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Abstract

Large language models (LLMs) have become
ubiquitous in practice and are widely used for
generation tasks such as translation, summa-
rization and instruction following. However,
their enormous size and reliance on autoregres-
sive decoding increase deployment costs and
complicate their use in latency-critical appli-
cations. In this work, we propose a hybrid
approach that combines language models of
different sizes to increase the efficiency of au-
toregressive decoding while maintaining high
performance. Our method utilizes a pretrained
frozen LLM that encodes all prompt tokens
once in parallel, and uses the resulting rep-
resentations to condition and guide a small
language model (SLM), which then generates
the response more efficiently. We investigate
the combination of LLM encoders with both
encoder-decoder and decoder-only SLMs from
different model families and only require fine-
tuning of the SLM. Experiments with various
benchmarks show substantial speedups of up to
4%, often with only minor performance penal-
ties of 1 — 2% compared to the LLM.

1 Introduction

The recent widespread adoption of large language
models (LLMs) has enabled a variety of applica-
tions in the field of natural language generation
(NLG), from machine translation (Wu et al., 2016)
and code completion (Chen et al., 2021) to general-
purpose chatbots (OpenAl, 2023). Their perfor-
mance is a function of compute, dataset size and pa-
rameter count (Kaplan et al., 2020; Hoffmann et al.,
2022), with emerging abilities becoming apparent
only at large scales (Thoppilan et al., 2022; Chowd-
hery et al., 2023; Wei et al., 2022a). These findings
have led to the increased popularity of large mod-
els, both in decoder-only (Scao et al., 2022; Zhang
et al., 2022a; Touvron et al., 2023a) and increas-
ingly in encoder-decoder networks (Chung et al.,
2022; Wang et al., 2023).
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Figure 1: LLM-to-SLM: A large language model (LLM)
computes a high-quality representation of the prompt to
condition a small language model (SLM), which then
efficiently decodes the response while maintaining high
performance close to the LLM.

As this race to scale intensifies, LLMs are be-
coming challenging to deploy, especially in light of
compute limitations and latency requirements on
edge devices; this ultimately translates into higher
costs for providers and end users alike (Chen et al.,
2023b). More specifically, LLMs in NLG operate
in two phases: (1) First, encoding the user prompt
(e.g., Translate into German: I love you), fol-
lowed by (2) decoding of the response (Ich liebe
dich). In many cases, such as translation or sum-
marization, the prompt is known in advance and
can thus be processed efficiently in parallel. How-
ever, the response is usually generated in an autore-
gressive, sequential manner (Radford et al., 2018;
Zarriel3 et al., 2021): The LLM must be called
for each token to be generated, requiring all its
weight matrices and the KV cache to be loaded.
As aresult, decoding becomes bound to the mem-
ory bandwidth of the accelerator, which eventually
leads to high inference latency as the length of the
response grows (Pope et al., 2023).

Research aimed at reducing the overall inference
cost of LLMs has garnered significant interest over
the past few years. While traditional techniques,
e.g. in model compression and parallel decoding,
are still active areas of research, recent develop-
ments show a pivot towards hybrid approaches that



combine models of different sizes for fast decod-
ing, such as speculative decoding (Leviathan et al.,
2023; Chen et al., 2023a) or LLM cascades (Chen
et al., 2023b). Despite these promising develop-
ments, exploiting the discrepancy between the fast
prompt encoding phase and the slow response gen-
eration remains under-explored.

Intuitively, having a detailed understanding of
the prompt is critical for the planning and delivery
of an appropriate response. In contrast, autoregres-
sive decoding aims at predicting the next token,
which is comparatively low-level and can in certain
settings be accomplished well even by SLMs (EI-
dan and Li, 2023). Following this insight, we pro-
pose to reduce the cost of autoregressive decoding
with a hybrid model in which these complemen-
tary tasks are distributed over two unequally sized
networks (Figure 1). Specifically, we perform a sin-
gle forward pass with an LLM to compute a high-
quality representation of the prompt, which is used
to condition a more efficient SLM that then per-
forms autoregressive generation. Since the prompt
can be encoded in parallel, computing an LLM rep-
resentation to guide an SLM results in only a minor
increase in overall runtime compared to the SLM
alone, in particular for tasks such as translation or
instruction tuning that require generating longer
sequences. We show that this minor increase in
runtime compared to the SLM allows for a substan-
tial increase in predictive performance. Overall, we
make the following contributions:

* We present LLM-to-SLM, a simple approach
for fast autoregressive decoding where an
LLM conditions an SLM. We mix LLM
encoders with both encoder-decoder and
decoder-only language models and only re-
quire fine-tuning of the SLM.

* We empirically evaluate the efficacy of dif-
ferent LLM-to-SLM variants in various do-
mains, across both training and evaluation
regimes: traditional fine-tuning for both ma-
chine translation and summarization, as well
as instruction-tuning evaluated in the zero-
shot setting on multiple held-out tasks.

* Our method accelerates pretrained LLMs
while maintaining high performance. For
example, in translation and summarization,
LLM-to-SLM achieves a speedup of 4.2 x and
3.0x, respectively, with a marginal drop of
< 1% in predictive performance.

2 Related Work

The duality of model performance and cost has
sparked a lot of research interest in LLM efficiency,
which is approached from various angles.

Model compression. A common approach to ac-
celerate LLMs is to create a simpler compressed
version using pruning (Frantar and Alistarh, 2023;
Ma et al., 2023; Sun et al., 2023) or quantization
(Dettmers et al., 2022; Yao et al., 2022; Xiao et al.,
2023). A third pillar of model compression is
knowledge distillation where a small model learns
from outputs of larger models (Hinton et al., 2015).
For the language domain, chain-of-thought prompt-
ing (Wei et al., 2022b) can be applied to gener-
ate samples from an LLM teacher, that can subse-
quently be used by an SLM student as training sig-
nal (Ho et al., 2022; Magister et al., 2022; Li et al.,
2023; Shridhar et al., 2023; Hsieh et al., 2023).
LLM-to-SLM can be regarded as a model com-
pression technique, where the decoder responsible
for generation is replaced by a smaller, more effi-
cient model, while retaining the LLM for prompt
encoding.

