
CONFIT: Improving Resume-Job Matching using Data Augmentation and
Contrastive Learning

Anonymous ACL submission

Abstract

A reliable resume-job matching system helps a001
company find suitable candidates from a pool002
of resumes, and helps a job seeker find relevant003
jobs from a list of job posts. However, since004
job seekers apply only to a few jobs, interaction005
records in resume-job datasets are sparse. Dif-006
ferent from many prior work that use complex007
modeling techniques, we tackle this sparsity008
problem using data augmentations and a sim-009
ple contrastive learning approach. CONFIT first010
creates an augmented resume-job dataset by011
paraphrasing specific sections in a resume or a012
job post. Then, CONFIT uses contrastive learn-013
ing to further increase training samples from B014
pairs per batch to O(B2) per batch. We eval-015
uate CONFIT on two real-world datasets and016
find it outperforms prior methods (including017
BM25 and OpenAI text-ada-002) by up to 19%018
and 31% absolute in nDCG@10 for ranking019
jobs and ranking resumes, respectively.1020

1 Introduction021

Online recruitment platforms, such as LinkedIn,022

have over 900 million users, with over 100 million023

job applications made each month (Iqbal, 2023).024

With the ever increasing growth of online recruit-025

ment platforms, building fast and reliable person-026

job fit systems is desiderated. A practical system027

should be able to quickly select suitable talents and028

jobs from large candidate pools, and also reliably029

quantify the “matching degree” between a resume030

and a job post.031

Since both resumes and job posts are often stored032

as text data, many recent work (Zhu et al., 2018;033

Qin et al., 2018; Bian et al., 2020; Yang et al., 2022;034

Shao et al., 2023) focus on designing complex mod-035

eling techniques to model resume-job matching036

(or referred to as “person-job fit”). For example,037

APJFNN (Qin et al., 2018) uses hierarchical recur-038

rent neural networks to process the job and resume039

1We will release our code upon acceptance.

content, and DPGNN (Yang et al., 2022) uses a 040

dual-perspective graph neural network to model the 041

relationship between resumes and jobs. However, 042

these methods only show limited improvements, 043

and they often: optimize only for a single task (e.g., 044

interview classification); are hard to accommodate 045

new, unseen resumes or jobs; and are designed for 046

a particular data setting (e.g., applicable only if a 047

specific recruitment platform is used). 048

In this work, we present a simple method to 049

model resume-job matching, with strong perfor- 050

mances in both resume/job ranking and resume-job 051

pair classification tasks. We propose CONFIT, an 052

approach to learn high-quality dense embeddings 053

for resumes and jobs, which can be combined with 054

techniques such as FAISS (Johnson et al., 2019) to 055

rank tens of thousands of resumes and jobs in mil- 056

liseconds. To combat label sparsity in person-job 057

fit datasets, CONFIT first uses data augmentation 058

techniques to increase the number of training sam- 059

ples, and then uses contrastive learning (Karpukhin 060

et al., 2020; Wang et al., 2023) to train an encoder. 061

We evaluate CONFIT on two resume-job matching 062

datasets and find our approach outperforms pre- 063

vious methods (including strong baselines from 064

information retrieval such as BM25) in almost all 065

ranking and classification tasks, with up to 20-30% 066

absolute improvement in ranking jobs and resumes. 067

2 Background 068

A resume-job matching (or often called a person- 069

job fit) system models the suitability between a 070

resume and a job, allowing it to select the most 071

suitable candidates given a job post, or recommend 072

the most relevant jobs given a candidate’s resume 073

(Bian et al., 2020; Yang et al., 2022; Shao et al., 074

2023). A job post J (or a resume R) is commonly 075

structured as a collection of texts J = {xJ
i }

p
i=1, 076

where each piece of text may represent certain sec- 077

tions of the document, such as “Required Skills” 078

for a job post or “Experiences” for a resume (Bian 079

1

et al., 2019; Shao et al., 2023). Thus, the person-080

job fit problem is often formulated as a text-based081

task to model a “matching” score:082

match(R, J) = fθ(R, J) → R083

where fθ typically involves neural networks (Zhu084

et al., 2018; Yang et al., 2022; Shao et al., 2023)085

such as BERT (Devlin et al., 2019).086

With the ever-increasing growth of online recruit-087

ment data, there is a large number of job posts and088

resumes (privately) available. However, since a can-089

didate applies to only a small selection of jobs, in-090

teractions between resumes and jobs is very sparse091

(Bian et al., 2020). Often, the resulting dataset092

D = {Ri, Ji, yi} has size |D| ≪ nR × nJ , where093

nR and nJ are the total number of resumes and094

jobs respectively, and yi ∈ {0, 1} is a binary sig-095

nal representing whether a resume Ri is accepted096

for an interview by a job Ji. While some private097

datasets (Yang et al., 2022) may contain additional098

labels, such as whether the candidate or recruiter099

“requested” additional information from the other100

party, we focus on the more common case where101

only a binary signal is available.102

3 Approach103

We propose CONFIT, a simple and general-purpose104

approach to model resume-job matching using con-105

trastive learning and data augmentation. CONFIT106

produces a dense embedding of a given resume or107

job post, and models the matching score between108

an ⟨R, J⟩ pair as the inner product of their represen-109

tations. This simple formulation allows CONFIT110

to quickly rank a large number of resumes or jobs111

when combined with retrieval techniques such as112

FAISS (Johnson et al., 2019). In Section 3.1, we113

describe our approach to augment a person-job fit114

dataset, and in Section 3.2 we describe the con-115

trastive learning approach used during training.116

3.1 Data Augmentation117

A person-job fit dataset may be considered as a118

sparse bipartite graph, where each resume Ri and119

job Ji is a node, and a label (accept or reject) is an120

edge between the two nodes. Given a resume Ri,121

we first create augmented versions R̂i by paraphras-122

ing certain sections such as “Experiences” (see123

Appendix E for more details). Since R̂i includes124

semantically similar information as Ri, we inherit125

the same edges from Ri to R̂i, i.e., any job Jj that126

accepts Ri for interview also accepts R̂i. Next, we127

perform the same augmentation procedure for jobs, 128

creating Ĵi that inherits the same edges as Ji in the 129

graph (which involves augmented R̂is). As a result, 130

augmenting naug resumes and jobs each for once 131

approximately doubles the number of labeled pairs 132

(often ≫ naug) in the dataset. CONFIT thus first 133

performs data augmentation to increase the number 134

of labeled pairs, and then uses contrastive learning 135

(Section 3.2) to train a high-quality encoder. Below, 136

we briefly describe paraphrasing methods used in 137

this work. 138

EDA Augmentation Given a piece of text from a 139

resume or a job, we use EDA (Wei and Zou, 2019) 140

to randomly replace, delete, swap, or insert words 141

to create a paraphrased version of the text. We 142

find this to be a simple and fast method to create 143

semantically similar text. 144

ChatGPT Augmentation Besides EDA, we also 145

use ChatGPT (OpenAI, 2022b) to perform para- 146

phrasing. ChatGPT has been used on many data 147

augmentation tasks (Cegin et al., 2023; Dai et al., 148

2023), and in this work, we similarly prompt Chat- 149

GPT to paraphrase a given piece of text (see Ap- 150

pendix E for more details). 151

3.2 Contrastive Learning 152

Given an augmented dataset, CONFIT uses con- 153

trastive learning (Chen et al., 2020; Wang et al., 154

2023) to further increase the number of training 155

instances from B per batch to O(B2) per batch. 156

Contrastive learning is also an effective technique 157

for learning a high-quality embedding space, and 158

is used in various domains such as information re- 159

trieval (Karpukhin et al., 2020) and representation 160

learning (Chen et al., 2020; Wang et al., 2023). 161

First, we construct contrastive training instances 162

from a dataset D = {Ri, Ji, yi}: 163

Dcon = {⟨R+
i , J

+
i , R−

i,1, ..., R
−
i,l, J

−
i,1, ..., J

−
i,l⟩}, 164

where each instance contains one positive pair of 165

matched resume-job ⟨R+
i , J

+
i ⟩ with yi = 1, and 166

l unsuitable resumes R−
i,l for a job J+

i as well as 167

l unsuitable jobs J−
i,l for a resume R+

i .2 Follow- 168

ing prior work in contrastive learning (Chen et al., 169

2020; Gao et al., 2021; Wang et al., 2023), we 170

2Different from information retrieval (Karpukhin et al.,
2020; Wang et al., 2022) where ranking is an asymmetric task
(given a query, rank passages), the person-job fit problem is
symmetric (given a resume, rank jobs, and vice versa).

2

optimize the following cross-entropy loss:171

L = LR + LJ (1)172

LR =− log
esθ(R

+
i ,J+

i)

esθ(R
+
i ,J+

i) +
∑l

j=1 e
sθ(R

+
i ,J−

i,j)
173

LJ =− log
esθ(R

+
i ,J+

i)

esθ(R
+
i ,J+

i) +
∑l

j=1 e
sθ(R

−
i,j ,J

+
i)

