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Abstract

Recently, large language models (LLMs) have001
demonstrated impressive capabilities in deal-002
ing with new tasks with the help of in-context003
learning (ICL). In the study of Large Vision-004
Language Models (LVLMs), when implement-005
ing ICL, researchers usually adopt the naive006
strategies like fixed demonstrations across dif-007
ferent samples, or selecting demonstrations di-008
rectly via a visual-language embedding model.009
These methods do not guarantee the configured010
demonstrations fit the need of the LVLMs. To011
address this issue, we propose a novel frame-012
work, demonstration retriever for large multi-013
modal model (DRUM), which fine-tunes the014
CLIP embedding model to better meet the015
LVLM’s needs. First, we discuss the retrieval016
strategies for a visual-language task, assuming017
an embedding model is given. And we propose018
to concate the image and text embeddings to019
enhance the retrieval performance. Second, we020
propose to re-rank the the embedding model’s021
retrieved demonstrations via the LVLM’s feed-022
backs, and calculate a list-wise ranking loss for023
training the embedding model. Third, we pro-024
pose an iterative demonstration mining strategy025
to improve the training of the embedding model.026
Through extensive experiments on 3 types of027
visual-language tasks, 7 benchmark datasets,028
our DRUM framework is proven to be effec-029
tive in boosting the LVLM’s in-context learning030
performance via retrieving more proper demon-031
strations.032

1 Introduction033

In-context learning (ICL) is a simple yet im-034

portant learning paradigm that given a few input-035

output pairs (demonstrations), a model can learn to036

conduct predictions on a new task it never sees be-037

fore. ICL is a type of emergent capability observed038

in large-scale pre-trained models (Wei et al., 2022).039

It is first observed by GPT-3 (Brown et al., 2020),040

and draws the attention of the whole community041

of artificial intelligence. And a large branch of042

literature have shown that large language models 043

(LLMs) have impressive ICL capabilities across 044

a wide range natural language processing (NLP) 045

tasks. ICL is essential for applications, since it can 046

quickly adapt the large pretrained models to a novel 047

task, or a task with personalized needs, with only a 048

few demonstrations. No fine-tuning is needed and 049

the model need not to be deployed again. 050

Recently, large vision-language models 051

(LVLMs) are being rapidly developed, and its ICL 052

capabilities are also being investigated (Alayrac 053

et al., 2022). The LVLMs like Flamingo (Alayrac 054

et al., 2022) and Qwen-VL (Bai et al., 2023) 055

have demonstrated impressive ICL capabilities on 056

the visual question answering (VQA), few-shot 057

image classification (ImageCLS), and image 058

captioning (ImageCAP) tasks. However, when 059

implementing ICL for LVLMs, researchers 060

usually adopts the naive strategies like fixed 061

demonstrations or demonstrations ranked by a 062

pre-trained visiion-language embedding model. 063

These strategies are sub-optimal, since they do 064

not incorporate the LVLMs’ feedbacks on how 065

these demonstrations help them to improve the 066

responses. 067

To address the above issue, we now present a 068

novel framework, demonstration retriever for large 069

multi-modal model (DRUM). DRUM is targeted 070

at fine-tuning a pre-trained visual-language embed- 071

ding model so that it learns to retrieve better demon- 072

strations to meet the LVLM’s needs when conduct 073

inference. First, assuming the embedding model is 074

given, DRUM discusses the retrieval strategy for 075

any visual-language tasks. And it proposes to re- 076

trieve demonstrations based on the joint embedding 077

of input image, prompt and draft response. Sec- 078

ond, DRUM asks the inference LVLM to re-rank 079

the embedding model’s retrieved demonstrations 080

via the LVLM feedback. In this work, the LVLM 081

feedback on a demonstration is defined as the con- 082

ditional log-likelihood of the target response when 083
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Figure 1: The schematic representation of our DRUM framework. Circles, rectangles, and triangles respectively
represent the images, prompts, and responses in the triplet.

