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ABSTRACT

Positional Encodings (PEs) are used to inject word-order information into
transformer-based language models. While they can significantly enhance the
quality of sentence representations, their specific contribution to language models
are not fully understood, especially given recent findings that building natural-
language understanding from language models with positional encodings are in-
sensitive to word order. In this work, we conduct more in-depth and systematic
studies of positional encodings, thus complementing existing work in four aspects:
(1) We uncover the core function of PEs by identifying two common properties,
Locality and Symmetry; (2) We first point out a potential weakness of current
PEs by introducing two new probing tasks of word swap; (3) We first investigate
the linguistic capability of PEs;(4) Based on these findings, we propose a simpli-
fied method to inject positional information into such models. Empirical studies
demonstrate that this method can improve the performance of the BERT-based
model on 10 downstream datasets. We hope these new probing results and find-
ings can shed light on how to design and inject positional encodings into language
models.

1 INTRODUCTION

Transformer-based language models with Positional Encodings (PEs) can improve performance con-
siderably across a wide range of natural language understanding tasks. Existing work resort to either
fixed (Vaswani et al., 2017; Su et al., 2021; Press et al., 2021a) or learned (Shaw et al., 2018; De-
vlin et al., 2019; Wang et al., 2019) PEs to infuse order information into attention-based models.
To understand how PEs capture word order, prior studies apply visualized (Wang & Chen, 2020)
and quantitative analyses (Wang et al., 2020) to various PEs, and their findings conclude that all
encodings, both human-designed and learned, exhibit a consistent behavior: First, the position-wise
weight matrices show that non-zero values gather on local adjacent positions. Second, the matrices
are highly symmetrical, as shown in Figure 1. These are intriguing phenomena, with reasons not
well understood.

To bridge this gap, we strive to uncover the core properties of PEs by introducing two quantitative
metrics, Locality and Symmetry. Our empirical studies demonstrate that these two properties are
correlated with sentence representation capability. This explains why fixed encodings are designed
to satisfy them and learned encodings are favorable to be local and symmetrical. Moreover, we
show that if BERT is initialized with PEs that already share good locality and symmetry, it can
obtain better inductive bias and significant improvements across 10 downstream tasks.

Although PEs with locality and symmetry can achieve promising results on natural language un-
derstanding tasks (such as GLUE Wang et al. (2018)), the symmetry property itself has an obvious
weakness, which is not revealed by previous work. Existing studies use shuffled text to probe the
sensitivity of PEs to word orders (Yang et al., 2019a; Pham et al., 2021; Sinha et al., 2021; Gupta
et al., 2021; Abdou et al., 2022), and they all assume that the meaning of sentences with random
swaps remains unchanged. However, the random shuffling of words may change the semantics of
the original sentence and thus cause the change of labels. For example, the sentence pair below from
SNLI (Bowman et al., 2015) satisfies the entailment relation:

a. A man playing an electric guitar on stage b. A man playing guitar on stage
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If we change the word order of the premise sentence so that it becomes “an electric guitar playing a
man on stage”, but a fine-tuned BERT still finds that the premise entails the hypothesis. Starting from
this point, we design two new probing tasks of word swap: Constituency Shuffling and Semantic Role
Shuffling. The former attempt to preserve the original semantics of the sentence by swapping words
inside constituents (local structure) while the latter intentionally changes the semantics by swapping
the semantic roles in a sentence (global structure), e.g., the agent and patient. Our probing results
show that existing language models with various PEs are robust against local swaps but extremely
fragile against global swaps.

Moreover, we investigate the linguistic roles of positional encodings, which have not yet been stud-
ied by prior work. Our empirical results show that there is a clear distinct role between the positional
and contextual encodings in sentence comprehension: positional encodings play more of a role at the
syntactic level while contextual encodings serve more at the semantic level (if the semantic task does
not require word order information), and the combination of the two can consistently yield better
performances on these probing tasks. As for the dependency relations, positional weights capture
more short-distance dependencies while contextual weights capture more long-distance ones. Fi-
nally, based on our new findings, we propose a new method to combine positional and contextual
features, which is a simple yet effective way to inject positional encodings into language models.
Experimental results show that our proposed method can bring improvements across 10 sentence-
level downstream tasks.

The key contributions of our work are:

• We introduce two quantitative metrics, locality and symmetry, to systematically uncover
the main functions of positional encodings.

• We design two new probing tasks of word swaps, which show a weakness of existing
positional encodings, namely the insensitivity against the swap of semantic roles.

• We first probe the linguistic roles of positional encodings, which reveals contextual and
positional encodings play distinct roles at the syntactic level.

• Based on our findings, we propose a novel way to combine positional and contextual en-
codings, which can bring performance improvement without introducing complexity.

2 PRELIMINARIES

The central building block of transformer architectures is the self-attention mechanism (Vaswani
et al., 2017). Given an input sentence: X = {x1,x2, ...,xn} ∈ Rn×d, where n is the number of
words and d is the dimension of word embeddings, then the attention computes the output of the i-th
token in this way:

x̄i =

n∑
j=1

exp(αi,j)

Z
xjW

V where αi,j =
(xiW

Q)(xjW
K)T

√
d

, Z =

n∑
j=1

exp(αi,j) (1)

Self-attention heads do not intrinsically capture the word orders in a sequence. Therefore, specific
methods are used to infuse positional information into self-attention Dufter et al. (2022).

Absolute Positional Encoding (APE) computes a positional encoding for each token and add it
to the input content embedding to inject position information in the original sequence. The αi,j in
Equation 1 are then written:

αi,j =
(xi + pi)W

Q
(
(xj + pj

)
WK)T

√
d

(2)

where pi ∈ Rd is a position embedding of the ith token, obtained by fixed (Vaswani et al., 2017;
Dehghani et al., 2018; Takase & Okazaki, 2019; Shiv & Quirk, 2019; Su et al., 2021) or learned
encodings (Gehring et al., 2017; Devlin et al., 2019; Wang et al., 2019; Press et al., 2021b). Further,
TUPE model simplifies Equation 2 by removing two redundant items (see details in Section A of
the appendix):

αi,j =
(xiW

Q)(xjW
K)T + (piU

Q)(pjU
K)T

√
d

(3)
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Relative Positional Encoding (RPE) produces a vector ri,j or a scalar value βi,j that depends on
the relative distance of tokens. Specifically, these methods apply such vector or bias to the attention
head so that the corresponding attentional weight can be updated based on the relative distance of
two tokens (Shaw et al., 2018; Raffel et al., 2019):

αi,j =
xiW

Q
(
xjW

K + rKi,j)
T

√
d

; αi,j =
(xiW

Q)(xjW
K)T + βi,j√

d
(4)

where the left mode uses a vector ri,j while the right uses a scalar value βi,j , for infusing relative
distance into attentional weight.

Recent research of RPEs has been remarkably vibrant, with the emergence of diverse novel and
promising variants (Dai et al., 2019; He et al., 2020; Press et al., 2021a).

Unified Positional Encoding. Inspired by TUPE (Ke et al., 2021), we rewrite all above absolute
and relative positional encodings in a unified way:

αi,j =

contextual︷︸︸︷
γi,j +

positional︷︸︸︷
δi,j√

d
(5)

where, the left half of the numerator, γi,j , captures contextual correlations (or weights), i.e., the
semantic relations between token xi and xj . In this case, it is γi,j = (xiW

Q)(xjW
K)T. δ, the

right half, captures positional correlations, i.e., the positional relations between tokens xi and xj . For
example, TUPE’s positional correlation can be represented as δi,j = (piW

Q)(pjW
K)T while the

relative encoding in Shaw et al. (2018) can be represented as δi,j = xiW
Q
(
rKi,j)

T. Thus, existing
positional encodings all add contextual and positional correlations together in every attention head.

3 POSITIONAL ENCODINGS ENFORCE LOCALITY AND SYMMETRY

3.1 THE PROPERTIES OF LOCALITY AND SYMMETRY

Figure 1: Visualizations of different pre-trained
language models by using Identical Word Prob-
ing (Wang et al., 2020). The attention weights are
averaged across different layers.

