CONFIT: Improving Resume-Job Matching using Data Augmentation and
Contrastive Learning

Anonymous ACL submission

Abstract

A reliable resume-job matching system helps a
company find suitable candidates from a pool
of resumes, and helps a job seeker find relevant
jobs from a list of job posts. However, since
job seekers apply only to a few jobs, interaction
records in resume-job datasets are sparse. Dif-
ferent from many prior work that use complex
modeling techniques, we tackle this sparsity
problem using data augmentations and a sim-
ple contrastive learning approach. CONFIT first
creates an augmented resume-job dataset by
paraphrasing specific sections in a resume or a
job post. Then, CONFIT uses contrastive learn-
ing to further increase training samples from B
pairs per batch to O(B?) per batch. We eval-
uate CONFIT on two real-world datasets and
find it outperforms prior methods (including
BM25 and OpenAl text-ada-002) by up to 19%
and 31% absolute in nDCG@ 10 for ranking
jobs and ranking resumes, respectively. !

1 Introduction

Online recruitment platforms, such as LinkedIn,
have over 900 million users, with over 100 million
job applications made each month (Igbal, 2023).
With the ever increasing growth of online recruit-
ment platforms, building fast and reliable person-
job fit systems is desiderated. A practical system
should be able to quickly select suitable talents and
jobs from large candidate pools, and also reliably
quantify the “matching degree” between a resume
and a job post.

Since both resumes and job posts are often stored
as text data, many recent work (Zhu et al., 2018;
Qinetal., 2018; Bian et al., 2020; Yang et al., 2022;
Shao et al., 2023) focus on designing complex mod-
eling techniques to model resume-job matching
(or referred to as “person-job fit”). For example,
APJFNN (Qin et al., 2018) uses hierarchical recur-
rent neural networks to process the job and resume

'We will release our code upon acceptance.

content, and DPGNN (Yang et al., 2022) uses a
dual-perspective graph neural network to model the
relationship between resumes and jobs. However,
these methods only show limited improvements,
and they often: optimize only for a single task (e.g.,
interview classification); are hard to accommodate
new, unseen resumes or jobs; and are designed for
a particular data setting (e.g., applicable only if a
specific recruitment platform is used).

In this work, we present a simple method to
model resume-job matching, with strong perfor-
mances in both resume/job ranking and resume-job
pair classification tasks. We propose CONFIT, an
approach to learn high-quality dense embeddings
for resumes and jobs, which can be combined with
techniques such as FAISS (Johnson et al., 2019) to
rank tens of thousands of resumes and jobs in mil-
liseconds. To combat label sparsity in person-job
fit datasets, CONFIT first uses data augmentation
techniques to increase the number of training sam-
ples, and then uses contrastive learning (Karpukhin
et al., 2020; Wang et al., 2023) to train an encoder.
We evaluate CONFIT on two resume-job matching
datasets and find our approach outperforms pre-
vious methods (including strong baselines from
information retrieval such as BM25) in almost all
ranking and classification tasks, with up to 20-30%
absolute improvement in ranking jobs and resumes.

2 Background

A resume-job matching (or often called a person-
Jjob fit) system models the suitability between a
resume and a job, allowing it to select the most
suitable candidates given a job post, or recommend
the most relevant jobs given a candidate’s resume
(Bian et al., 2020; Yang et al., 2022; Shao et al.,
2023). A job post J (or a resume R) is commonly
structured as a collection of texts J = {x/}}_,,
where each piece of text may represent certain sec-
tions of the document, such as “Required Skills”
for a job post or “Experiences” for a resume (Bian

et al., 2019; Shao et al., 2023). Thus, the person-
job fit problem is often formulated as a text-based
task to model a “matching” score:

match(R,J) = fp(R,J) = R

where fy typically involves neural networks (Zhu
et al., 2018; Yang et al., 2022; Shao et al., 2023)
such as BERT (Devlin et al., 2019).

With the ever-increasing growth of online recruit-
ment data, there is a large number of job posts and
resumes (privately) available. However, since a can-
didate applies to only a small selection of jobs, in-
teractions between resumes and jobs is very sparse
(Bian et al., 2020). Often, the resulting dataset
D ={Ri, Ji,yi} has size |D| < ng X nj, where
ngr and ny are the total number of resumes and
jobs respectively, and y; € {0, 1} is a binary sig-
nal representing whether a resume R; is accepted
for an interview by a job J;. While some private
datasets (Yang et al., 2022) may contain additional
labels, such as whether the candidate or recruiter
“requested” additional information from the other
party, we focus on the more common case where
only a binary signal is available.

3 Approach

We propose CONFIT, a simple and general-purpose
approach to model resume-job matching using con-
trastive learning and data augmentation. CONFIT
produces a dense embedding of a given resume or
job post, and models the matching score between
an (R, J) pair as the inner product of their represen-
tations. This simple formulation allows CONFIT
to quickly rank a large number of resumes or jobs
when combined with retrieval techniques such as
FAISS (Johnson et al., 2019). In Section 3.1, we
describe our approach to augment a person-job fit
dataset, and in Section 3.2 we describe the con-
trastive learning approach used during training.

3.1 Data Augmentation

A person-job fit dataset may be considered as a
sparse bipartite graph, where each resume R; and
job J; is a node, and a label (accept or reject) is an
edge between the two nodes. Given a resume R;,
we first create augmented versions R; by paraphras-
ing certain sections such as “Experiences” (see
Appendix E for more details). Since R; includes
semantically similar information as Rz;, we inherit
the same edges from R; to R ie., any job J; that
accepts R; for interview also accepts R;. Next, we

perform the same augmentation procedure for jobs,
creating .J; that inherits the same edges as J; in the
graph (which involves augmented R;s). As aresult,
augmenting n,ue resumes and jobs each for once
approximately doubles the number of labeled pairs
(often > maye) in the dataset. CONFIT thus first
performs data augmentation to increase the number
of labeled pairs, and then uses contrastive learning
(Section 3.2) to train a high-quality encoder. Below,
we briefly describe paraphrasing methods used in
this work.

EDA Augmentation Given a piece of text from a
resume or a job, we use EDA (Wei and Zou, 2019)
to randomly replace, delete, swap, or insert words
to create a paraphrased version of the text. We
find this to be a simple and fast method to create
semantically similar text.

ChatGPT Augmentation Besides EDA, we also
use ChatGPT (OpenAl, 2022b) to perform para-
phrasing. ChatGPT has been used on many data
augmentation tasks (Cegin et al., 2023; Dai et al.,
2023), and in this work, we similarly prompt Chat-
GPT to paraphrase a given piece of text (see Ap-
pendix E for more details).

3.2 Contrastive Learning

Given an augmented dataset, CONFIT uses con-
trastive learning (Chen et al., 2020; Wang et al.,
2023) to further increase the number of training
instances from B per batch to O(B?) per batch.
Contrastive learning is also an effective technique
for learning a high-quality embedding space, and
is used in various domains such as information re-
trieval (Karpukhin et al., 2020) and representation
learning (Chen et al., 2020; Wang et al., 2023).

First, we construct contrastive training instances
from a dataset D = {R;, J;, y; }:

Deon = {(RF, J R,

A SR Rt 3 R

R T T

where each instance contains one positive pair of
matched resume-job (R;, J;") with y; = 1, and
[unsuitable resumes R, for a job J;r as well as
[unsuitable jobs J;, for a resume R} Follow-
ing prior work in contrastive learning (Chen et al.,
2020; Gao et al., 2021; Wang et al., 2023), we

Different from information retrieval (Karpukhin et al.,
2020; Wang et al., 2022) where ranking is an asymmetric task
(given a query, rank passages), the person-job fit problem is
symmetric (given a resume, rank jobs, and vice versa).

optimize the following cross-entropy loss:

L=Lr+ Ly (1)
eso(RFJ)
Lr=—-1o

g + —
eso(RETT) 4 2221 oS0 (RT3

eso(RJ)
Ly=—1o

g .
eS@(R;r,Jj) + Z;:l eSO(Ri,j:Ji)

Similar to training retrieval systems (Karpukhin
et al., 2020), we find the number and choice of
negative samples important to obtain a high-quality
encoder. We discuss how CONFIT chooses nega-
tive samples below.

In-batch negatives Let there be B positive pairs
(R, J), ... (R}, J4)} in a mini-batch during
training. For each resume Rj, we use the other
B — 1 jobs {J;;Z} as negative samples, and sim-
ilarly for each job J;r, we use the other B — 1
resumes as negative samples. The trick of in-batch
negatives thus trains on B? resume-job pairs in
each batch, and is highly computationally efficient
(Gillick et al., 2019; Karpukhin et al., 2020; Wang
et al., 2022). In person-job fit, this has a natu-
ral interpretation that random (in-batch) negative
samples are unsuitable resumes/jobs for a given
job/resume. In practice, we find that using in-
batch negatives alone is sufficient to yield com-
petitive ranking performances compared to prior
approaches (see Section 4.7).