the demonstration is added to the prompt. With084

the LVLM’s reranking results, a list-wise ranking085

loss can be calculated and used as the optimiza-086

tion objective for the embedding model. Third, we087

propose an iterative demonstration mining strat-088

egy which updates the demonstration candidates089

iteratively, thus improving the training of the em-090

bedding model by providing high-quality ranking091

signals.092

We have conducted extensive experiments on093

3 types of visual-language tasks, VQA, Image-094

CLS and ImageCAP, and totally 7 benchmark095

datasets. The experimental results demonstrate096

that our DRUM framework is effective in boost-097

ing the LVLM’s ICL performance. In addition, for098

commercial LVLMs like GPT-4o, the embedding099

model fine-tuned by DRUM can also be transferred100

to them, help them to retrieve better demonstra-101

tions.102

Our contributions are as follows:103

• We propose a novel framework, DRUM, to104

enhance the ICL capabilities of the LVLMs.105

• Extensive experiments have proven that106

DRUM is effective in boosting the LVLMs’107

ICL performance on a wide range of vision-108

language tasks.109

2 Related Work110

In-Context Learning in NLP. The artificial intel-111

ligence community has witnessed significant ad-112

vancements in the realm of large language mod-113

els (LLMs) in recent years. As these models and114

their training corpora expand in scale, LLMs have115

demonstrated emergent capabilities, such as rea- 116

soning, mathematical proficiency, and the ability to 117

follow prompts (Wei et al., 2022). GPT-3 (Brown 118

et al., 2020) was the pioneer in revealing that suffi- 119

ciently large models can learn to execute new tasks 120

with minimal guidance, a phenomenon termed in- 121

context learning (ICL). Subsequent studies have 122

corroborated the impressive performance of LLMs 123

across various tasks through ICL (Mosbach et al., 124

2023). The crux of ICL lies in the construction of 125

high-quality in-context demonstration sequences 126

(Li et al., 2023c). However, the bulk of these ex- 127

plorations have concentrated on pure natural lan- 128

guage processing tasks and text-centric foundation 129

models, highlighting the necessity to extend this 130

research to encompass other domains. 131

The research works on in-context learning focus 132

primarily on demonstration sequences. A series of 133

techniques have been investigated, including: (a) 134

utilizing similarity scores to retrieve more relevant 135

in-context examples (Li et al., 2023c), (b) employ- 136

ing machine-generated demonstrations (Li et al., 137

2023b). The literature has seen a series of studies 138

that reveals certain properties of LLMs when ap- 139

plied to in-context learning. Pan (2023) proposed 140

a decomposition of ICL into the task recognition 141

effect and the task learning effect, and quantified 142

these capabilities of models with varying numbers 143

of shots and scales. Additionally, Lyu et al. (2022) 144

records the "copying effect" phenomenon in LLMs, 145

which is also a type of shortcut inference. Our work 146

complements this line of research by fine-tuning 147

the vision-language embedding model to learn how 148

to retrieve appropriate demonstrations. 149
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LVLM and ICL Inspired by the triumphs of150

LLMs in natural language processing, the vision-151

language domain has seen the rise of analogous152

large vision-language models (LVLMs) (Du et al.,153

2022). Among these, models such as BLIP2 (Li154

et al., 2023a), MiniGPT-4 (Zhu et al., 2023), and155

LLAVA (Liu et al., 2024) are pretrained by align-156

ing image and text data through the use of adapters157

(Houlsby et al., 2019) to reduce training overhead.158

While there are several VLMs available, it is worth159

noting that some of the models are unsuitable for160

in-context learning, as this capability demands that161

the LVLM handle inputs that interweave images162

and text content (Alayrac et al., 2022). Presently,163

there is scant research on multimodal ICL or ICL164

for LVLMs, with only a few studies focusing on165

rudimentary strategies. Yang et al. (2024) exam-166

ines the impact of ICL on the LVLM’s performance167

in image captioning tasks. Li et al. (2024) analyzes168

the effects of ICL for LVLMs and proposes various169

strategies for demonstration retrieval using a pre-170

trained vision-language embedding model, such as171

CLIP (Radford et al., 2021). Our work comple-172

ments this line of research by proposing a novel173

framework for ICL of the LVLMs.174

3 DRUM175

We now elaborate on the technical details of our176

DRUM framework. For the training process of177

DRUM, we splits the dataset for the current visual-178

language task into four parts: the support setDsupp,179

the training set Dclip_train used for fine-tuning the180

image-text embedding model, the validation set181

Dclip_dev used to validate the embedding model af-182

ter fine-tuning, and the test set Dtest for evaluating183

the performance of LVLM contextual learning.184

3.1 In-context learning185

Given a well pre-trained Large Vision-Language186

Model (LVLM) (denoted as M) e.g., Flamingo187

(Alayrac et al., 2022), one can use it directly to188

solve a VL task like VQA with in-context learning,189

and no fine-tuning is required. To achieve this, we190

need to prepare a multi-modal in-context sequence191

S = {z1, ..., zn}, (1)192

where S consists of n-shot zi = (imagei, prompti,193

responsei) tuples. Then we concatenate S to194

the left of the test sample xtest = (imagetest,195

prompttest), and feed into the LVLM for generating196

the corresponding response: 197

responsetest = {â1, ..., âTA
}, (2) 198

where the t-th (t ≤ TA) token ât is sampled from 199

the probability distribution P(·) over the vocabu- 200

lary calculated by the LVLMM: 201

P(ât|S, xtest, â1:t−1). (3) 202

3.2 Strategies for sample embedding 203

Different from retrieving via only images or texts 204

(Li et al., 2024), we retrieve the demonstrations via 205

the concatenation of image embeddings and text 206

embeddings generated by the CLIP model (Rad- 207

ford et al., 2021). We first generate a draft re- 208

sponse responsepred,1test to the test sample xtest with 209

the help of strategy SIT-IP, and then compare the se- 210

mantic similarity between (imagetest, prompttest, 211

responsepred,1test ) and (imagei, prompti, responsei). 212

We denote this strategy as retrieving via similar 213

image prompt and draft response (SIT-IPDR). 214

We will use SIT-IPDR as the default sample em- 215

bedding strategy in our experiments. More strate- 216

gies are presented in Appendix C for completeness. 217

And we will use experiments (Section 4.6) to vali- 218

date this choice. 219

3.3 Pilot experiments and motivations 220

The previous sub-section assumes that an em- 221

bedding model E is ready to use for any given VL 222

task which can transform the image and text inputs 223

to embedding vectors. Intuitively, one can directly 224

utilize the pre-trained CLIP models (Radford et al., 225

2021) to initialize E and obtain the test sample’s 226

image or text embeddings, and conduct search for 227

similar demonstrations based on these embeddings. 228

However, we now conduct a pilot experiment to 229

demonstrate that the original open-sourced CLIP 230

models may not be effective in retrieving demon- 231

strations for a LVLM. 232

For a task at hand, we first use the CLIP model 233

(base) to construct the demostration vector database 234

on Dsupp. For a sample xq = (imageq, promptq, 235

responseq) from Dclip_dev, the CLIP model will 236

embedd it and retrieve n = 16 demonstration can- 237

didates {zj}ni=1. These candidates are ranked based 238

on the embeddings’ similarity scores: 239

r0(zj) = Ranking(sim(xq, zj)|{zj}ni=1), (4) 240

where sim(xq, zj) denotes the embedding vectors’ 241

cosine similarity when CLIP is the embedding 242
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model, and Ranking is the ranking function (in243