Existing work analyze positional encodings
with the help of visualizations Wang & Chen
(2020); Wang et al. (2020); Abdou et al. (2022),
and their analyses of either fixed or learned
encodings led to similar visualized results, as
shown in Figure 1. These position-wise weight
matrices are computed by using the Identical
Word Probing proposed by Wang et al. (2020):
many repeated identical words are fed to the
pre-trained language model, so that the atten-
tion values (αi,j) in Equation 5) are unaffected
by contextual weights (See details of visualiza-
tions in Section B.1). Each matrix in this figure
is a positional weight map, where each row is a
vector for the i-th position and the element at (i, j) indicates the attention weight between the i-th
position and the j-th position. We can first observe these attention matrices are all diagonal heavy,
which means various positional encodings highly attend to local positions. Second, all matrices are
nearly symmetrical. We call these two phenomena the Locality and Symmetry of positional encod-
ings, and we provide a linguistic explanation for the two properties in Appendix B.3. The symmetry
property has been discovered and quantified already by Wang et al. (2020). Here, we provide a more
in-depth analysis of symmetry. We will also point out the potential flaw of symmetry itself, which is
not considered by prior work. To better understand how encodings capture word order, we introduce
two quantitative metrics to depict the Locality and Symmetry for an attentional weight vector ϵi,
where the element ϵi,j can be denoted as:

ϵi,j =
exp(αi,j)∑n

j=1 exp(αi,j)
where ϵi,j ≥ 0 and

n∑
j=1

ϵi,j = 1 (6)

Locality is a metric that depicts the degree of the gathering of weights in local positions for an
attentional weight vector. Given a weight vector for the i-th position ϵi = {ϵi,1, ϵi,2, ..., ϵi,n}, we
define locality as:

Locality(ϵi) ∈ [0, 1] =
n∑

j=1

ϵi,j

2|i−j| (7)
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(a) Visualizations of Symmetry and Locality (b) Correlations between Locality and Accuracy (c) Correlations between Symmetry and Accuracy

Figure 2: Empirical studies of the properties of locality and symmetry. The accuracy is tested on the
MR dataset (Pang & Lee, 2005) The yellow line shows the locality or symmetry for the pre-trained
BERT. Results on SUBJ dataset (Pang & Lee, 2004) are shown in Figure 7.

Here, a value of 1 means the vector perfectly satisfies the locality property. For example, given a
sequence whose length is 5 and a weight vector for the first position [1, 0, 0, 0, 0], the locality is 1,
which means it perfectly matches the locality. In contrast, the locality is 1/16 if the weight only
attends the last position [0, 0, 0, 0, 1]. For measuring the locality of a matrix, we average the locality
values of all vectors in the matrix.
Symmetry is a metric that describes how symmetrical the weights scatter around the current position
for an attentional weight vector. We adapt the Symmetrical Discrepancy from Wang et al. (2020) for
this goal:

Symmetry(ϵi) ∈ [0, 1] = 1 −
⌊n/2⌋∑
j=1

Norm(
|ϵi,j − ϵi,n−j+1|

⌊n/2⌋
) (8)

Here, a value of 1 means that the vector is completely symmetrical. We modify the original formula
in two points: First, we apply a min-max normalization to each position to obtain more uniform
distributions, because the values of the original one extremely cluster around 0 . Second, we reverse
the value so that 1 means a perfect symmetry instead of 0. Likewise, the average value of all vectors
in a matrix is used as the matrix-level symmetry.

3.2 ARE LOCALITY AND SYMMETRY LEARNED?

The manually designed encodings Sinusoidal (Vaswani et al., 2017) and Roformer (Su et al., 2021)
both satisfy the symmetry and locality properties. However, it is not clear why they were designed
this way. More surprisingly, learned encodings all display locality and symmetry. Therefore, one
may ask whether the two properties are learned after pre-training, and what effect they have.

To answer this question, we use our two proposed metrics to quantify the positional weight matrix
(the averaged weight across layers) before and after pre-training. Specifically, three language mod-
els, BERT (Devlin et al., 2019), XLNet (Yang et al., 2019b) and DeBERTa (He et al., 2020) are
tested in this experiment. As shown in the left in Figure 2, the three language models all become
much more local and symmetrical after pre-training, which proves that the two properties are indeed
learned.

To further explain why positional encodings have a preference for learning these two properties,
we probe the correlations between the two properties and the representation ability in downstream
tasks. To avoid pre-training all language models from scratch, we use static word embeddings from
GloVe (Pennington et al., 2014) and an encoder that is fully based on our handcrafted positional
encodings for a sentence classification task. The benefit is that we can adjust the hyper-parameter in
the handcrafted encodings to obtain encodings with different degrees of locality and symmetry, so
that we can evaluate the correlations precisely. Specifically, we obtain around 100 encoders whose
locality (or symmetry) varies from 0.01 to 1.0 and test their accuracy on the MR sentiment analysis
task. We will describe our handcrafted encodings in Section 3.3. The details of the encoder used in
this experiment is described in Appendix B.4.

The middle figure in Figure 2 shows the results for different locality values. In this experiment, the
symmetry value is 1.0 for all encoders. We observe that the accuracy constantly increases as the
locality of encodings strengthens, which means a higher locality induces better sentence represen-
tation. The yellow line is the locality value for BERT (around 0.2), and BERT actually does not
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Model Size Sentiment Analysis Textual Entailment Paraphrase Identification Textual Similarity
MR SUBJ SST-2 QNLI RTE MNLI MRPC QQP STS-B SICK-R Avg

(22K) (20K) (68.8K) (110K) (5.5K) (413K) (5.4K) (755k) (8.4K) (9.4K)

BERT 110M 72.5±5.3 91.0±2.7 86.4±2.7 85.8±1.0 59.2±1.2 78.2±0.8 73.5±1.8 88.7±0.6 77.8±4.1 64.9±6.0 77.8

BERT-A∗-s 113M 79.4±2.9 93.7±0.6 88.0±0.7 86.3±1.1 59.4±2.7 78.8±0.4 81.5±2.2 88.7±0.4 83.6±2.0 76.3±1.1 81.6
BERT-A∗ 138M 78.2±3.5 93.0±0.8 88.1±1.0 87.0±0.5 61.0±1.4 78.9±0.9 80.9±3.9 89.2±0.3 84.3±2.5 76.0±4.7 81.7

Table 1: Evaluations of handcrafted encodings across 10 downstream tasks. We report the average
score (Spearman correlation for textual similarity and accuracy for others) of five runs using dif-
ferent learning rates. ∗ means the encodings are learnable and s means that positional encodings
are shared within the attention headers of layers.

have an extreme locality. Experimental results on another dataset (Figure 7) show that the accu-
racy growth slows down at a particular locality value (0.3), which means that a perfect locality is
unnecessary. The right figure in Figure 2 shows the results for different symmetry values. In this
experiment, we vary the symmetry while keeping the locality in the interval [0.15, 0.3], which is
close to the value of BERT. Because the change of symmetry will impact the value of locality, we
can only observe this type of partial correlation. We find that symmetry affects performance only
after a certain value (0.65), and a better symmetry leads to better accuracy. Also, the encodings of
the pre-trained BERT are highly symmetrical. Besides, experiments on SUBJ dataset (Pang & Lee,
2004) obtain similar conclusions, as shown in Figure 7.

We conclude that positional encodings with more suitable locality and symmetry can yield better
performance on downstream tasks, which may explain why fixed encodings are designed to meet
the two properties and why learned encodings all exhibit this behavior. However, encodings are not
perfectly local, which might be due to the network architectures and the specific target tasks.

3.3 CAN LOCALITY AND SYMMETRY YIELD BETTER INDUCTIVE BIAS?

Given that locality and symmetry stand out as important learned features of existing positional en-
codings, it begs the question that what happens if a language model is initialized with positional
encodings with good locality and symmetry.