Hard negatives In addition to in-batch negative
samples, we also sample up to 2 X By,q hard neg-
atives for each batch to further improve CONFIT
training. In information retrieval systems, hard neg-
atives (Karpukhin et al., 2020; Wang et al., 2022)
are often passages that are relevant to the query
(e.g. have a high BM25 (Robertson and Zaragoza,
2009) score) but do not contain the correct answer.
In person-job fit, we believe that this extends to
resumes/jobs that are explicitly rejected for a given
job/resume. This is because often when a candidate
submits a resume for a given job post, the resume
is already highly relevant regardless of whether the
candidate is accepted or rejected. Thus, we sam-
ple up to Bpa.q rejected resumes as hard negatives
for any of the B jobs in the mini-batch, as well
as Bparq jobs that rejected any of the B resumes.
These 2 X Byparq hard negatives are then used by all
resumes/jobs in the batch, increasing the number of
training pairs to (B + Bpard)? — B}21ard per batch.

3.3 CONFIT

To address the label sparcity problem in person-
job fit datasets, CONFIT first augments the dataset
using techniques introduced in Section 3.1. Then,
CONFIT trains an encoder network Fjy using con-
trastive learning described in Section 3.2. Given
resumes and job posts during inference, CONFIT
first uses the encoder Fjy to obtain a dense represen-
tation for each resume R and job J. Then, CONFIT
produces a matching score sy between the (R, J)
pair using inner product:

match(R,.J) = Ey(R)T Eg(J) = s¢(R, J)

This simple formulation allows CONFIT to com-
bined with techniques such as FAISS (Johnson
et al., 2019) to efficiently rank tens of thousands of
resumes and jobs in milliseconds (Section 4.6).

4 Experiments

We evaluate CONFIT on two real-world person-
job fit datasets, and measure its performance and
runtime on ranking resumes, ranking jobs, as well
as on a fine-grained interview classification task.

4.1 Dataset and Preprocessing

AliYun Dataset To our knowledge, the 2019 Al-
ibaba job-resume intelligent matching competition®
provided the only publicly available person-job fit
dataset. All resume and job posts were desensitized
and were already parsed into a collection of text
fields, such as “Education”, “Age”, and “Work Ex-
periences” for a resume (see Appendix A for more
details). All resumes and jobs are in Chinese.

Intellipro Dataset The resumes and job posts
are collected from a global hiring solution com-
pany, called “Intellipro Group Inc.”??. To pro-
tect the privacy of candidates, all records have
been anonymized by removing sensitive identity
information. For each resume-job pair, we record
whether the candidate is accepted (y = 1) or re-
jected (y = 0) for an interview. For generaliz-
ability, we parse all resumes and jobs into similar
sections/fields as the AliYun dataset. Both English
and Chinese resumes and jobs are included.

Since neither dataset has an official test set, we
first construct test sets with statistics shown in
Table 2. To measure the ranking ability of cur-
rent methods, we consider two tasks: 1) ranking
q = 100 resumes given a job post (denoted as Rank

3https://tianchi.aliyun.com/competition/entrance/231728

https://tianchi.aliyun.com/competition/entrance/231728/introduction

Train Intellipro Dataset Aliyun Dataset
Jobs 1794 19542
Resumes 6435 2718
Labels 6751 22124
(# accept) 2809 10185
(# reject) 3942 11939
Industries 16 20
Fields per R 8 12
Fields per J 9 11
Words per R 915.2 101.9
Words per J 174.7 153.1

Table 1: Training dataset statistics. # Words per R/J
represent the average number of words per resume/job.

Intellipro Dataset AliYun Dataset

Test Rank R Rank J Classify Rank R Rank.J Classify
Samples 120 120 120 300 300 300
Jobs 120 427 104 300 2903 299
#Resumes 1154 120 117 1006 300 280

Table 2: Test dataset statistics. Classify is a binary
classification task to predict whether a resume-job pair
is accepted or rejected for interview.

Resume), and 2) ranking ¢ = 100 jobs given a
resume (denoted as Rank Job). Since only a few
resumes and jobs are labeled, we fill in random
resumes/jobs to reach ¢ slots when needed. We fur-
ther consider the “fine-grained” scoring ability of
current methods, by measuring how well a method
can distinguish between an accepted resume-job
pair and a rejected one (denoted as classification).
We exclude all resumes and jobs used in test and
validation sets from the training set, and present the
training, test, and validation set statistics in Table 1,
Table 2 and Table A1, respectively.

4.2 Model Architecture

Since both datasets represent resumes and job posts
as a collection of text fields, we simplify the model
architecture from InEXIT (Shao et al., 2023), out-
lined in Figure 1. InEXIT encodes each text field
(e.g., “education: Bachelor;...”) in a resume or a
job independently using a pre-trained encoder, and
considers a hierarchical attention mechanism to
model person-job fit as interactions between these
fields. Following InEXIT, we first encode each
field independently, and model the “internal in-
teraction” between the fields within a resume/job
using attention (Vaswani et al., 2023). InEXIT then
uses another attention layer on all text fields of the
resume-job pair to model the “external interaction’
between a resume and a job post, and finally pro-
duces a score using an MLP layer (see Appendix B

>

N
linear

} 1 x dense vector

} p X dense vectors

attention + FFNN

T

Backbone Encoder

} p X dense vectors

[T B
education: Bachelor; ...
. skills: python; C++; ...

resume

p X fields

experiences: SWE at ...

Figure 1: Model architecture used to encode a resume
or a job post, formatted as a collection of p text fields
(see Appendix A for a full example of resume/job).

for more details). Since CONFIT models person-
job fit based on independently produced resume/job
embeddings, we replace the last attention and MLP
layer with a linear layer, which directly fuses the
field representations into a single dense vector for
a given resume or a job post (Figure 1).

4.3 Baselines

We compare CONFIT against both recent best
person-job fit systems and strong baselines from
information retrieval systems.

Recent person-job fit systems can be grouped
into two categories: classification-targeted and
ranking-targeted. The best classification-targeted
system include MV-CoN (Bian et al., 2020) and
InEXIT (Shao et al., 2023). MV-CoN considers
a co-teaching network (Han et al., 2018) to learn
from sparse, noisy person-job fit data, and InEXIT
uses hierarchical attention to model interactions
between the text fields of a resume-job pair. Both
methods optimize for the classification task. The
best ranking-targeted systems include DPGNN
(Yang et al., 2022). DPGNN considers a dual-
perspective graph view of person-job fit and uses
a BPR loss (Rendle et al., 2012) to optimize for
resume and job ranking.

We also compare against methods from infor-
mation retrieval systems such as: BM25 (Robert-
son and Zaragoza, 2009; Trotman et al., 2014) and
RawEmbed. BM25 is a strong baseline used for
many text ranking tasks (Thakur et al., 2021; Wang
et al., 2022; Kamalloo et al., 2023), and RawEm-

Intellipro Dataset AliYun Dataset
Rank Resume Rank Job Classification Rank Resume Rank Job Classification

Method Encoder MAP nDCG MAP nDCG Fl Prc+ Rcl+ MAP nDCG MAP nDCG Fl Prc+ Rcl+
BoW 1442 11.84 3.89 298 4951 3774 41.67 6.67 6.25 13.63 12.53 69.57 72.00 54.14
XGBoost TF-IDF 10.18 7.87 4.11 294 5500 4375 43775 556 496 13.85 1321 68.78 69.16 55.64
BERT-base 8.45 7.69 5.57 524 6101 5098 5417 534 5.10 1345 1222 70.63 73.27 55.64
RawEmbed E5-small 28.61 33.88 2548 30.26 5420 42.86 31.25 16.06 17.89 20.26 22.84 38.64 27.78 22.56
" BERT-base 13.07 1394 4.41 3.62 4925 3438 2292 9.8 1063 1235 12.63 46.71 40.00 40.60
MV-CoN BERT-base 10.81 10.00 3.34 2.17 58.00 50.00 3333 541 5.15 1344 12,67 7425 7222 68.32
InEXIT BERT-base 12.27 1298 4.11 346 5555 4474 3542 525 498 13.02 1230 71.75 66.67 72.18
DPGNN BERT-base 19.64 2195 1786 19.60 61.16 52.38 45.83 1996 24.64 2723 30.07 5031 4524 57.14

BM25 - 39.13 4496 37.88 43.15 - - - 34.71 40.56 27.30 31.18 - - -
Ours BERT-base 44.47 49.51 39.57 45.67 63.78 5581 50.00 30.79 37.71 3613 41.65 47.16 41.10 45.11

Table 3: Comparing ranking and classification performance of various approaches when a small encoder is used. F1
is weighted F1 score, nDCG is nDCG@ 10, Prc+ and Rcl+ are precision and recall for positive classes. Results for
non-deterministic methods are averaged over 3 runs. Best result is shown in bold, and runner-up is in gray.

