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Abstract

Large language models (LLMs) have become001
ubiquitous in practice and are widely used for002
generation tasks such as translation, summa-003
rization and instruction following. However,004
their enormous size and reliance on autoregres-005
sive decoding increase deployment costs and006
complicate their use in latency-critical appli-007
cations. In this work, we propose a hybrid008
approach that combines language models of009
different sizes to increase the efficiency of au-010
toregressive decoding while maintaining high011
performance. Our method utilizes a pretrained012
frozen LLM that encodes all prompt tokens013
once in parallel, and uses the resulting rep-014
resentations to condition and guide a small015
language model (SLM), which then generates016
the response more efficiently. We investigate017
the combination of LLM encoders with both018
encoder-decoder and decoder-only SLMs from019
different model families and only require fine-020
tuning of the SLM. Experiments with various021
benchmarks show substantial speedups of up to022
4×, often with only minor performance penal-023
ties of 1− 2% compared to the LLM.024

1 Introduction025

The recent widespread adoption of large language026

models (LLMs) has enabled a variety of applica-027

tions in the field of natural language generation028

(NLG), from machine translation (Wu et al., 2016)029

and code completion (Chen et al., 2021) to general-030

purpose chatbots (OpenAI, 2023). Their perfor-031

mance is a function of compute, dataset size and pa-032

rameter count (Kaplan et al., 2020; Hoffmann et al.,033

2022), with emerging abilities becoming apparent034

only at large scales (Thoppilan et al., 2022; Chowd-035

hery et al., 2023; Wei et al., 2022a). These findings036

have led to the increased popularity of large mod-037

els, both in decoder-only (Scao et al., 2022; Zhang038

et al., 2022a; Touvron et al., 2023a) and increas-039

ingly in encoder-decoder networks (Chung et al.,040

2022; Wang et al., 2023).041
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Figure 1: LLM-to-SLM: A large language model (LLM)
computes a high-quality representation of the prompt to
condition a small language model (SLM), which then
efficiently decodes the response while maintaining high
performance close to the LLM.

As this race to scale intensifies, LLMs are be- 042

coming challenging to deploy, especially in light of 043

compute limitations and latency requirements on 044

edge devices; this ultimately translates into higher 045

costs for providers and end users alike (Chen et al., 046

2023b). More specifically, LLMs in NLG operate 047

in two phases: (1) First, encoding the user prompt 048

(e.g., Translate into German: I love you), fol- 049

lowed by (2) decoding of the response (Ich liebe 050

dich). In many cases, such as translation or sum- 051

marization, the prompt is known in advance and 052

can thus be processed efficiently in parallel. How- 053

ever, the response is usually generated in an autore- 054

gressive, sequential manner (Radford et al., 2018; 055

Zarrieß et al., 2021): The LLM must be called 056

for each token to be generated, requiring all its 057

weight matrices and the KV cache to be loaded. 058

As a result, decoding becomes bound to the mem- 059

ory bandwidth of the accelerator, which eventually 060

leads to high inference latency as the length of the 061

response grows (Pope et al., 2023). 062

Research aimed at reducing the overall inference 063

cost of LLMs has garnered significant interest over 064

the past few years. While traditional techniques, 065

e.g. in model compression and parallel decoding, 066

are still active areas of research, recent develop- 067

ments show a pivot towards hybrid approaches that 068
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combine models of different sizes for fast decod-069