For this purpose, we replace the positional correlations δi,j in Equation 5 with handcrafted Posi-
tional Encodings to probe. There are various human-designed positional encodings, e.g., sinusoidal
encodings (Vaswani et al., 2017), rotary encodings (Su et al., 2021) and ALiBi (Press et al., 2021a),
but the locality and symmetry cannot be modified easily for these encodings. To address this issue,
we propose the Attenuated Encoding, which use a Gaussian kernel (Guo et al., 2019):

δi,j = Φ(li,j) =
exp(αi,j)∑n

j=1 exp(αi,j)
where αi,j =

{
−sw l2i,j i ≤ j

−w l2i,j i > j
(9)

where li,j is the relative distance, w > 0 is a scalar parameter that controls the locality value, and
s is a scalar parameter that controls the symmetry value. Note that there are two key differences
between our encodings and other manually designed ones such as the T5 bias (Raffel et al., 2019)
and ALiBi (Press et al., 2021a). First, the output generated by our method is an attentional vector (or
a discrete probability distribution) that can be regarded as a type of attention mechanism. Thus, we
can estimate the locality and symmetry individually. ALiBi biases, in contrast, cannot be measured
by our proposed metrics directly. Second, we can adjust the hyper-parameters in our method for
obtaining encodings with different localities and symmetry, which ALiBi does not allow.

In this experiment, we adjust the parameter w and s for obtaining weight vector δ that share similar
locality and symmetry with pre-trained BERT (Locality=0.17 and Symmetry=1.0). After, we pre-
train BERTbase initialized with δ and compare them to learned encodings on downstream natural
language understanding tasks. Three variants are compared with the original BERT: 1) BERT-A∗-s
uses learnable and shared δ, but the weights are shared inside a particular layer; 2) BERT-A∗ uses
learnable but not shared δ, which means δ is different in each attentional head. More details of the
datasets and pre-training are shown in the Appendix Section B.6 and Section B.5, respectively. The
empirical results are shown in Table 1. We observe that both BERT-A∗-s and BERT-A∗ can signif-
icantly outperform the original BERT, which demonstrates positional encodings with initialization
of suitable locality and symmetry can have better inductive bias in sentence representation. Besides,
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Model Symmetry Locality Original Shuffle-3 (∆) Shuffle-4 (∆) Shuffle-5 (∆) Shuffle-6 (∆) Random (∆) Original Shuffle-SR (∆)

BERT 87.9 16.2 89.8 -0.4 -0.6 -0.3 -0.5 -2.7 89.8 -63.9
ALBERT 82.0 20.3 91.8 -0.5 -1.1 -1.3 -1.7 -6.0 92.0 -66.8
DeBERTa 85.0 17.8 91.6 -0.5 -0.7 -1.3 -1.1 -5.1 91.6 -58.9

XLNet 72.7 17.5 91.5 -0.2 -0.3 -0.7 -1.2 -5.4 91.3 -57.8
StrucBERT 96.3 7.5 90.9 -0.5 -0.9 -1.3 -1.1 -4.4 90.8 -44.6

Table 2: Results of Constituency Shuffling and Semantic Role Shuffling, measured by accuracy.
Shuffle-x means phrases with length x are shuffled. Shuffle-SR means the semantic roles of agent
and patient are swapped.

the visualizations of attentional heads in BERT are shown in Figure 8 and the visualizations of δ are
shown in Figure 9. In fact, there is a great diversity of behaviors within different attentional heads.

3.4 WHAT IS THE DRAWBACK OF SYMMETRY?

Although positional encodings with good symmetry perform well on a series of downstream tasks,
the symmetry property has an obvious flaw in sentence representations, which is ignored by prior
studies. Existing probes study the sensitivity of language models to word order by shuffling the
words in a sentence, and they can be roughly divided into three categories: random swap (Pham
et al., 2021; Gupta et al., 2021; Abdou et al., 2022), n-gram swap (Sinha et al., 2021), and subword-
level phrase swap (Clouatre et al., 2022). All these works assume that the labels of the randomly
shuffled sentences are unchanged. However, this is obviously not the case. In particular, the shuffled
sentence may have another label (think of the textual entailment example from the introduction).

To address the issue, we propose two new probing tasks of word swaps: Constituency Shuffling
and Semantic Role Shuffling. Constituency Shuffling aims to disrupt the inside order of constituents,
which is able to change the word order while preserving the maximum degree of original semantics.

a

DT

man

NN

on

IN

an electric guitar

an electric guitar

DT JJ NN

NP

playing

VBG

on stage

PP

a man

NP

playing an electric guitar on stage

VP

a man playing an electric guitar on stage

NP

stage

NN

Figure 3: Illustration of constituent
parsing for one sentence in SNLI “a
man playing an electric guitar on
stage”. The result is generated by
Berkeley Neural Parser.

A constituent parsing case is shown in Figure 3, and
we can shuffle the word order inside some phrases, e.g.,
the noun phrase “an electric guitar” while the seman-
tic will not be changed (the grammar structure may
be destroyed). We construct different shuffled datasets
by phrase length, e.g., “an electric guitar” is a phrase
of length 3 and we can obtain tri-gram shuffled sets.
Datasets constructed by constituency shuffling are re-
ferred to as Shuffle-x and x means the length of phrase.
On the other hand, Semantic Role Shuffling intentionally
changes the semantics by swapping the order of the agent
and patient of sentences and thus results in a new sen-
tence with different meanings. In Figure 3, “a man” as
the entity that performs the action, technically known as
the agent, and “an electric guitar” as the entity that is in-
volved in or affected by the action, which is called the
patient. We refer to this dataset as Shuffle-SR because it swap the semantic roles in a sentence.
Some shuffled examples are shown in Table 5.

The distinction of our proposed two probing tasks is that one preserves the semantics while another
changes the semantics. Then, we can probe the capability of language models to correctly recognize
the new sentence’s meaning. Specifically, the Stanford Natural Language Inference (SNLI) (Bow-
man et al., 2015) dataset is used in this experiment and it provided constituent structure for each
sentence. To probe the sensitivity of language models to the two types of shuffling, we fine-tune
5 pre-trained language models with good symmetry on SNLI training set and evaluate them on the
newly constructed Shuffle-x and Shuffle-SR datasets (see details in section B.2). The overall results
of word swap probing are shown in Table 2 We first observe performances of all language models
across Shuffle-x sets basically do not degenerate, which confirms the benefits of the locality and
symmetry properties. Second, most models fail on the Shuffle-SR dataset, which demonstrates local
symmetry does not capture global position changes well, which explain the reason that BERT fails
on the example: “an electric guitar playing a man on stage”. Although the local symmetry learned
by positional encodings can performs well on a series of language understanding tasks, the symme-
try itself has obvious flaws. The better performance of StrucBERT on the Shuffle-SR suggests that

6



Under review as a conference paper at ICLR 2023

introducing additional order-sensitive training tasks may improve this problem. More details of the
probing tasks are described in Appendix B.2

4 LINGUISTIC ROLES OF POSITIONAL ENCODINGS

The syntactic structure is crucial to our understanding of sentences. Many studies have shown that
a substantial amount of linguistic knowledge can be found in contextual word representations, e.g.,
subject-verb agreement (Goldberg, 2019) and dependency tree (Hewitt & Manning, 2019; Wu et al.,
2020). Follow-up work further systematically analyzed the syntactic and semantic capabilities of
the BERT model (Clark et al., 2019; Jawahar et al., 2019; Lin et al., 2019; Rogers et al., 2020).
Nonetheless, the linguistic roles of Positional Encodings are still under-explored. In this section, we
discuss what linguistic knowledge PEs have learned.

4.1 LINGUISTIC PROBING TASKS

We first conduct an ablation study to check the importance of positional and contextual encodings.
The experimental details are shown in Appendix (Section C.2), and we find that the removal of any
encodings degrade the model performances (Table 7). We therefore hypothesize that both encodings
play a role in sentence comprehension and have different responsibilities.