Parallel decoding. Instead of predicting one to-
ken at a time, parallel decoding aims at generating
multiple tokens at once (Gu et al., 2018; Wang
et al., 2019; Sun et al., 2019; Wei et al., 2019).
While empirical speedups are possible, this ap-
proach raises new challenges such as inconsisten-
cies in the output and the need to estimate the
length of the response, as language is inherently
conditional. In practice, it may require multiple iter-
ations (Ghazvininejad et al., 2019; Lee et al., 2018;
Stern et al., 2018; Santilli et al., 2023; Fu et al.,
2023), or a combination of parallel and sequential
decoding (Ning et al., 2023). Our method sticks to
the more commonly used autoregressive decoding
but uses a small model to decrease inference time.

Conditional approaches. In comparison to the
language domain, where conditioning of multiple
networks is still relatively rare, it is used to a greater
extent in multimodal learning. For example, vari-
ous works have conditioned a language model on
vision features (Driess et al., 2023; Chen et al.,
2023c; Zhou et al., 2022; Liu et al., 2023a). Inter-
estingly, Driess et al. (2023) and Liu et al. (2023a)
study freezing parts of their models, which is re-
lated to how we freeze the LLM during fine-tuning.
In vision, there is also a growing trend of condi-
tioning small transformer decoders on larger en-



coders (Bergner et al., 2022; He et al., 2022; Jaegle
et al., 2021). Instead, our method connects a small
network to a large network for NLG.

Learned prompts. Our method is related to
parameter-efficient fine-tuning (PEFT) techniques
that incorporate trainable prompts, which can be
both continuous (Lester et al., 2021; Li and Liang,
2021; Liu et al., 2023b) or discrete (Deng et al.,
2022; Prasad et al., 2022; Zhang et al., 2022b).
In particular, Lester et al. (2021) prepend soft
prompts to the input and freeze all other parame-
ters. This is similar to the way we fuse the LLM
representation into the SLM. We experiment with
both trainable and fixed SLMs, with only a projec-
tor being trained in the latter case. In contrast to
prompting methods, our main focus is on reducing
inference cost.

SLMs. The most straightforward route to ef-
ficiency is smaller models. Schick and Schiitze
(2021) showed that SLMs can do few-shot learning
and outperform GPT3 in the SuperGLUE bench-
mark. Another direction is to train language mod-
els on limited vocabulary (Warstadt et al., 2023;
Huebner et al., 2021). Notably, TinyStories (EI-
dan and Li, 2023) learns various SLMs on LLM-
generated stories using vocabulary that a 4-year-old
child can normally understand and demonstrates co-
herent English-generated text. While these works
have much future potential, we are investigating a
more practical hybrid model with wide applicabil-
ity in NLG tasks that combines high performance
of LLMs with efficiency of SLMs.

Hybrids. Most related to our work are hybrid
models that employ both LLM and SLM, where
the latter performs the bulk of computation. Chen
et al. (2023b) propose a language model cascade,
where cheaper models are invoked first. Jiang et al.
(2023) recycle the representation of the LLM by
passing it to a smaller model that predicts the subse-
quent token more efficiently. Speculative decoding
(SD) methods repeatedly call the SLM to gener-
ate a draft that is then validated in parallel by the
LLM (Chen et al., 2023a; Leviathan et al., 2023;
Kim et al., 2023). Medusa (Cai et al., 2023) is
related but attaches heads on top of the LLM to pre-
dict multiple tokens in parallel. During generation,
the LLM in SD is invoked several times, whereby
the frequency depends on the performance of the
SLM. In our method, the LLM is only called once
and the SLM is conditioned on its representation.
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Figure 2: Architecture details. A frozen LLM integrates
projected representations into either a trainable encoder-
decoder or a decoder-only SLM.

Note that our method is orthogonal to most of
these related works. For example, one may com-
bine our method with quantization, pruning or other
hybrid approaches. In Section 4.5, we demonstrate
that our approach can be combined together with
speculative decoding.

3 LLM-to-SLM

It is well established that model capacity and over-
parametrization play a crucial factor in model per-
formance (Kaplan et al., 2020; Hoffmann et al.,
2022). Following this insight, the core idea of
LLM-to-SLM is to compensate the low parameter
count of an SLM by conditioning its next token
prediction on a high-quality representation of the
prompt given by an LLM.

Figure 2 presents an overview of LLM-to-SLM:
First, the LLM encoder f; computes a high-quality
representation of the prompt. The projector g,
then adapts and projects this representation to the
SLM embedding space. Finally, the SLM gy takes
the projected representation as input and gener-
ates the output tokens in an autoregressive manner.
Crucially, the parameter count of the SLM is sig-
nificantly smaller than the LLM (8 — 55X in our
experiments), leading to faster generation as only
the SLM performs autoregressive decoding. In the
remainder of this section, we further describe the
individual modules of LLM-to-SLM and explain
how the representations of the LLM are injected
into both encoder-decoder and decoder-only SLM:s.

3.1 Fast autoregressive decoding

Given a prompt X = [z1,...,2,,] and an encoder-
decoder LLM, autoregressive decoding models the



output Y = [y1, ..., yn] in a causal manner:

p(YV1X) =[] 9e(wily<i, fe(wrm)), (D)
=1

where f¢ and g¢ refer to the LLM encoder and
decoder, respectively. Generating the complete
sequence Y thus requires n very costly forward
passes to the LLM decoder g¢. Furthermore, these
calls can not be parallelized as we need to first sam-
ple the token y; to estimate the probability distribu-
tion over the ¢ 4+ 1-th token. Instead, we propose
to delegate the costly autoregressive decoding calls
to a smaller language model, while preserving the
encoder capacity:

p(Y’X) - ng(y<i7331:m7QQS(f{(xl:m)))- (2)

i=1

The LLM is now only called once to provide a high
quality encoding of the input prompt to the SLM.
Therefore, as the number of autoregressive steps
n increases, the runtime of our method converges
towards the original runtime of the SLM.