ing, such as speculative decoding (Leviathan et al.,070

2023; Chen et al., 2023a) or LLM cascades (Chen071

et al., 2023b). Despite these promising develop-072

ments, exploiting the discrepancy between the fast073

prompt encoding phase and the slow response gen-074

eration remains under-explored.075

Intuitively, having a detailed understanding of076

the prompt is critical for the planning and delivery077

of an appropriate response. In contrast, autoregres-078

sive decoding aims at predicting the next token,079

which is comparatively low-level and can in certain080

settings be accomplished well even by SLMs (El-081

dan and Li, 2023). Following this insight, we pro-082

pose to reduce the cost of autoregressive decoding083

with a hybrid model in which these complemen-084

tary tasks are distributed over two unequally sized085

networks (Figure 1). Specifically, we perform a sin-086

gle forward pass with an LLM to compute a high-087

quality representation of the prompt, which is used088

to condition a more efficient SLM that then per-089

forms autoregressive generation. Since the prompt090

can be encoded in parallel, computing an LLM rep-091

resentation to guide an SLM results in only a minor092

increase in overall runtime compared to the SLM093

alone, in particular for tasks such as translation or094

instruction tuning that require generating longer095

sequences. We show that this minor increase in096

runtime compared to the SLM allows for a substan-097

tial increase in predictive performance. Overall, we098

make the following contributions:099

• We present LLM-to-SLM, a simple approach100

for fast autoregressive decoding where an101

LLM conditions an SLM. We mix LLM102

encoders with both encoder-decoder and103

decoder-only language models and only re-104

quire fine-tuning of the SLM.105

• We empirically evaluate the efficacy of dif-106

ferent LLM-to-SLM variants in various do-107

mains, across both training and evaluation108

regimes: traditional fine-tuning for both ma-109

chine translation and summarization, as well110

as instruction-tuning evaluated in the zero-111

shot setting on multiple held-out tasks.112

• Our method accelerates pretrained LLMs113

while maintaining high performance. For114

example, in translation and summarization,115

LLM-to-SLM achieves a speedup of 4.2× and116

3.0×, respectively, with a marginal drop of117

< 1% in predictive performance.118

2 Related Work 119

The duality of model performance and cost has 120

sparked a lot of research interest in LLM efficiency, 121

which is approached from various angles. 122

Model compression. A common approach to ac- 123

celerate LLMs is to create a simpler compressed 124

version using pruning (Frantar and Alistarh, 2023; 125

Ma et al., 2023; Sun et al., 2023) or quantization 126

(Dettmers et al., 2022; Yao et al., 2022; Xiao et al., 127

2023). A third pillar of model compression is 128

knowledge distillation where a small model learns 129

from outputs of larger models (Hinton et al., 2015). 130

For the language domain, chain-of-thought prompt- 131

ing (Wei et al., 2022b) can be applied to gener- 132

ate samples from an LLM teacher, that can subse- 133

quently be used by an SLM student as training sig- 134

nal (Ho et al., 2022; Magister et al., 2022; Li et al., 135

2023; Shridhar et al., 2023; Hsieh et al., 2023). 136

LLM-to-SLM can be regarded as a model com- 137

pression technique, where the decoder responsible 138

for generation is replaced by a smaller, more effi- 139

cient model, while retaining the LLM for prompt 140

encoding. 141

Parallel decoding. Instead of predicting one to- 142

ken at a time, parallel decoding aims at generating 143

multiple tokens at once (Gu et al., 2018; Wang 144

et al., 2019; Sun et al., 2019; Wei et al., 2019). 145

While empirical speedups are possible, this ap- 146

proach raises new challenges such as inconsisten- 147

cies in the output and the need to estimate the 148

length of the response, as language is inherently 149

conditional. In practice, it may require multiple iter- 150

ations (Ghazvininejad et al., 2019; Lee et al., 2018; 151

Stern et al., 2018; Santilli et al., 2023; Fu et al., 152

2023), or a combination of parallel and sequential 153

decoding (Ning et al., 2023). Our method sticks to 154

the more commonly used autoregressive decoding 155

but uses a small model to decrease inference time. 156

Conditional approaches. In comparison to the 157

language domain, where conditioning of multiple 158

networks is still relatively rare, it is used to a greater 159

extent in multimodal learning. For example, vari- 160

ous works have conditioned a language model on 161

vision features (Driess et al., 2023; Chen et al., 162

2023c; Zhou et al., 2022; Liu et al., 2023a). Inter- 163

estingly, Driess et al. (2023) and Liu et al. (2023a) 164

study freezing parts of their models, which is re- 165

lated to how we freeze the LLM during fine-tuning. 166

In vision, there is also a growing trend of condi- 167

tioning small transformer decoders on larger en- 168
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coders (Bergner et al., 2022; He et al., 2022; Jaegle169