Positional and contextual weights are usually entangled in every attentional head, and therefore the
behavior of positional encodings cannot be observed independently (as shown in Equation 5). To
address this, we hide the contextual correlation γi,j in Equation 5 of a pre-trained BERT (instead of
removing the contextual encodings completely) and thus the attentional weight αi,j only depends
on positional correlation. Note that this operation does not alter the structure of the original network
because a softmax layer is applied to the vector αi, and the output is still an attentional weight
vector that can be regarded as a kind of discrete probability distribution. Therefore, the output
sentence representation is somewhat decoupled from contextual encoding. We refer to this adapted
model as BERT-p. For comparison, we remove the positional correlations θi,j to obtain BERT-c.
We do the same for a pre-trained TUPE model, to obtain TUPE-p and TUPE-c.

In this linguistic probing, we adopt widely used 10 probing tasks (Conneau et al., 2018) with a stan-
dard evaluation toolkit (Conneau & Kiela, 2018). These tasks are a series of classification tasks that
covers three categories: SentLen (Surface), WC (Surface), BShift (Syntactic), TreeDepth (Syntac-
tic), TopConst (Syntactic), Tense (Semantic), SubjNum (Semantic), ObjNum (Semantic), SOMO
(Semantic), CoordInv (Semantic). The details of this experiment are described in Section C.3.

0 2 4 6 8 10
Layer

84

86

88

90

92

Ac
cu

ra
cy

SentLen
BERT
BERT-c
BERT-p
TUPE
TUPE-c
TUPE-p

0 2 4 6 8 10
Layer

0

20

40

60

80

Ac
cu

ra
cy

WC
BERT
BERT-c
BERT-p
TUPE
TUPE-c
TUPE-p

0 2 4 6 8 10
Layer

26

28

30

32

34

36

38

40

Ac
cu

ra
cy

TreeDepth
BERT
BERT-c
BERT-p
TUPE
TUPE-c
TUPE-p

0 2 4 6 8 10
Layer

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

TopConst
BERT
BERT-c
BERT-p
TUPE
TUPE-c
TUPE-p

0 2 4 6 8 10
Layer

50

55

60

65

70

75

80

Ac
cu

ra
cy

BShift
BERT
BERT-c
BERT-p
TUPE
TUPE-c
TUPE-p

0 2 4 6 8 10
Layer

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Ac
cu

ra
cy

Tense
BERT
BERT-c
BERT-p
TUPE
TUPE-c
TUPE-p

0 2 4 6 8 10
Layer

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

Ac
cu

ra
cy

SubjNum
BERT
BERT-c
BERT-p
TUPE
TUPE-c
TUPE-p

0 2 4 6 8 10
Layer

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Ac
cu

ra
cy

ObjNum
BERT
BERT-c
BERT-p
TUPE
TUPE-c
TUPE-p

0 2 4 6 8 10
Layer

49.5

50.0

50.5

51.0

51.5

52.0

52.5

53.0

53.5

Ac
cu

ra
cy

SOMO
BERT
BERT-c
BERT-p
TUPE
TUPE-c
TUPE-p

0 2 4 6 8 10
Layer

50

52

54

56

58

60

62

Ac
cu

ra
cy

CoordInv
BERT
BERT-c
BERT-p
TUPE
TUPE-c
TUPE-p

Figure 4: Results of linguistic probing tasks across different layers. BERT-based models are shown
in triangle while TUPE-based models are shown in circle. The red, blue and yellow lines represent
the use of positional weights, contextual weights and a combination of both, respectively.
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Figure 4 gives the results. We first observe that the combination of contextual and positional encod-
ings can have better performances across all probing tasks (yellow lines). Secondly, compared to
contextual encodings, positional encodings perform better on syntactic tasks (TreeDepth, TopConst,
BShift), which require more information of word orders. On semantic tasks, contextual encodings
outperform contextual encodings on Tense and ObjNum while performs poorly when the seman-
tic probing tasks require order information (CoordInv). Thirdly, a hierarchical structure exists here
when we check the peak of probing tasks for each model, as observed by Jawahar et al. (2019).
For surface tasks, the surface knowledge is stored more in bottom layer, syntactic knowledge is in
middle layer and semantic knowledge is in middle and top layer. Therefore, we conclude that po-
sitional encodings play more of a role at the syntactic level tasks. On semantic tasks, especially
position-independent ones, contextual encodings are more important.

4.2 DEPENDENCY SYNTAX OF POSITIONAL ENCODINGS

Clark et al. (2019) showed that particular heads of BERT indeed correspond remarkably well to
particular long-distance dependencies, like ccomp and mark. To test the dependency knowledge
stored in positional weights, we follow the syntactic probing test by Clark et al. (2019). Specifically,
each head in PLMs is regarded as a simple predictor of dependency relations. Given the attention
weight vector of an input word, we output the word with the highest values and think the pair
of words hold some type of dependency relation. While no single head can perform well on all
relations, the best-performed head is selected as the final ability of a model for each particular
relation. In this experiment, we adopt the original TUPE that uses absolute positional encodings
as our base model. The ability of contextual and positional weights is evaluated by removing the
unrelated encodings in Eq 5, e.g., the first term is removed when checking the syntactic ability of
PEs. The two variants are referred as to Contextual Attention (CA) and Positional Attention (PA).
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Figure 5: Accuracy of top-20 dependency
relations. Detailed results in Table 8, Ap-
pendix.

We extract attention maps from BERT on the MRPC
(Dolan & Brockett, 2005) annotated by dependency
parser of spaCy 1. We report the results on top-20 de-
pendency relations. Figure 5 shows performance on dif-
ferent relations function of word distance in these rela-
tions (Table 8 gives relation-specific results). First, we
observe that positional attention significantly more im-
portant than contextual attention in short-distance de-
pendency relations (distance from 1 to 4). Second,
contextual attention performs takes the lead on long-
distance relations (after 6). Again, the combination of
the two features can yield the best performance. The
“outlier” in the lower left corner is the Root dependency. Because this relation is a self-reflexive
edge, contextual (or self) attentions can performs well on it while learned PEs do not attend to the
current word itself, e.g., visualizations of BERT and DeBERTa in Figure 1.

5 HOW TO COMBINE CONTEXTUAL AND POSITIONAL FEATURES

As discussed before, the core function of positional encodings is to symmetrically combine local
units. As for the linguistic role, the contextual weights are good at long-distance syntactic relations
while positional weights are suitable for short dependencies. The combination of the two weights
can lead to better sentence representations. The add operation of contextual and positional corre-
lation (γi,j and δi,j in Equation 5) is widely used in many PLMs (Devlin et al., 2019; Liu et al.,
2019; Yang et al., 2019b; Ke et al., 2021), as shown in Eq 5. However, to comprehend a sentence,
the semantic meaning is composed bottom-up: morpheme→ word→ phrase→ clause→ sentence.
For example, the two sub-words are composed to a particular meaning {”context”,”##ual”} →
”contextual” and the two words are composed to a phrase {”take”,”off”} → ”take off”. When we
reach word take and off, the two words should be composed of a phrase first and then its meaning is
understood by using the long-distance context. At least, it is not necessary to consider contextual in-

1https://spacy.io/api/dependencyparser
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Model Size Sentiment Analysis Textual Entailment Paraphrase Identification Textual Similarity
MR SUBJ SST-2 QNLI RTE MNLI MRPC QQP STS-B SICK-R Avg

(22K) (20K) (68.8K) (110K) (5.5K) (413K) (5.4K) (755k) (8.4K) (9.4K)

A∗ 138M 78.2±3.5 93.0±0.8 88.1±1.0 87.0±0.5 61.0±1.4 78.9±0.9 80.9±3.9 89.2±0.3 84.3±2.5 77.0±4.7 81.8
A∗-Seq 138M 78.7±2.4 93.3±0.7 88.7±0.3 86.5±0.4 64.1±2.6 78.1±0.4 81.1±2.1 89.5±0.3 85.1±1.9 79.3±1.1 82.5

ALiBi 110M 78.0±4.1 90.1±2.2 84.6±1.3 84.4±0.3 63.6±3.9 74.3±0.3 76.1±2.0 87.2±0.5 82.2±4.6 76.3±4.3 79.7
ALiBi-Seq 110M 78.2±2.3 93.2±1.3 86.1±0.5 84.4±0.4 62.0±2.0 76.7±1.3 76.4±1.0 88.6±0.5 82.1±1.8 75.9±3.7 80.4

Table 3: Evaluations of our sequence combinations of positional and contextual encodings across
10 downstream tasks. ∗ means the encodings are learnable. We report the average score (Spear-
man correlation for textual similarity and accuracy for others) of five runs using different learning
rates.

formation until we compose basic semantic units like words (”contextual”) and short phrase (”take
off”). Therefore, a key question arises: how to combine the contextual and positional weights?