ascending order).244

Note that the intended effect of demonstrations245

on LVLM is to help the LVLM generate better re-246

sponses and achieve performance boost. In other247

words, demonstrations are expected to enhance the248

likelihood of the ground-truth answer being gener-249

ated by the LVLM. Thus, it is appropriate for the250

LVLM to evaluate and rank the demonstration can-251

didates via the log-likelihood function. Formally,252

the LVLM’s ranking of the candidate demonstra-253

tions are given by:254

r(zj) = Ranking(s(zj)|{s(zj)}ni=1)

s(zj) = LLH(responseq|zj , imageq, promptq),
(5)255

where LLH(·|·) is the LVLM’s conditional log-256

likelihood function. s(zj) represents the ground-257

truth responseq’s log-likelihood conditioned on the258

demonstration candidate zj and the querying input259

imageq and promptq. s(zj) indicates the impor-260

tance of zj for the LVLM to encode the query-261

ing sample and generate the ground-truth response.262

The more important zj is for the LVLM, the higher263

s(zj) will be, and the larger r(zj) will be.264

Since we have two rankings for the same set265

of demonstration candidates, we can calculate the266

correlation between these two rankings:267

corrq = Spearman({r(zj)}ni=1, {r0(zj)}ni=1),
(6)268

where Spearman is the Spearman rank corelation269

coefficient (Dodge, 2008). The average correlation270

score is given by:271

corravg =

∑
xq∈Dclip_dev

corrq
∥Dclip_dev∥

. (7)272

The average correlation score is calculated on the273

VizWiz (Gurari et al., 2018), Flicker30K (Plummer274

et al., 2015) and Hateful-Memes (Kiela et al., 2020)275

tasks, with the LVLM being the Deepseek-VL2276

(tiny). The results are presented in Table 1. From277

Table 1, we can see that the CLIP model’s rankings278

and the LVLM’s rankings actually have very low279

correlations. For example, the correlation score on280

the VizWiz task is negative, showing significant281

discrepancy between the CLIP model’s retrieved282

candidates and the LVLM’s needs.283

The above observations are consistent with the284

claims in the previous works (Li et al., 2023c; Ru-285

bin et al., 2021): demonstrations retrieved by an286

open-sourced embedding model may not benefit287

Task corravg
VizWiz -0.16

Flicker30K 0.11
Hateful-Memes 0.21

Table 1: The average correlation scores between the
CLIP model’s rankings and the LVLM’s rankings, on the
Dclip_dev sets of the VizWiz , Flicker30K and Hateful-
Memes tasks.

the most for the LVLM. Thus, it is natural to con- 288

sider fine-tuning the embedding model E so that its 289

retrieved demonstrations better fit the LVLM and 290

help to elicit better responses from the LVLM. 291

3.4 Demonstration retriever training 292

We now elaborate on the core of our DRUM 293

framework, the training approach for the demon- 294

stration retriever. Different from Rubin et al. (2021) 295

which design task-specific training signals for sev- 296

eral tasks separately, we propose to cast the re- 297

triever’s training signals into a list-wise ranking 298

loss based on the LVLM’s feedback. Then we in- 299

troduce a training framework in which the retriever 300

iteratively mines high-quality demonstration candi- 301

dates with the help of the LVLM and learn to rank 302

them in turn. The whole workflow are shown in 303

Algorithm 1. And we now introduce the list-wise 304

ranking training and iterative mining strategy for 305

the demonstration retrievers as follows. 306

Loss function for the demonstration retriever 307

The objective of training the demonstration re- 308

triever is to make the CLIP’s ranking (from Equa- 309

tion 4) and the LVLM’s ranking (from Equation 310

5) more consistent. With the demonstration can- 311

didates’ ranks {r(zj)}ni=1 from the LVLM’s feed- 312

back, we propose to use the following loss function 313

to inject the ranking signal into the demonstration 314

retriever E : 315

Lr =
∑

1≤i,j≤n,i ̸=j

m(i, j) ∗ g(i, j), (8) 316

where m(i, j) is given by 317

m(i, j) = max(0,
1√
r(zj)

− 1√
r(zi)