Intellipro Dataset AliYun Dataset
Rank Resume Rank Job Classification Rank Resume Rank Job Classification

Method Encoder MAP nDCG MAP nDCG F1 Prc+ Rcl+ MAP nDCG MAP nDCG F1 Prc+ Rcl+

BoW 1442 11.84 3.89 298 4951 37.74 41.67 6.67 6.25 13.63 12.53 69.57 72.00 54.14
XGBoost TF-IDF 10.18 7.87 4.11 294 5500 43.75 4375 556 496 13.85 1321 68.78 69.16 55.64

text-ada-002 9.87 9.94 4.15 358 6243 53.19 52.08 6.40 6.08 1346 1293 6243 53.19 52.08

xlm-roberta-1 14.46 1495 1322 13.94 51.27 40.00 16.67 7.07 690 11.25 10.75 53.48 47.62 52.63
RawEmbed. ES5-large 35.10 40.10 26.93 30.61 59.39 51.43 37.50 3211 3745 2456 28.15 4467 3564 27.07

text-ada-002 42.85 48.11 43.28 51.11 5892 48.89 4583 3147 37.06 2194 2480 39.72 32.35 33.08
MV-CoN E5-large 12.23 1098 4.06 3.09 5275 40.51 27.08 5.60 5.15 1292 12.67 7085 77.53 51.88
InEXIT E5-large 13.60 13.63 3.14 191 5517 45.16 29.17 5.49 433 13.39 1321 7041 74.74 53.58
DPGNN ES5-large 21.31 24.08 1390 17.69 5556 48.00 25.00 3398 40.63 42.76 46.98 53.88 48.03 45.86
BM25 - 39.13 4496 37.88 43.15 - - - 34.71 40.56 2730 31.18 - - -
Ours E5-large 43.08 50.28 42.88 51.74 54.09 4521 68.75 6432 71.71 59.13 6591 59.71 53.66 66.17

Table 4: Comparing ranking and classification performance of various approaches when a larger encoder is used. F/
is weighted F1 score, nDCG is nDCG @10, Prc+ and Rcl+ are precision and recall for positive classes. Results for
non-deterministic methods are averaged over 3 runs. Best result is shown in bold, and runner-up is in gray.

bed is based on dense retrieval methods (Karpukhin
et al., 2020; Johnson et al., 2019) that directly con-
catenates all text fields and uses a pre-trained en-
coder to produce a single dense embedding for
inner product scoring. Finally, we also consider
XGBoost (Chen and Guestrin, 2016) as a generic
method for classification and ranking tasks, where
features can be Bag-of-Words (BoW), TF-IDF vec-
tors, and pre-trained embeddings from RawEmbed.

Unless otherwise indicated, CONFIT first uses
data augmentation with both EDA and ChatGPT,
each augmenting 500 resumes and 500 jobs for
each dataset (Section 3.1), followed by contrastive
learning with B = 8 and By,.q = 8 (Section 3.2).
See Appendix D for other hyperparameters used by
CONFIT, and see Appendix C for more implemen-
tation details of the baselines.

4.4 Metrics

Following prior work (Karpukhin et al., 2020;
Yang et al., 2022), we use Mean Average Preci-
sion (MAP) and normalized Discounted Cumula-

tive Gain (nDCG) to measure the ranking ability
of each method. Since most resume-job pairs are
unlabeled, we report nDCG@10. To measure the
fine-grained classification ability of a method, we
follow prior work in person-job fit (Qin et al., 2018;
Zhu et al., 2018; Bian et al., 2020; Shao et al., 2023)
and use weighted F1, precision, and recall. Since
correctly predicting a positive sample (i.e., a suit-
able job for a resume) is important in practice, we
report precision and recall for the positive class
(denoted as Prc+ and Rcl+, respectively).

4.5 Main Results

Table 3 summarizes CONFIT’s performance in
comparison to other baselines, when an encoder
with ~180M parameters is used as the backbone.
This includes using BERT-base* (Devlin et al.,
2019) and E5-small (Wang et al., 2022). In gen-
eral, we find that classification-targeted systems

*Since the AliYun dataset is solely in Chinese, we use
BERT-base-chinese for the AliYun dataset and BERT-base-
multilingual-cased for the Intellipro dataset.

such as MV-CoN and InEXIT achieve a high F1
score but have poor ranking ability, while ranking-
targeted methods such as RawEmbed, DPGNN, and
BM?25 perform much better in ranking. With a
small encoder model, we find CONFIT achieves
the best ranking performance in three out of the
four tasks, and BM25 achieves the best in the re-
maining task. CONFIT also achieves the best F1
score on the Intellipro classification task compared
to other classification-targeted systems.

Table 4 summarizes each method’s performance
when a larger backbone encoder (~560M parame-
ters) is used. This includes multilingual-E5-large
(Wang et al., 2022), xIm-roberta-large (Conneau
et al., 2019; Liu et al., 2019), or OpenAl text-ada-
0023 (OpenAl, 2022a). Similar to Table 3, we
find that classification-targeted methods such as
MV-CoN reach a high F1 score, while ranking-
targeted methods achieve a better MAP and nDCG
score. We also find that CONFIT now achieves the
best ranking performances in all cases, except for
the MAP score in the IntelliPro’s job ranking task.
We believe this is because the IntelliPro dataset
contains much less data compared to the AliYun
dataset (Table 1). In the AliYun dataset, CONFIT
improves up to ~30% absolute in MAP and nDCG
score for ranking resumes and up to ~20% for
ranking jobs. We believe this is because the AliYun
dataset not only has more data, but also uses much
shorter and concise texts compared to the Intellipro
dataset (Table 1). Lastly, we find CONFIT remains
competitive in classification task for both datasets,
despite not directly optimizing for them.

4.6 Runtime Analysis

A practical recruitment system needs to quickly
rank a large number of resumes given a job post,
or vice versa. We measure the runtime to rank
100; 1,000; and 10,000 jobs for a given resume
from the AliYun dataset, and compare the speed of
various neural-based methods from Table 3. We
present the results in Figure 2. In general, methods
that ranks by inner product search (RawEmbed and
CONFIT) can utilize FAISS (Johnson et al., 2019)
to achieve a runtime in milliseconds in all cases®.
However, methods such as MV-CoN, InEXIT, and
DPGNN requires a (partial) forward pass for each
resume-job pair to produce a score between (see
Appendix F for more details). We believe this is

>Model size unknown.
6 After embedding all relevant resume and job posts, which
only needs to be computed once.

) Il MIPS (ConFit, RawEmbed)

10 Non-linear (MV-CoN, InEXIT, DPGNN)
O
[0)
£ 10
o+
C
S
o

100,

100 1000 10000
Number of job posts to rank

Figure 2: Runtime comparison between neural-based
methods. MIPS are maximum inner product search
methods that are supported by FAISS (Johnson et al.,
2019). Non-linear methods require an additional for-
ward pass to produce a score between a resume-job pair.
Results are averages over three runs.

highly inefficient, especially when the number of
documents to rank (e.g., job posts) is large.

4.7 Ablation Studies

Table 5 presents our ablation studies for each com-
ponent of CONFIT training. We focus on using
BERT-base from Table 3 as it is less resource-
intensive to train.

First, we consider CONFIT to only use con-
trastive learning (denoted as +contrastive) un-
der various settings, such as B = 8, Byaq =
{0,2,4,8}. In Table 5, we find that: a) increas-
ing the number of hard negatives (B} q) improves
ranking performance, and b) using contrastive
learning alone already outperforms many baselines
in Table 3. This suggests that contrastive learning
plays a major role in CONFIT’s performance.

Next, we add data augmentation to training, and
measure the performance of: 1) using only Chat-
GPT to augment 500 resumes and jobs, denoted
as ChatGPT only; 2) using EDA to augment 500
resumes and jobs, denoted EDA only; 3) using EDA
to augment all resume/job seen during training, de-
noted as EDA-all; and 4) combining both 1) and
2), denoted as +Data Aug. In general, we find
combining both ChatGPT and EDA augmentation
can most often achieve the best performance. We
believe this is because such approach includes both
semantically paraphrased content from ChatGPT
and syntactically altered content (e.g., inserting
or removing words) from EDA. Especially for the
AliYun dataset, we find using any form of data aug-
mentation improves over using contrastive learn-
ing alone. We believe this is because AliYun’s re-
sume/job texts are much shorter and more concise

Intellipro Dataset AliYun Dataset
Rank Resume Rank Job Classification Rank Resume Rank Job Classification
Modification MAP nDCG MAP nDCG Fl Prc+ Rcl+ MAP nDCG MAP nDCG Fl Prc+ Rcl+
+contrastive 4296 49.28 42.23 49.21 59.17 56.00 29.17 27.53 3334 34.05 37.83 47.60 40.77 39.85
Bhara = 0 31.15 36.88 3894 4489 5202 44.16 70.83 13.73 1543 3252 3723 4331 3451 2932
Bhard = 2 41.85 47777 4124 4746 56.14 56.58 19.79 2542 31.08 31.59 35.64 45.65 38.64 38.35
Bharqg = 4 40.86 45.69 4129 47.78 61.69 62.36 33.33 2560 30.65 3272 36.15 4451 38.67 43.61
+Data Aug. 44.47 49.51 39.57 45.67 63.78 55.81 50.00 30.79 37.71 36.13 41.65 47.16 41.10 45.11
ChatGPT only 4136 4745 39.54 4698 58.75 71.43 20.83 29.69 3559 35.11 40.13 47.00 39.67 36.09
EDA only 3949 46.03 40.25 46.03 60.64 6500 27.08 27.06 33.08 34.69 39.16 4630 3839 3233
EDA-all 39.03 4556 40.09 4576 60.64 65.00 27.08 2821 33777 33777 38.13 4559 37.82 33.83

Table 5: CONFIT ablation studies. CONFIT uses contrastive learning (+contrastive) with By,,q = 8, and Data
Augmentation (+Data Aug.) with both ChatGPT and EDA. Best result in each ablation group is highlighted in bold.

100
others
B Business Management
Software Engineering
% Human Resources
- - 3 ¢
3
n L} b
0 = «
L] o "3 -
#
. o " ;'
' o r
]
I" . l’l 2 f'
Y []
ML B S
-
-100
—-100 0 100

Figure 3: Visualizing resume embeddings from CONFIT
using t-SNE. Colors are assigned using each resume’s
desired industry. Top-3 most frequent industries are
color-coded for easier viewing.

than those of the Intellipro dataset, thus making
data augmentation easier to perform.