To combine the contextual and positional correlations better and according to our analysis, we pro-
pose a new strategy: Sequence Combination. This method uses two correlations in a particular
order. First, the positional correlation δi,j in Equation 5 is used to combine nearby tokens for com-
posing basic semantic units, e.g., {take, off} → take off. Afterward, contextual correlation γi,j is
applied to these composing units and thus they can be better understood under the contexts. We
refer to the separate usage of the two correlations as Contextual Attention and Positional Attention,
respectively, and this process can be written as:

X̄ = CA(PA(X)) (10)

The computation of CA is obtained by removing the positional item δi,j from Equation 5, and PA
can be computed through the weighted sum of the input sequence by using δi,j . A code example of
the implementation is shown in Listing 3.

In this experiment, we use two positional encodings as baselines: Learned Attenuated Encodings and
Fixed ALiBi (Press et al., 2021a). After, the sequence combination is applied to the two baselines for
comparison. Note that to make ALiBi suit for our experiment, we apply a softmax layer to the linear
biases to obtain an attentional vector, and thus it can be used individually for positional attention
module. The experimental results are shown in Table 3. We observe our proposed sequence com-
bination outperforms the original add operation without introducing additional parameters, which
shows that prioritizing local semantic unit composition is beneficial for sentence representation.
Besides, the sequence combination can achieve lower training and validation loss than the original
BERT using the same steps (Figure 6). A conclusion is that we can subtly adjust the sequence of
using positional encoding without introducing additional parameters to obtain a certain degree of
improvement in the language understanding tasks.

6 CONCLUSION

We have proposed a series of probing analyses for understanding the role of positional encodings
in sentence representations. We find two main properties of existing encodings, Locality and Sym-
metry, which is correlated with the performance of downstream tasks. Meanwhile, we point out an
obvious flaw of the symmetry property. We further complement existing research by distinguish-
ing the linguistic roles of positional and contextual encodings, and by proposing to combine them
sequentially rather than additively.

The limitations of this work are two-fold. First, our analysis is limited to the natural language
understanding of the English language. Different languages display different word order properties.
For instance, English is subject-verb-object order (SVO) while Japanese is subject-object-verb order
(SOV), and natural language generation models are not included in this work. Besides, a recent work
finds that the autoregressive models without any explicit positional encoding are still competitive
with standard models (Haviv et al., 2022), which shows the generative model might not be a perfect
target for researching order information. Second, although our handcrafted positional encodings
satisfy the Symmetry property, it merely replicates the limitations of current positional encoding,
albeit in a simplified form. Further architecture development should address the problem of the “an
electric guitar playing a man on stage.” mentioned in the introduction.
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7 REPRODUCIBILITY STATEMENT

The complete experimental settings, as well as the implementation details, are given in Section B.
Besides, we have submitted our source code and will make it publicly available.
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A DETAILS OF TUPE MODEL

In absolute positional encoding, the positional encoding is added together with the contextual en-
coding:

αij =
(xi + pi)W

Q
(
(xj + pj

)
WK)T

√
d

(11)

wehre pi ∈ Rd is a position embedding of the i-th token. Further, the above equation can be
expanded as:
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There are four terms in this expression: context-to-context, context-to-position, position-to-context,
and position-to-position. While the first and the fourth term are intuitive, the token encodings and
positional encodings do not have strong correlations with each other, and the context-position corre-
lations may even induce unnecessary noise. Based on this analysis, Ke et al. (2021) propose TUPE
(Transformer with Untied Positional Encoding) that removes the second and third redundant terms
and introduces different parameters for the position encoding:

αij =
(xiW

Q)(xjW
K)T + (piU

Q)(pjU
K)T√

d
, (13)

Here, UQ and UK are weights that need to be learned, capturing positional queries and keys, re-
spectively. Their empirical results confirm that the removal of the two context-to-position terms
consistently improves the model performance on a series of tasks.

B DETAILS OF EXPERIMENTS

B.1 VISUALIZATIONS OF POSITIONAL ENCODINGS

To understand what positional encodings learn after pre-training, we visualize the positional weights
in attentional heads. The Identical Word Probing is adopted in this experiment (Wang et al., 2020).
The used pre-trained language models are shown in Table 4, and the repeated words are randomly
selected from the corresponding vocabulary. Note that sub-tokens like single characters and non-
physical words are removed. For visualization, we adopt the Identical Word Probing proposed
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Model Size Version Language

BERT 110M bert-base-uncased English

DeBERTa 100M microsoft/deberta-base English

XLNet 110M xlnet-base-cased English

Table 4: Details of pre-trained language models used in visualizations.

Original Shuffled

Shuffled-3 An old man with a package poses in front of an advertisement . An man old with package a poses in front of advertisement an .

Shuffled-4 A land rover is being driven across a river . A land rover is being a driven river across .

Shuffled-5 A man reads the paper in a bar with green lighting . A man reads the paper in with green a lighting bar .

Shuffled-6 A little boy in a gray and white striped sweater and tan pants is play-

ing on a piece of playground equipment .

A little boy in striped a sweater and white gray and tan pants is play-

ing piece playground of equipment on a .

Shuffled-SR several women are playing volleyball . volleyball are playing several women .

Shuffled-SR a man and woman are sharing a hotdog . a hotdog are sharing a man and woman .

Table 5: Some cases of the shuffled SNLI datasets in our word swap probing. Texts in the same color
mean the corresponding phrases.

by Wang et al. (2020), which feeds many repeated identical words to pre-trained language models
and thus the attention values (αi,j in Equation 5) are disentangled with contextual weights. More
specifically, we randomly select 100 words from the corresponding vocabulary (filtering out single
characters and sub-words such as “##nd”). We repeat each word to compose a sentence of length
128. These 100 sentences are fed into a language model and the attention weights across different
layers are averaged as the positional weight matrix of a particular language model.

B.2 WORD SWAP PROBING

To valid if language models with positional encodings are sensitive to the local and global word
swaps, we construct Shuffle-x and Shuffle-SR SNLI datasets. Shuffle-x means the word orders of
phrases with length x are disrupted, e.g. “an electric guitar” is a 3-gram phrase, and it might be
“guitar an electric” in Shuffle-3 SNLI. Through this way, a new sentence with the same meaning
can be obtained and therefore the initial label of the sample will not be changed. To construct such
shuffled datasets, the premise sentences in SNLI test set are shuffled and we keep the hypothesis sen-
tences intact. Here, we let x ∈ [3, 6] and select a subset from SNLI to make sure that every premise
sentence has at least one phrase with length from 2 to 6. We select five types of target phrases for
shuffling: Noun Phrase, Verb Phrase, Prepositional Phrase, Adverb Phrase, and Adjective Phrase.
Finally, a Shuffle-x SNLI is obtained by disrupting the order inside a phrase with length x and the
size for each shuffle-x is around 5000. The first fourth rows in Table 5 shows some samples.

As for the Shuffle-SR SNLI dataset, the semantic roles of agent and patient are swapped in a sen-
tence. We use the Algorithm 1 to collect a subset from SNLI test set. This algorithm is applied
successively to the premise and hypothesis sentence for a sample whose label is entailment, and
if the result of either of them is not null, we consider it a valid shuffled sample, which means we
only shuffle the premise or hypothesis. After, we can obtain a new sample and the pair of sentences
are contradicted with each other. In total, there are 1329 samples. To ensure that all sentences are
semantically correct, we manually selected 300 pairs from them. The last two rows in Table 5 shows
two examples in Shuffle-SR dataset.