), (9) 318

and g(i, j) is given by: 319

g(i, j) = log(1 + e(sim(xq ,zj)−sim(xq ,zi))), (10) 320

We now provide intuitive explanations for the 321

above loss function. For those zi and zj where 322
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r(zj) ≤ r(zi), Lr will draw sim(xq, zi) up323

and optimize the retriever towards sim(xq, zi) >324

sim(xq, zj). For zi and zj where r(zi) ≥ r(zj),325

this pair will be discarded by the loss function.326

Additionally, m(i, j) adjusts the weight for each327

pair of demonstrations, conveying list-wise rank-328

ing information into Lr. When the ranks of zi329

and zj are close, e.g., r(zi) = 2 and r(zj) = 1,330

m(i, j) ≈ 0.292. In comparison, when zi has a331

much higher rank than zj , e.g., r(zi) = 15 and332

r(zj) = 1, m(i, j) will be 0.742, larger than 0.292.333

Thus, when zi has a much higher rank than zj , w334

will be a high weight, and asks Lr to strongly draw335

sim(xq, zi) up and away from sim(xq, zj). Since336

we optimize the retriever on demonstration pairs337

under different m(i, j), Lr can help our DRUM338

method fully incorporate candidates’ list-wise rank-339

ing signals and learn to retrieve those high-quality340

and helpful demonstrations.341

3.5 Iterative Demonstration Candidate342

Mining343

The selection of demonstration candidates can344

be a key factor for retriever’s training. It is infeasi-345

ble and possibly harmful to take the entire training346

set as candidates. In addition, once the embed-347

ding model is fine-tuned, it no longer matches the348

supporting samples’ vectors in the vector database.349

To strike a balance between training time cost and350

quality, we adapt an iterative strategy to update351

candidates (Li et al., 2023c). Specifically, we iter-352

atively train the retriever and use it to select can-353

didates in turn. At each iteration, we update each354

supporting example xq’s candidates as:355

Z∗ = topK({sim(xq, z)|z ∈ D}, n), (11)356

where D is the task’s supporting set, n is the num-357

ber of candidates retrieved. Then we will use the358

LVLMM to score and rerank Z∗, and calculate359

the list-wise ranking loss according to Eq 8. Be-360

fore the first iteration, the retriever is exactly the361

pre-trained embedding model, so we initialize can-362

didates based on the similarity calculated with the363

pretrained embedding model. In summary, Algo-364

rithm 1 shows the DRUM’s overall training proce-365

dure.366

Embedding Model Validation The optimiza-367

tion objective of model E is to minimize the dis-368

crepancy between the ranking of retrieved example369

vectors and the ranking assigned by the large-scale370

model M to these examples. Therefore, to vali-371

date the training effectiveness of model E , and to372

Algorithm 1: DRUM’s demonstration rank-
ing training
Input: Embedding model E , large

vision-language modelM, number
of training iterations N1, number of
training steps in each iteration N2,
number of retrieved candidates n

Output: A fine-tuned embedding model E .
Data: support set Dsupp, model E’s training

set Dclip_train, model E’s validation
set Dclip_dev, test set for the LVLM
Dtest;

1 training iteration index i← 0;
2 while i < N1 do
3 Embed each training example with E ;
4 Retrieve n candidates of each training

example;
5 training step index j ← 0;
6 while j < N2 do
7 Sample an querying example xq

from D, and obtain its candidates
{zk}nk=1;

8 Re-rank {zk}nk=1 byM using Eq 5;
9 Calculate Lr using Eq 8;

10 Update E ;
11 j ← j + 1;

12 i← i+ 1;

select the model checkpoints during training, we 373

follow Equation 7 to compute the average correla- 374

tion coefficient corravg of rankings using dataset 375

Dclip_dev. 376

4 Experiments 377

4.1 Datasets 378

We conduct experiments on three benchmark 379

visual question-answering (VQA) tasks, two im- 380

age classification (ImageCLS) tasks, and two im- 381

age captioning (ImageCAP) tasks: VQAv2 (Goyal 382

et al., 2017), VizWiz (Gurari et al., 2018), OK- 383

VQA (Marino et al., 2019), Flowers102 (Nilsback 384

and Zisserman, 2008), Hateful-Memes (Kiela et al., 385

2020), Flickr30K (Plummer et al., 2015), NoCaps 386

(Agrawal et al., 2019). The introduction and dataset 387

splits of each dataset are detailed in Appendix A. 388

4.2 Evaluation metrics 389

Metric for the VQA tasks We follow Alayrac 390

et al. (2022) to use accuracy as the evaluation met- 391

5



Retrieval VQA ImageCLS ImageCap
Methods VQAv2 VizWiz OK-VQA Flowers102 Hateful-Memes Flicker30K NoCaps

Null 56.1 24.6 42.3 14.6 55.4 27.7 28.6
Random 66.3 43.2 56.3 31.5 61.3 37.5 39.4

Fixed 66.4 42.6 57.9 32.3 61.1 38.1 39.9
BM25 67.8 34.5 55.8 25.7 56.7 33.9 34.3
Dino 69.5 46.8 59.9 35.7 63.2 39.0 38.8
BGE 68.9 38.7 61.2 26.6 56.8 34.3 35.1
CLIP 69.7 58.2 63.4 36.5 65.4 39.2 40.7
EPR 70.4 61.3 64.9 38.5 66.9 40.3 41.3

DRUM 73.7 64.6 67.8 40.9 70.9 41.5 43.5

Table 2: Results on 7 benchmark tasks. Due to randomness, the results from Random, Fixed, EPR, UDR and
DRUM are the average scores across five different runs under different random seeds. Best scores are bolded.

ric for VQA task:392

Accai = min(1,
3×

∑
k∈[0,9] match(ai, gk)