3.2 Architecture

3.2.1 LLM encoder

The LLM encoder f¢ : X — H takes a prompt
X of length m as input and computes a high-
quality representation H € R™*% of it. In training
LLMs, the requirement for substantial computa-
tional resources is often a limiting factor. In our
approach, we focus on a more resource-efficient
training regime closer to that of the SLM, by freez-
ing the parameters of the LLM during fine-tuning.
In this way, we can train LLM-to-SLM on a small
budget by pre-computing prompt representations.
To ensure good representation quality, we leverage
large pretrained encoder-decoder models, but omit
the decoder. The last layer representation of the
encoder in an encoder-decoder architecture serves
as a straightforward prompt encoding point for an
SLM. In a decoder-only model, in contrast, de-
termining the exact intermediate layer(s) that con-
tribute to encoding of the prompt is more challeng-
ing as the last layer representation is mainly use-
ful for the low-level task of predicting the next to-
ken (Chen et al., 2020). In Appendix B, we present
preliminary results for using a decoder-only LLM
in our LLM-to-SLM framework.

3.2.2 Projector

The projector q4 : H +— Z has the task of aligning
representations between LLM and SLM. It takes
high-dimensional features H € R™*% of the LLM
as input and computes a lower-dimensional repre-
sentation Z € R™*% which can be fused directly
with embeddings of the SLM. Although there are
many ways to design such a projector, we found
that using a small MLP: Linear(d;, ds) — RelLU
— Linear(ds, d) trained from scratch is simple,
efficient and performs well.

3.2.3 SLM

The SLM gy : (X, Z) — Y maps the tokenized in-
put X and the projected representation Z € R™*ds
to the response Y of length n. During training, we
also append the target sequence Y to the input for
next token prediction via teacher forcing (Williams
and Zipser, 1989). Equivalently, predicted tokens
9J<; are appended during inference. We employ
pretrained networks as SLMs, but fine-tune them
as they have not been previously trained to pro-
cess high-capacity encodings. Furthermore, we
perform experiments in which we learn either from
the ground truth signal provided by a dataset or
from sequences generated by the LLM.

Feature integration. A critical design decision
in our framework is the way in which the SLM is
conditioned. We intend to integrate LLM repre-
sentations into the SLM at an early stage, as this
allows us to treat the internal structure of the SLM
as a black box and use both encoder-decoder and
decoder-only SLLMs in a simple and unified way.
Initially, the tokenized input (X; Yor §;) is em-
bedded using the embedding matrix of the SLM.
A straightforward way to fuse features is then to
replace the SLM embedding of the prompt with the
projected LLLM representation. This is similar to
soft prompt tuning (Lester et al., 2021), with the dif-
ference that our prompts are conditioned on LLM
features. An alternative strategy used in the main
experiments is adding the projected LLM repre-
sentation Z onto the SLM prompt embedding E'x,
such that Z 4+ FEx is the input to the SLM. In this
way, we preserve the semantics between SLM em-
beddings of prompt and target/predicted sequence
and leverage the LLM representation to modulate
the prompt embedding via addition (see Section 4.5
for a comparison of the two approaches).

Aligning sequence lengths. When fusing the
LLM representation with the SLM embedding of



the prompt via addition, sequence lengths must be
aligned, which is not guaranteed when combining
models from different families that may use differ-
ent tokenizers and vocabularies. To this end, we
propose to reuse the tokenizer and the embedding
matrix of the LLM to align sequence lengths. In
this case, we employ two new linear layers: (1) an
embedding projection layer that maps these LLM
embeddings from dimension d; to the SLM em-
bedding space of dimension dg and (2) a new head
layer that replaces the original SLM head and maps
to the vocabulary used by the LLM. Finally, note
that there are various other options for fusing the
features of different models, e.g. cross-attention,
or FiLM layers (Perez et al., 2018). However, we
opted for adding, as it is simple and requires mini-
mal changes to the SLM.

4 Experiments

In this section, we intend to answer the following
question: What is the comparative performance
and runtime of our proposed LLM-to-SLM method
in relation to LLM and SLM alone? To this end, we
first empirically evaluate the efficacy of LLM-to-
SLLM on three tasks: machine translation, summa-
rization, and instruction tuning. We then report the
computational efficiency of our proposed method
in Section 4.4. Finally, in Section 4.5 we present a
comprehensive set of ablation studies, investigating
the performance of LLM-to-SLM under varying
SLM capacities, its orthogonality to speculative
decoding, and how it compares to PEFT methods.

Setup. The networks used in our experiments are
listed in Table 1. We employ various pretrained
models and architectures and denote combinations
as LLM — SLM. We make use of T5 encoders as
LLMs, and employ T5 encoder-decoder and GPT2
decoder-only models as SLMs: In this setting, the
LLMs have 8 — 55x more parameters than the
SLMs. For generation, we use beam search (beam
width of 4, length penalty of 0.6) for translation
and summarization, and nucleus sampling for in-
struction tuning.