To probe the capabilities of language models on our newly constructed datasets, we adopt five dif-
ferent pre-trained language models (as shown in Table 6) and we use Hugging Face for implemen-
tation (Wolf et al., 2020). These models are fine-tuned on the training set of SNLI, and the model
with the best score on validation set is stored for the follow experiments. Note that there are off-the-
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Algorithm 1: Construction of Shuffle-SR Sentences
Input:
s: a premise or hypothesis sentence in SNLI,
A: Auxiliary verb list
M: Semantic Role Labeling Model,
D: Subject and Object Case Mapping // e.g., I ↔ me
Output: A sentence s∗ with shuffled agent and patient or None

1 R← Predict the semantic roles of words in sentence s by using the modelM
2 V ← Take the verb list fromR
3 foreach verb v in V do
4 if v appears in A then
5 continue
6 ifR does not contain an agent or patient then
7 continue
8 a, p← Take the agent and patient fromR
9 s∗ ← Swap the a, p in sentence s

10 s∗ ← Transform the subject and object case in s∗ if a or p in D
11 return s∗

12 return None

shell ALBERT and XLNet for natural language inference, we therefore use them directly without
fine-tuning. During fine-tuning stage, the maximum length of the tokenized input sentence pair is
128, and the optimizer is Adam (Kingma & Ba, 2014) with learning rate of 2e-5. The batch size is
32 and the epoch is 3. After fine-tuning, the best model is evaluated on our shuffle SNLI test set, an
we record their performances when faced with local and global word swaps.

B.3 LINGUISTIC DISCUSSIONS OF LOCALITY AND SYMMETRY

Locality means that the positional weights favor the combination of units in a sentence to their ad-
jacent units when creating higher-level representations. For example, sub-tokens can be composed
into lexical meanings (e.g., {“context”,“##ual”} → “contextual”) or words can be composed into
phrase-level meaning (e.g., {”take”,”off”}→ “take off ”), and clause-level and sentence-level mean-
ing can be obtained through an iterative combination of low-level meanings, which is consistent with
the multi-layer structure in pre-trained language models. From a linguistic perspective, words linked
in a syntactic dependency should be close in linear order, which forms what can be called a depen-
dency locality (Futrell et al., 2020). Dependency locality provides a potential explanation for the
formal features of natural language word order. Consider the two sentences “John throws out the
trash” and “John throws the trash out”. Both are grammatically correct. There is a dependency re-
lationship between “throws” and “out” and the verb is modified by the adverb. However, language
users prefer the expression with the first sentence because it has a shorter total dependency length
(Dyer, 2017; Liu et al., 2017; Temperley & Gildea, 2018). Based on the visualizations and depen-
dency locality, we, therefore, speculate that one main function that positional encodings have learned
during pre-training is local composition, which exists naturally in our understanding of sentences.
Empirical studies also demonstrate that performances of shuffled language models are correlated
with the violation of local structure (Khandelwal et al., 2018; Clouatre et al., 2022).

The symmetry (also observed by Wang & Chen (2020); Wang et al. (2020)) of the positional matrices
implies that the contributions of forward and backward sequences are equal when combining adja-
cent units under the locality constraint. This is contrary to our intuition, as the forward and backward
tokens play different roles in the grammar, as we have seen in the examples of “a man playing an
electric guitar on stage” and “an electric guitar playing a man on stage”. However, this symmetry
is less disruptive at the local level inside sentences. Recent work in psycholinguistics has shown
that sentence processing mechanisms are well designed for coping with word swaps (Ferreira et al.,
2002; Levy, 2008; Gibson et al., 2013; Traxler, 2014). Further, Mollica et al. (2020) hypothesizes
that the composition process is robust to local word violations. Consider the following example:
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a. on their last day they were overwhelmed by farewell messages and gifts

b. on their last day they were overwhelmed by farewell and messages gifts

c. on their last they day were overwhelmed farewell messages by and gifts

The local word swaps (colored underlined words) are introduced in the latter two sentences, leading
to a less syntactically well-formed structure. However, experimental results show that the neural re-
sponse (fMRI blood oxygen level-dependent) in the language region does not decrease when dealing
with word order degradation (Mollica et al., 2020), suggesting that human sentence understanding
is robust to local word swaps. Likewise, symmetry can be understood in this way: when a reader
processes a word in a sentence, the forward and backward nearby words are the most combinable,
and the comprehension of this composition is robust to its inside order. On the other hand, symmetry
is not an ideal property for sentence representations (consider the case of “an electricity guitar”),
and we show the flaws of symmetry in the word swap probing task in Section 3.4.

B.4 DETAILS OF POSITIONAL ENCODERS

To probe the correlations between the two properties and downstream tasks. We introduce a fully
position-based encoder, which is adapted from the self-attention encoder. The key difference is
that the attentional weights in the encoder are our handcrafted attenuated encodings, therefore, the
locality and symmetry can be adjusted easily and we can observe the correlations caused by the
changes of the two properties. An implementation example of this positional encoder is shown in
Listing 2.

In this experiment, two sentence-level datasets, MR (Pang & Lee, 2005) and SUBJ (Pang & Lee,
2004), are used for evaluation. we use a single-layer and single-head positional attention as the
encoder and the handcrafted encodings are fixed during training. We use the 840B-300d GloVe Pen-
nington et al. (2014) vectors as word embeddings. For training, we use an Adam optimizer with an
initial learning rate 0.002, and we use a decaying strategy to decrease the learning rate. We adopt
a dropout method after the encoder layer, and train models to minimize the cross-entropy with a
dropout rate of 0.5. We train 5 epochs for each model and select the best model on dev sets to
evaluate on test set. We repeat this procedure 5 times and use the average score to report.

B.5 DETAILS OF PRE-TRAINING

We use the configuration of the original BERTbase (Devlin et al., 2019) with 110M parameters for
pre-training. Our model is implemented with PyTorch using the pytorchic-bert tool2. The number
of layers, attention heads, and the projection dimension are 12, 12, and 768 respectively. We use the
original vocabulary with a size of 30522. The training corpus is the English Wikipedia (20200101
dumps), which totals 13G after preprocessing by WikiExtractor. We pre-train with sequences of at
most T = 512 tokens, and set the batch size as 64 to pre-training 600K steps. The optimizer is
Adam with a learning rate of 5e-4, β1 = 0.9, β2 = 0.999, L2 weight decay of 0.01, and a warmup
rate of 0.1. The dropout probability is always set as 0.1.

We use the original BERTbase as our backbone and vary the positional encodings to pre-training
different variants for comparison.

Listing 1 shows a code example about how to inject handcrafted positional encodings to the BERT
backbone. Each variant is fine-tuned on the training dataset with different learning rates (among
9e-5, 7e-5, 5e-5, 3e-5, 1e-5). After, we evaluate the fine-tuned model on the Dev set and report the
average score of five learning rates. Apart from BERT, we introduce the TUPE model as another
baseline. Specifically, we pre-train the following variants:

• BERT is the original one and we use it as a baseline.

• BERT-A∗ and BERT-I∗ are varaints of the former two, but the encodings are learnable
during pre-training.

• BERT-A∗-s shares learnable positional encodings within a layer.

2https://github.com/dhlee347/pytorchic-bert
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Model Size Version Fine-tuned by us

BERT 110M bert-base-uncased ✓

ALBERT 223M ynie/albert-xxlarge-v2-snli mnli fever anli R1 R2 R3nli ×
DeBERTa 100M microsoft/deberta-base ✓

XLNet 340M ynie/xlnet-large-cased-snli mnli fever anli R1 R2 R3-nli ×
StrucBERT 340M bayartsogt/structbert-large ✓

Table 6: Details of pre-trained language models used in word swap probing.

• BERT-only-c is for ablation study, and the positional encodings pi in Equation 2 are re-
moved.

• BERT-only-p is for ablation study, and the contextual encodings xi in Equation 2 are re-
moved.