10
),

(12)393

where ai denotes the predicted answer of the394

LVLM, gk denotes the k-th ground true answer,395

and the match() function indicates whether two396

answers match, if they match, the result is 1, other-397

wise it is 0.398

Metric for the image classification tasks For399

the visual classification tasks, we report the accu-400

racy score.401

Metric for the image captioning tasks For eval-402

uation on the image captioning tasks, we report the403

ROUGE-L score (Lin, 2004).404

4.3 Implementation details405

Computing infrastures All experiments are406

conducted on the RTX 4090 GPUs.407

LVLM models We employ the Deepseek-VL2408

Tiny (Wu et al., 2024) model (3B) as the LVLM to409

evaluate our DRUM method.410

Decoding After receiving the input images and411

text prompts, the predictions are generated using412

the language modeling head (LM head) of the413

LVLM. No other prediction layers outputting nu-414

merical or categorical results are installed on the415

LVLM backbone. For decoding during inference,416

we use beam search with beam size 3.417

ICL Setup for the LVLM ModelM The num-418

ber of demonstrations obtained for each test sample419

is set by default to n = 4 in this work. The ablation420

studies also investigate different values of n. After421

retrieving the examples, modelM concatenates the422

demonstration sequence in ascending order of simi-423

larity scores to the left side of the test sample input.424

This means that the higher the similarity score an425

retrieved example has, the closer it is placed to the426

test sample input. The prompt templates for the 427

LVLM are presented in Appendix B. 428

Settings for embedding and retrieval This 429

work defaults to using the base-sized CLIP model1 430

for image-text embedding. The default retrieval 431

strategy adopted in this work is the SIT-IPDR ap- 432

proach detailed in Section 3.2. Under this strategy, 433

the vector representation of both demonstrations 434

samples and test samples is obtained by concatenat- 435

ing the image vector and the text vector. This work 436

utilizes the Faiss toolkit (Douze et al., 2024) for 437

constructing the vector database and for efficient 438

vector retrieval. 439

Settings for fine-tuning the embedding model 440

We implements the fine-tuning process of the em- 441

bedding model E based on the Huggingface Trans- 442

formers(Wolf et al., 2020) code library. The num- 443

ber of training epochs N1 for the embedding model 444

is set to 50, with N2 = 100 steps per epoch. During 445

the fine-tuning of the embedding model, the num- 446

ber of recall examples n is set to 32. For model op- 447

timization, we use AdamW (Loshchilov and Hutter, 448

2019), with a learning rate of 1e-5 and a warmup of 449

50 steps at the beginning of the model fine-tuning. 450

Other hyperparameters remain consistent with the 451

Transformers code library. After each epoch, the 452

embedding model E is evaluated according to Equa- 453

tion 7. The fine-tuning employs an early stopping 454

strategy with a maximum patience of 10, meaning 455

that if the evaluation metric corravg does not im- 456

prove for 10 consecutive epochs, the training will 457

be stopped. 458

4.4 Baseline methods 459

With the same inference LVLM, we compare our 460

DRUM method with existing methods for demon- 461

1https://huggingface.co/openai/
clip-vit-base-patch32
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stration retrieval by the downstream ICL perfor-462

mance, including: (a) Null, which is not to use any463

demonstrations. (b) Random, randomly sampling464

demonstrations from the supporting set. (c) BM25,465

a prevailing sparse retriever widely used in the lit-466

erature (Chen et al., 2017). (d) DINO, which is to467

retrieve demonstrations using the image embedding468

provided by the DINO model (Caron et al., 2021).469

(e) BGE, which is to retrieve demonstrations using470

the text embedding provided by the BGE model471

(Chen et al., 2024). (f) CLIP, which is to retrieve472

demonstrations using the image-text embedding473

provided by the CLIP model (Caron et al., 2021).474

(g) EPR (Rubin et al., 2021), which builds upon475

the aforementioned CLIP approach by conducting476

LVLM feedback evaluation for each example, then477

transforming the task of re-ranking demonstrations478

into a classification task, leading to the training of479

a classifier for evaluating these demonstrations.480

4.5 Main Results481

We report the performance of different meth-482

ods on the seven benchmark VL tasks in Table483

2. We can see that: (a) DRUM outperforms the484

baselines with clear margins on most tasks, which485

shows our method’s best demonstration retrieval486

ability on a wide range of VL tasks. (b) Specially,487

compared with EPR, DRUM has better overall per-488

formance and this shows the effectiveness of our489

training method. Meanwhile, compared with CLIP,490

the embedding model which is directly initialized491

with CLIP-base, DRUM has clear advantages. This492

straightly demonstrates that our proposed training493

framework can help DRUM incorporate LVLM’s494

feedback through the DRUM’s fine-tuning proce-495

dure and retrieve more beneficial demonstrations.496

The experimental results also reveal that the ran-497

dom baseline achieves the worst performance in498

most tasks. This phenomenon is intuitive: pairing499

the current query with irrelevant demonstrations is500

unhelpful, and sometimes could lead the model to501

the wrong directions.502

4.6 Further analysis503

Ablation Study To evaluate the effect of our504

DRUM’s each component, we consider the follow-505

ing variant of DRUM: (a) DRUM-1, which sub-506

stitute Eq 9 to m(i, j) = max(0,
1

r(zj)
− 1

r(zi)
).507

(b) DRUM-2, which substitute Eq 9 to m(i, j) =508

max(0, r(zi) − r(zj)). (c) DRUM-3 removes the509

weight m(i, j) from Eq 8. (d) DRUM-4, which510

Method VizWiz Hateful-Memes Flicker30K
DRUM 64.6 70.6 41.5

DRUM-1 64.0 68.7 40.8
DRUM-2 63.9 69.3 40.7
DRUM-3 63.8 68.4 40.1
DRUM-4 63.4 68.2 39.9

Table 3: Results of the ablation study on DRUM’s
training strategy.