Since CONFIT training is model-agnostic, we
also experiment with completely removing neural
networks, and only use TF-IDF representations
with XGBoost. Despite seeing performance degra-
dation compared to CONFIT with pretrained en-
coders, we find this approach is still competitive
against prior best person-job fit systems that uses
BERT (see Appendix G and Table A4 for more
details). This suggests that the contrastive learning
and data augmentation procedure from CONFIT is
effective for the person-job fit task.

5 Analysis

In this section, we provide both qualitative visual-
ization and quantitative analysis of the embeddings
learned by CONFIT. We mainly focus on the Intel-
lipro dataset as it is more challenging.

5.1 Qualitative Analysis

CONFIT aims to learn a high-quality embedding
space for a resume or a job post. In Figure 3 we

visualize the resume embeddings learned by CON-
FIT. We use CONFIT with BERT-base (see Table 3)
to embed all 1457 resumes from the test set in the
Intellipro dataset, and perform dimensionality re-
duction using t-SNE (van der Maaten and Hinton,
2008). In Figure 3, we find CONFIT learned to
cluster resumes based on important fields such as
“Desired Industry”. We believe this is consistent
with how a human would determine person-job fit,
as resumes aiming for similar industries are likely
to contain similar sets of experiences and skills. For
comparison with embeddings generated by other
baselines, please see Appendix H.

5.2 Error Analysis

To analyze the errors made by CONFIT, we manu-
ally inspect 30 negative resume-job pairs from the
ranking tasks that are incorrectly ranked at top 5%
and is before at least one positive pair, and 20 pairs
from the classification task that was incorrectly pre-
dicted as a match. For each incorrectly ranked or
classified pair, we compare against other positive
resume-job pairs from the dataset, and categorize
the errors with the following criteria: unsuitable,
where some requirements in the job post are not
satisfied by the resume; less competent, where a
resume satisfies all job requirements, but many
competing candidates have a higher degree/more
experience; out-of-scope, where a resume satisfies
all requirements, appears competitive compared to
other candidates, but is still rejected due to other
(e.g., subjective) reasons not presented in our re-
sume/job data themselves; and potentially suitable,
where a resume from the ranking tasks satisfied the
requirements and seemed competent, but had no
label in the original dataset.

We present our analysis in Figure 4, and find
that a significant portion of errors are out-of-scope,
where we believe information in resumes/job posts

unsuitable

potentially suitable
B |ess competent

out-of-scope

Figure 4: CONFIT error analysis. We find 44% of the
errors made are due to reasons not identifiable using
resume/job documents alone, and 28% due to a candi-
date’s resume satisfying all the job requirements but is
less competent than other competing candidates.

is limited. The next most frequent error is less
competent, which is understandable since CON-
FIT scores a resume-job pair independent of other
competing candidates. Lastly, we also find that
about 20% of the wrong predictions were unsuit-
able, with resumes not satisfying certain job re-
quirements such as “4 years+ with Docker, K8s”.
We believe unsuitable errors may be mitigated by
combining CONFIT with better feature engineering
techniques along with keyword-based approaches
(such as BM25), which we leave for future work.

6 Related Work

Person-job fit systems Early neural-based meth-
ods in person-job fit (Guo et al., 2016) typically
focus on network architecture to obtain a good rep-
resentation of a job post or a resume. These meth-
ods include Qin et al. (2018); Zhu et al. (2018);
Rezaeipourfarsangi and Milios (2023); Jiang et al.
(2020); Mhatre et al. (2023), which explores archi-
tectures such as RNN, LSTM (Staudemeyer and
Morris, 2019) and CNN (O’Shea and Nash, 2015).
Recent deep learning methods include Maheshwary
and Misra (2018); Rezaeipourfarsangi and Milios
(2023), which uses deep siamese network to learn
an embedding space for resume/jobs, Bian et al.
(2019) which uses a hierarchical RNN to improve
domain-adaptation of person-job fit systems, and
Zhang et al. (2023) which uses federated learning
to perform model training while preserving user
privacy. However, as person-job fit systems involve
sensitive data, most systems do not open-source
datasets or implementations, and are often opti-
mized for one particular dataset. Recent work with
public implementations includes MV-CoN (Bian

et al., 2020), which uses a co-teaching network
(Malach and Shalev-Shwartz, 2018) to perform gra-
dient updates based model’s confidence to data
noises; InEXIT (Shao et al., 2023), which uses
hierarchical attention to model resume-job inter-
actions; and DPGNN (Yang et al., 2022), which
uses a graph-based approach with a novel BPR loss
to optimize for resume/job ranking. CONFIT uses
contrastive learning and data augmentation tech-
niques based on powerful pre-trained models such
as BERT (Devlin et al., 2019), and achieves the
best performance in almost all ranking and classifi-
cation tasks across two person-job fit datasets.

Information retrieval systems CONFIT bene-
fits from contrastive learning techniques, which
have seen wide applications in many information
retrieval and representation learning tasks (Chen
et al., 2020; Radford et al., 2021). Given a query
(e.g., user-generated question), an information re-
trieval system aims to find top-k relevant passages
from a large reserve of candidate passages (Joshi
et al., 2017; Kwiatkowski et al., 2019). Popular
methods in information retrieval include BM25
(Robertson and Zaragoza, 2009; Trotman et al.,
2014), a keyword-based approach used as the base-
line in many text ranking tasks (Nguyen et al., 2016;
Thakur et al., 2021; Muennighoff et al., 2022),
and dense retrieval methods such as Karpukhin
et al. (2020); Izacard et al. (2021); Wang et al.
(2022), which uses contrastive learning to obtain
high-quality passage embeddings and typically per-
forms top-k search based on inner product. To our
knowledge, CONFIT is the first attempt to use con-
trastive learning for person-job fit, achieving the
best performances in almost all person-job ranking
tasks across two different person-job fit datasets.

7 Conclusion

We propose CONFIT, a general-purpose approach
to model person-job fit. CONFIT trains a neural
network using contrastive learning to obtain a high-
quality embedding space for resumes and job posts,
and uses data augmentation to alleviate data spar-
sity in person-job fit datasets. Our experiments
across two person-job fit datasets show that CON-
FIT achieves the best performance in almost all
ranking and classification tasks. We believe CON-
FIT is easily extensible, and can be used as a strong
foundation for future research on person-job fit.

8 Limitations

Recruiter/Job Seeker Preference CONFIT pro-
duces dense representations for resumes and jobs
independently, and uses inner-product to score the
resume-job pair. While this approach can be easily
combined with retrieval methods such as FAISS
(Johnson et al., 2019) to efficiently rank a large
number of resumes/jobs, it ignores certain aspects
of how a real recruiter or a job seeker may choose
a resume or a job. In our error analysis (Sec-
tion 5.2), we find a significant portion of incorrectly
ranked/rated resume-job pairs could be either due
to subjective choices made by the recruiters, or due
to a very competitive candidate pool for a certain
job position. This suggests that additionally mod-
eling the recruiter or job seeker’s past preferences
(e.g., using profiling approaches (Yan et al., 2019)
from recommendation systems (Eliyas and Ran-
jana, 2022)) may be beneficial, and that developing
a scoring metric that is aware of the other candi-
dates in the pool could also be useful. In general,
we believe CONFIT embeddings would serve as a
foundation for these approaches, and we leave this
for future work.

Sensitive Data To our knowledge, there is no
standardized, public person-job fit dataset’ that
can be used to compare performances of existing
systems (Zhu et al., 2018; Qin et al., 2018; Bian
et al., 2020; Yang et al., 2022; Shao et al., 2023).
This is understandable, as resume contents con-
tain highly sensitive information and that large-
scale person-job datasets are often proprietary. We
provide our best effort to make CONFIT repro-
ducible and extensible for future work: we will
open-source full implementations of CONFIT and
all relevant baselines, our data processing scripts,
and dummy train/valid/test data files that can be
used test drive our system end-to-end. We will
also privately release our model weights and full
datasets to researchers under appropriate license
agreements. We hope these attempts can make
future research in person-job fit more accessible.

9 Ethical Considerations

CONFIT uses pretrained encoders such as BERT
and E5 (Devlin et al., 2019; Wang et al., 2022), and
it is well-known that many powerful encoders con-
tain biases (Brunet et al., 2019; May et al., 2019;

"The AliYun dataset used in this work is no longer publicly
available as of 09-11-2023.

Jentzsch and Turan, 2022; Caliskan et al., 2022).
For person-job fit systems, we believe it is crucial
to ensure that the systems do not bias towards cer-
tain groups of people, such as preferring a certain
gender for certain jobs. Although both datasets
used in this work already removed any sensitive
information such as gender, we do not recommend
directly deploying CONFIT for real-world applica-
tions without using debiasing techniques such as
Bolukbasi et al. (2016); Cheng et al. (2021); Gaci
et al. (2022); Guo et al. (2022); Schick et al. (2021),
and we do not condone the use of CONFIT for any
morally unjust purposes. To our knowledge, there
is little work on investigating or mitigating biases
in existing person-job fit systems, and we believe
this is an important direction for future work.