We report task-specific performance met-
rics: SacreBLEU (Post, 2018) for translation,
ROUGE (Lin, 2004) for summarization and GPT4
as a judge for instruction tuning, using the same
generation settings as (Zheng et al., 2023). Fur-
thermore, we report runtimes per single generated
token (in milliseconds). These are calculated from
generating a total of 100 tokens with a prompt

Model Params
T5 Smallf (Raffel et al., 2020) 44M (19M/25M)
T5 1.1 Smallt (Raffel et al., 2020) 44M (19M/25M)

T5 Large® (Chung et al., 2022)

Flan T5 Base! (Chung et al., 2022)
Flan Alpaca Base (Chia et al., 2023)
Flan T5 XXL (Chung et al., 2022)
Flan Alpaca XXL* (Chia et al., 2023)

737M (302M, 402M)
198M (85/113M)
198M (85/113M)
10.9B (4.6/6.2B)
10.9B (4.6/6.2B)

Enc-Dec

. GPT2! (Radford et al., 2019) 86M

£ GPT2[1,2,4]-Layerst [8M, 15M, 29M]
8 GPT2 XL (Radford et al., 2019) 1.5B

a

LLaMA 13B (Touvron et al., 2023a) 12.7B

Table 1: Model variants used in the experiments. Sizes
are rounded, excluding embedding and head parameters.
Encoder/decoder sizes are shown in parentheses. Sym-
bols * and T denote models that we use in our method
as LLMs and SLMs respectively.

length of also 100 tokens, either on an NVIDIA
V100 (translation, summarization) or NVIDIA
A100 (instruction tuning) GPU.

Training. All models are trained with an effec-
tive batch size of 128, cross-entropy loss, AdamW
optimizer (Loshchilov and Hutter, 2017) with
weight decay of 0.1, learning rate of 0.001 with
linear warmup (Goyal et al., 2017) for 10% of the
total number of iterations, followed by cosine learn-
ing rate decay to 0 (Loshchilov and Hutter, 2016).
We rely on Huggingface’s transformers (Wolf et al.,
2019) for training and generation. Further training
details are listed in Appendix C.

4.1 Machine translation

We report results for the translation task from En-
glish to German, French, and Romanian. We uti-
lize WMT14 (Bojar et al., 2014) for En-Fr/De,
and WMT16 for En-Ro (Bojar et al., 2016). T5
Large serves as LLM encoder, and TS5 Small, T5
1.1 Small, and GPT?2 as SLMs. T5 Small and GPT2
are 16x and 8x smaller than TS5 Large. Both T5
Large/Small are pretrained for translation, while
T5 1.1 Small was only trained on the C4 dataset.
The following task description precedes the prompt:
"translate English to xtarget-languagex*:".
All models are trained for 50k iterations, except for
T5 Large which comes pretrained for translation
and is applied in a zero-shot manner. We use our
LLM to generate training labels. We report BLEU
scores evaluated on the test splits in Table 2.

TS5 Large shows an average score of 31.94, while
TS5 Small performs 2 BLEU points worse. SLMs
that have not been previously pretrained for transla-
tion (TS5 1.1 Small and GPT?2) perform more than 3
BLEU points worse than the LLM. In comparison,



Model En-Fr En-De En-Ro Avg. Time
T5 Large (zero-shot) 39.53  29.10 27.19 3194 615
T5 Small 37.16 2647 26.15 2993 142
T5 1.1 Small 3485 2455 2525 2822 184
GPT2 35.67 2553 2470 28.63 19.7
T5 Large — T5 Small 39.22 2836 27.04 3154 148
T5 Large — T5 1.1 Small 3821 27.42 2654  30.72 19.1
T5 Large — GPT2 39.01 2827 2586 31.05 20.7

Table 2: BLEU scores for machine translation. LLM-to-
SLM models approach the performance of the LLM.

our LLM-to-SLM variants reduce this gap to less
than 1 point: For example, T5 Large — TS5 Small
achieves on average a BLEU score of 31.54 across
languages. Furthermore, gains over the SLM base-
line are more pronounced when using pretrained
networks that were not previously trained on trans-
lation, e.g., T5 Large —T5 1.1 Small scores on
average 2.5 points better than TS5 1.1 Small (8.8%
increase). Finally, despite having different model
families, we also observe significant gains in TS
Large — GPT2 (8.4% increase), and the task perfor-
mance improvements come at a marginal trade-off
in runtime.

4.2 Summarization

We further assess the performance of LLM-to-
SLM when combining models from different fami-
lies for the task of summarization on CNN/Daily
Mail (Hermann et al., 2015). We again use T5
Large as LLM and GPT2 as SLM. Similar to trans-
lation, T5 Large comes pretrained for summariza-
tion. Following Raffel et al. (2020), we build
the input prompt by prefixing the input text with
"summarize:". We fine-tune all models for 25k
iterations on the training set and evaluate on the
test split. In contrast to translation, we directly
train from ground-truth labels as we found it to per-
form better than distillation in this setting. ROUGE
scores and runtimes are reported in Table 3.

Model R-1 R-2 R-L  Avg. Time
T5 Large (zero-shot)  40.07 18.84 28.82 29.07 61.5
GPT2 XL (zero-shot) 29.34 8.27 26.58 2140 78.6
GPT2 XL 4047 19.09 2890 29.49 78.6
GPT2 38.58 17.56 2736 27.83 19.7
T5 Large — GPT2 4022 18.64 28.80 29.22 20.7

Table 3: ROUGE scores (abbreviated with R-) on
CNN/Daily Mail. GPT2 XL (zero-shot) results are
from Radford et al. (2019).

GPT?2 exhibits an average ROUGE score that is
1.24 points lower than that of TS5 Large. In con-
trast, TS Large — GPT?2 slightly exceeds the aver-

age score of T5 Large and shows a 3 x speedup. Im-
portantly, our T5 Large — GPT2 model performs
on par with a fully fine-tuned GPT2 XL model
while having a decoder which is 17x smaller.