• BERT-A∗-Seq combines the two features in a sequential way, and the positional attentions
are first used and then contextual attentions.

• ALiBi adds linear biases to contextual weights proposed by Press et al. (2021a), and we
apply a softmax layer to the original biases for obtaining a attention weight vector.

• ALiBi-Seq uses the same biases with ALiBi but combines the two features in a sequential
way.

Suppose that the hidden dimension is 768, the layer number is 12, the head number is 12, and
the maximum length is 512 for BERTbase model, we can calculate the size for each variant. The
number of parameters of handcrafted positional encoding for each head is 262K (512 × 512). If
positional heads are different across all layers, the total cost is 37.7M (512 × 512 × 12 × 12).
If the positional encodings are shared across heads, the total cost is 3.1M (512 × 512 × 12).

class MultiHeadedSelfAttention(nn.Module):
""" Multi-Headed Scaled Dot Product Attention """
def __init__(self, config):

super().__init__()
self.n_heads = config.n_heads
self.drop = nn.Dropout(config.p_drop_attn)
self.proj_q = nn.Linear(config.dim, config.dim)
self.proj_k = nn.Linear(config.dim, config.dim)
self.proj_v = nn.Linear(config.dim, config.dim)

def forward(self, x, mask, pe):
"""
x, q(query), k(key), v(value) : (B(batch_size), S(seq_len), D(dim))
mask : (B(batch_size) x S(seq_len))
pe: positional weights (B(batch_size), H(Head_number)), S(seq_len), S(seq_len))

* split D(dim) into (H(n_heads), W(width of head)) ; D = H * W
"""
# (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
q, k, v = self.proj_q(x), self.proj_k(x), self.proj_v(x)
q, k, v = (split_last(x, (self.n_heads, -1)).transpose(1, 2)
for x in [q, k, v])
# (B, H, S, W) @ (B, H, W, S) -> (B, H, S, S) -softmax-> (B, H, S, S)
scores = q @ k.transpose(-2, -1) / np.sqrt(k.size(-1))

# inject positional weights into contextual weights
# (B, H, S, S) + (B, H, S, S) -> (B, H, S, S)
scores = scores + pe

if mask is not None:
mask = mask[:, None, None, :].float()
scores -= 10000.0 * (1.0 - mask)

scores = self.drop(F.softmax(scores, dim=-1))
# (B, H, S, S) @ (B, H, S, W) -> (B, H, S, W) -trans-> (B, S, H, W)
h = (scores @ v).transpose(1, 2).contiguous()
# -merge-> (B, S, D)
h = merge_last(h, 2)
return h

Listing 1: A code example of how to inject handcrafted positional encodings into self-attentions.
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To inject handcrafted positional encodings, we pre-compute the positional weights and add them
to the contextual weights directly, as shown in Listing 1. These weights can be either frozen or
learnable during pre-training. The code of the sequence combination is shown in Listing 3.

B.6 DETAILS OF DOWNSTREAM DATASETS

SentEval is based on a set of existing text classification tasks involving one or two sentences as
input. However, most tasks in SentEval are closely related to sentiment analysis and thus not diverse
enough. GLUE benchmark introduces a series of difficult natural language understanding tasks
while some particular tasks only contain one dataset, e.g., sentiment analysis and textual similarity.
Moreover, the size of WNLI in GLUE is rather small and the GLUE webpage notes that there are
issues with the construction of this dataset 3. To better evaluate the capability of models for sentence
representation, we, therefore, select 10 datasets from SentEval and GLUE, covering four types of
sentence-level tasks:

• Sentiment Analysis is also known as opinion mining, which aims to classify the polarity
of a given text, whether the expressed opinion is positive, negative, or neutral. We use
MR (Pang & Lee, 2005), SUBJ (Pang & Lee, 2004), and SST (Socher et al., 2013) for this
task.

• Textual Entailment describes the inference relation between a pair of sentences, whether
the premise sentence entails the hypothesis sentence. Actually, this is a classification task
with three labels: entailment, contradiction, and neutral. Here, we use QNLI (Rajpurkar
et al., 2016), RTE (Dagan et al., 2005; Haim et al., 2006; Giampiccolo et al., 2007; Ben-
tivogli et al., 2009) and MNLI (Williams et al., 2018) for evaluation. Note that we report
the average score for the two test sets of MNLI.

• Paraphrase Identification is to determine whether a pair of sentences have the same mean-
ing. We use MRPC (Dolan & Brockett, 2005) and QQP 4 for evaluation.

• Textual Similarity deals with determining how similar two pieces of texts are. We use
STS-B (Cer et al., 2017) and SICK-R (Marelli et al., 2014) for evaluation.

class MultiHeadPositionalAttention(nn.Module):
""" Multi-Headed Scaled Dot Product Attention """
def __init__(self, config):

super().__init__()
self.n_heads = config.n_heads
self.drop = nn.Dropout(config.p_drop_attn)

def forward(self, x, mask, pe):
"""
x, q(query), k(key), v(value) : (B(batch_size), S(seq_len), D(dim))
mask : (B(batch_size) x S(seq_len))
pe: positional weights (B(batch_size), H(Head_number)), S(seq_len), S(seq_len))

* split D(dim) into (H(n_heads), W(width of head)) ; D = H * W
"""
# (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
q, k, v = (split_last(x, (self.n_heads, -1)).transpose(1, 2)
for x in [q, k, v])
# (B, H, S, W) @ (B, H, W, S) -> (B, H, S, S) -softmax-> (B, H, S, S)

scores = pe
if mask is not None:

scores.masked_fill_(˜mask, 0.)

# (B, H, S, S) @ (B, H, S, W) -> (B, H, S, W) -trans-> (B, S, H, W)
h = (scores @ v).transpose(1, 2).contiguous()
# -merge-> (B, S, D)
h = merge_last(h, 2)
return h

Listing 2: A code example of the Positional Attention.

3https://gluebenchmark.com/faq
4data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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C ADDITIONAL EXPERIMENTS

C.1 LOSS CURVES OF PRE-TRAINING

Apart from the performances on downstream tasks, the loss curves are also checked for different
variants. For this goal, the training loss and validation loss are stored after certain steps. We use a
hold-set as the validation set. As shown in Figure 6, our proposed BERT-A∗ and BERT-A∗-Seq have
smaller loss than the original BERT. This can be observed again on the validation set.

C.2 ABLATION STUDY OF POSITIONAL AND CONTEXTUAL ENCODINGS

To check the importance of positional and contextual Encodings, we conduct an ablation study.
For this goal, the contextual encodings xi or positional encodings pi in Equation 2 are removed,
respectively, during pre-training and the two new models are evaluated on 10 sentence-level datasets.
As shown in Table 7, the BERT-only-c and BERT-only-p both lag behind the original BERT models,
which means the combination of the two features is beneficial for sentence representations. On the
other hand, positional encodings are more important for sentiment analysis, and the cross-attentions
from contextual embeddings matter in sentence-pair tasks.

Model Sentiment Analysis Textual Entailment Paraphrase Identification Textual Similarity
MR SUBJ SST-2 QNLI RTE MNLI MRPC QQP STS-B SICK-R Avg

(22K) (20K) (68.8K) (110K) (5.5K) (413K) (5.4K) (755k) (8.4K) (9.4K)

BERT 72.5±5.3 91.0±2.7 86.4±2.7 85.8±1.0 59.2±1.2 78.2±0.8 73.5±1.8 88.7±0.6 77.8±4.1 64.9±6.0 77.8
BERT-only-c 73.0±4.6 88.9±2.5 82.9±0.4 82.0±0.1 62.7±4.3 70.8±0.8 74.1±0.3 86.9±0.5 78.5±0.3 64.5±5.7 76.2
BERT-only-p 73.8±4.6 90.8±1.4 84.0±0.7 79.8±1.2 50.9±1.4 68.3±1.0 73.9±1.6 85.8±0.6 47.1±18.0 51.7±9.2 70.6

Table 7: Ablation study across 10 sentence-level tasks. We report the average score of five runs
using different learning rates.

class Sequence(nn.Module):
""" Sequence Block """

def __init__(self, config):
super().__init__()
self.pos_mode = config.pos_mode
self.pos_learnable = config.pos_learnable
self.self_attention = MultiHeadedSelfAttention(config)
self.positional_attention = PositionalAttention(config, learnable=self.pos_learnable)

def forward(self, x, mask):
# positional attention
pa = self.positional_attention(x, mask)
# contextual attention
sa = self.self_attention(pa, mask)
return sa

Listing 3: A code example of the Sequence combination of positional and contextual features.