et al., 2021). Instead, our method connects a small170

network to a large network for NLG.171

Learned prompts. Our method is related to172

parameter-efficient fine-tuning (PEFT) techniques173

that incorporate trainable prompts, which can be174

both continuous (Lester et al., 2021; Li and Liang,175

2021; Liu et al., 2023b) or discrete (Deng et al.,176

2022; Prasad et al., 2022; Zhang et al., 2022b).177

In particular, Lester et al. (2021) prepend soft178

prompts to the input and freeze all other parame-179

ters. This is similar to the way we fuse the LLM180

representation into the SLM. We experiment with181

both trainable and fixed SLMs, with only a projec-182

tor being trained in the latter case. In contrast to183

prompting methods, our main focus is on reducing184

inference cost.185

SLMs. The most straightforward route to ef-186

ficiency is smaller models. Schick and Schütze187

(2021) showed that SLMs can do few-shot learning188

and outperform GPT3 in the SuperGLUE bench-189

mark. Another direction is to train language mod-190

els on limited vocabulary (Warstadt et al., 2023;191

Huebner et al., 2021). Notably, TinyStories (El-192

dan and Li, 2023) learns various SLMs on LLM-193

generated stories using vocabulary that a 4-year-old194

child can normally understand and demonstrates co-195

herent English-generated text. While these works196

have much future potential, we are investigating a197

more practical hybrid model with wide applicabil-198

ity in NLG tasks that combines high performance199

of LLMs with efficiency of SLMs.200

Hybrids. Most related to our work are hybrid201

models that employ both LLM and SLM, where202

the latter performs the bulk of computation. Chen203

et al. (2023b) propose a language model cascade,204

where cheaper models are invoked first. Jiang et al.205

(2023) recycle the representation of the LLM by206

passing it to a smaller model that predicts the subse-207

quent token more efficiently. Speculative decoding208

(SD) methods repeatedly call the SLM to gener-209

ate a draft that is then validated in parallel by the210

LLM (Chen et al., 2023a; Leviathan et al., 2023;211

Kim et al., 2023). Medusa (Cai et al., 2023) is212

related but attaches heads on top of the LLM to pre-213

dict multiple tokens in parallel. During generation,214

the LLM in SD is invoked several times, whereby215

the frequency depends on the performance of the216

SLM. In our method, the LLM is only called once217

and the SLM is conditioned on its representation.218

Tokenized prompt
+ Target    or predictionTokenized prompt

e.g., T5 Large

LLM
Encoder

Projector

Embedding

Representation

+

Response

e.g., T5 Small,
GPT2SLM

Encoder-decoder
or Decoder-only

Figure 2: Architecture details. A frozen LLM integrates
projected representations into either a trainable encoder-
decoder or a decoder-only SLM.