References

Shuqing Bian, Xu Chen, Wayne Xin Zhao, Kun Zhou,
Yupeng Hou, Yang Song, Tao Zhang, and Ji-Rong
Wen. 2020. Learning to match jobs with resumes
from sparse interaction data using multi-view co-
teaching network.

Shuqging Bian, Wayne Xin Zhao, Yang Song, Tao Zhang,
and Ji-Rong Wen. 2019. Domain adaptation for
person-job fit with transferable deep global match
network. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4810-4820, Hong Kong, China. Association for Com-
putational Linguistics.

Tolga Bolukbasi, Kai-Wei Chang, James Zou,
Venkatesh Saligrama, and Adam Kalai. 2016. Man is
to computer programmer as woman is to homemaker?
debiasing word embeddings.

Dorian Brown. 2020. Rank-BM25: A Collection of
BM25 Algorithms in Python.

Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ash-
ton Anderson, and Richard Zemel. 2019. Under-
standing the origins of bias in word embeddings. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 803—-811. PMLR.

Aylin Caliskan, Pimparkar Parth Ajay, Tessa
Charlesworth, Robert Wolfe, and Mahzarin R.
Banaji. 2022. Gender bias in word embeddings: A
comprehensive analysis of frequency, syntax, and
semantics. In Proceedings of the 2022 AAAI/ACM
Conference on Al, Ethics, and Society, AIES °22.
ACM.

Jan Cegin, Jakub Simko, and Peter Brusilovsky. 2023.
Chatgpt to replace crowdsourcing of paraphrases for

http://arxiv.org/abs/2009.13299
http://arxiv.org/abs/2009.13299
http://arxiv.org/abs/2009.13299
http://arxiv.org/abs/2009.13299
http://arxiv.org/abs/2009.13299
https://doi.org/10.18653/v1/D19-1487
https://doi.org/10.18653/v1/D19-1487
https://doi.org/10.18653/v1/D19-1487
https://doi.org/10.18653/v1/D19-1487
https://doi.org/10.18653/v1/D19-1487
http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/1607.06520
https://doi.org/10.5281/zenodo.4520057
https://doi.org/10.5281/zenodo.4520057
https://doi.org/10.5281/zenodo.4520057
https://proceedings.mlr.press/v97/brunet19a.html
https://proceedings.mlr.press/v97/brunet19a.html
https://proceedings.mlr.press/v97/brunet19a.html
https://doi.org/10.1145/3514094.3534162
https://doi.org/10.1145/3514094.3534162
https://doi.org/10.1145/3514094.3534162
https://doi.org/10.1145/3514094.3534162
https://doi.org/10.1145/3514094.3534162
http://arxiv.org/abs/2305.12947
http://arxiv.org/abs/2305.12947

intent classification: Higher diversity and comparable
model robustness.

Tiangi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16.
ACM.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations.

Pengyu Cheng, Weituo Hao, Siyang Yuan, Shijing Si,
and Lawrence Carin. 2021. Fairfil: Contrastive neu-
ral debiasing method for pretrained text encoders.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke
Huang, Yihan Cao, Zihao Wu, Lin Zhao, Shaochen
Xu, Wei Liu, Ninghao Liu, Sheng Li, Dajiang Zhu,
Hongmin Cai, Lichao Sun, Quanzheng Li, Dinggang
Shen, Tianming Liu, and Xiang Li. 2023. Auggpt:
Leveraging chatgpt for text data augmentation.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Sherin Eliyas and P Ranjana. 2022. Recommendation
systems: Content-based filtering vs collaborative fil-
tering. In 2022 2nd International Conference on
Advance Computing and Innovative Technologies in
Engineering (ICACITE), pages 1360-1365. IEEE.

William Falcon and The PyTorch Lightning team. 2019.
PyTorch Lightning.

Yacine Gaci, Boualem Benatallah, Fabio Casati, and
Khalid Benabdeslem. 2022. Debiasing pretrained
text encoders by paying attention to paying attention.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
9582-9602, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Tianyu Gao, Xingcheng Yao, and Dangi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894—-6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Daniel Gillick, Sayali Kulkarni, Larry Lansing, Alessan-
dro Presta, Jason Baldridge, Eugene Ie, and Diego
Garcia-Olano. 2019. Learning dense representations

10

for entity retrieval. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL), pages 528-537, Hong Kong, China.
Association for Computational Linguistics.

Shigiang Guo, Folami Alamudun, and Tracy Hammond.
2016. Résumatcher: A personalized résumé-job
matching system. Expert Systems with Applications,
60:169-182.

Yue Guo, Yi Yang, and Ahmed Abbasi. 2022. Auto-
debias: Debiasing masked language models with
automated biased prompts. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1012-1023, Dublin, Ireland. Association for Compu-
tational Linguistics.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao
Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama.
2018. Co-teaching: Robust training of deep neural
networks with extremely noisy labels.

Mansoor Igbal. 2023. LinkedIn usage and revenue
statistics (2023). a. Accessed: 2023-12-29.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense infor-
mation retrieval with contrastive learning.

Sophie Jentzsch and Cigdem Turan. 2022. Gender bias
in BERT - measuring and analysing biases through
sentiment rating in a realistic downstream classifica-
tion task. In Proceedings of the 4th Workshop on Gen-
der Bias in Natural Language Processing (GeBNLP),
pages 184—-199, Seattle, Washington. Association for
Computational Linguistics.

Junshu Jiang, Songyun Ye, Wei Wang, Jingran Xu, and
Xiaosheng Luo. 2020. Learning effective representa-
tions for person-job fit by feature fusion.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. [EEE
Transactions on Big Data, 7(3):535-547.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehen-
sion.

Ehsan Kamalloo, Nandan Thakur, Carlos Lassance,
Xueguang Ma, Jheng-Hong Yang, and Jimmy Lin.
2023. Resources for brewing beir: Reproducible
reference models and an official leaderboard.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqgi Chen, and
Wen tau Yih. 2020. Dense passage retrieval for open-
domain question answering.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,

http://arxiv.org/abs/2305.12947
http://arxiv.org/abs/2305.12947
http://arxiv.org/abs/2305.12947
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2103.06413
http://arxiv.org/abs/2103.06413
http://arxiv.org/abs/2103.06413
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/2302.13007
http://arxiv.org/abs/2302.13007
http://arxiv.org/abs/2302.13007
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.18653/v1/2022.emnlp-main.651
https://doi.org/10.18653/v1/2022.emnlp-main.651
https://doi.org/10.18653/v1/2022.emnlp-main.651
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/K19-1049
https://doi.org/10.18653/v1/K19-1049
https://doi.org/10.18653/v1/K19-1049
https://doi.org/https://doi.org/10.1016/j.eswa.2016.04.013
https://doi.org/https://doi.org/10.1016/j.eswa.2016.04.013
https://doi.org/https://doi.org/10.1016/j.eswa.2016.04.013
https://doi.org/10.18653/v1/2022.acl-long.72
https://doi.org/10.18653/v1/2022.acl-long.72
https://doi.org/10.18653/v1/2022.acl-long.72
https://doi.org/10.18653/v1/2022.acl-long.72
https://doi.org/10.18653/v1/2022.acl-long.72
http://arxiv.org/abs/1804.06872
http://arxiv.org/abs/1804.06872
http://arxiv.org/abs/1804.06872
https://www.businessofapps.com/data/linkedin-statistics/
https://www.businessofapps.com/data/linkedin-statistics/
https://www.businessofapps.com/data/linkedin-statistics/
https://doi.org/10.48550/ARXIV.2112.09118
https://doi.org/10.48550/ARXIV.2112.09118
https://doi.org/10.48550/ARXIV.2112.09118
https://doi.org/10.18653/v1/2022.gebnlp-1.20
https://doi.org/10.18653/v1/2022.gebnlp-1.20
https://doi.org/10.18653/v1/2022.gebnlp-1.20
https://doi.org/10.18653/v1/2022.gebnlp-1.20
https://doi.org/10.18653/v1/2022.gebnlp-1.20
https://doi.org/10.18653/v1/2022.gebnlp-1.20
https://doi.org/10.18653/v1/2022.gebnlp-1.20
http://arxiv.org/abs/2006.07017
http://arxiv.org/abs/2006.07017
http://arxiv.org/abs/2006.07017
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/2306.07471
http://arxiv.org/abs/2306.07471
http://arxiv.org/abs/2306.07471
http://arxiv.org/abs/2004.04906
http://arxiv.org/abs/2004.04906
http://arxiv.org/abs/2004.04906

Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Compu-
tational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization.

Yuanhua Lv and ChengXiang Zhai. 2011. When doc-
uments are very long, bm25 fails! In Proceedings
of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR 11, page 1103-1104, New York, NY, USA.
Association for Computing Machinery.

Saket Maheshwary and Hemant Misra. 2018. Matching
resumes to jobs via deep siamese network. Compan-
ion Proceedings of the The Web Conference 2018.

Eran Malach and Shai Shalev-Shwartz. 2018. Decou-
pling "when to update" from "how to update".

Chandler May, Alex Wang, Shikha Bordia, Samuel R.
Bowman, and Rachel Rudinger. 2019. On measuring
social biases in sentence encoders. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume I (Long and
Short Papers), pages 622—628, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Sonali Mhatre, Bhawana Dakhare, Vaibhav Ankolekar,
Neha Chogale, Rutuja Navghane, and Pooja Gotarne.
2023. Resume screening and ranking using convolu-
tional neural network. In 2023 International Confer-

ence on Sustainable Computing and Smart Systems
(ICSCSS), pages 412-419.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng
Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. 2016. MS MARCO: A human gener-
ated machine reading comprehension dataset. CoRR,
abs/1611.09268.