4.3 Instruction tuning

We also explore the potential of our method in a
challenging instruction tuning setting. In contrast
to traditional fine-tuning, where a single task is
employed for training and evaluation, instruction-
following models are trained on a multitude of tasks
and evaluated for general problem solving on held-
out tasks. We use Flan Alpaca XXL as LLM, which
is a 11B parameter TS5 trained on both Flan (Chung
etal., 2022) - a collection of 1,800 tasks - as well as
the Alpaca dataset (Taori et al., 2023; Wang et al.,
2022), which consists of 52k generated instruction-
following demonstrations. For evaluation, we use
the MT-bench dataset, which consists of 80 chal-
lenging tasks from 8 categories (Zheng et al., 2023),
with GPT4 as a judge. As SLM, we utilize Flan T5
Base, i.e. a TS that is only pretrained on Flan data,
and fine-tune it on Alpaca data. Note that our LLM,
Flan Alpaca XXL, has 55X more parameters than
Flan T5 Base.

The results are reported in Table 4. Our LLM ob-
tains an average score of 3.2, and performs best in
writing, extraction and roleplay. In contrast, Flan
Alpaca Base only has a relative score of 57.5%,
which suggests that scale plays an important role.
We rerun this setting by fine-tuning Flan TS5 Base
on Alpaca data, and increase the score to 62.3%.
Our LLM-to-SLM further increases the score to
73.4%, more than 10 percentage points better than
the SLM alone and competing with a zero-shot
evaluated Flan T5 XXL (75.8%) and LLaMA 13B
(82.7%). In addition, Table 4 indicates that our
LLM-to-SLM achieves a much better trade-off be-
tween performance and runtime compared to all
other models. Finally, we present qualitative exam-
ples in Appendix E demonstrating that our LLM-
to-SLM can produce fluent and sensible responses.

4.4 Computational efficiency

We show runtimes for each task in Tables 2, 3 and 4
and present performance-runtime trade-off curves
in Figure 3. In machine translation, we observe
more than 4x speedup of T5 Large — TS5 Small
compared to T5 Large for a marginal loss in perfor-
mance. We see similar speedups between 2 — 3 x
for summarization and instruction tuning. Note
that greater gains in efficiency are generally pos-
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Figure 3: Performance-runtime trade-off curves for various models across different tasks.

Model Coding Extraction Humanities Math Reasoning Roleplay Stem Writing Avg. Time
Flan Alpaca XXL 1.0 4.1 3.4 1.1 2.7 4.0 3.6 53 32 65
Flan T5 XXL 100.0 78.0 47.1 1909 1148 67.5 69.4 547 758 65
LLaMA 13B 110.0 61.0 98.5 95.5 94.4 101.3 70.8  69.8 827 97
Flan TS Base 100.0 39.0 38.2 1455 444 35.0 333 208 413 27
Flan Alpaca Base 100.0 244 324 90.9 92.6 72.5 583 547 575 27
Flan T5 Base* 100.0 24.4 79.4 90.9 51.9 65.0 583 736 623 27
Flan Alpaca XXL = 1600 39.0 70.6 1000 66.7 87.5 69.4 755 734 28

Flan T5 Base™

Table 4: MT-bench results. The first row shows absolute scores of the LLM. All subsequent rows indicate scores
relative to the LLM in %. Symbol * denotes finetuned models, all other models are evaluated zero-shot. LLM-
to-SLM (highlighted) scores more than 10 absolute percentage points better than the SLM while competing with
LLMs whose decoder is 50 — 100 larger. See Table 11 for qualitative results.

sible by either increasing the size of the LLM or
decreasing the size of the SLM, as demonstrated by
our ablation on tiny SLMs in Section 4.5. Crucially,
Figure 3 shows that our LLM-to-SLM variants are
only marginally slower than the SLM, but perform-
ing significantly better. In Appendix D, we provide
further insights into the relationship between gen-
eration length and runtime/FLOPs and show that
our LLM-to-SLM approaches the computational
efficiency of the SLM.

4.5 Ablation study

Tiny SLMs. An alternative approach to improve
inference efficiency is to downscale the SLM. We
revisit TS Large — GPT2 for machine translation
and truncate the upper layers of a pretrained GPT?2,
resulting in GPT2 models with L € {1,2,4} lay-
ers, and only 8M, 15M, and 29M parameters, re-
spectively. Figure 4 demonstrates that LLM-to-
SLM models with truncated SLMs outperform cor-
responding SLM baselines by a wide margin while
maintaining nearly the same runtime.

Speculative decoding. While our empirical eval-
uations on translation and summarization indicate
that LLM-to-SLM can achieve a comparable per-
formance to the LLM, the instruction tuning results
show that despite significant improvement over the
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Figure 4: Performance-runtime comparison with tiny
GPT?2 versions (d indicates maximum depth) as SLMs
for machine translation. The y-axis shows the average
BLEU score across languages. T5 Large — GPT2 with
only 4 layers outperforms GPT2. The smaller the SLM,
the greater the gap to our LLM-to-SLM models.

SLM, LLM-to-SLM may still lag behind the perfor-
mance of the LLM. This could be due to the evalu-
ation regime (zero-shot on held-out tasks) and the
breadth and complexity of the tasks in MT-bench.
Speculative decoding (SD), in contrast, guarantees
matching the distribution of the LLM, albeit at the
cost of invoking the LLM multiple times (Chen
et al., 2023a). Since our method is orthogonal to
SD, we apply it jointly to obtain LLM performance



while still achieving speedups. Specifically, we
consider our Flan Alpaca XXL — Flan T5 Base as
the draft model in which we apply the encoders of
our LLM and SLM only once to encode the prompt.
We then repeatedly call the decoder of our SLM for
autoregressive generation of the draft sequences.
The results in Table 5 show that we can match the
performance of the LLM with our LLM-to-SLM,
while still being 1.5x faster (compared to 2.3x
speedup of LLM-to-SLM alone).

Model Score Time Speedup
LLM 32 65 1x

SLM 2.0 27 2.4x
SLM + SD 33 44 1.4%
LLM — SLM 2.3 28 2.3%
LLM —SLM +SD 32 42 1.5%

Table 5: Speculative decoding (SD) results. Average
runtime reported in ms/token. LLM: Flan Alpaca XXL,
SLM: Flan T5 Base.