174

Similar to training retrieval systems (Karpukhin175

et al., 2020), we find the number and choice of176

negative samples important to obtain a high-quality177

encoder. We discuss how CONFIT chooses nega-178

tive samples below.179

In-batch negatives Let there be B positive pairs180

{⟨R+
1 , J

+
1 ⟩, ..., ⟨R+

B, J
+
B ⟩} in a mini-batch during181

training. For each resume R+
i , we use the other182

B − 1 jobs {J+
j ̸=i} as negative samples, and sim-183

ilarly for each job J+
i , we use the other B − 1184

resumes as negative samples. The trick of in-batch185

negatives thus trains on B2 resume-job pairs in186

each batch, and is highly computationally efficient187

(Gillick et al., 2019; Karpukhin et al., 2020; Wang188

et al., 2022). In person-job fit, this has a natu-189

ral interpretation that random (in-batch) negative190

samples are unsuitable resumes/jobs for a given191

job/resume. In practice, we find that using in-192

batch negatives alone is sufficient to yield com-193

petitive ranking performances compared to prior194

approaches (see Section 4.7).195

Hard negatives In addition to in-batch negative196

samples, we also sample up to 2×Bhard hard neg-197

atives for each batch to further improve CONFIT198

training. In information retrieval systems, hard neg-199

atives (Karpukhin et al., 2020; Wang et al., 2022)200

are often passages that are relevant to the query201

(e.g. have a high BM25 (Robertson and Zaragoza,202

2009) score) but do not contain the correct answer.203

In person-job fit, we believe that this extends to204

resumes/jobs that are explicitly rejected for a given205

job/resume. This is because often when a candidate206

submits a resume for a given job post, the resume207

is already highly relevant regardless of whether the208

candidate is accepted or rejected. Thus, we sam-209

ple up to Bhard rejected resumes as hard negatives210

for any of the B jobs in the mini-batch, as well211

as Bhard jobs that rejected any of the B resumes.212

These 2×Bhard hard negatives are then used by all213

resumes/jobs in the batch, increasing the number of214

training pairs to (B +Bhard)
2 −B2

hard per batch.215

3.3 CONFIT 216

To address the label sparcity problem in person- 217

job fit datasets, CONFIT first augments the dataset 218

using techniques introduced in Section 3.1. Then, 219

CONFIT trains an encoder network Eθ using con- 220

trastive learning described in Section 3.2. Given 221

resumes and job posts during inference, CONFIT 222

first uses the encoder Eθ to obtain a dense represen- 223

tation for each resume R and job J . Then, CONFIT 224

produces a matching score sθ between the ⟨R, J⟩ 225

pair using inner product: 226

match(R, J) = Eθ(R)TEθ(J) ≡ sθ(R, J) 227

This simple formulation allows CONFIT to com- 228

bined with techniques such as FAISS (Johnson 229

et al., 2019) to efficiently rank tens of thousands of 230

resumes and jobs in milliseconds (Section 4.6). 231

4 Experiments 232

We evaluate CONFIT on two real-world person- 233

job fit datasets, and measure its performance and 234

runtime on ranking resumes, ranking jobs, as well 235

as on a fine-grained interview classification task. 236

4.1 Dataset and Preprocessing 237

AliYun Dataset To our knowledge, the 2019 Al- 238

ibaba job-resume intelligent matching competition3 239

provided the only publicly available person-job fit 240

dataset. All resume and job posts were desensitized 241

and were already parsed into a collection of text 242

fields, such as “Education”, “Age”, and “Work Ex- 243

periences” for a resume (see Appendix A for more 244

details). All resumes and jobs are in Chinese. 245

Intellipro Dataset The resumes and job posts 246

are collected from a global hiring solution com- 247

pany, called “Intellipro Group Inc.”??. To pro- 248

tect the privacy of candidates, all records have 249

been anonymized by removing sensitive identity 250

information. For each resume-job pair, we record 251

whether the candidate is accepted (y = 1) or re- 252

jected (y = 0) for an interview. For generaliz- 253

ability, we parse all resumes and jobs into similar 254

sections/fields as the AliYun dataset. Both English 255

and Chinese resumes and jobs are included. 256

Since neither dataset has an official test set, we 257

first construct test sets with statistics shown in 258

Table 2. To measure the ranking ability of cur- 259

rent methods, we consider two tasks: 1) ranking 260

q = 100 resumes given a job post (denoted as Rank 261

3https://tianchi.aliyun.com/competition/entrance/231728

3

https://tianchi.aliyun.com/competition/entrance/231728/introduction

Train Intellipro Dataset Aliyun Dataset

Jobs 1794 19542
Resumes 6435 2718
Labels 6751 22124
(# accept) 2809 10185
(# reject) 3942 11939

Industries 16 20

Fields per R 8 12
Fields per J 9 11

Words per R 915.2 101.9
Words per J 174.7 153.1

Table 1: Training dataset statistics. # Words per R/J
represent the average number of words per resume/job.

Intellipro Dataset AliYun Dataset
Test Rank R Rank J Classify Rank R Rank J Classify

Samples 120 120 120 300 300 300
Jobs 120 427 104 300 2903 299
Resumes 1154 120 117 1006 300 280

Table 2: Test dataset statistics. Classify is a binary
classification task to predict whether a resume-job pair
is accepted or rejected for interview.

Resume), and 2) ranking q = 100 jobs given a262

resume (denoted as Rank Job). Since only a few263

resumes and jobs are labeled, we fill in random264

resumes/jobs to reach q slots when needed. We fur-265

ther consider the “fine-grained” scoring ability of266

current methods, by measuring how well a method267

can distinguish between an accepted resume-job268

pair and a rejected one (denoted as classification).269

We exclude all resumes and jobs used in test and270

validation sets from the training set, and present the271

training, test, and validation set statistics in Table 1,272

Table 2 and Table A1, respectively.273

4.2 Model Architecture274

Since both datasets represent resumes and job posts275

as a collection of text fields, we simplify the model276

architecture from InEXIT (Shao et al., 2023), out-277

lined in Figure 1. InEXIT encodes each text field278

(e.g., “education: Bachelor;...”) in a resume or a279

job independently using a pre-trained encoder, and280

considers a hierarchical attention mechanism to281

model person-job fit as interactions between these282

fields. Following InEXIT, we first encode each283

field independently, and model the “internal in-284

teraction” between the fields within a resume/job285

using attention (Vaswani et al., 2023). InEXIT then286

uses another attention layer on all text fields of the287

resume-job pair to model the “external interaction”288

between a resume and a job post, and finally pro-289

duces a score using an MLP layer (see Appendix B290

...

resume

attention + FFNN

Backbone Encoder

education: Bachelor; ...

skills: python; C++; ...

experiences: SWE at ...

linear

Figure 1: Model architecture used to encode a resume
or a job post, formatted as a collection of p text fields
(see Appendix A for a full example of resume/job).

for more details). Since CONFIT models person- 291

job fit based on independently produced resume/job 292

embeddings, we replace the last attention and MLP 293

layer with a linear layer, which directly fuses the 294

field representations into a single dense vector for 295

a given resume or a job post (Figure 1). 296

4.3 Baselines 297

We compare CONFIT against both recent best 298

person-job fit systems and strong baselines from 299

information retrieval systems. 300

Recent person-job fit systems can be grouped 301

into two categories: classification-targeted and 302

ranking-targeted. The best classification-targeted 303

system include MV-CoN (Bian et al., 2020) and 304

InEXIT (Shao et al., 2023). MV-CoN considers 305

a co-teaching network (Han et al., 2018) to learn 306

from sparse, noisy person-job fit data, and InEXIT 307

uses hierarchical attention to model interactions 308

between the text fields of a resume-job pair. Both 309

methods optimize for the classification task. The 310

best ranking-targeted systems include DPGNN 311

(Yang et al., 2022). DPGNN considers a dual- 312

perspective graph view of person-job fit and uses 313

a BPR loss (Rendle et al., 2012) to optimize for 314

resume and job ranking. 315

We also compare against methods from infor- 316

mation retrieval systems such as: BM25 (Robert- 317

son and Zaragoza, 2009; Trotman et al., 2014) and 318

RawEmbed. BM25 is a strong baseline used for 319

many text ranking tasks (Thakur et al., 2021; Wang 320

et al., 2022; Kamalloo et al., 2023), and RawEm- 321

4

Intellipro Dataset AliYun Dataset
Rank Resume Rank Job Classification Rank Resume Rank Job Classification

Method Encoder MAP nDCG MAP nDCG F1 Prc+ Rcl+ MAP nDCG MAP nDCG F1 Prc+ Rcl+

XGBoost
BoW 14.42 11.84 3.89 2.98 49.51 37.74 41.67 6.67 6.25 13.63 12.53 69.57 72.00 54.14
TF-IDF 10.18 7.87 4.11 2.94 55.00 43.75 43.75 5.56 4.96 13.85 13.21 68.78 69.16 55.64
BERT-base 8.45 7.69 5.57 5.24 61.01 50.98 54.17 5.34 5.10 13.45 12.22 70.63 73.27 55.64

RawEmbed.
E5-small 28.61 33.88 25.48 30.26 54.20 42.86 31.25 16.06 17.89 20.26 22.84 38.64 27.78 22.56
BERT-base 13.07 13.94 4.41 3.62 49.25 34.38 22.92 9.18 10.63 12.35 12.63 46.71 40.00 40.60

MV-CoN BERT-base 10.81 10.00 3.34 2.17 58.00 50.00 33.33 5.41 5.15 13.44 12.67 74.25 72.22 68.32
InEXIT BERT-base 12.27 12.98 4.11 3.46 55.55 44.74 35.42 5.25 4.98 13.02 12.30 71.75 66.67 72.18
DPGNN BERT-base 19.64 21.95 17.86 19.60 61.16 52.38 45.83 19.96 24.64 27.23 30.07 50.31 45.24 57.14
BM25 - 39.13 44.96 37.88 43.15 - - - 34.71 40.56 27.30 31.18 - - -

Ours BERT-base 44.47 49.51 39.57 45.67 63.78 55.81 50.00 30.79 37.71 36.13 41.65 47.16 41.10 45.11

Table 3: Comparing ranking and classification performance of various approaches when a small encoder is used. F1
is weighted F1 score, nDCG is nDCG@10, Prc+ and Rcl+ are precision and recall for positive classes. Results for
non-deterministic methods are averaged over 3 runs. Best result is shown in bold, and runner-up is in gray.