Strategy VizWiz Hateful-Memes Flicker30K
SIT-IPDR 64.6 70.6 41.5

SIT-IP 63.1 68.6 40.7
ST-PDR 61.5 66.2 39.4

ST-P 62.7 67.0 34.7
SI 62.8 68.3 40.8

Table 4: Results of the ablation study on the demonstra-
tion retrieval strategy.

LVLMM E VizWiz Hateful-Memes Flicker30K

GPT-4o
CLIP 72.1 76.9 41.1
EPR 75.6 79.0 42.9

DRUM 77.2 81.6 45.2

Claude 3 Opus
CLIP 71.5 76.2 38.2
EPR 73.3 78.3 41.6

DRUM 76.1 80.2 43.4

Table 5: Experiments on the transfer learning capabil-
ities of DRUM. We using the fine-tuned model E to
retrieve demonstrations for GPT-4o and Claude 3 Opus.
E being CLIP means no fine-tuning is conducted. E
being CLIP + EPR means fine-tuning with the EPR
method is conducted. E being CLIP + DRUM means
fine-tuning with the DRUM method is conducted.

do not conduct iterative demonstration candidate 511

mining. The results are reported in Table 3. 512

The experimental results show that: (a) The 513

comparison between DRUM-1 and DRUM demon- 514

strates the 515

Ablation on the retrieval strategy This work 516

uses the SIT-IPDR strategy for example retrieval 517

in the main experiment (Table 2). To demonstrate 518

the rationality of the DRUM setup and this strategy, 519

we conduct an ablation study on the demonstration 520

retrieval strategy. Table 4 reports the performance 521

of the DRUM method using SIT-IP, ST-PDR, ST-P, 522

and SI strategies. The experimental results show: 523

(a) The SIT-IPDR strategy outperforms other strate- 524

gies. This strategy combines image and text infor- 525

mation for demonstration retrieval, utilizing the 526

maximum amount of semantic information avail- 527

able in the test sample, thus enabling it to recall the 528

most relevant demonstrations. (b) Retrieving exam- 529

ples based only on the prompt text content (ST-P) 530

7



(a) VizWiz (b) Hateful-Memes

Figure 2: The effects of the number of demonstrations on DRUM, EPR, and CLIP.

performs poorly on image classification tasks and531

image caption generation tasks. The primary rea-532

son for this phenomenon is that these types of tasks533

involve prompts that contain generic task instruc-534

tions without directly related semantic information.535

However, by combining the prompt text with the536

draft response text (ST-PDR), there is a significant537

improvement in performance. This result shows538

that the draft response can effectively supplement539

the semantic information needed for example re-540

trieval.541

Transferability across Different LMs Note that542

during the fine-tuning of the embedding model E543

using the DRUM method, the LVLM model M544

needs to re-rank the recalled examples based on545

conditional likelihood function values. Given that546

different LVLM models have similar training mech-547

anisms and are pre-trained on large amounts of548

internet data, their internal mechanisms and cog-549

nition share similarities. In this part of the ex-550

periment, we will use the embedding model E ,551

fine-tuned with feedback from the Deeoseek-VL2552

model, for example recall with GPT-4o or Claude553

3 Opus models. The experimental results are pre-554

sented in Table 5.555

According to Table 5, the embedding model,556

fine-tuned with feedback signals from the557

Deeoseek-VL2 model, is able to recall higher-558

quality examples, effectively enhancing the per-559

formance of powerful commercial LVLM models560

like GPT-4o or Claude 3 Opus in tasks such as561

VQA (Visual Question Answering), image classi-562

fication, and image caption generation. This ex-563

periment demonstrates the practical significance564

of the DRUM method: by fine-tuning an exam-565

ple recall model with feedback from open-source566

LVLM models, and then applying this example re-567

call model to the contextual learning of commercial568

LVLM models.569

Impact of demonstration quantity In the main 570

experiments (Table 2), we set n to 4. We now com- 571

pare DRUM with CLIP and EPR under different 572

amounts of demonstrations, and the experimental 573

results are reported in Figure 2. 574

We can see that DRUM outperforms baselines 575

consistently across varying amounts of demon- 576

strations. Meanwhile, we can draw two conclu- 577

sions from the results: (a) The number of demon- 578

strations has a greater impact on the generation 579

task, VizWiz, than the classification task, Hateful- 580

Memes. Specifically, as the number of demon- 581

strations increases, VizWiz’ performance gets sig- 582

nificant improvements while Hateful-Memes’ has 583

slight improvements. (b) The quality of demon- 584

strations can be more important than their quantity. 585

Specifically, DRUM with one or two demonstra- 586

tions still outperforms EPR with 4 demonstrations. 587

These observations again reflect the strong demon- 588

stration retrieval ability of DRUM. 589

5 Conclusion 590

In this paper, we propose DRUM, a unifined ap- 591

proach of demonstration retrieval for large vision- 592

language models. To train DRUM, we cast the 593

LVLM’s feedback on a demonstration to a unified 594

list-wise ranking formulation, and propose the rank- 595

ing training framework with an iterative mining 596

strategy to find high-quality candidates. Experi- 597

ments on three visual question answering tasks, two 598

visual recognition tasks and two image captioning 599

tasks show that UDR significantly outperforms the 600

baseline demonstration retrieval methods. Further 601

analysis show the effectiveness of each proposed 602

components of the DRUM, and the strong transfer- 603

ability of DRUM across different LVLMs (3B to 604

175B), unseen datasets, and varying demonstration 605

quantities. 606
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Limitations607