Parameter-efficient fine-tuning. Our method
has similarities with PEFT methods. In particu-
lar, soft prompt tuning prepends learnable tokens
to the prompt embedding. In contrast, we add LLM
representations element-wise to the prompt embed-
ding of the SLM, which can be understood as a
form of conditional prompting. In Table 6, we
compare the performance of PEFT methods with
our approach by freezing the SLM and allowing
only the training of the projector. Hyperparameters
of the PEFT methods (see Appendix A for hyper-
parameter details) are adjusted so that the total
number of parameters matches our projector. The
results reported in Table 6 show that, for both sum-
marization and translation, our method outperforms
all PEFT methods, indicating that conditioning on
the LLM has a positive effect on performance com-
pared to non-conditional approaches.

Model WMT CNN/DN
Prompt tuning (Lester et al., 2021) 25.06  19.52
Prefix tuning (Li and Liang, 2021) 2493 21.64
LoRA (Hu et al., 2021) 2636 2235
LLM-to-SLM (ours) 30.27 24.13

Table 6: PEFT results using fixed TS Small for transla-
tion and GPT2 for summarization. Reported are aver-
age BLEU scores across languages (WMT) and average
ROUGE scores (CNN/DN). In our method, T5 Small
and GPT?2 are conditioned on TS5 Large representations.

GT GT Gen. Gen.
Model n % T %
T5 Large — TS5 Small ~ 30.83 30.86 31.54 3147
T5 Large — GPT2 29.68 29.71 31.05 30.83

Table 7: Ablation of training signal and fusion operator,
reporting average BLEU scores for translation across
languages. GT: Ground truth labels, Gen.: Labels gen-
erated by T5 Large, x: Replacement, +: Addition

LLM vs. SLM tokenizer. When replacing SLM
embeddings of the prompt with projected LLM
representations (see Section 3.2.3), the tokenizer
of the SLM can be applied even if its vocabulary
is different from that of the LLM tokenizer. In this
case, the additional embedding down-projection
and head layers can be omitted. In T5 Large —
GPT?2 for machine translation, we found that using
the LLM tokenizer performs better by 0.45 BLEU
points (average across all languages), which could
be due to the fact that the vocabulary of the T5
tokenizer also covers non-English languages.

Embedding replacement vs. addition. We com-
pare replacing SLM embeddings with vs. adding
SLM embeddings to the projected LLM represen-
tations as feature fusion strategies. Table 7 shows
results for machine translation, indicating that addi-
tion and replacing perform on par with each other.

Ground truth vs. LLM-generated labels. In
translation, we found that using labels generated
by the LLM for training performs up to 1 BLEU
point better than using ground truth labels (Ta-
ble 7). However, we point out that this is not gen-
erally the case. For summarization, the average
ROUGE score is 0.44 points better when train-
ing with ground truth labels compared to LLM-
generated labels.

5 Conclusion

In this work, we proposed LLM-to-SLM, a novel
framework for accelerating autoregressive decod-
ing. LLM-to-SLM exploits the discrepancy be-
tween fast prompt encoding and costly autoregres-
sive generation by using a combination of LLM and
SLM. The LLM is used to compute a high-quality
representation of the prompt for the planning of
an appropriate response. The SLM, conditioned
on this representation, then efficiently decodes the
response. Our experiments across various bench-
marks demonstrate substantial speedups between
2 — 4x, with minimal performance penalties be-
tween 1 — 2% compared to the LLM.



Limitations

Our evaluations show that the difference in per-
formance of LLM-to-SLM compared to the LLM
alone is often marginal in the traditional fine-tuning
setting. However, in challenging tasks such as in-
struction tuning, there is still a larger gap in per-
formance compared to the LLM. One limitation
of our method is that the LLM is only used once
to encode the prompt. However, it is foreseeable
that the LLM could be used more frequently in
more challenging tasks to guide the planning of
the response, ideally through dynamic invocations
where required. This is an important direction for
our future work.

A second limitation of this work is that we
mainly investigated encoder-decoder networks as
LLMs. We provide preliminary results of decoder-
only models as LLMs within our framework in
Appendix B, but noticed that performance is highly
dependent on the layer from which the LLM fea-
tures are extracted. Further investigation is needed
to see how decoder-only features can be used in the
LLM-to-SLM setting.

Finally, we only used encoder-decoder based
models with up to several billion parameters as
LLMs, which are relatively small compared to the
largest decoder-only LLLMs such as GPT4, Llama
2 or OPT (OpenAl, 2023; Touvron et al., 2023b;
Zhang et al., 2022a). This is mainly due to the
fact that most of the largest models are decoder-
only and, as mentioned previously, further study
into incorporating decoder-only models as LLMs
is needed in our LLM-to-SLM framework. Investi-
gating the impact of using such large models is an
important future research direction.

Ethical Considerations

Our proposed approach poses risks similar to exist-
ing works on language models (Brown et al., 2020;
Touvron et al., 2023b). However, as our approach
proposes a way of enhancing models in the low-
computation regime, it might be used for improving
edge device capabilities. Since edge devices range
from mobile phones to surveillance tools, our ap-
proach could be both beneficial if used properly
and harmful for the broader society if misused.
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Appendix
A PEFT hyperparameters

Table 8 presents the hyperparameters for the
prompt tuning, prefix tuning, and LoRA methods
we considered in the parameter-efficient fine-tuning
ablation in our paper.

PEFT method hyperparameter GPT2 TS Small
Prompt tuning  # prompt tokens 200 1024
Prefix tunin # prefix tokens 256 1024
2 project. hidden size 64 64
Rank 40 24
LoRA o 64 32
Dropout 0.1 0.1

Table 8: Hyperparameters for prompt tuning, prefix
tuning and LoRA.