Intellipro Dataset AliYun Dataset
Rank Resume Rank Job Classification Rank Resume Rank Job Classification

Method Encoder MAP nDCG MAP nDCG F1 Prc+ Rcl+ MAP nDCG MAP nDCG F1 Prc+ Rcl+

XGBoost
BoW 14.42 11.84 3.89 2.98 49.51 37.74 41.67 6.67 6.25 13.63 12.53 69.57 72.00 54.14
TF-IDF 10.18 7.87 4.11 2.94 55.00 43.75 43.75 5.56 4.96 13.85 13.21 68.78 69.16 55.64
text-ada-002 9.87 9.94 4.15 3.58 62.43 53.19 52.08 6.40 6.08 13.46 12.93 62.43 53.19 52.08

RawEmbed.
xlm-roberta-l 14.46 14.95 13.22 13.94 51.27 40.00 16.67 7.07 6.90 11.25 10.75 53.48 47.62 52.63
E5-large 35.10 40.10 26.93 30.61 59.39 51.43 37.50 32.11 37.45 24.56 28.15 44.67 35.64 27.07
text-ada-002 42.85 48.11 43.28 51.11 58.92 48.89 45.83 31.47 37.06 21.94 24.80 39.72 32.35 33.08

MV-CoN E5-large 12.23 10.98 4.06 3.09 52.75 40.51 27.08 5.60 5.15 12.92 12.67 70.85 77.53 51.88
InEXIT E5-large 13.60 13.63 3.14 1.91 55.17 45.16 29.17 5.49 4.33 13.39 13.21 70.41 74.74 53.58
DPGNN E5-large 21.31 24.08 13.90 17.69 55.56 48.00 25.00 33.98 40.63 42.76 46.98 53.88 48.03 45.86
BM25 - 39.13 44.96 37.88 43.15 - - - 34.71 40.56 27.30 31.18 - - -

Ours E5-large 43.08 50.28 42.88 51.74 54.09 45.21 68.75 64.32 71.71 59.13 65.91 59.71 53.66 66.17

Table 4: Comparing ranking and classification performance of various approaches when a larger encoder is used. F1
is weighted F1 score, nDCG is nDCG@10, Prc+ and Rcl+ are precision and recall for positive classes. Results for
non-deterministic methods are averaged over 3 runs. Best result is shown in bold, and runner-up is in gray.

bed is based on dense retrieval methods (Karpukhin322

et al., 2020; Johnson et al., 2019) that directly con-323

catenates all text fields and uses a pre-trained en-324

coder to produce a single dense embedding for325

inner product scoring. Finally, we also consider326

XGBoost (Chen and Guestrin, 2016) as a generic327

method for classification and ranking tasks, where328

features can be Bag-of-Words (BoW), TF-IDF vec-329

tors, and pre-trained embeddings from RawEmbed.330

Unless otherwise indicated, CONFIT first uses331

data augmentation with both EDA and ChatGPT,332

each augmenting 500 resumes and 500 jobs for333

each dataset (Section 3.1), followed by contrastive334

learning with B = 8 and Bhard = 8 (Section 3.2).335

See Appendix D for other hyperparameters used by336

CONFIT, and see Appendix C for more implemen-337

tation details of the baselines.338

4.4 Metrics339

Following prior work (Karpukhin et al., 2020;340

Yang et al., 2022), we use Mean Average Preci-341

sion (MAP) and normalized Discounted Cumula-342

tive Gain (nDCG) to measure the ranking ability 343

of each method. Since most resume-job pairs are 344

unlabeled, we report nDCG@10. To measure the 345

fine-grained classification ability of a method, we 346

follow prior work in person-job fit (Qin et al., 2018; 347

Zhu et al., 2018; Bian et al., 2020; Shao et al., 2023) 348

and use weighted F1, precision, and recall. Since 349

correctly predicting a positive sample (i.e., a suit- 350

able job for a resume) is important in practice, we 351

report precision and recall for the positive class 352

(denoted as Prc+ and Rcl+, respectively). 353

4.5 Main Results 354

Table 3 summarizes CONFIT’s performance in 355

comparison to other baselines, when an encoder 356

with ∼180M parameters is used as the backbone. 357

This includes using BERT-base4 (Devlin et al., 358

2019) and E5-small (Wang et al., 2022). In gen- 359

eral, we find that classification-targeted systems 360

4Since the AliYun dataset is solely in Chinese, we use
BERT-base-chinese for the AliYun dataset and BERT-base-
multilingual-cased for the Intellipro dataset.

5

such as MV-CoN and InEXIT achieve a high F1361

score but have poor ranking ability, while ranking-362

targeted methods such as RawEmbed, DPGNN, and363

BM25 perform much better in ranking. With a364

small encoder model, we find CONFIT achieves365

the best ranking performance in three out of the366

four tasks, and BM25 achieves the best in the re-367

maining task. CONFIT also achieves the best F1368

score on the Intellipro classification task compared369

to other classification-targeted systems.370

Table 4 summarizes each method’s performance371

when a larger backbone encoder (∼560M parame-372

ters) is used. This includes multilingual-E5-large373

(Wang et al., 2022), xlm-roberta-large (Conneau374

et al., 2019; Liu et al., 2019), or OpenAI text-ada-375

0025 (OpenAI, 2022a). Similar to Table 3, we376

find that classification-targeted methods such as377

MV-CoN reach a high F1 score, while ranking-378

targeted methods achieve a better MAP and nDCG379

score. We also find that CONFIT now achieves the380

best ranking performances in all cases, except for381

the MAP score in the IntelliPro’s job ranking task.382

We believe this is because the IntelliPro dataset383

contains much less data compared to the AliYun384

dataset (Table 1). In the AliYun dataset, CONFIT385

improves up to ∼30% absolute in MAP and nDCG386

score for ranking resumes and up to ∼20% for387

ranking jobs. We believe this is because the AliYun388

dataset not only has more data, but also uses much389

shorter and concise texts compared to the Intellipro390

dataset (Table 1). Lastly, we find CONFIT remains391

competitive in classification task for both datasets,392

despite not directly optimizing for them.393

4.6 Runtime Analysis394

A practical recruitment system needs to quickly395

rank a large number of resumes given a job post,396

or vice versa. We measure the runtime to rank397

100; 1,000; and 10,000 jobs for a given resume398

from the AliYun dataset, and compare the speed of399

various neural-based methods from Table 3. We400

present the results in Figure 2. In general, methods401

that ranks by inner product search (RawEmbed and402

CONFIT) can utilize FAISS (Johnson et al., 2019)403

to achieve a runtime in milliseconds in all cases6.404

However, methods such as MV-CoN, InEXIT, and405

DPGNN requires a (partial) forward pass for each406

resume-job pair to produce a score between (see407

Appendix F for more details). We believe this is408

5Model size unknown.
6After embedding all relevant resume and job posts, which

only needs to be computed once.

100 1000 10000
Number of job posts to rank

100

101

102

Ru
nt

im
e

(s
)

MIPS (ConFit, RawEmbed)
Non-linear (MV-CoN, InEXIT, DPGNN)

Figure 2: Runtime comparison between neural-based
methods. MIPS are maximum inner product search
methods that are supported by FAISS (Johnson et al.,
2019). Non-linear methods require an additional for-
ward pass to produce a score between a resume-job pair.
Results are averages over three runs.

highly inefficient, especially when the number of 409

documents to rank (e.g., job posts) is large. 410

4.7 Ablation Studies 411

Table 5 presents our ablation studies for each com- 412

ponent of CONFIT training. We focus on using 413

BERT-base from Table 3 as it is less resource- 414

intensive to train. 415

First, we consider CONFIT to only use con- 416

trastive learning (denoted as +contrastive) un- 417

der various settings, such as B = 8, Bhard = 418

{0, 2, 4, 8}. In Table 5, we find that: a) increas- 419

ing the number of hard negatives (Bhard) improves 420

ranking performance, and b) using contrastive 421

learning alone already outperforms many baselines 422

in Table 3. This suggests that contrastive learning 423

plays a major role in CONFIT’s performance. 424

Next, we add data augmentation to training, and 425

measure the performance of: 1) using only Chat- 426

GPT to augment 500 resumes and jobs, denoted 427

as ChatGPT only; 2) using EDA to augment 500 428

resumes and jobs, denoted EDA only; 3) using EDA 429

to augment all resume/job seen during training, de- 430

noted as EDA-all; and 4) combining both 1) and 431

2), denoted as +Data Aug. In general, we find 432

combining both ChatGPT and EDA augmentation 433

can most often achieve the best performance. We 434

believe this is because such approach includes both 435

semantically paraphrased content from ChatGPT 436

and syntactically altered content (e.g., inserting 437

or removing words) from EDA. Especially for the 438

AliYun dataset, we find using any form of data aug- 439

mentation improves over using contrastive learn- 440

ing alone. We believe this is because AliYun’s re- 441

sume/job texts are much shorter and more concise 442

6

Intellipro Dataset AliYun Dataset
Rank Resume Rank Job Classification Rank Resume Rank Job Classification

Modification MAP nDCG MAP nDCG F1 Prc+ Rcl+ MAP nDCG MAP nDCG F1 Prc+ Rcl+

+contrastive 42.96 49.28 42.23 49.21 59.17 56.00 29.17 27.53 33.34 34.05 37.83 47.60 40.77 39.85
Bhard = 0 31.15 36.88 38.94 44.89 52.02 44.16 70.83 13.73 15.43 32.52 37.23 43.31 34.51 29.32
Bhard = 2 41.85 47.77 41.24 47.46 56.14 56.58 19.79 25.42 31.08 31.59 35.64 45.65 38.64 38.35
Bhard = 4 40.86 45.69 41.29 47.78 61.69 62.36 33.33 25.60 30.65 32.72 36.15 44.51 38.67 43.61

+Data Aug. 44.47 49.51 39.57 45.67 63.78 55.81 50.00 30.79 37.71 36.13 41.65 47.16 41.10 45.11
ChatGPT only 41.36 47.45 39.54 46.98 58.75 71.43 20.83 29.69 35.59 35.11 40.13 47.00 39.67 36.09
EDA only 39.49 46.03 40.25 46.03 60.64 65.00 27.08 27.06 33.08 34.69 39.16 46.30 38.39 32.33
EDA-all 39.03 45.56 40.09 45.76 60.64 65.00 27.08 28.21 33.77 33.77 38.13 45.59 37.82 33.83

Table 5: CONFIT ablation studies. CONFIT uses contrastive learning (+contrastive) with Bhard = 8, and Data
Augmentation (+Data Aug.) with both ChatGPT and EDA. Best result in each ablation group is highlighted in bold.