We showed that our proposed method can im-608

prove the performance of in-context learning on609

diverse vision-language tasks and different large610

vision-language models. However, we acknowl-611

edge the following limitations: (a) the number of612

experimented open-sourced LVLMs is limited due613

to limited computation resources. (b) Other vision-614

language tasks, like visual information extraction,615

were also not considered. But our framework can616

be easily transferred to other LVLM backbone ar-617

chitectures and different types of tasks. It would618

be of interest to investigate if the superiority of our619

method holds for other large-scaled backbone mod-620

els and other types of tasks. And we will explore it621

in future work.622

Ethics Statement623

The finding and proposed method aims to im-624

prove the in-context learning in terms of better task625

performances. The used datasets are widely used in626

previous work and, to our knowledge, do not have627

any attached privacy or ethical issues. In this work,628

we have experimented with Deepseek-VL2, a mod-629

ern large vision language model series. As with630

all LVLMs, Deepseek-VL2’s potential outputs can-631

not be predicted in advance, and the model may in632

some instances produce inaccurate, biased or other633

objectionable responses to user prompts. However,634

this work’s intent is to conduct research on differ-635

ent in-context learning methods for LVLMs, not636

building applications to general users. In the future,637

we would like to conduct further tests to see how638

our method affects the safety aspects of LVLMs.639
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A Datasets821

The DRUM method is evaluated on three bench-822

mark visual-question answering (VQA) datasets,823

two benchmark image captioning (ImageCap)824

datasets, and two image classification (ImageCLS)825

tasks. The specific VQA datasets are as follows:826

• VQAv2 (Goyal et al., 2017). This dataset uses827

images from the MSCOCO dataset (Lin et al.,828

2014), with textual questions manually crafted829

by annotators to ensure that each question re-830

quires visual information to answer.831

• VizWiz (Gurari et al., 2018). This dataset con-832

tains low-resolution images, and some ques-833

tions are unanswerable based on the images.834

It is designed to evaluate whether models can835

discern answerable questions and avoid hallu-836

cination or overconfident responses.837

• OK-VQA (Marino et al., 2019). This dataset838

requires models to integrate visual informa-839

tion, textual questions, and external world840

knowledge to generate answers, posing sig-841

nificant challenges.842

The ImageCap datasets include:843

• Flickr30K (Plummer et al., 2015). This844

dataset contains images from the Flickr com-845

munity2, with each image annotated by crowd-846

workers to provide five reference captions.847

• NoCaps (Agrawal et al., 2019). This dataset848

uses images from the validation and test sets849

of the Open Images dataset (Kuznetsova et al.,850

2020), with human-annotated captions.851

The ImageCLS tasks employ the following852

datasets:853

• Flowers102 (Nilsback and Zisserman, 2008).854

This dataset requires classifying input images855

into one of 102 common flower categories in856

the UK.857

• Hateful-Memes (Kiela et al., 2020). This858

dataset collects internet memes and catego-859

rizes them into "hateful" or "non-hateful"860

classes.861

For each dataset, the original training/valida-862

tion/test splits were randomly reorganized to form863

2https://www.flickr.com/

the support set Dsupp required by the DRUM work- 864

flow, the training set Dclip_train and validation 865

set Dclip_dev for fine-tuning the example retrieval 866

model, and the test set Dtest for evaluating the 867

in-context learning performance of the language 868

model. The statistics of each task’s dataset are 869

summarized in Table 6. 870

B Prompt templates 871

Prompt template for the VQA task If we do 872

not use any demonstrations, the prompt template 873

for the VQA task is: 874

1 <image > 875
2 Question: [question] 876
3 Instruction: answer with a short phrase. 877
4 Answer: 878

in which <image> is the placeholder for the input 879

image, [question] is the input question. 880

The prompt template for VQA with a group of 881

demonstrations is: 882

1 <demo_image > 883
2 Question: [demo_question] 884
3 Answer: [demo_answer] 885
4 886
5 <demo_image > 887
6 Question: [demo_question] 888
7 Answer: [demo_answer] 889
8 890
9 You will be engaged in a two -phase task. 891

Phase 1: Absorb the information 892
from a series of image -text pairs. 893
Phase 2: Use that context , combined 894
with an upcoming image and your own 895
database of knowledge , to accurately 896
answer a subsequent question. 897

10 <image > 898
11 Question: [question] 899
12 Instruction: answer with a short phrase. 900
13 Answer: 901

in which <demo_image> is the placeholder 902

for the image in the demonstration sample, 903

[demo_question] is the demonstration question, 904

and [demo_answer] is the corresponding ground- 905

truth answer. 906

Prompt template for the image captioning task 907

If we do not use any demonstrations, the prompt 908

template for the image captioning task is: 909

1 <image > 910
2 Instruction: write a concise caption for 911

the image. 912
3 Response: 913

in which <image> is the placeholder for the input 914

image. 915

The prompt template for VQA with a group of 916

demonstrations is: 917

11
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Table 6: The vision-language tasks used in the experiments.