OpenAl. 2022a. New and improved embedding model.
OpenAl. 2022b. OpenAl: Introducing ChatGPT.

Keiron O’Shea and Ryan Nash. 2015. An introduction
to convolutional neural networks.

Chuan Qin, Hengshu Zhu, Tong Xu, Chen Zhu, Liang
Jiang, Enhong Chen, and Hui Xiong. 2018. Enhanc-
ing person-job fit for talent recruitment: An ability-
aware neural network approach. In The 41st Inter-
national ACM SIGIR Conference on Research & De-
velopment in Information Retrieval, SIGIR *18, page

11

25-34, New York, NY, USA. Association for Com-
puting Machinery.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner,
and Lars Schmidt-Thieme. 2012. Bpr: Bayesian
personalized ranking from implicit feedback.

Sima Rezaeipourfarsangi and Evangelos E. Milios.
2023. Ai-powered resume-job matching: A docu-
ment ranking approach using deep neural networks.
In Proceedings of the ACM Symposium on Document
Engineering 2023, DocEng 23, New York, NY, USA.
Association for Computing Machinery.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm?25 and be-
yond. Found. Trends Inf. Retr., 3(4):333-389.

Timo Schick, Sahana Udupa, and Hinrich Schiitze. 2021.
Self-diagnosis and self-debiasing: A proposal for re-
ducing corpus-based bias in NLP. Transactions of the
Association for Computational Linguistics, 9:1408—
1424.

Taihua Shao, Chengyu Song, Jianming Zheng, Fei Cai,
and Honghui Chen. 2023. Exploring internal and
external interactions for semi-structured multivariate
attributes in job-resume matching. In International
Journal of Intelligent Systems.

Ralf C. Staudemeyer and Eric Rothstein Morris. 2019.
Understanding lstm — a tutorial into long short-term
memory recurrent neural networks.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. Beir:
A heterogenous benchmark for zero-shot evaluation
of information retrieval models.

Andrew Trotman, Antti Puurula, and Blake Burgess.
2014. Improvements to bm25 and language models
examined. In Proceedings of the 19th Australasian
Document Computing Symposium, ADCS ’ 14, page
58-65, New York, NY, USA. Association for Com-
puting Machinery.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579-2605.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all
you need.

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://doi.org/10.1145/2009916.2010070
https://doi.org/10.1145/2009916.2010070
https://doi.org/10.1145/2009916.2010070
https://api.semanticscholar.org/CorpusID:13807085
https://api.semanticscholar.org/CorpusID:13807085
https://api.semanticscholar.org/CorpusID:13807085
http://arxiv.org/abs/1706.02613
http://arxiv.org/abs/1706.02613
http://arxiv.org/abs/1706.02613
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.1109/ICSCSS57650.2023.10169716
https://doi.org/10.1109/ICSCSS57650.2023.10169716
https://doi.org/10.1109/ICSCSS57650.2023.10169716
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
https://openai.com/blog/new-and-improved-embedding-model
https://openai.com/blog/chatgpt
http://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
https://doi.org/10.1145/3209978.3210025
https://doi.org/10.1145/3209978.3210025
https://doi.org/10.1145/3209978.3210025
https://doi.org/10.1145/3209978.3210025
https://doi.org/10.1145/3209978.3210025
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/1910.02054
http://arxiv.org/abs/1910.02054
http://arxiv.org/abs/1910.02054
http://arxiv.org/abs/1205.2618
http://arxiv.org/abs/1205.2618
http://arxiv.org/abs/1205.2618
https://doi.org/10.1145/3573128.3609347
https://doi.org/10.1145/3573128.3609347
https://doi.org/10.1145/3573128.3609347
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1162/tacl_a_00434
https://doi.org/10.1162/tacl_a_00434
https://doi.org/10.1162/tacl_a_00434
https://doi.org/10.1155/2023/2994779
https://doi.org/10.1155/2023/2994779
https://doi.org/10.1155/2023/2994779
https://doi.org/10.1155/2023/2994779
https://doi.org/10.1155/2023/2994779
http://arxiv.org/abs/1909.09586
http://arxiv.org/abs/1909.09586
http://arxiv.org/abs/1909.09586
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663
https://doi.org/10.1145/2682862.2682863
https://doi.org/10.1145/2682862.2682863
https://doi.org/10.1145/2682862.2682863
http://jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao,
Linjun Yang, Daxin Jiang, Rangan Majumder, and
Furu Wei. 2023. SimLM: Pre-training with repre-
sentation bottleneck for dense passage retrieval. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2244-2258, Toronto, Canada.
Association for Computational Linguistics.

Jason Wei and Kai Zou. 2019. EDA: Easy data augmen-
tation techniques for boosting performance on text
classification tasks. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 6383-6389, Hong Kong, China. As-
sociation for Computational Linguistics.

Rui Yan, Ran Le, Yang Song, Tao Zhang, Xiangliang
Zhang, and Dongyan Zhao. 2019. Interview choice
reveals your preference on the market: To improve
job-resume matching through profiling memories. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Min-
ing, KDD ’19, page 914-922, New York, NY, USA.
Association for Computing Machinery.

Chen Yang, Yupeng Hou, Yang Song, Tao Zhang, Ji-
Rong Wen, and Wayne Xin Zhao. 2022. Modeling
two-way selection preference for person-job fit. In
RecSys.

Yunchong Zhang, Baisong Liu, and Jiangbo Qian.
2023. Fedpjf: federated contrastive learning for
privacy-preserving person-job fit. Applied Intelli-
gence, 53:27060 — 27071.

Chen Zhu, Hengshu Zhu, Hui Xiong, Chao Ma, Fang
Xie, Pengliang Ding, and Pan Li. 2018. Person-job
fit: Adapting the right talent for the right job with
joint representation learning.

12

http://arxiv.org/abs/2212.03533
http://arxiv.org/abs/2212.03533
http://arxiv.org/abs/2212.03533
https://aclanthology.org/2023.acl-long.125
https://aclanthology.org/2023.acl-long.125
https://aclanthology.org/2023.acl-long.125
https://www.aclweb.org/anthology/D19-1670
https://www.aclweb.org/anthology/D19-1670
https://www.aclweb.org/anthology/D19-1670
https://www.aclweb.org/anthology/D19-1670
https://www.aclweb.org/anthology/D19-1670
https://doi.org/10.1145/3292500.3330963
https://doi.org/10.1145/3292500.3330963
https://doi.org/10.1145/3292500.3330963
https://doi.org/10.1145/3292500.3330963
https://doi.org/10.1145/3292500.3330963
https://api.semanticscholar.org/CorpusID:261454666
https://api.semanticscholar.org/CorpusID:261454666
https://api.semanticscholar.org/CorpusID:261454666
http://arxiv.org/abs/1810.04040
http://arxiv.org/abs/1810.04040
http://arxiv.org/abs/1810.04040
http://arxiv.org/abs/1810.04040
http://arxiv.org/abs/1810.04040

A More Details on Dataset and
Preprocessing

Intellipro Dataset The talent-job pairs come
from the headhunting business in Intellipro Group
Inc. The original resumes/job posts are parsed into
text fields using techniques such as OCR. Some of
the information is further corrected by humans. All
sensitive information, such as names, contacts, col-
lege names, and company names, has been either
removed or converted into numeric IDs. Example
resume and job post are shown in Table A2 and
Table A3, respectively.

AliYun Dataset The 2019 Alibaba job-resume
intelligent matching competition provided resume-
job data that is already desensitized and parsed into
a collection of text fields. There are 12 fields in
a resume (Table A2) and 11 fields in a job post
(Table A3) used during training/validation/testing.
Sensitive fields such as “f&F 37 (living city)
were already converted into numeric IDs. “ T/E%%
45 (work experience) was processed into a list of
keywords. Overall, the average length of a resume
or a job post in the AliYun dataset is much shorter
than that of the Intellipro dataset (see Table 1).
In our analysis, we also manually remapped the
industries mentioned in the AliYun dataset into 20
categories such as “Agriculture”, “Manufacturing”,
“Financial Services”, etc., to be more comparable
with the Intellipro dataset.

B More Details on Model Architecture

In this work, all data (resumes and job posts) are
formatted as a collection of text fields. We sim-
plify the model architecture from InEXIT (Shao
et al., 2023) to produce a single dense vector for
a job post or a resume. InEXIT first encodes each
field independently using a pre-trained encoder, by
encoding the field name (e.g., “education”) and
the value (e.g., “Bachelor; major: Computer Sci-
ence...) separately and then concatenating the two
representations to obtain a representation for the
entire field. Then, InEXIT models the “internal
interaction” between fields from the same docu-
ment using a self-attention layer. Next, InEXIT
views resume-job matching as a non-linear interac-
tion between the fields from a resume-job pair, and
uses another self-attention to model the “external
interaction” between all representations from both
documents. Finally, INEXIT merges the represen-
tations obtained so far into a dense vector for a

13

Validation Intellipro Dataset Aliyun Dataset
Jobs 109 299
Resumes 120 278
Labels 120 300

Table A1: Validation dataset statistics

resume/job, concatenates the dense vectors to rep-
resent an resume-job pair, and finally uses an MLP
layer to produce a matching score.