100 0 100100

0

100
others
Business Management
Software Engineering
Human Resources

Figure 3: Visualizing resume embeddings from CONFIT
using t-SNE. Colors are assigned using each resume’s
desired industry. Top-3 most frequent industries are
color-coded for easier viewing.

than those of the Intellipro dataset, thus making443

data augmentation easier to perform.444

Since CONFIT training is model-agnostic, we445

also experiment with completely removing neural446

networks, and only use TF-IDF representations447

with XGBoost. Despite seeing performance degra-448

dation compared to CONFIT with pretrained en-449

coders, we find this approach is still competitive450

against prior best person-job fit systems that uses451

BERT (see Appendix G and Table A4 for more452

details). This suggests that the contrastive learning453

and data augmentation procedure from CONFIT is454

effective for the person-job fit task.455

5 Analysis456

In this section, we provide both qualitative visual-457

ization and quantitative analysis of the embeddings458

learned by CONFIT. We mainly focus on the Intel-459

lipro dataset as it is more challenging.460

5.1 Qualitative Analysis461

CONFIT aims to learn a high-quality embedding462

space for a resume or a job post. In Figure 3 we463

visualize the resume embeddings learned by CON- 464

FIT. We use CONFIT with BERT-base (see Table 3) 465

to embed all 1457 resumes from the test set in the 466

Intellipro dataset, and perform dimensionality re- 467

duction using t-SNE (van der Maaten and Hinton, 468

2008). In Figure 3, we find CONFIT learned to 469

cluster resumes based on important fields such as 470

“Desired Industry”. We believe this is consistent 471

with how a human would determine person-job fit, 472

as resumes aiming for similar industries are likely 473

to contain similar sets of experiences and skills. For 474

comparison with embeddings generated by other 475

baselines, please see Appendix H. 476

5.2 Error Analysis 477

To analyze the errors made by CONFIT, we manu- 478

ally inspect 30 negative resume-job pairs from the 479

ranking tasks that are incorrectly ranked at top 5% 480

and is before at least one positive pair, and 20 pairs 481

from the classification task that was incorrectly pre- 482

dicted as a match. For each incorrectly ranked or 483

classified pair, we compare against other positive 484

resume-job pairs from the dataset, and categorize 485

the errors with the following criteria: unsuitable, 486

where some requirements in the job post are not 487

satisfied by the resume; less competent, where a 488

resume satisfies all job requirements, but many 489

competing candidates have a higher degree/more 490

experience; out-of-scope, where a resume satisfies 491

all requirements, appears competitive compared to 492

other candidates, but is still rejected due to other 493

(e.g., subjective) reasons not presented in our re- 494

sume/job data themselves; and potentially suitable, 495

where a resume from the ranking tasks satisfied the 496

requirements and seemed competent, but had no 497

label in the original dataset. 498

We present our analysis in Figure 4, and find 499

that a significant portion of errors are out-of-scope, 500

where we believe information in resumes/job posts 501

7

20.0%

28.0%
44.0%

8.0%

unsuitable
potentially suitable
less competent
out-of-scope

Figure 4: CONFIT error analysis. We find 44% of the
errors made are due to reasons not identifiable using
resume/job documents alone, and 28% due to a candi-
date’s resume satisfying all the job requirements but is
less competent than other competing candidates.

is limited. The next most frequent error is less502

competent, which is understandable since CON-503

FIT scores a resume-job pair independent of other504

competing candidates. Lastly, we also find that505

about 20% of the wrong predictions were unsuit-506

able, with resumes not satisfying certain job re-507

quirements such as “4 years+ with Docker, K8s”.508

We believe unsuitable errors may be mitigated by509

combining CONFIT with better feature engineering510

techniques along with keyword-based approaches511

(such as BM25), which we leave for future work.512

6 Related Work513

Person-job fit systems Early neural-based meth-514

ods in person-job fit (Guo et al., 2016) typically515

focus on network architecture to obtain a good rep-516

resentation of a job post or a resume. These meth-517

ods include Qin et al. (2018); Zhu et al. (2018);518

Rezaeipourfarsangi and Milios (2023); Jiang et al.519

(2020); Mhatre et al. (2023), which explores archi-520

tectures such as RNN, LSTM (Staudemeyer and521

Morris, 2019) and CNN (O’Shea and Nash, 2015).522

Recent deep learning methods include Maheshwary523

and Misra (2018); Rezaeipourfarsangi and Milios524

(2023), which uses deep siamese network to learn525

an embedding space for resume/jobs, Bian et al.526

(2019) which uses a hierarchical RNN to improve527

domain-adaptation of person-job fit systems, and528

Zhang et al. (2023) which uses federated learning529

to perform model training while preserving user530

privacy. However, as person-job fit systems involve531

sensitive data, most systems do not open-source532

datasets or implementations, and are often opti-533

mized for one particular dataset. Recent work with534

public implementations includes MV-CoN (Bian535

et al., 2020), which uses a co-teaching network 536

(Malach and Shalev-Shwartz, 2018) to perform gra- 537

dient updates based model’s confidence to data 538

noises; InEXIT (Shao et al., 2023), which uses 539

hierarchical attention to model resume-job inter- 540

actions; and DPGNN (Yang et al., 2022), which 541

uses a graph-based approach with a novel BPR loss 542

to optimize for resume/job ranking. CONFIT uses 543

contrastive learning and data augmentation tech- 544

niques based on powerful pre-trained models such 545

as BERT (Devlin et al., 2019), and achieves the 546

best performance in almost all ranking and classifi- 547

cation tasks across two person-job fit datasets. 548

Information retrieval systems CONFIT bene- 549

fits from contrastive learning techniques, which 550

have seen wide applications in many information 551

retrieval and representation learning tasks (Chen 552

et al., 2020; Radford et al., 2021). Given a query 553

(e.g., user-generated question), an information re- 554

trieval system aims to find top-k relevant passages 555

from a large reserve of candidate passages (Joshi 556

et al., 2017; Kwiatkowski et al., 2019). Popular 557

methods in information retrieval include BM25 558

(Robertson and Zaragoza, 2009; Trotman et al., 559

2014), a keyword-based approach used as the base- 560

line in many text ranking tasks (Nguyen et al., 2016; 561

Thakur et al., 2021; Muennighoff et al., 2022), 562

and dense retrieval methods such as Karpukhin 563

et al. (2020); Izacard et al. (2021); Wang et al. 564

(2022), which uses contrastive learning to obtain 565

high-quality passage embeddings and typically per- 566

forms top-k search based on inner product. To our 567

knowledge, CONFIT is the first attempt to use con- 568

trastive learning for person-job fit, achieving the 569

best performances in almost all person-job ranking 570

tasks across two different person-job fit datasets. 571

7 Conclusion 572

We propose CONFIT, a general-purpose approach 573

to model person-job fit. CONFIT trains a neural 574

network using contrastive learning to obtain a high- 575

quality embedding space for resumes and job posts, 576

and uses data augmentation to alleviate data spar- 577

sity in person-job fit datasets. Our experiments 578

across two person-job fit datasets show that CON- 579

FIT achieves the best performance in almost all 580

ranking and classification tasks. We believe CON- 581

FIT is easily extensible, and can be used as a strong 582

foundation for future research on person-job fit. 583

8

8 Limitations584

Recruiter/Job Seeker Preference CONFIT pro-585

duces dense representations for resumes and jobs586

independently, and uses inner-product to score the587

resume-job pair. While this approach can be easily588

combined with retrieval methods such as FAISS589

(Johnson et al., 2019) to efficiently rank a large590

number of resumes/jobs, it ignores certain aspects591

of how a real recruiter or a job seeker may choose592

a resume or a job. In our error analysis (Sec-593

tion 5.2), we find a significant portion of incorrectly594

ranked/rated resume-job pairs could be either due595

to subjective choices made by the recruiters, or due596

to a very competitive candidate pool for a certain597

job position. This suggests that additionally mod-598

eling the recruiter or job seeker’s past preferences599

(e.g., using profiling approaches (Yan et al., 2019)600

from recommendation systems (Eliyas and Ran-601

jana, 2022)) may be beneficial, and that developing602

a scoring metric that is aware of the other candi-603

dates in the pool could also be useful. In general,604

we believe CONFIT embeddings would serve as a605

foundation for these approaches, and we leave this606

for future work.607

Sensitive Data To our knowledge, there is no608

standardized, public person-job fit dataset7 that609

can be used to compare performances of existing610

systems (Zhu et al., 2018; Qin et al., 2018; Bian611

et al., 2020; Yang et al., 2022; Shao et al., 2023).612

This is understandable, as resume contents con-613

tain highly sensitive information and that large-614

scale person-job datasets are often proprietary. We615

provide our best effort to make CONFIT repro-616

ducible and extensible for future work: we will617

open-source full implementations of CONFIT and618

all relevant baselines, our data processing scripts,619

and dummy train/valid/test data files that can be620

used test drive our system end-to-end. We will621

also privately release our model weights and full622

datasets to researchers under appropriate license623

agreements. We hope these attempts can make624

future research in person-job fit more accessible.625

9 Ethical Considerations626

CONFIT uses pretrained encoders such as BERT627

and E5 (Devlin et al., 2019; Wang et al., 2022), and628

it is well-known that many powerful encoders con-629

tain biases (Brunet et al., 2019; May et al., 2019;630

7The AliYun dataset used in this work is no longer publicly
available as of 09-11-2023.

Jentzsch and Turan, 2022; Caliskan et al., 2022). 631

For person-job fit systems, we believe it is crucial 632

to ensure that the systems do not bias towards cer- 633

tain groups of people, such as preferring a certain 634

gender for certain jobs. Although both datasets 635

used in this work already removed any sensitive 636

information such as gender, we do not recommend 637

directly deploying CONFIT for real-world applica- 638

tions without using debiasing techniques such as 639

Bolukbasi et al. (2016); Cheng et al. (2021); Gaci 640

et al. (2022); Guo et al. (2022); Schick et al. (2021), 641

and we do not condone the use of CONFIT for any 642

morally unjust purposes. To our knowledge, there 643

is little work on investigating or mitigating biases 644

in existing person-job fit systems, and we believe 645

this is an important direction for future work. 646

References 647

Shuqing Bian, Xu Chen, Wayne Xin Zhao, Kun Zhou, 648
Yupeng Hou, Yang Song, Tao Zhang, and Ji-Rong 649
Wen. 2020. Learning to match jobs with resumes 650
from sparse interaction data using multi-view co- 651
teaching network. 652

Shuqing Bian, Wayne Xin Zhao, Yang Song, Tao Zhang, 653
and Ji-Rong Wen. 2019. Domain adaptation for 654
person-job fit with transferable deep global match 655
network. In Proceedings of the 2019 Conference on 656
Empirical Methods in Natural Language Processing 657
and the 9th International Joint Conference on Natu- 658
ral Language Processing (EMNLP-IJCNLP), pages 659
4810–4820, Hong Kong, China. Association for Com- 660
putational Linguistics. 661

Tolga Bolukbasi, Kai-Wei Chang, James Zou, 662
Venkatesh Saligrama, and Adam Kalai. 2016. Man is 663
to computer programmer as woman is to homemaker? 664
debiasing word embeddings. 665

Dorian Brown. 2020. Rank-BM25: A Collection of 666
BM25 Algorithms in Python. 667

Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ash- 668
ton Anderson, and Richard Zemel. 2019. Under- 669
standing the origins of bias in word embeddings. In 670
Proceedings of the 36th International Conference 671
on Machine Learning, volume 97 of Proceedings of 672
Machine Learning Research, pages 803–811. PMLR. 673

Aylin Caliskan, Pimparkar Parth Ajay, Tessa 674
Charlesworth, Robert Wolfe, and Mahzarin R. 675
Banaji. 2022. Gender bias in word embeddings: A 676
comprehensive analysis of frequency, syntax, and 677
semantics. In Proceedings of the 2022 AAAI/ACM 678
Conference on AI, Ethics, and Society, AIES ’22. 679
ACM. 680

