Chunk-500

Relation Model, uncovering chunk relationships.501

Dual-Axis Retriever integrates both static retrieval502

and dynamic filtering strategies, utilizing semantic503

similarity and contextual relevance to improve the504

efficiency of chunk selection.505

Through comparative, generation, and abla-506

tion experiments across four datasets—Dragonball,507

SQUAD, NFCORPUS, SCI-DOCS, we show508

SAKI-RAG offers good recall, precision, and infor-509

mation efficiency in long document settings. Also,510

except for using SLLM, SAKI-RAG doesn’t rely511

on specific embedding models or pre-trained LLMs,512

involves no extra training, and is widely applicable.513

Limitations514

During our research, we identified several limita-515

tions:516

(1)When processing the attention contribution517

matrix, we didn’t distinguish the importance of518

each layer’s contributions and simply averaged519

them. This might weaken the influence of more520

critical layers. We plan to explore this issue further521

in future research to develop more effective matrix522

construction methods.523

(2)Our Chunk-Relation Model, which uncov-524

ers relationships between chunks, is limited to525

chunks within the same document. That is to say,526

SAKI-RAG is adept at tackling cross-paragraph527

retrieval, but it might not hold a significant edge528

when it comes to cross-document issues. How-529

ever, when calculating the attention contributions530

between chunks, it is necessary to add position531

encoding information. If we want to explore the532

relationships between chunks from different docu-533

ments, how to add position encoding information 534

and how to determine the order of chunks from 535

different documents will be challenging issues. 536
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A Appendix 662

A.1 Detailed Prompt in Dual-Axis Retriever 663

Figure 3: Detailed Prompt in Dual-Axis Retriever

A.2 Chunks Relationship Diagram of 664

SAKI-RAG 665

In this section, we present an example of the con- 666

nections between chunks processed by SAKI-RAG. 667

In Figure 4, the pink part represents the original 668

content of the document, the yellow part represents 669

a specific chunk within the document, and the green 670

parts represent chunks related to this yellow chunk. 671

These related chunks are ordered by the magnitude 672

of their attention contributions. 673

A.3 Detailed Information of Comparative 674

Experiments 675

In this section, we will show more detailed infor- 676

mation about comparative experiments on Table 6, 677

7, 8, 9, 10, 11, 12. 678
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Method SAKI-RAG Late-Cbunking RAPTOR Meta-Chunking
-PPL

Meta-Chuning
-MSP Dense X Retrieval

Top-1
Rec. 22.14 0.52 19.95 26.75 20.71 1.79
Pre. 74.84 1.83 63.28 68.67 64.50 7.73
IE 16.57 0.01 12.62 18.37 13.36 0.14

Top-3
Rec. 36.96 0.75 34.28 45.93 34.54 2.66
Pre. 79.76 0.95 35.84 38.08 35.16 3.83
IE 29.48 0.01 12.29 17.49 12.14 0.10

Top-5
Rec. 46.99 0.97 41.91 55.53 42.61 3.01
Pre. 80.72 0.73 25.95 27.20 26.02 2.60
IE 37.93 0.01 10.88 15.10 11.09 0.08

Table 6: Detailed Information of Comparative Experiments on Dragonball

Method SAKI-RAG Late-Cbunking RAPTOR Meta-Chunking
-PPL

Meta-Chuning
-MSP Dense X Retrieval

Top-1
Rec. 86.33 16.48 / 80.45 80.17 56.98
Pre. 92.49 16.48 / 80.45 80.17 56.98
IE 79.85 2.72 / 64.72 64.27 32.47

Top-3
Rec. 95.53 25.70 / 86.59 87.99 71.79
Pre. 95.18 10.61 / 32.31 32.77 28.12
IE 90.93 2.73 / 27.98 28.83 20.19

Top-5
Rec. 95.54 28.49 / 87.15 89.11 75.42
Pre. 94.39 7.49 / 20.28 20.67 19.11
IE 90.18 2.13 / 17.67 18.42 14.41

Table 7: Detailed Information of Comparative Experiments on SQUAD

Method SAKI-RAG Late-Cbunking RAPTOR Meta-Chunking
-PPL

Meta-Chuning
-MSP Dense X Retrieval

Top-1
Rec. 83.92 2.75 89.02 92.55 89.80 88.24
Pre. 95.11 2.75 89.02 92.55 89.80 88.24
IE 79.82 0.08 79.25 85.66 80.64 77.86

Top-3
Rec. 87.84 5.10 96.08 96.08 96.08 95.29
Pre. 94.81 1.70 86.14 82.88 84.97 84.97
IE 83.28 0.09 82.76 79.63 81.64 80.97

Top-5
Rec. 90.59 5.10 98.04 98.43 98.04 96.25
Pre. 95.14 1.02 82.70 69.57 77.65 82.75
IE 86.19 0.05 81.08 68.48 76.13 79.65

Table 8: Detailed Information of Comparative Experiments on NFCORPUS
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Method SAKI-RAG Late-Cbunking RAPTOR Meta-Chunking
-PPL

Meta-Chuning
-MSP Dense X Retrieval

Top-1
Rec. 87.67 0.67 96.19 18.83 93.95 92.83
Pre. 97.51 0.67 96.19 18.83 93.95 92.83
IE 85.49 0.004 92.53 3.55 88.27 86.17

Top-3
Rec. 93.05 0.67 97.98 23.54 97.01 96.86
Pre. 97.55 0.22 92.68 19.28 88.27 87.29
IE 90.77 0.001 90.81 4.54 85.63 84.55

Top-5
Rec. 94.17 0.67 98.88 22.65 97.76 97.53
Pre. 97.46 0.13 90.49 16.64 82.69 84.48
IE 91.78 0.001 89.48 3.77 80.84 82.39