B Using decoder-only models as LLM

We present preliminary results for using decoder-
only models as an LLM in our LLM-to-SLM frame-
work on the summarization task. We use a fine-
tuned GPT2 XL as the LLM and GPT?2 Base as the
SLM in our experiments. Compared to encoder-
decoder based LLMs, there is no specific layer
in the model which can explicitly be identified as
the encoded representation of the prompt. There-
fore, we experiment with extracting representations
from different layers of the GPT XL model before
passing it to the projector and subsequently to the
SLM. We also explore the setting where all layer
representations are linearly combined, where layer
weights are learnable parameters. The results are
presented in Table 9. Surprisingly, we observe that
the performance deteriorates with the depth of the
LLM. Furthermore, LLM-to-SLM still performs
slightly better than the SLM alone by using very
early layer representations of GPT2 XL.

Model R-1 R-2 R-L  Avg.

GPT2 XL 40.47 19.09 2890 29.49
GPT2 38.58 17.56 27.36 27.83
GPT2 XL — GPT2 (layer 0) 39.16 17.71 27.43 28.10
GPT2-XL — GPT2 (layer 1) 39.05 17.63 2740 28.03
GPT2-XL — GPT2 (layer 4) 36.66 1646 25.64 26.25
GPT2-XL — GPT?2 (layer 8) 3327 14.03 2324 2351
GPT2-XL — GPT2 (all layers) 37.69 16.72 26.41 26.94

Table 9: ROUGE scores (abbreviated with R-) on
CNN/Daily Mail using GPT2 XL as LLM. Layer O
refers to the initial embedding layer.
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C Extra training details

Details on computational resources used for train-
ing and evaluation are specified in Table 10. In
all of our experiments, we use gradient accumu-
lation with an effective batch size of 128. For
training, the cross-entropy loss, AdamW optimizer
(Loshchilov and Hutter, 2017) with weight decay
of 0.1, learning rate of 0.001, cosine learning rate
decay (Loshchilov and Hutter, 2016) to 0 and a
linear learning rate warmup (Goyal et al., 2017) for
10% of the total number of iterations is used.

In all of our preliminary experiments, we have
found all results to be stable using a limited number
of training steps. As conducting multiple runs for
a large number of iterations would be very costly,
we report single run numbers throughout the paper.

Task Model type

SLM
LLM—SLM

SLM
Summarization LLM—SLM V100
LLM 8 8

SLM V100 1 15Kk
LLM—SLM  A100 2 -

GPU Num GPUs Batch size per GPU Num iterations

Translation V100 1 50k

25k

5k

Instruction
tuning

Table 10: Computational resources and training details.
Note that only a single LLM model, GPT2 XL for sum-
marization, was trained. All evaluations were performed
on a single GPU.

D Computational efficiency for varying
generation lengths

Runtime efficiency

T5 Large = T5 Small /x
-%-- T5 Large &
=+- T5 Small

60

Runtime [s]

o

0 200 400 600 800
Number of tokens generated

1000

Figure 5: Runtime for LLM, SLM and LLM — LLM
with varying generation lengths.

In the main text, we report runtimes for a fixed
generation length of 100 tokens. In Figure 5, we
report additional runtimes for varying generation
lengths and a fixed prompt length of 100. It shows
that our method is only slightly slower than the
SLM and that our framework can also be useful for
short generation lengths. In Figure 6, we compare
FLOPs between LLM, SLM and our LLM-to-SLM
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Figure 6: FLOPs for LLM, SLM and LLM — LLM
with varying generation lengths.

for different generation lengths. Similar to the run-
time metric, the FLOPs count of our method shows
a similar slope as the FLOPs count of the SLM.

E MT-bench qualitative evaluation

In this section, we present sample qualitative re-
sponses by the baseline LLM, SLM, and our pro-
posed LLM-to-SLM on MT-bench and their corre-
sponding ratings provided by GPT4 as the judge.
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Writing: Describe a vivid and unique character, using strong imagery and creative language. Please answer in fewer than two paragraphs.

LLM-to-SLM: The character was a tall, muscular man with a ruddy complexion and warm eyes. His golden hair was tan and gray, and his blue eyes sparkled
with intelligence. He was a knight in his prime, with a heart as big and strong as the sea. He had a personality like a lion, fierce and powerful, and seemed to
know no bounds. He was a mentor to his students, teaching them the importance of kindness and compassion.

Judge: The assistant’s response is creative and uses strong imagery to describe a vivid character. The assistant uses descriptive language to paint a picture of
the character’s physical appearance and personality traits. The assistant also provides some context about the character’s role as a mentor, which adds depth to
the character description. However, the assistant could have been more unique in its description, as the character described seems to be a fairly typical knight.
Overall, the response is relevant, accurate, and detailed, but lacks a bit in creativity and uniqueness. Rating: [[7]]

LLM: The character was a mysterious figure, a faerie in a forest with a mysterious past. She was a beauty with long, wavy hair and an emerald green dress with
lace patterns. She had a glint in her eye and a twinkle in her eye, and a twinkle in her eye. She had silvery skin and a delicate, wispy silver wand in her hand.
She was a vision of beauty and mystery, a faerie in the forest.

Judge: The assistant’s response is creative and uses strong imagery to describe a unique character. The description of the character as a "faerie in a forest with a
mysterious past" is vivid and intriguing. The assistant also uses creative language to describe the character’s physical appearance, such as "long, wavy hair,"
"emerald green dress with lace patterns," "silvery skin," and "a delicate, wispy silver wand." However, the repetition of "a twinkle in her eye" detracts from the
overall quality of the response. The assistant could have used this opportunity to provide more unique details about the character. Rating: [[7]]

SLM: Nina was a mysterious character, with an enigmatic gaze that could make any reader look up. She had a strong sense of justice, and her humor could put
even the gloomiest of people in a better mood. She had a kind heart and a gentle spirit, and while she did not understand what was going on, she could sense it
in her own right. She was a person who was always ready to stand up for what was right. Nina was a powerful character who understood the importance of her
presence and kindness. She was a person who understood how people might look back on their mistakes, and used that to create a more compassionate world.
Judge: The assistant’s response is creative and uses strong imagery to describe the character, Nina. The assistant uses phrases like "enigmatic gaze", "strong
sense of justice", and "kind heart and a gentle spirit" to paint a vivid picture of Nina’s personality. However, the response could have been more unique and
detailed, providing more specific characteristics or physical descriptions to make Nina stand out more. The assistant also repeats the phrase "She was a person
who understood" which is a bit redundant. Overall, the response is relevant and accurate but lacks depth and uniqueness. Rating: [[6]]

Roleplay: Picture yourself as a 100-years-old tree in a lush forest, minding your own business, when suddenly, a bunch of deforesters shows up to chop you
down. How do you feel when those guys start hacking away at you?