Jan Cegin, Jakub Simko, and Peter Brusilovsky. 2023. 681
Chatgpt to replace crowdsourcing of paraphrases for 682

9

http://arxiv.org/abs/2009.13299
http://arxiv.org/abs/2009.13299
http://arxiv.org/abs/2009.13299
http://arxiv.org/abs/2009.13299
http://arxiv.org/abs/2009.13299
https://doi.org/10.18653/v1/D19-1487
https://doi.org/10.18653/v1/D19-1487
https://doi.org/10.18653/v1/D19-1487
https://doi.org/10.18653/v1/D19-1487
https://doi.org/10.18653/v1/D19-1487
http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/1607.06520
https://doi.org/10.5281/zenodo.4520057
https://doi.org/10.5281/zenodo.4520057
https://doi.org/10.5281/zenodo.4520057
https://proceedings.mlr.press/v97/brunet19a.html
https://proceedings.mlr.press/v97/brunet19a.html
https://proceedings.mlr.press/v97/brunet19a.html
https://doi.org/10.1145/3514094.3534162
https://doi.org/10.1145/3514094.3534162
https://doi.org/10.1145/3514094.3534162
https://doi.org/10.1145/3514094.3534162
https://doi.org/10.1145/3514094.3534162
http://arxiv.org/abs/2305.12947
http://arxiv.org/abs/2305.12947

intent classification: Higher diversity and comparable683
model robustness.684

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A685
scalable tree boosting system. In Proceedings of the686
22nd ACM SIGKDD International Conference on687
Knowledge Discovery and Data Mining, KDD ’16.688
ACM.689

Ting Chen, Simon Kornblith, Mohammad Norouzi, and690
Geoffrey Hinton. 2020. A simple framework for691
contrastive learning of visual representations.692

Pengyu Cheng, Weituo Hao, Siyang Yuan, Shijing Si,693
and Lawrence Carin. 2021. Fairfil: Contrastive neu-694
ral debiasing method for pretrained text encoders.695

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,696
Vishrav Chaudhary, Guillaume Wenzek, Francisco697
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-698
moyer, and Veselin Stoyanov. 2019. Unsupervised699
cross-lingual representation learning at scale. CoRR,700
abs/1911.02116.701

Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke702
Huang, Yihan Cao, Zihao Wu, Lin Zhao, Shaochen703
Xu, Wei Liu, Ninghao Liu, Sheng Li, Dajiang Zhu,704
Hongmin Cai, Lichao Sun, Quanzheng Li, Dinggang705
Shen, Tianming Liu, and Xiang Li. 2023. Auggpt:706
Leveraging chatgpt for text data augmentation.707

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and708
Kristina Toutanova. 2019. Bert: Pre-training of deep709
bidirectional transformers for language understand-710
ing.711

Sherin Eliyas and P Ranjana. 2022. Recommendation712
systems: Content-based filtering vs collaborative fil-713
tering. In 2022 2nd International Conference on714
Advance Computing and Innovative Technologies in715
Engineering (ICACITE), pages 1360–1365. IEEE.716

William Falcon and The PyTorch Lightning team. 2019.717
PyTorch Lightning.718

Yacine Gaci, Boualem Benatallah, Fabio Casati, and719
Khalid Benabdeslem. 2022. Debiasing pretrained720
text encoders by paying attention to paying attention.721
In Proceedings of the 2022 Conference on Empiri-722
cal Methods in Natural Language Processing, pages723
9582–9602, Abu Dhabi, United Arab Emirates. As-724
sociation for Computational Linguistics.725

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.726
SimCSE: Simple contrastive learning of sentence em-727
beddings. In Proceedings of the 2021 Conference728
on Empirical Methods in Natural Language Process-729
ing, pages 6894–6910, Online and Punta Cana, Do-730
minican Republic. Association for Computational731
Linguistics.732

Daniel Gillick, Sayali Kulkarni, Larry Lansing, Alessan-733
dro Presta, Jason Baldridge, Eugene Ie, and Diego734
Garcia-Olano. 2019. Learning dense representations735

for entity retrieval. In Proceedings of the 23rd Con- 736
ference on Computational Natural Language Learn- 737
ing (CoNLL), pages 528–537, Hong Kong, China. 738
Association for Computational Linguistics. 739

Shiqiang Guo, Folami Alamudun, and Tracy Hammond. 740
2016. Résumatcher: A personalized résumé-job 741
matching system. Expert Systems with Applications, 742
60:169–182. 743

Yue Guo, Yi Yang, and Ahmed Abbasi. 2022. Auto- 744
debias: Debiasing masked language models with 745
automated biased prompts. In Proceedings of the 746
60th Annual Meeting of the Association for Compu- 747
tational Linguistics (Volume 1: Long Papers), pages 748
1012–1023, Dublin, Ireland. Association for Compu- 749
tational Linguistics. 750

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao 751
Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama. 752
2018. Co-teaching: Robust training of deep neural 753
networks with extremely noisy labels. 754

Mansoor Iqbal. 2023. LinkedIn usage and revenue 755
statistics (2023). a. Accessed: 2023-12-29. 756

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se- 757
bastian Riedel, Piotr Bojanowski, Armand Joulin, 758
and Edouard Grave. 2021. Unsupervised dense infor- 759
mation retrieval with contrastive learning. 760

Sophie Jentzsch and Cigdem Turan. 2022. Gender bias 761
in BERT - measuring and analysing biases through 762
sentiment rating in a realistic downstream classifica- 763
tion task. In Proceedings of the 4th Workshop on Gen- 764
der Bias in Natural Language Processing (GeBNLP), 765
pages 184–199, Seattle, Washington. Association for 766
Computational Linguistics. 767

Junshu Jiang, Songyun Ye, Wei Wang, Jingran Xu, and 768
Xiaosheng Luo. 2020. Learning effective representa- 769
tions for person-job fit by feature fusion. 770

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. 771
Billion-scale similarity search with GPUs. IEEE 772
Transactions on Big Data, 7(3):535–547. 773

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke 774
Zettlemoyer. 2017. Triviaqa: A large scale distantly 775
supervised challenge dataset for reading comprehen- 776
sion. 777

Ehsan Kamalloo, Nandan Thakur, Carlos Lassance, 778
Xueguang Ma, Jheng-Hong Yang, and Jimmy Lin. 779
2023. Resources for brewing beir: Reproducible 780
reference models and an official leaderboard. 781

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick 782
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and 783
Wen tau Yih. 2020. Dense passage retrieval for open- 784
domain question answering. 785

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red- 786
field, Michael Collins, Ankur Parikh, Chris Alberti, 787
Danielle Epstein, Illia Polosukhin, Matthew Kelcey, 788
Jacob Devlin, Kenton Lee, Kristina N. Toutanova, 789

10

http://arxiv.org/abs/2305.12947
http://arxiv.org/abs/2305.12947
http://arxiv.org/abs/2305.12947
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2103.06413
http://arxiv.org/abs/2103.06413
http://arxiv.org/abs/2103.06413
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/2302.13007
http://arxiv.org/abs/2302.13007
http://arxiv.org/abs/2302.13007
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.18653/v1/2022.emnlp-main.651
https://doi.org/10.18653/v1/2022.emnlp-main.651
https://doi.org/10.18653/v1/2022.emnlp-main.651
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/K19-1049
https://doi.org/10.18653/v1/K19-1049
https://doi.org/10.18653/v1/K19-1049
https://doi.org/https://doi.org/10.1016/j.eswa.2016.04.013
https://doi.org/https://doi.org/10.1016/j.eswa.2016.04.013
https://doi.org/https://doi.org/10.1016/j.eswa.2016.04.013
https://doi.org/10.18653/v1/2022.acl-long.72
https://doi.org/10.18653/v1/2022.acl-long.72
https://doi.org/10.18653/v1/2022.acl-long.72
https://doi.org/10.18653/v1/2022.acl-long.72
https://doi.org/10.18653/v1/2022.acl-long.72
http://arxiv.org/abs/1804.06872
http://arxiv.org/abs/1804.06872
http://arxiv.org/abs/1804.06872
https://www.businessofapps.com/data/linkedin-statistics/
https://www.businessofapps.com/data/linkedin-statistics/
https://www.businessofapps.com/data/linkedin-statistics/
https://doi.org/10.48550/ARXIV.2112.09118
https://doi.org/10.48550/ARXIV.2112.09118
https://doi.org/10.48550/ARXIV.2112.09118
https://doi.org/10.18653/v1/2022.gebnlp-1.20
https://doi.org/10.18653/v1/2022.gebnlp-1.20
https://doi.org/10.18653/v1/2022.gebnlp-1.20
https://doi.org/10.18653/v1/2022.gebnlp-1.20
https://doi.org/10.18653/v1/2022.gebnlp-1.20
https://doi.org/10.18653/v1/2022.gebnlp-1.20
https://doi.org/10.18653/v1/2022.gebnlp-1.20
http://arxiv.org/abs/2006.07017
http://arxiv.org/abs/2006.07017
http://arxiv.org/abs/2006.07017
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/2306.07471
http://arxiv.org/abs/2306.07471
http://arxiv.org/abs/2306.07471
http://arxiv.org/abs/2004.04906
http://arxiv.org/abs/2004.04906
http://arxiv.org/abs/2004.04906

Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob790
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-791
ral questions: a benchmark for question answering792
research. Transactions of the Association of Compu-793
tational Linguistics.794

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-795
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,796
Luke Zettlemoyer, and Veselin Stoyanov. 2019.797
Roberta: A robustly optimized bert pretraining ap-798
proach.799

Ilya Loshchilov and Frank Hutter. 2019. Decoupled800
weight decay regularization.801

Yuanhua Lv and ChengXiang Zhai. 2011. When doc-802
uments are very long, bm25 fails! In Proceedings803
of the 34th International ACM SIGIR Conference on804
Research and Development in Information Retrieval,805
SIGIR ’11, page 1103–1104, New York, NY, USA.806
Association for Computing Machinery.807

Saket Maheshwary and Hemant Misra. 2018. Matching808
resumes to jobs via deep siamese network. Compan-809
ion Proceedings of the The Web Conference 2018.810

Eran Malach and Shai Shalev-Shwartz. 2018. Decou-811
pling "when to update" from "how to update".812