Table 9: Detailed Information of Comparative Experiments on SCI-DOCS

Method SAKI-RAG Late-Cbunking RAPTOR Meta-Chunking
-PPL

Meta-Chuning
-MSP Dense X Retrieval

Top-1
Rec. 32.62 0.57 30.16 40.43 32.30 2.71
Pre. 89.92 1.79 81.89 83.42 82.91 10.97
IE 29.33 0.01 24.70 33.73 26.78 0.30

Top-3
Rec. 49.94 0.88 49.81 64.48 52.83 3.97
Pre. 92.71 1.02 45.96 46.09 46.68 5.36
IE 46.30 0.01 22.89 29.72 24.66 0.21

Top-5
Rec. 61.90 1.07 57.62 73.68 61.78 4.16
Pre. 93.43 0.77 31.87 31.63 33.01 3.37
IE 57.83 0.01 18.36 23.30 20.39 0.14

Table 10: Detailed Information of Comparative Experiments on Dragonball-Hop

Method SAKI-RAG Late-Cbunking RAPTOR Meta-Chunking
-PPL

Meta-Chuning
-MSP Dense X Retrieval

Top-1
Rec. 9.31 0.38 8.55 12.68 8.09 0.80
Pre. 50.52 2.30 44.26 50.49 43.93 6.23
IE 4.70 0.01 3.78 6.40 3.55 0.05

Top-3
Rec. 22.54 0.51 19.63 29.53 17.65 1.31
Pre. 59.28 1.09 34.47 38.69 30.38 3.39
IE 13.36 0.01 6.77 11.43% 5.36 0.04

Top-5
Rec. 31.97 0.67 27.59 39.97 25.57 1.64
Pre. 61.32 0.85 28.82 31.21 26.82 2.56
IE 19.60 0.01 7.95 12.47 6.86 0.04

Table 11: Detailed Information of Comparative Experiments on Dragonball-Summary
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Method SAKI-RAG Late-Cbunking RAPTOR Meta-Chunking
-PPL

Meta-Chuning
-MSP Dense X Retrieval

Top-1
Rec. 18.63 0.45 17.21 23.80 17.79 1.56
Pre. 72.41 2.01 65.42 69.01 65.85 8.90
IE 13.49 0.01 11.26 16.42 11.71 0.14

Top-3
Rec. 33.64 0.66 31.73 43.54 31.75 2.37
Pre. 78.16 1.05 40.94 42.85 39.55 4.50
IE 26.29 0.01 12.99 18.66 12.56 0.11

Top-5
Rec. 44.07 0.83 39.63 53.48 40.08 2.65
Pre. 79.45 0.80 30.53 31.45 30.30 3.01
IE 35.01 0.01 12.10 16.82 12.14 0.08

Table 12: Detailed Information of Comparative Experiments on Dragonball-Non-Factual

Figure 4: Example of Chunks Relationship Diagram In
SAKI-RAG

A.4 Detailed Information of Ablation Studies679

In this section, we will show more detailed infor-680

mation about Ablation Studies on Table 13, 14,681

15, 16.682

A.5 Detailed Information of Dataset683

The Dragonball dataset consists entirely of fictional684

information with no connection to real-world data.685

The SQUAD corpus is primarily sourced from686

Wikipedia articles. The medical documents in the687

NFCORPUS dataset are mainly from PubMed. The688

SCI-DOCS corpus includes scientific literature in689

fields such as computer science and physics.690

Method Naive Naive+SAL SAKI
Top-1

Rec. 19.58 22.13 22.14
Pre. 69.36 69.68 74.84
IE 13.58 15.42 16.57

Top-3
Rec. 33.22 36.89 36.96
Pre. 34.69 78.03 79.76
IE 11.52 28.79 29.48

Top-5
Rec. 39.29 46.82 46.99
Pre. 24.56 79.59 80.72
IE 9.65 37.26 37.93

Table 13: Detailed Information of Ablation Studies
on Dragonball

Method Naive Naive+SAL SAKI
Top-1

Rec. 86.87 86.87 86.33
Pre. 86.87 86.87 86.33
IE 75.46 75.46 79.85

Top-3
Rec. 94.69 94.41 95.53
Pre. 35.75 89.11 95.18
IE 33.85 84.13 90.93

Top-5
Rec. 92.25 96.65 95.54
Pre. 23.41 89.89 94.39
IE 21.60 86.88 90.18

Table 14: Detailed Information of Ablation Studies
on SQUAD
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Method Naive Naive+SAL SAKI
Top-1

Rec. 86.87 86.87 86.33
Pre. 86.87 86.87 86.33
IE 75.46 75.46 79.85

Top-3
Rec. 94.69 94.41 95.53
Pre. 35.75 89.11 95.18
IE 33.85 84.13 90.93

Top-5
Rec. 92.25 96.65 95.54
Pre. 23.41 89.89 94.39
IE 21.60 86.88 90.18

Table 15: Detailed Information of Ablation Studies
on NFCORPUS

Method Naive Naive+SAL SAKI
Top-1

Rec. 91.93 93.50 87.67
Pre. 91.93 93.50 97.51
IE 84.51 87.42 85.49

Top-3
Rec. 95.29 94.39 93.05
Pre. 87.97 93.72 97.55
IE 83.83 88.46 90.77

Top-5
Rec. 95.96 94.84 94.17
Pre. 84.30 93.59 97.46
IE 80.89 88.76 91.78

Table 16: Detailed Information of Ablation Studies
on SCI-DOCS

Figure 5: Detailed Informations of SQUAD Dataset

Figure 6: Detailed Informations of NFCORPUS Dataset

Figure 7: Detailed Informations of SCI-DOCS Dataset
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Figure 8: Detailed Informations of Dragonball Dataset
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