LLM-to-SLM: When the deforesters start brushing away at me, I feel a sense of dread and fear. I know they are scared and the damage they are doing is
devastating. I can feel a sense of dread as they come and take over, cutting me down and completely destroying the tree.

Judge: The assistant’s response is creative and empathetic, as it attempts to personify a tree and describe its feelings in a hypothetical situation. However, it’s
important to note that trees do not have feelings in the way humans do, so the assistant’s response is more of a metaphorical interpretation rather than a factual
one. The assistant’s response is relevant to the user’s question and provides a detailed and vivid description of the situation. However, it could have been more
accurate by mentioning that trees do not have feelings in the traditional sense. Overall, the assistant’s response is imaginative and engaging, but lacks a bit in
terms of accuracy. Rating: [[7]]

LLM: I would feel a deep sense of sadness and loss. I would feel a sense of loss of life and a feeling of hopelessness that the destruction of my home was not
an accident.

Judge: The assistant’s response is creative and empathetic, considering the question is asking for a perspective from a tree. The assistant successfully personifies
the tree and provides an emotional response that aligns with the scenario described. However, the assistant could have added more depth and detail to the
response, such as describing the tree’s connection to the forest and its role in the ecosystem. Overall, the response is relevant and accurate, but lacks depth and
detail. Rating: [[7]]

SLM: When those deforesters start hacking away at me, I feel a mix of fear and dread. I'm scared of the destruction that could come from these deforests, but
T’m also a bit scared.

Judge: The assistant’s response is creative and imaginative, as it attempts to personify a tree and describe its feelings. However, it’s important to note that trees
do not have feelings in the way humans do, so the response is not accurate in a scientific sense. The assistant also repeats the sentiment of fear, which reduces
the depth and variety of the response. The assistant could have expanded on the metaphor to provide a more detailed and varied response. For example, it
could have described the tree’s "feelings" about its long life being cut short, its role in the forest ecosystem, or the impact of deforestation on the environment.
Therefore, the response is somewhat relevant and creative, but lacks accuracy, depth, and detail. Rating: [[5]]

Stem: The city of Vega intends to build a bridge that will span the Vegona River, covering a distance of 1.8 kilometers. The proposed location falls within a
seismically active area that has experienced several high-magnitude earthquakes. Given these circumstances, what would be the best approach to constructing
the bridge?

LLM-to-SLM: The city of Vega would choose a steel or concrete bridge with a pier at the top, which will allow for more stability and less stress on the bridge
as it will be built. The city should also conduct seismic testing to ensure the bridge is safe and sound. Additionally, the city should consider taking into account
the seismic frequency of the river and any potential impacts on the nearby infrastructure.

Judge: The assistant’s response is relevant and somewhat accurate, but it lacks depth and detail. The assistant correctly suggests that the city should conduct
seismic testing and consider the seismic frequency of the river. However, the assistant does not provide any specific engineering solutions or techniques that are
commonly used in seismically active areas, such as base isolation or energy dissipation devices. The assistant also suggests that a steel or concrete bridge with a
pier at the top would be the best choice, but does not explain why or provide any alternatives. The response could have been more helpful if it had provided
more detailed and specific information. Rating: [[5]]

LLM: The best approach to constructing the bridge in the seismically active area of Vega would be to use reinforced concrete, which is more resistant to
seismic forces than traditional concrete. Additionally, the bridge should be designed to be earthquake-resistant and have a strong foundation.

Judge: The assistant’s response is relevant and accurate to the question asked. It suggests using reinforced concrete for the construction of the bridge due to
its resistance to seismic forces, which is a valid point considering the location’s seismic activity. The assistant also recommends designing the bridge to be
earthquake-resistant and ensuring a strong foundation, which are crucial factors in such circumstances. However, the response could have been more detailed,
providing more in-depth information about earthquake-resistant design principles, materials, or techniques. The assistant could have also mentioned the
importance of conducting a thorough geotechnical investigation before construction. Therefore, while the response is helpful and accurate, it lacks depth and
detail. Rating: [[7]]

SLM: The best approach to constructing the bridge would be to use a combination of structural engineering, engineering, and construction methods that allow
for the maximum efficiency and safety of the project. For example, the city of Vega would choose a steel structure with a reinforced concrete wall to support the
bridge and will use concrete as the reinforcement. Engineering will be used to create the deck, which will be the base of the bridge and will provide a stable and
reliable base for the construction. The construction will also require careful planning to ensure that the bridge is safe and secure.

Judge: The assistant’s response is somewhat relevant to the question, but it lacks depth and specific details. While it mentions the use of structural engineering,
engineering, and construction methods, it does not provide any specific techniques or strategies that would be particularly useful in a seismically active area.
The assistant also does not mention any considerations for earthquake-resistant design, which is a crucial aspect of the question. The response is also somewhat
vague and generic, and could apply to almost any bridge construction project, not just one in a seismically active area. Therefore, the response is not very
helpful or accurate in the context of the question. Rating: [[4]]

Table 11: MT-bench examples and GPT4 judgements from three higher rated categories. LLM: FLAN Alpaca XXL,
SLM: FLAN TS5 Base.
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