Chandler May, Alex Wang, Shikha Bordia, Samuel R.813
Bowman, and Rachel Rudinger. 2019. On measuring814
social biases in sentence encoders. In Proceedings815
of the 2019 Conference of the North American Chap-816
ter of the Association for Computational Linguistics:817
Human Language Technologies, Volume 1 (Long and818
Short Papers), pages 622–628, Minneapolis, Min-819
nesota. Association for Computational Linguistics.820

Sonali Mhatre, Bhawana Dakhare, Vaibhav Ankolekar,821
Neha Chogale, Rutuja Navghane, and Pooja Gotarne.822
2023. Resume screening and ranking using convolu-823
tional neural network. In 2023 International Confer-824
ence on Sustainable Computing and Smart Systems825
(ICSCSS), pages 412–419.826

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and827
Nils Reimers. 2022. Mteb: Massive text embedding828
benchmark. arXiv preprint arXiv:2210.07316.829

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng830
Gao, Saurabh Tiwary, Rangan Majumder, and831
Li Deng. 2016. MS MARCO: A human gener-832
ated machine reading comprehension dataset. CoRR,833
abs/1611.09268.834

OpenAI. 2022a. New and improved embedding model.835

OpenAI. 2022b. OpenAI: Introducing ChatGPT.836

Keiron O’Shea and Ryan Nash. 2015. An introduction837
to convolutional neural networks.838

Chuan Qin, Hengshu Zhu, Tong Xu, Chen Zhu, Liang839
Jiang, Enhong Chen, and Hui Xiong. 2018. Enhanc-840
ing person-job fit for talent recruitment: An ability-841
aware neural network approach. In The 41st Inter-842
national ACM SIGIR Conference on Research & De-843
velopment in Information Retrieval, SIGIR ’18, page844

25–34, New York, NY, USA. Association for Com- 845
puting Machinery. 846

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya 847
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas- 848
try, Amanda Askell, Pamela Mishkin, Jack Clark, 849
Gretchen Krueger, and Ilya Sutskever. 2021. Learn- 850
ing transferable visual models from natural language 851
supervision. 852

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, 853
and Yuxiong He. 2020. Zero: Memory optimizations 854
toward training trillion parameter models. 855

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, 856
and Lars Schmidt-Thieme. 2012. Bpr: Bayesian 857
personalized ranking from implicit feedback. 858

Sima Rezaeipourfarsangi and Evangelos E. Milios. 859
2023. Ai-powered resume-job matching: A docu- 860
ment ranking approach using deep neural networks. 861
In Proceedings of the ACM Symposium on Document 862
Engineering 2023, DocEng ’23, New York, NY, USA. 863
Association for Computing Machinery. 864

Stephen Robertson and Hugo Zaragoza. 2009. The 865
probabilistic relevance framework: Bm25 and be- 866
yond. Found. Trends Inf. Retr., 3(4):333–389. 867

Timo Schick, Sahana Udupa, and Hinrich Schütze. 2021. 868
Self-diagnosis and self-debiasing: A proposal for re- 869
ducing corpus-based bias in NLP. Transactions of the 870
Association for Computational Linguistics, 9:1408– 871
1424. 872

Taihua Shao, Chengyu Song, Jianming Zheng, Fei Cai, 873
and Honghui Chen. 2023. Exploring internal and 874
external interactions for semi-structured multivariate 875
attributes in job-resume matching. In International 876
Journal of Intelligent Systems. 877

Ralf C. Staudemeyer and Eric Rothstein Morris. 2019. 878
Understanding lstm – a tutorial into long short-term 879
memory recurrent neural networks. 880

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab- 881
hishek Srivastava, and Iryna Gurevych. 2021. Beir: 882
A heterogenous benchmark for zero-shot evaluation 883
of information retrieval models. 884

Andrew Trotman, Antti Puurula, and Blake Burgess. 885
2014. Improvements to bm25 and language models 886
examined. In Proceedings of the 19th Australasian 887
Document Computing Symposium, ADCS ’14, page 888
58–65, New York, NY, USA. Association for Com- 889
puting Machinery. 890

Laurens van der Maaten and Geoffrey Hinton. 2008. 891
Visualizing data using t-sne. Journal of Machine 892
Learning Research, 9(86):2579–2605. 893

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 894
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 895
Kaiser, and Illia Polosukhin. 2023. Attention is all 896
you need. 897

11

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://doi.org/10.1145/2009916.2010070
https://doi.org/10.1145/2009916.2010070
https://doi.org/10.1145/2009916.2010070
https://api.semanticscholar.org/CorpusID:13807085
https://api.semanticscholar.org/CorpusID:13807085
https://api.semanticscholar.org/CorpusID:13807085
http://arxiv.org/abs/1706.02613
http://arxiv.org/abs/1706.02613
http://arxiv.org/abs/1706.02613
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.1109/ICSCSS57650.2023.10169716
https://doi.org/10.1109/ICSCSS57650.2023.10169716
https://doi.org/10.1109/ICSCSS57650.2023.10169716
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
https://openai.com/blog/new-and-improved-embedding-model
https://openai.com/blog/chatgpt
http://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
https://doi.org/10.1145/3209978.3210025
https://doi.org/10.1145/3209978.3210025
https://doi.org/10.1145/3209978.3210025
https://doi.org/10.1145/3209978.3210025
https://doi.org/10.1145/3209978.3210025
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/1910.02054
http://arxiv.org/abs/1910.02054
http://arxiv.org/abs/1910.02054
http://arxiv.org/abs/1205.2618
http://arxiv.org/abs/1205.2618
http://arxiv.org/abs/1205.2618
https://doi.org/10.1145/3573128.3609347
https://doi.org/10.1145/3573128.3609347
https://doi.org/10.1145/3573128.3609347
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1162/tacl_a_00434
https://doi.org/10.1162/tacl_a_00434
https://doi.org/10.1162/tacl_a_00434
https://doi.org/10.1155/2023/2994779
https://doi.org/10.1155/2023/2994779
https://doi.org/10.1155/2023/2994779
https://doi.org/10.1155/2023/2994779
https://doi.org/10.1155/2023/2994779
http://arxiv.org/abs/1909.09586
http://arxiv.org/abs/1909.09586
http://arxiv.org/abs/1909.09586
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663
https://doi.org/10.1145/2682862.2682863
https://doi.org/10.1145/2682862.2682863
https://doi.org/10.1145/2682862.2682863
http://jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

Liang Wang, Nan Yang, Xiaolong Huang, Binxing898
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,899
and Furu Wei. 2022. Text embeddings by weakly-900
supervised contrastive pre-training.901

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao,902
Linjun Yang, Daxin Jiang, Rangan Majumder, and903
Furu Wei. 2023. SimLM: Pre-training with repre-904
sentation bottleneck for dense passage retrieval. In905
Proceedings of the 61st Annual Meeting of the As-906
sociation for Computational Linguistics (Volume 1:907
Long Papers), pages 2244–2258, Toronto, Canada.908
Association for Computational Linguistics.909

Jason Wei and Kai Zou. 2019. EDA: Easy data augmen-910
tation techniques for boosting performance on text911
classification tasks. In Proceedings of the 2019 Con-912
ference on Empirical Methods in Natural Language913
Processing and the 9th International Joint Confer-914
ence on Natural Language Processing (EMNLP-915
IJCNLP), pages 6383–6389, Hong Kong, China. As-916
sociation for Computational Linguistics.917

Rui Yan, Ran Le, Yang Song, Tao Zhang, Xiangliang918
Zhang, and Dongyan Zhao. 2019. Interview choice919
reveals your preference on the market: To improve920
job-resume matching through profiling memories. In921
Proceedings of the 25th ACM SIGKDD International922
Conference on Knowledge Discovery & Data Min-923
ing, KDD ’19, page 914–922, New York, NY, USA.924
Association for Computing Machinery.925

Chen Yang, Yupeng Hou, Yang Song, Tao Zhang, Ji-926
Rong Wen, and Wayne Xin Zhao. 2022. Modeling927
two-way selection preference for person-job fit. In928
RecSys.929

Yunchong Zhang, Baisong Liu, and Jiangbo Qian.930
2023. Fedpjf: federated contrastive learning for931
privacy-preserving person-job fit. Applied Intelli-932
gence, 53:27060 – 27071.933

Chen Zhu, Hengshu Zhu, Hui Xiong, Chao Ma, Fang934
Xie, Pengliang Ding, and Pan Li. 2018. Person-job935
fit: Adapting the right talent for the right job with936
joint representation learning.937

12

http://arxiv.org/abs/2212.03533
http://arxiv.org/abs/2212.03533
http://arxiv.org/abs/2212.03533
https://aclanthology.org/2023.acl-long.125
https://aclanthology.org/2023.acl-long.125
https://aclanthology.org/2023.acl-long.125
https://www.aclweb.org/anthology/D19-1670
https://www.aclweb.org/anthology/D19-1670
https://www.aclweb.org/anthology/D19-1670
https://www.aclweb.org/anthology/D19-1670
https://www.aclweb.org/anthology/D19-1670
https://doi.org/10.1145/3292500.3330963
https://doi.org/10.1145/3292500.3330963
https://doi.org/10.1145/3292500.3330963
https://doi.org/10.1145/3292500.3330963
https://doi.org/10.1145/3292500.3330963
https://api.semanticscholar.org/CorpusID:261454666
https://api.semanticscholar.org/CorpusID:261454666
https://api.semanticscholar.org/CorpusID:261454666
http://arxiv.org/abs/1810.04040
http://arxiv.org/abs/1810.04040
http://arxiv.org/abs/1810.04040
http://arxiv.org/abs/1810.04040
http://arxiv.org/abs/1810.04040