C.3 RESULTS OF LINGUISTIC PROBING

To understand the linguistic role of positional encodings, we adopt the probing tasks proposed
by Conneau et al. (2018), which feeds sentence representations obtained by neural models to a
series of linguistic classification tasks. The sentences for all our tasks are extracted from the Toronto
Book Corpus (Zhu et al., 2015), pre-processed by Paperno et al. (2016) and parsed by using the
pre-trained PCFG model (Klein & Manning, 2003). We use the standard SentEval (Conneau &
Kiela, 2018) to test every model. For obtaining sentence representations, we apply the mean pooling
strategy to the output of each layer of a frozen language model, which is suggested by Reimers &
Gurevych (2019). We follow the standard setup and run a grid search for selecting the layer with
the best score on the dev set, and report the best score across layers for each probing task (Table 9),
which represents the linguistic ability of each model. The following are the details of each probing
task, including three categories:

• SentLen (Surface) aims to predict the length of sentences in terms of the number of words,
and the dataset is constructed following Adi et al. (2017).
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Relation Distance contextual positional both

Root 0.0 99.3 3.8 86.5
auxpass 1.1 44.6 91.1 92.9
compound 1.2 21.7 75.0 70.6

aux 1.3 25.2 77.9 79.1
nummod 1.3 26.8 78.9 75.5
amod 1.4 19.7 69.3 66.9
det 1.8 47.9 52.9 51.6

advmod 2.1 16.5 62.4 58.7
pobj 2.3 9.0 33.9 46.3
nsubj 2.3 13.4 58.2 52.6
poss 2.3 15.9 31.7 43.5
dobj 2.5 20.0 34.8 41.6
prep 2.6 23.1 62.8 63.4

npadvmod 3.1 14.4 30.0 43.8
cc 3.1 28.4 52.0 51.6
mark 4.1 25.1 21.3 64.4
conj 4.9 25.1 31.2 33.6
punct 7.3 25.9 30.3 32.7
advcl 7.6 18.4 9.8 20.1
ccomp 8.1 29.0 12.4 33.2

short ≤ 4 28.4 54.3 61.6
long > 4 24.7 21.0 36.8

Macro Avg - 27.5 46.0 55.4

Table 8: Evaluations of predictions of
dependency relations on MRPC dataset.
The top-20 common relations are shown.
The distinction of ”short” and ”long” is
whether the average length of the relation
is greater than 4.

• WC (Surface) means word content, which checks whether it is possible to recover informa-
tion about the original word from the embedding of the sentence.

• BShift (Syntactic) means bigram shift. In this task, two random adjacent words in a sen-
tence are swapped and the goal is to detect if a model is sensitive to legal word orders.

• TreeDepth (Syntactic) tests whether a model can infer the depth of the syntactic tree of
sentences.

• TopConst (Syntactic) tests whether a model can recognize the top constituents of the sen-
tence, e.g., “[Then] [very dark gray letters on a black screen] [appeared] [.]” has top
constituent sequence: “ADVP NP VP ”. This dataset is first introduced by Shi et al. (2016).

• Tense (Semantic) asks for the tense of the main clause verb.

• SubjNum (Semantic) focuses on the number of the subject of the main clause.

• ObjNum (Semantic) tests for the number of the direct object of the main clause.

• SOMO (Semantic) checks the sensitivity of a model to random replacement of a noun or
verb.

• CoordInv (Semantic) tests whether a model can recognize the order of clauses is inverted.

C.4 DEPENDENCY ANALYSIS OF POSITIONAL ENCODINGS

The detailed scores of each relation are shown in Table 8. We find that positional attentional heads
outperform contextual heads on short-distance relations, e.g., auxpass and compound. Contex-
tual attention can capture better long-distance relations than positional attention while contextual
attention itself has a certain degree of ability to detect some long-distance relations such as conj
and punct. Note that there exists a head in contextual attention maps attending the token itself,
therefore, the score on the Root relation is the best.

C.5 VISUALIZATIONS

In Figure 1, we visualize the averaged positional weights of various pre-trained language models and
identify they have similar visualized results. However, We find that the behavior of positional en-
codings is very diverse across attention heads. Note that there are 144 attentional heads (12 layers×
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Surface Syntactic Semantic
Model SentLen WC TreeDepth TopConst BShift Tense SubjNum ObjNum SOMO CoordInv

BERT 92.55 23.54 38.75 77.21 77.67 85.30 84.50 83.94 52.43 61.22
BERT-c 89.22 57.59 32.86 56.65 51.16 82.94 78.97 81.63 51.86 50.35
BERT-p 89.64 38.27 33.78 63.15 53.68 67.17 71.17 66.73 51.19 57.42

TUPE 90.08 85.76 39.14 78.38 79.44 87.13 86.50 86.36 53.78 62.60
TUPE-c 91.85 62.42 34.21 58.63 50.86 83.43 80.63 81.96 51.75 50.74
TUPE-p 90.07 65.59 37.74 77.58 75.32 77.67 82.13 80.40 51.96 62.07

Table 9: Linguistic role probing of positional encodings. c and p means only
using contextual and positional weights, respectively.

12 heads) for the BERTbase model. For example, the visualizations of BERT (Figure 8) validate this
phenomenon. Besides, we observe that BERT exhibits a hierarchical structure: positional weights
of lower layers are nearly uniform (Layer-4), middle layers attend more to local units (Layer-7) and
higher layers demonstrate the asymmetric property (Layer-12). We also visualize all the positional
heads in BERT-A∗ (Figure 9) and BERT-A∗-Seq (Figure 10).

Visualization Analysis of BERT-A∗. BERT-A∗ outperforms BERT by 3.1 percentage points on
average across 10 downstream tasks. The main difference between BERT-A∗ and BERT is the
learnable handcrafted positional encodings. For visualizations, we take the positional weight δi,j in
Equation 5 instead of Identical Word Probing.. Figure 9 shows that most positional heads perfectly
satisfy the properties of locality and symmetry, which can bring better inductive bias for sentence
representations. Another observation is that the diagonal bandwidths are diverse across positional
heads after learning, which means proximity units can be combined at different distances. We
conclude that, Compared to randomly initialized positional encodings, the encodings initialized with
locality and symmetry properties lead to better sentence representation models.

Visualization Analysis of BERT-A∗-Seq. Compared to BERT-A∗, BERT-A∗-Seq can further im-
prove the scores on downstream tasks by combining positional and contextual features in a sequen-
tial way. Figure 10 visualize all positional heads in BERT-A∗-Seq, we observe these matrices are
still perfectly localized and symmetrical, which is similar to the behaviors of BERT-A∗. We con-
clude that the Sequence combination can yield better sentence representations than the traditional
Add combination.
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Figure 6: Loss curves of different variants adapted from BERTbase model.
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(a) Correlations between Locality and Accuracy (b) Correlations between Symmetry and Accuracy

Figure 7: Correlations between the two properties (Locality and Symmetry) and accuracy on SUBJ
dataset (Pang & Lee, 2004). The yellow line shows the locality or symmetry of the pre-trained
BERT.
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Figure 8: Visualizations of positional weights of BERT across all layers. The weights are computed
by Identical Word Probing. Red color means lower values and blue color means higher values.
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Figure 9: Visualizations of positional weights of BERT-A∗ across all layers. Red color means lower
values and blue color means higher values.

25



Under review as a conference paper at ICLR 2023

Figure 10: Visualizations of positional weights of BERT-A∗-Seq across all layers. Red color means
lower values and blue color means higher values.
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