Compared to concatenating all text fields into
a single string and using an encoder to directly
produce an embedding, this approach of encod-
ing each text field independently can effectively
increase maximum context length (often 512). For
example, we find fields such as “Experiences” and
“Projects” in a resume from the Intellipro dataset
often contain long texts. By encoding each field
independently, we can include up to 512 tokens
from each field, compared to 512 tokens in total
if the two fields are concatenated. We believe this
is particularly suitable for modeling resume and
job posts, as text fields (i.e., sections) from a re-
sume/job post can be understood independently of
other fields.

Since CONFIT models resume-job match using
inner product (compatible with efficient retrieval
frameworks such as FAISS (Johnson et al., 2019)),
we propose a few simplications to InEXIT’s model
architecture. First, since field names (e.g. “educa-
tion”, “experiences”) are short, we directly concate-
nate them with the value to obtain a single string for
each field (e.g., “education: Bachelor in Computer
Science, ...”). We then use a pre-trained encoder to
directly obtain a representation for the entire field.
Next, we follow InEXIT to use self-attention in a
transformer layer to model the “internal interaction”
between fields from the same document. After that,
as we aim to model a resume and a job as dense
vectors independent of each other, we remove the
self-attention layer and the final MLP layer used to
model a non-linear interaction between a resume-
job pair. Instead, we use a linear layer to merge
the representations for each text field, and output a
dense vector for a resume or a job. This can then
be used to perform inner product scoring, and can
be combined with FAISS (see Section 4.6) to rank
thousands of documents under miliseconds.

C More Details on Baselines

XGBoost We use “XGBoost-classifier” (Chen
and Guestrin, 2016) for classification based metrics,

R from Intellipro Dataset

R from AliYun Dataset

User ID: xxxxx

Languages: ENGLISH;

Education: start_date: XXXX-XX-XX;
end_date: XXXX-XX-XX;
college_ranking: 20;
major_name: Computer Science;
degree: BACHELOR;

Location: city_id: 115;

province_id: 827,
country_id: 14;

User ID: xxxXxx

2 K%

Fi: 24;

FFE TAER [E]: 2018;

JEHEIRTT: 551;

BHEE TR 551,763,

HHEE TAEREL: TREMN /s
HHEE TAE Tk ot A sy T2
BRI TAERA: RS
LH TAEAT L R T2

HAEEFF BT xxxx-xxxxJ0/ A
ZHIFT BT xxxx-xxxxJ0/H

TAEZS: =% | 3 | TX | A | ...

// other entries omitted

Preferred Locations: city_id: 115;
province_id: 827;
country_id: 14;
Industry: SOFTWARE_ENGINEERING;
Skills: azure; python; ... // other entries omitted
Experiences: title: Machine Learning Engineer;
start_date: 2017-09;
end_date: UNKNOWN;
company_ranking: -1;
location: UNKNOWN;
description: Lead several MLOps projects...
title: Software Engineer; ... / other entries omitted
Projects: project_name: XXXXX;
title: Leader;
start_date: XXXX-XX-XX;

end_date: XXXX-XX-XX;
description: Deploy template-based ...

Table A2: Example resume from the Intellipro dataset and AliYun dataset. The Intellipro dataset contains resumes in
both English and Chinese, while the AliYun dataset contains resumes only in Chinese. All documents are prepared as
a collection of fields, displayed as: “field name: content”. Certain details are hidden for privacy concerns. User_ID
is removed during training/validation/testing. Fields with multiple entries (e.g., Experiences in the Intellipro dataset)
are concatenated using newlines.

J from Intellipro Dataset J from AliYun Dataset

Job ID: xxxxx

TIEZH: THEME

TAERAL: TRAENALER
TAESET: 719

B AL 3

i B ifxxxx-EExxxx L& H
FREETFAARRT AL 2019xxxx
FREELE AT [A]: 2019xxxx
TAERAR: THEFE 515 A5
3L 5ERK...// other details omitted

RIRET: K&

Job ID: xxxxx
Company Rank: 12
Company Description: Energetic, exciting Silicon Valley startup.
Job Title: Deep Learning Specialist
Job Location: city_id: 123;

province_id: 335;

country_id: 56
Job Position Type: Full-time;
Job Description/Responsibilities: Use computer vision, computa-
tional geometry, and ... // other details omitted
Required Qualifications/Skills: Strong programming experience in
Python, C++, or Java; PhD in Computer Science, Electrical Engi-
neering, ... // other details omitted
Preferred Qualifications/Skills: UNKNOWN

1.BERS 3

ETEREFE: 0
TAEFER: AFEF+F

Table A3: Example job posts from the Intellipro dataset and AliYun dataset. The Intellipro dataset contains job
posts in both English and Chinese, while the AliYun dataset contains job posts only in Chinese. All documents
are prepared as a collection of fields, displayed as: “field name: content”. Certain details are omitted. Job_ID is
removed during training/validation/testing.

and “XGBoost-ranker” for ranking based metrics in
Table 3 and Table 4. Similar to other classification-

targeted methods such as MV-CoN and InEXIT, we
use D without “contrastive learning”. Hyperparam-

14

eters are tuned using grid search, and classification
thresholds are found using the validation set.

RawEmbed We first concatenate all fields in
a resume/job post into a single string, and use
pre-trained encoders such as BERT (Devlin et al.,
2019), ES (Wang et al., 2022), xIm-roberta (Con-
neau et al., 2019), and OpenAl text-ada-002 (Ope-
nAl, 2022a) to produce a dense embedding. We use
inner product to produce a score for ranking tasks,
and use cosine similarity with a threshold found
using the validation set for classification tasks.

MV-CoN We follow the official implementations
from Bian et al. (2020), but replace the fixed em-
bedding layer with the architecture shown in Sec-
tion 4.2 and Figure 1, since our test set considers
unseen resumes and job posts. We use AdamW
optimizer (Loshchilov and Hutter, 2019) with a
learning rate of 5e-6, a linear warm-up schedule
for the first 10% of the training steps, and a weight
decay of 1e-2 for both datasets. We use a batch size
of 4 with a gradient accumulation of 4 when a small
encoder (e.g., BERT-base) is used, and use Deep-
Speed Zero 2 (Rajbhandari et al., 2020) with BF16
mixed precision training when a large encoder (e.g.,
ES5-large) is used.

InEXIT We follow the official implementation
from Shao et al. (2023) to model both the “internal”
and “external” interaction between a resume-job
pair. We use AdamW optimizer (Loshchilov and
Hutter, 2019) with a learning rate of 5e-6, a linear
warm-up schedule for the first 10% of the training
steps, and a weight decay of 1e-2 for both datasets.
We use a batch size of 8 with a gradient accumula-
tion of 2 when a small encoder is used, and a batch
size of 4 with a gradient accumulation of 4 when a
large encoder is used.®

DPGNN We follow the official implementation
from Yang et al. (2022), but remove the fixed-size
embedding layer in the graph neural network for en-
coding a resume or a job, since our test set consid-
ers unseen resumes and job posts. We replace the
embedding layer with a pre-trained encoder (e.g.,

8Tn our experiment, we find that InEXIT (Shao et al., 2023)
performs slightly worse than MV-CoN (Bian et al., 2020) on
the AliYun dataset (see Table 3), while Shao et al. (2023)
reports the contrary. We believe this is because INEXIT con-
siders a test setting where part of the resumes/job posts can
be seen in training, since training/validation/testing pairs are
simply randomly sampled. In contrast, in our experiment, we
consider test and validation set with only resumes/job posts
not seen during training.

15

BERT), and keep other aspects the same, such as
modeling both the “active” and “passive” represen-
tation of a resume or a job post. We also removed
the GraphCNN module as we do not have “interac-
tion records” (e.g., recruiters reaching out to job
seekers) used to train this module, and the total
number of labels in our resume-job datasets is also
small. Finally, we modified the proposed BPR loss
(Yang et al., 2022) by first normalizing all embed-
ding vectors, since we found training DPGNN with
the original BPR loss results in high numerical in-
stability. We use AdamW optimizer (Loshchilov
and Hutter, 2019) with a learning rate of le-5, a
linear warm-up schedule for the first 5% of the
training steps, and a weight decay of le-2 for both
datasets. We use a batch size of 8 with a gradient
accumulation of 2 when using a small encoder, and
a batch size of 4 with a gradient accumulation of 4
when using a large encoder.

BM25 Since resumes in the Intellipro dataset can
be long, we use BM25L (Lv and Zhai, 2011; Trot-
man et al., 2014) for ranking tasks. We use the
implementation from Brown (2020) with the de-
fault hyperparameters.

In general, all neural-network-related code is im-
plemented using PyTorch Lightning (Falcon and
The PyTorch Lightning team, 2019), and all train-
ing is performed on a single A100 80GB GPU. We
train all models for 10 epochs and save the best
checkpoint based on validation loss for testing. On
average, it takes about 1 hour and 4 hours to train
MV-CoN, InEXIT, DPGNN using a small encoder
on the Intellipro dataset and the AliYun dataset,
respectively. When using a large encoder (e.g., E5-
large), it takes about 5-8 hours and 19-24 hours
to train on the Intellipro dataset and the AliYun
dataset, respectively.