A More Details on Dataset and938

Preprocessing939

Intellipro Dataset The talent-job pairs come940

from the headhunting business in Intellipro Group941

Inc. The original resumes/job posts are parsed into942

text fields using techniques such as OCR. Some of943

the information is further corrected by humans. All944

sensitive information, such as names, contacts, col-945

lege names, and company names, has been either946

removed or converted into numeric IDs. Example947

resume and job post are shown in Table A2 and948

Table A3, respectively.949

AliYun Dataset The 2019 Alibaba job-resume950

intelligent matching competition provided resume-951

job data that is already desensitized and parsed into952

a collection of text fields. There are 12 fields in953

a resume (Table A2) and 11 fields in a job post954

(Table A3) used during training/validation/testing.955

Sensitive fields such as “居住城市” (living city)956

were already converted into numeric IDs. “工作经957

验” (work experience) was processed into a list of958

keywords. Overall, the average length of a resume959

or a job post in the AliYun dataset is much shorter960

than that of the Intellipro dataset (see Table 1).961

In our analysis, we also manually remapped the962

industries mentioned in the AliYun dataset into 20963

categories such as “Agriculture”, “Manufacturing”,964

“Financial Services”, etc., to be more comparable965

with the Intellipro dataset.966

B More Details on Model Architecture967

In this work, all data (resumes and job posts) are968

formatted as a collection of text fields. We sim-969

plify the model architecture from InEXIT (Shao970

et al., 2023) to produce a single dense vector for971

a job post or a resume. InEXIT first encodes each972

field independently using a pre-trained encoder, by973

encoding the field name (e.g., “education”) and974

the value (e.g., “Bachelor; major: Computer Sci-975

ence...) separately and then concatenating the two976

representations to obtain a representation for the977

entire field. Then, InEXIT models the “internal978

interaction” between fields from the same docu-979

ment using a self-attention layer. Next, InEXIT980

views resume-job matching as a non-linear interac-981

tion between the fields from a resume-job pair, and982

uses another self-attention to model the “external983

interaction” between all representations from both984

documents. Finally, InEXIT merges the represen-985

tations obtained so far into a dense vector for a986

Validation Intellipro Dataset Aliyun Dataset

Jobs 109 299
Resumes 120 278
Labels 120 300

Table A1: Validation dataset statistics

resume/job, concatenates the dense vectors to rep- 987

resent an resume-job pair, and finally uses an MLP 988

layer to produce a matching score. 989

Compared to concatenating all text fields into 990

a single string and using an encoder to directly 991

produce an embedding, this approach of encod- 992

ing each text field independently can effectively 993

increase maximum context length (often 512). For 994

example, we find fields such as “Experiences” and 995

“Projects” in a resume from the Intellipro dataset 996

often contain long texts. By encoding each field 997

independently, we can include up to 512 tokens 998

from each field, compared to 512 tokens in total 999

if the two fields are concatenated. We believe this 1000

is particularly suitable for modeling resume and 1001

job posts, as text fields (i.e., sections) from a re- 1002

sume/job post can be understood independently of 1003

other fields. 1004

Since CONFIT models resume-job match using 1005

inner product (compatible with efficient retrieval 1006

frameworks such as FAISS (Johnson et al., 2019)), 1007

we propose a few simplications to InEXIT’s model 1008

architecture. First, since field names (e.g. “educa- 1009

tion”, “experiences”) are short, we directly concate- 1010

nate them with the value to obtain a single string for 1011

each field (e.g., “education: Bachelor in Computer 1012

Science, ...”). We then use a pre-trained encoder to 1013

directly obtain a representation for the entire field. 1014

Next, we follow InEXIT to use self-attention in a 1015

transformer layer to model the “internal interaction” 1016

between fields from the same document. After that, 1017

as we aim to model a resume and a job as dense 1018

vectors independent of each other, we remove the 1019

self-attention layer and the final MLP layer used to 1020

model a non-linear interaction between a resume- 1021

job pair. Instead, we use a linear layer to merge 1022

the representations for each text field, and output a 1023

dense vector for a resume or a job. This can then 1024

be used to perform inner product scoring, and can 1025

be combined with FAISS (see Section 4.6) to rank 1026

thousands of documents under miliseconds. 1027

C More Details on Baselines 1028

XGBoost We use “XGBoost-classifier” (Chen 1029

and Guestrin, 2016) for classification based metrics, 1030

13

R from Intellipro Dataset R from AliYun Dataset

User ID: xxxxx User ID: xxxxx
Languages: ENGLISH; 学历: 大专;
Education: start_date: xxxx-xx-xx; 年龄: 24;

end_date: xxxx-xx-xx; 开始工作时间: 2018;
college_ranking: 20; 居住城市: 551;
major_name: Computer Science; 期望工作城市: 551,763,-;
degree: BACHELOR; 期望工作类型: 工程造价/预结算

Location: city_id: 115; 期望工作行业: 房地产/建筑/工程
province_id: 827; 当前工作类型: 土木/建筑/装修/...
country_id: 14; 当前工作行业: 房地产/建筑/工程

Preferred Locations: city_id: 115; 期望薪资: xxxx-xxxx元/月
province_id: 827; 当前薪资: xxxx-xxxx元/月
country_id: 14; 工作经验: 停车｜现场｜专家｜公园｜...

Industry: SOFTWARE_ENGINEERING; // other entries omitted
Skills: azure; python; ... // other entries omitted
Experiences: title: Machine Learning Engineer;

start_date: 2017-09;
end_date: UNKNOWN;
company_ranking: -1;
location: UNKNOWN;
description: Lead several MLOps projects...
title: Software Engineer; ... // other entries omitted

Projects: project_name: xxxxx;
title: Leader;
start_date: xxxx-xx-xx;
end_date: xxxx-xx-xx;
description: Deploy template-based ...

Table A2: Example resume from the Intellipro dataset and AliYun dataset. The Intellipro dataset contains resumes in
both English and Chinese, while the AliYun dataset contains resumes only in Chinese. All documents are prepared as
a collection of fields, displayed as: “field name: content”. Certain details are hidden for privacy concerns. User_ID
is removed during training/validation/testing. Fields with multiple entries (e.g., Experiences in the Intellipro dataset)
are concatenated using newlines.

J from Intellipro Dataset J from AliYun Dataset

Job ID: xxxxx Job ID: xxxxx
Company Rank: 12 工作名称: 工程预算
Company Description: Energetic, exciting Silicon Valley startup. 工作类型: 工程/造价/预结算
Job Title: Deep Learning Specialist 工作城市: 719
Job Location: city_id: 123; 招聘人数: 3

province_id: 335; 薪资: 最低xxxx-最高xxxx元每月
country_id: 56 招聘开始时间: 2019xxxx

Job Position Type: Full-time; 招聘结束时间: 2019xxxx
Job Description/Responsibilities: Use computer vision, computa-
tional geometry, and ... // other details omitted

工作描述: 工程预算员岗位职责：1.能够独
立完成...// other details omitted

Required Qualifications/Skills: Strong programming experience in
Python, C++, or Java; PhD in Computer Science, Electrical Engi-
neering, ... // other details omitted

最低学历: 大专

Preferred Qualifications/Skills: UNKNOWN 是否要求出差: 0
工作年限: 五年到十年

Table A3: Example job posts from the Intellipro dataset and AliYun dataset. The Intellipro dataset contains job
posts in both English and Chinese, while the AliYun dataset contains job posts only in Chinese. All documents
are prepared as a collection of fields, displayed as: “field name: content”. Certain details are omitted. Job_ID is
removed during training/validation/testing.

and “XGBoost-ranker” for ranking based metrics in1031

Table 3 and Table 4. Similar to other classification-1032

targeted methods such as MV-CoN and InEXIT, we 1033

use D without “contrastive learning”. Hyperparam- 1034

14

eters are tuned using grid search, and classification1035

thresholds are found using the validation set.1036

RawEmbed We first concatenate all fields in1037

a resume/job post into a single string, and use1038

pre-trained encoders such as BERT (Devlin et al.,1039

2019), E5 (Wang et al., 2022), xlm-roberta (Con-1040

neau et al., 2019), and OpenAI text-ada-002 (Ope-1041

nAI, 2022a) to produce a dense embedding. We use1042

inner product to produce a score for ranking tasks,1043

and use cosine similarity with a threshold found1044

using the validation set for classification tasks.1045

MV-CoN We follow the official implementations1046

from Bian et al. (2020), but replace the fixed em-1047

bedding layer with the architecture shown in Sec-1048

tion 4.2 and Figure 1, since our test set considers1049

unseen resumes and job posts. We use AdamW1050

optimizer (Loshchilov and Hutter, 2019) with a1051

learning rate of 5e-6, a linear warm-up schedule1052

for the first 10% of the training steps, and a weight1053

decay of 1e-2 for both datasets. We use a batch size1054

of 4 with a gradient accumulation of 4 when a small1055

encoder (e.g., BERT-base) is used, and use Deep-1056

Speed Zero 2 (Rajbhandari et al., 2020) with BF161057

mixed precision training when a large encoder (e.g.,1058

E5-large) is used.1059

InEXIT We follow the official implementation1060

from Shao et al. (2023) to model both the “internal”1061

and “external” interaction between a resume-job1062

pair. We use AdamW optimizer (Loshchilov and1063

Hutter, 2019) with a learning rate of 5e-6, a linear1064

warm-up schedule for the first 10% of the training1065

steps, and a weight decay of 1e-2 for both datasets.1066

We use a batch size of 8 with a gradient accumula-1067

tion of 2 when a small encoder is used, and a batch1068

size of 4 with a gradient accumulation of 4 when a1069

large encoder is used.81070

DPGNN We follow the official implementation1071

from Yang et al. (2022), but remove the fixed-size1072

embedding layer in the graph neural network for en-1073

coding a resume or a job, since our test set consid-1074

ers unseen resumes and job posts. We replace the1075

embedding layer with a pre-trained encoder (e.g.,1076

8In our experiment, we find that InEXIT (Shao et al., 2023)
performs slightly worse than MV-CoN (Bian et al., 2020) on
the AliYun dataset (see Table 3), while Shao et al. (2023)
reports the contrary. We believe this is because InEXIT con-
siders a test setting where part of the resumes/job posts can
be seen in training, since training/validation/testing pairs are
simply randomly sampled. In contrast, in our experiment, we
consider test and validation set with only resumes/job posts
not seen during training.