Dataset |Dsupp| |Dclip_train| |Dclip_dev| |Dtest| Labels Type Metric
VQAv2 180k 10k 10k 14k - VQA acc
VizWiz 2.0k 1.0k 0.5k 0.8k - VQA acc

OK-VQA 2.0k 1.0k 0.5k 1.6k - VQA acc
Flickr30K 20.0k 5.0k 1.0k 5.8k - ImageCap rouge-l-ic
NoCaps 2.0k 1.0k 0.5k 1.0k - ImageCap rouge-l-ic

Flowers102 4.0k 1.0k 1.0k 1.2k 102 ImageCLS acc
Hateful-Memes 6.0k 2.0k 1.5 3.0k 2 ImageCLS acc

1 <demo_image >918
2 Response: [demo_caption]919
3920
4 <demo_image >921
5 Response: [demo_caption]922
6923
7 You will be engaged in a two -phase task.924

Phase 1: Absorb the information925
from a series of image -text pairs.926
Phase 2: Use that context , combined927
with an upcoming image and your own928
database of knowledge , to accurately929
provide a caption for the following930
image.931

8 <image >932
9 Instruction: write a concise caption for933

the image.934
10 Response:935

in which <demo_image> is the placeholder936

for the image in the demonstration sample,937

[demo_caption] is the ground-truth caption.938

Prompt template for the image classification939

task If we do not use any demonstrations, the940

prompt template for the image classification task941

is:942

1 <image >943
2 Instruction: assign one of the following944

labels to the input image.945
3 [label_list]946
4 Response:947

in which <image> is the placeholder for the input948

image, and the [label_list] is the collection of label949

names specified in the given classification task.950

The prompt template for VQA with a group of951

demonstrations is:952

1 <demo_image >953
2 Response: [demo_label]954
3955
4 <demo_image >956
5 Response: [demo_label]957
6958
7 You will be engaged in a two -phase task.959

Phase 1: Absorb the information960
from a series of image -text pairs.961
Phase 2: Use that context , combined962
with an upcoming image and your own963
database of knowledge , to accurately964

assign a label from the provided 965
label list for the following image. 966

8 <image > 967
9 Instruction: assign one of the following 968

labels to the input image. 969
10 [label_list] 970
11 Response: 971

in which <demo_image> is the placeholder for the 972

image in the demonstration sample, [demo_label] 973

is the ground-truth caption. 974

C Sample embedding strategies 975

How to transform a input vision-language sam- 976

ple to an embedding vector is essential for demon- 977

stration retrieval. Now, we summarize a series of 978

specific retrieval strategies mentioned in the litera- 979

ture (Li et al., 2024) and new ones proposed in our 980

work. 981

Random sampling (RS) This strategy simply 982

obeys the uniform distribution to randomly sam- 983

ple n-shot triplets from D to form the in-context 984

sequence S. 985

Retrieving via similar image (SI) This method 986

retrieve n images from D which are most simi- 987

lar to the querying image and then use the corre- 988

sponding triplets of these retrieved images as the 989

demonstrations. For example, given the test sam- 990

ple xtest = (imagetest, prompttest), suppose the 991

i-th image imagei is similar to imagetest, then the 992

whole i-th triplet zi = (imagei, prompti, responsei) 993

will be used as one demonstration. Here we assume 994

we have access to an high-quality image embed- 995

ding model at hand, which can transform each im- 996

age to a separate vector in the semantic space in 997

which the similarity between two vectors reflect 998

their similarity in contents. 999

Retrieving via similar texts (ST). Besides retriev- 1000

ing via images, we can also retrieve n triplets which 1001

contain the most similar text contents to the query- 1002

ing sample, where the embeddings of these texts 1003

are used to calculate the cosine similarity. Here 1004
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we assume we have access to an high-quality text1005

embedding model at hand, which can transform a1006

piece of text to a separate vector in the semantic1007

space in which the similarity between two vectors1008

reflect their similarity in contents. We consider1009

three kinds of texts:1010

• Retrieving via similar prompts (ST-Q). We1011

use the prompts in the supporting set as the1012

contents to build the vector database, and use1013

the prompt of the test sample as the input text1014

for retrieving, i.e., comparing the similarity1015

between prompttest and prompti.1016

• Retrieving via similar prompts & draft re-1017

sponse (ST-PDR). This strategy, since the1018

ground truth answer is not available dur-1019

ing inference, we can not retrieve demon-1020

strations with the querying sample’s answer.1021

However, note that the LVLM itself can1022

generate a draft response by only generat-1023

ing conditioned onthe prompt or using strat-1024

egy ST-Q. Thus, we first generate a draft1025

response responsepred,1test to the test sample1026

xtest, and then compare the semantic similar-1027

ity between (prompttest, responsepred,1test ) and1028

(prompti, responsei). Note that generating the1029

draft response responsepred,1test introduces addi-1030

tional latency for the whole system. To ensure1031

small latency, we ask the model to generate at1032

most 2 tokens.1033

Retrieving via Similar image-texts (SIT). Be-1034

sides retrieving via only images or texts, we can1035

also retrieve the demonstrations via the concate-1036

nation of image embeddings and text embeddings.1037

Note that (Li et al., 2024) neglect this group of1038

strategy. Since the CLIP model can generate two1039

vectors for the text and image contents separately,1040

these two vectors will be concatenated.1041

Thus, similar to the previous strategies based on1042

text input, we can have the following strategy:1043

• Retrieving via similar image and prompts1044

(SIT-IP). We concatenate the querying im-1045

age embedding and prompt embedding for1046

retrieval on a vector database, which are con-1047

structed by concatenating supporting samples’1048

image embeddings and prompt embeddings.1049

• Retrieving via similar image prompt and1050

draft response (SIT-IPDR). This strategy is1051

introduced Section 3.2 in the main contents.1052
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