D CoONFIT Training Hyperparameters

In general, CONFIT first performs data augmenta-
tion using both ChatGPT and EDA (see Section 3.1
and Appendix E for more details), and then trains
the model architecture shown in Figure 1 using
contrastive learning (see Section 3.2). Similar to
baseline methods (see Appendix C), we use the
AdamW optimizer (Loshchilov and Hutter, 2019),
a linear warm-up schedule for the first 5% of the
training steps, and a weight decay of le-2 for both
datasets. We use a batch size of B = 8, By50.q = 8
with a gradient accumulation of 2 when using a
small encoder for both datasets. When using a large

encoder (e.g., E5-large) on the Intellipro dataset,
we keep the same batch size of B = 8, but with
Bhara = 4 and DeepSpeed Zero 2 (Rajbhandari
et al., 2020) with BF16 mixed precision training
due to GPU memory constraints. On the AliYun
dataset, we simply use B = 8, By,,q = 8 without
DeepSpeed as input sequences are much shorter
compared to those from the Intellipro dataset.

We train CONFIT models for 10 epochs and save
the best checkpoint based on validation loss for
testing. On average, CONFIT takes about 1.5 hours
and 4.5 hours to train when using a small encoder
on the Intellipro dataset and the AliYun dataset,
respectively. When using a large encoder (e.g., ES-
large), CONFIT takes about 3 hours and 9 hours
to train on the Intellipro dataset and the AliYun
dataset, respectively.

E More Details on Data Augmentation

In Section 3.1, we discussed how CONFIT can in-
crease the number of resume-job labels by first cre-
ating augmented resumes R; and jobs J; that carry
semantically similar information as R; and J;, and
then replicating the labels from R; and J; to Rl and
J;-. Since much information in a resume or a job
post contains formal names such as “Job Title”, we
only paraphrase certain sections. For resumes in
the Intellipro dataset, we paraphrase the “descrip-
tion” subsection in the “Experiences” section and
the “description” subsection in the “Projects” sec-
tion (see Table A2). For job posts in the Intellipro
dataset, we paraphrase the “Company Description”
section, the “Job Description/Responsibilities” sec-
tion, the “Required Qualifications/Skills”, and the
“Preferred Qualifications/Skills™ section (see Ta-
ble A3). For the AliYun dataset, we paraphrase the
“TAERL” (work experience) section for resumes,
and the “ T{EF#iA" (job description) section for
job posts.

CONFIT performs data augmentation using both
ChatGPT and EDA for 500 resumes and 500 jobs
for each dataset. With only 1000 augmented docu-
ments on each dataset, we increased the number of
resume-job labels by 5330 and 9706 for the Intel-
lipro dataset and the AliYun dataset, respectively.

F More Details on Runtime Comparison

In Section 4.6, we compared the runtime of various
neural-based methods from Table 3. We catego-
rize neural-based methods into two types when
doing inference: Maximum Inner Product Search

16

(MIPS) methods and Non-linear (Non-linear) meth-
ods. MIPS methods compute a matching score
between two dense vectors using inner product,
and can be efficiently implemented using FAISS
(Johnson et al., 2019) to scale to billions of doc-
uments. MIPS-based approach includes RawEm-
bed and CONFIT. Non-linear methods produce a
matching score by modeling non-linear interactions
between a resume and a job’s (intermediate) repre-
sentations. For example, InEXIT first concatenates
the intermediate representations of a resume and a
job, and then passes them into a self-attention layer
and an MLP layer for scoring. Non-linear methods
include MV-CoN, InEXIT, and DPGNN.

All experiments are performed using the test set
from the AliYun dataset on a single A100 80GB
GPU. For MIPS-based methods, we precompute
all the relevant embeddings (excluded from run-
time calculation), and record the average runtime
for FAISS to retrieve the top 10 job posts from
a pool of 100, 1000, and 10000 job posts when
given a resume embedding. For non-linear meth-
ods, we record the average runtime to perform all
the needed forward passes for each of the 100,
1000, and 10000 resume-job pairs. However, we
do note that the runtime for non-linear methods
can be further optimized by precomputing certain
intermediate representations before passing them
into their respective non-linear scoring layers. We
did not perform this optimization because 1) this is
highly architecture- and method-dependent, and 2)
it still does not scale well when the number of job
posts is large, or when there are multiple resumes
to query.

G More Details on Ablation Studies

Our ablation studies in Section 4.7 also experi-
mented with removing neural networks completely,
to decouple our methodology from any particular
choice of neural networks. To achieve this, we first
mimic the batches used during contrastive training
in CONFIT and construct a dataset D, which con-
tains a positive resume-job pair (R;", J;") along
with [negative resumes and [negative job posts
(see Section 3.2). Then, we treat all negative re-
sumes and job posts that have a label of y = 0 when
paired with Ji+ and R;r, respectively. Finally, we
encode all resumes and job posts using TF-IDF, and
train an XGBoost ranker using D¢opn. To be compa-
rable with CONFIT which uses B = 8, Bparq = 8,
we use [= 16 for each positive resume-job pair,

100

100 100
others
W Business Management
Software Engineering - ® o £
% Human Resources N " ¥ | L
Cnn o, n .
- - L - » » -
% . .Q‘?f“:‘ 3 "] e, 4
% . 32* 2% =
. » . . .x- -~ LP g * s P
st n 7 . "
»y . n s '. TS W Tk o
0 r 0 L g- Bty " % = 0 pa e .
e e e - L .
,_"""' p LR Y e .
e T e U
- L " At TR
KR] L - et
L
: b
~1%50 0 100 %00 0 100 %00 0 100
(a) CONFIT (b) E5-small (c) text-ada-002
100 100 100
nay =
L e .
- oy o . L
L T A P T ! . ma . ab -
2w e VT Uiy = P A g
Pl " Nas ey T £
¥ n = « pey
By o gt D o LRl OV I SR LW 3
R S g filhes e en e Ly e
- - -
0 L . of jo i le s T :‘a.’:;.;' 0 Y
P oy . R . 2 oy L) e] * o
h . . . N W1 agne i
4 w L T < "‘,-."‘“-ﬂ .
‘ 2t b S 3 N -
. P W ‘o . '3: wi
- Wiy, e - e e
gt w " S] - n* -y
L]
-1 -1 1
O—0100 0 100 O—0100 0 100 O—0100 0 100
(d) BERT-base (e) MV-CoN (f) DPGNN

Figure Al: Resume embeddings produced by various methods in Table 3 with BERT-base-multilingual-cased
as backbone encoder. Colors assigned using each resume’s desired industry. Top-3 most frequent industries are
color-coded for easier viewing. BERT-base refers to raw embedding produced by BERT-base-multilingual-cased.

Intellipro Dataset AliYun Dataset
Rank Resume Rank Job Classification Rank Resume Rank Job Classification
Method Encoder MAP nDCG MAP nDCG Fl Prc+ Rcl+ MAP nDCG MAP nDCG F1 Prc+ Rcl+
MV-CoN BERT-base 10.81 10.00 3.34 2.17 58.00 50.00 3333 5.41 5.15 1344 12.67 7425 7222 68.32
InEXIT BERT-base 1227 1298 4.11 346 5555 4474 3542 525 498 13.02 1230 71.75 66.67 7218
DPGNN BERT-base 179.64 21.95 17.86 19.60 61.16 52.38 4583 1996 24.64 27.23 30.07 5031 4524 57.14

Ours+XGBoost TF-IDF 24.04 27.29 1560 17.23 43.60

37.66 6042 2419 2895 30.29 33.66 5231 47.51 64.67

Table A4: CONFIT without neural networks (denoted as Ours+XGBoost) is competitive against many prior person-
job fit methods with BERT-base as a backbone encoder. F1 is weighted F1 score, nDCG is nDCG@ 10, Prc+ and
Rcl+ are precision and recall for positive classes. Results for non-deterministic methods are averaged over 3 runs.

Best result is shown in bold, and runner-up is in gray.

with 14 random negatives and 2 hard negatives.

We denote this approach as Ours+XGboost, and
compare its performance against other person-job
fit systems in Table A4. We find our approach
is still competitive against these methods that use
a BERT-base (Devlin et al., 2019) encoder. This
suggests that the contrastive learning and data aug-
mentation procedure from CONFIT is effective for
the person-job fit task.

H More Details on Qualitative Analysis

Figure A1l presents the resume embeddings pro-
duced by various methods in Table 3 with BERT-

17

base-multilingual-cased as the backbone encoder
(with the exception of OpenAl text-ada-002, which
is from Table 4). Since methods such as MV-CoN,
InEXIT, and DPGNN does not explicitly learn a
resume or a job embedding, we extract the represen-
tations from the last layer before their resume-job
pair scoring layers (e.g., the final MLP layer in
MV-CoN, or the self-attention layers in InEXIT).

In general, we find embeddings produced by
MYV-CoN, DPGNN, and BERT-base tend to scatter
“Software Engineering”-related resumes across the
entire embedding space, while embeddings pro-
duced by CONFIT, E5-small, and text-ada-002

has a clearer separation between “Software En-
gineering” and other industries such as “Human
Resource”. In Table 3, we similarly find the rank-
ing performances of CONFIT, E5-small, and text-
ada-002 are better than MV-CoN, DPGNN, and
BERT-base on the Intellipro dataset. Therefore, we
believe Figure A1 qualitatively shows that having
a high-quality embedding space is beneficial for
modeling person-job fit.

18