BERT), and keep other aspects the same, such as 1077

modeling both the “active” and “passive” represen- 1078

tation of a resume or a job post. We also removed 1079

the GraphCNN module as we do not have “interac- 1080

tion records” (e.g., recruiters reaching out to job 1081

seekers) used to train this module, and the total 1082

number of labels in our resume-job datasets is also 1083

small. Finally, we modified the proposed BPR loss 1084

(Yang et al., 2022) by first normalizing all embed- 1085

ding vectors, since we found training DPGNN with 1086

the original BPR loss results in high numerical in- 1087

stability. We use AdamW optimizer (Loshchilov 1088

and Hutter, 2019) with a learning rate of 1e-5, a 1089

linear warm-up schedule for the first 5% of the 1090

training steps, and a weight decay of 1e-2 for both 1091

datasets. We use a batch size of 8 with a gradient 1092

accumulation of 2 when using a small encoder, and 1093

a batch size of 4 with a gradient accumulation of 4 1094

when using a large encoder. 1095

BM25 Since resumes in the Intellipro dataset can 1096

be long, we use BM25L (Lv and Zhai, 2011; Trot- 1097

man et al., 2014) for ranking tasks. We use the 1098

implementation from Brown (2020) with the de- 1099

fault hyperparameters. 1100

In general, all neural-network-related code is im- 1101

plemented using PyTorch Lightning (Falcon and 1102

The PyTorch Lightning team, 2019), and all train- 1103

ing is performed on a single A100 80GB GPU. We 1104

train all models for 10 epochs and save the best 1105

checkpoint based on validation loss for testing. On 1106

average, it takes about 1 hour and 4 hours to train 1107

MV-CoN, InEXIT, DPGNN using a small encoder 1108

on the Intellipro dataset and the AliYun dataset, 1109

respectively. When using a large encoder (e.g., E5- 1110

large), it takes about 5-8 hours and 19-24 hours 1111

to train on the Intellipro dataset and the AliYun 1112

dataset, respectively. 1113

D CONFIT Training Hyperparameters 1114

In general, CONFIT first performs data augmenta- 1115

tion using both ChatGPT and EDA (see Section 3.1 1116

and Appendix E for more details), and then trains 1117

the model architecture shown in Figure 1 using 1118

contrastive learning (see Section 3.2). Similar to 1119

baseline methods (see Appendix C), we use the 1120

AdamW optimizer (Loshchilov and Hutter, 2019), 1121

a linear warm-up schedule for the first 5% of the 1122

training steps, and a weight decay of 1e-2 for both 1123

datasets. We use a batch size of B = 8, Bhard = 8 1124

with a gradient accumulation of 2 when using a 1125

small encoder for both datasets. When using a large 1126

15

encoder (e.g., E5-large) on the Intellipro dataset,1127

we keep the same batch size of B = 8, but with1128

Bhard = 4 and DeepSpeed Zero 2 (Rajbhandari1129

et al., 2020) with BF16 mixed precision training1130

due to GPU memory constraints. On the AliYun1131

dataset, we simply use B = 8, Bhard = 8 without1132

DeepSpeed as input sequences are much shorter1133

compared to those from the Intellipro dataset.1134

We train CONFIT models for 10 epochs and save1135

the best checkpoint based on validation loss for1136

testing. On average, CONFIT takes about 1.5 hours1137

and 4.5 hours to train when using a small encoder1138

on the Intellipro dataset and the AliYun dataset,1139

respectively. When using a large encoder (e.g., E5-1140

large), CONFIT takes about 3 hours and 9 hours1141

to train on the Intellipro dataset and the AliYun1142

dataset, respectively.1143

E More Details on Data Augmentation1144

In Section 3.1, we discussed how CONFIT can in-1145

crease the number of resume-job labels by first cre-1146

ating augmented resumes R̂i and jobs Ĵi that carry1147

semantically similar information as Ri and Ji, and1148

then replicating the labels from Ri and Ji to R̂i and1149

Ĵi. Since much information in a resume or a job1150

post contains formal names such as “Job Title”, we1151

only paraphrase certain sections. For resumes in1152

the Intellipro dataset, we paraphrase the “descrip-1153

tion” subsection in the “Experiences” section and1154

the “description” subsection in the “Projects” sec-1155

tion (see Table A2). For job posts in the Intellipro1156

dataset, we paraphrase the “Company Description”1157

section, the “Job Description/Responsibilities” sec-1158

tion, the “Required Qualifications/Skills”, and the1159

“Preferred Qualifications/Skills” section (see Ta-1160

ble A3). For the AliYun dataset, we paraphrase the1161

“工作经验” (work experience) section for resumes,1162

and the “工作描述” (job description) section for1163

job posts.1164

CONFIT performs data augmentation using both1165

ChatGPT and EDA for 500 resumes and 500 jobs1166

for each dataset. With only 1000 augmented docu-1167

ments on each dataset, we increased the number of1168

resume-job labels by 5330 and 9706 for the Intel-1169

lipro dataset and the AliYun dataset, respectively.1170

F More Details on Runtime Comparison1171

In Section 4.6, we compared the runtime of various1172

neural-based methods from Table 3. We catego-1173

rize neural-based methods into two types when1174

doing inference: Maximum Inner Product Search1175

(MIPS) methods and Non-linear (Non-linear) meth- 1176

ods. MIPS methods compute a matching score 1177

between two dense vectors using inner product, 1178

and can be efficiently implemented using FAISS 1179

(Johnson et al., 2019) to scale to billions of doc- 1180

uments. MIPS-based approach includes RawEm- 1181

bed and CONFIT. Non-linear methods produce a 1182

matching score by modeling non-linear interactions 1183

between a resume and a job’s (intermediate) repre- 1184

sentations. For example, InEXIT first concatenates 1185

the intermediate representations of a resume and a 1186

job, and then passes them into a self-attention layer 1187

and an MLP layer for scoring. Non-linear methods 1188

include MV-CoN, InEXIT, and DPGNN. 1189

All experiments are performed using the test set 1190

from the AliYun dataset on a single A100 80GB 1191

GPU. For MIPS-based methods, we precompute 1192

all the relevant embeddings (excluded from run- 1193

time calculation), and record the average runtime 1194

for FAISS to retrieve the top 10 job posts from 1195

a pool of 100, 1000, and 10000 job posts when 1196

given a resume embedding. For non-linear meth- 1197

ods, we record the average runtime to perform all 1198

the needed forward passes for each of the 100, 1199

1000, and 10000 resume-job pairs. However, we 1200

do note that the runtime for non-linear methods 1201

can be further optimized by precomputing certain 1202

intermediate representations before passing them 1203

into their respective non-linear scoring layers. We 1204

did not perform this optimization because 1) this is 1205

highly architecture- and method-dependent, and 2) 1206

it still does not scale well when the number of job 1207

posts is large, or when there are multiple resumes 1208

to query. 1209

G More Details on Ablation Studies 1210

Our ablation studies in Section 4.7 also experi- 1211

mented with removing neural networks completely, 1212

to decouple our methodology from any particular 1213

choice of neural networks. To achieve this, we first 1214

mimic the batches used during contrastive training 1215

in CONFIT and construct a dataset Dcon which con- 1216

tains a positive resume-job pair ⟨R+
i , J

+
i ⟩ along 1217

with l negative resumes and l negative job posts 1218

(see Section 3.2). Then, we treat all negative re- 1219

sumes and job posts that have a label of y = 0 when 1220

paired with J+
i and R+

i , respectively. Finally, we 1221

encode all resumes and job posts using TF-IDF, and 1222

train an XGBoost ranker using Dcon. To be compa- 1223

rable with CONFIT which uses B = 8, Bhard = 8, 1224

we use l = 16 for each positive resume-job pair, 1225

16

100 0 100100

0

100
others
Business Management
Software Engineering
Human Resources

(a) CONFIT

100 0 100100

0

100

(b) E5-small

100 0 100100

0

100

(c) text-ada-002

100 0 100100

0

100

(d) BERT-base

100 0 100100

0

100

(e) MV-CoN

100 0 100100

0

100

(f) DPGNN

Figure A1: Resume embeddings produced by various methods in Table 3 with BERT-base-multilingual-cased
as backbone encoder. Colors assigned using each resume’s desired industry. Top-3 most frequent industries are
color-coded for easier viewing. BERT-base refers to raw embedding produced by BERT-base-multilingual-cased.

Intellipro Dataset AliYun Dataset
Rank Resume Rank Job Classification Rank Resume Rank Job Classification

Method Encoder MAP nDCG MAP nDCG F1 Prc+ Rcl+ MAP nDCG MAP nDCG F1 Prc+ Rcl+

MV-CoN BERT-base 10.81 10.00 3.34 2.17 58.00 50.00 33.33 5.41 5.15 13.44 12.67 74.25 72.22 68.32
InEXIT BERT-base 12.27 12.98 4.11 3.46 55.55 44.74 35.42 5.25 4.98 13.02 12.30 71.75 66.67 72.18
DPGNN BERT-base 19.64 21.95 17.86 19.60 61.16 52.38 45.83 19.96 24.64 27.23 30.07 50.31 45.24 57.14

Ours+XGBoost TF-IDF 24.04 27.29 15.60 17.23 43.60 37.66 60.42 24.19 28.95 30.29 33.66 52.31 47.51 64.67

Table A4: CONFIT without neural networks (denoted as Ours+XGBoost) is competitive against many prior person-
job fit methods with BERT-base as a backbone encoder. F1 is weighted F1 score, nDCG is nDCG@10, Prc+ and
Rcl+ are precision and recall for positive classes. Results for non-deterministic methods are averaged over 3 runs.
Best result is shown in bold, and runner-up is in gray.

with 14 random negatives and 2 hard negatives.1226

We denote this approach as Ours+XGboost, and1227

compare its performance against other person-job1228

fit systems in Table A4. We find our approach1229

is still competitive against these methods that use1230

a BERT-base (Devlin et al., 2019) encoder. This1231

suggests that the contrastive learning and data aug-1232

mentation procedure from CONFIT is effective for1233

the person-job fit task.1234

H More Details on Qualitative Analysis1235

Figure A1 presents the resume embeddings pro-1236

duced by various methods in Table 3 with BERT-1237

base-multilingual-cased as the backbone encoder 1238

(with the exception of OpenAI text-ada-002, which 1239

is from Table 4). Since methods such as MV-CoN, 1240

InEXIT, and DPGNN does not explicitly learn a 1241

resume or a job embedding, we extract the represen- 1242

tations from the last layer before their resume-job 1243

pair scoring layers (e.g., the final MLP layer in 1244

MV-CoN, or the self-attention layers in InEXIT). 1245

In general, we find embeddings produced by 1246

MV-CoN, DPGNN, and BERT-base tend to scatter 1247

“Software Engineering”-related resumes across the 1248

entire embedding space, while embeddings pro- 1249

duced by CONFIT, E5-small, and text-ada-002 1250

17

has a clearer separation between “Software En-1251

gineering” and other industries such as “Human1252

Resource”. In Table 3, we similarly find the rank-1253

ing performances of CONFIT, E5-small, and text-1254

ada-002 are better than MV-CoN, DPGNN, and1255

BERT-base on the Intellipro dataset. Therefore, we1256

believe Figure A1 qualitatively shows that having1257

a high-quality embedding space is beneficial for1258

modeling person-job fit.1259

18