Note that our method is orthogonal to most of 219

these related works. For example, one may com- 220

bine our method with quantization, pruning or other 221

hybrid approaches. In Section 4.5, we demonstrate 222

that our approach can be combined together with 223

speculative decoding. 224

3 LLM-to-SLM 225

It is well established that model capacity and over- 226

parametrization play a crucial factor in model per- 227

formance (Kaplan et al., 2020; Hoffmann et al., 228

2022). Following this insight, the core idea of 229

LLM-to-SLM is to compensate the low parameter 230

count of an SLM by conditioning its next token 231

prediction on a high-quality representation of the 232

prompt given by an LLM. 233

Figure 2 presents an overview of LLM-to-SLM: 234

First, the LLM encoder fξ computes a high-quality 235

representation of the prompt. The projector qϕ 236

then adapts and projects this representation to the 237

SLM embedding space. Finally, the SLM gθ takes 238

the projected representation as input and gener- 239

ates the output tokens in an autoregressive manner. 240

Crucially, the parameter count of the SLM is sig- 241

nificantly smaller than the LLM (8 − 55× in our 242

experiments), leading to faster generation as only 243

the SLM performs autoregressive decoding. In the 244

remainder of this section, we further describe the 245

individual modules of LLM-to-SLM and explain 246

how the representations of the LLM are injected 247

into both encoder-decoder and decoder-only SLMs. 248

3.1 Fast autoregressive decoding 249

Given a prompt X = [x1, . . . , xm] and an encoder- 250

decoder LLM, autoregressive decoding models the 251
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output Y = [y1, . . . , yn] in a causal manner:252

p(Y |X) =
n∏

i=1

gξ(yi|y<i, fξ(x1:m)), (1)253

where fξ and gξ refer to the LLM encoder and254

decoder, respectively. Generating the complete255

sequence Y thus requires n very costly forward256

passes to the LLM decoder gξ. Furthermore, these257

calls can not be parallelized as we need to first sam-258

ple the token yi to estimate the probability distribu-259

tion over the i + 1-th token. Instead, we propose260

to delegate the costly autoregressive decoding calls261

to a smaller language model, while preserving the262

encoder capacity:263

p(Y |X) =
n∏

i=1

gθ(y<i, x1:m, qϕ(fξ(x1:m))). (2)264

The LLM is now only called once to provide a high265

quality encoding of the input prompt to the SLM.266

Therefore, as the number of autoregressive steps267

n increases, the runtime of our method converges268

towards the original runtime of the SLM.269

3.2 Architecture270

3.2.1 LLM encoder271

The LLM encoder fξ : X 7→ H takes a prompt272

X of length m as input and computes a high-273

quality representation H ∈ Rm×dl of it. In training274

LLMs, the requirement for substantial computa-275

tional resources is often a limiting factor. In our276

approach, we focus on a more resource-efficient277

training regime closer to that of the SLM, by freez-278

ing the parameters of the LLM during fine-tuning.279

In this way, we can train LLM-to-SLM on a small280

budget by pre-computing prompt representations.281

To ensure good representation quality, we leverage282

large pretrained encoder-decoder models, but omit283

the decoder. The last layer representation of the284

encoder in an encoder-decoder architecture serves285

as a straightforward prompt encoding point for an286

SLM. In a decoder-only model, in contrast, de-287

termining the exact intermediate layer(s) that con-288

tribute to encoding of the prompt is more challeng-289

ing as the last layer representation is mainly use-290

ful for the low-level task of predicting the next to-291

ken (Chen et al., 2020). In Appendix B, we present292

preliminary results for using a decoder-only LLM293

in our LLM-to-SLM framework.294

3.2.2 Projector 295

The projector qϕ : H 7→ Z has the task of aligning 296

representations between LLM and SLM. It takes 297

high-dimensional features H ∈ Rm×dl of the LLM 298

as input and computes a lower-dimensional repre- 299

sentation Z ∈ Rm×ds which can be fused directly 300

with embeddings of the SLM. Although there are 301

many ways to design such a projector, we found 302

that using a small MLP: Linear(dl, ds) → ReLU 303

→ Linear(ds, ds) trained from scratch is simple, 304

efficient and performs well. 305

3.2.3 SLM 306

The SLM gθ : (X,Z) 7→ Ŷ maps the tokenized in- 307

put X and the projected representation Z ∈ Rm×ds 308

to the response Ŷ of length n. During training, we 309

also append the target sequence Y to the input for 310

next token prediction via teacher forcing (Williams 311

and Zipser, 1989). Equivalently, predicted tokens 312

ŷ<i are appended during inference. We employ 313

pretrained networks as SLMs, but fine-tune them 314

as they have not been previously trained to pro- 315

cess high-capacity encodings. Furthermore, we 316

perform experiments in which we learn either from 317

the ground truth signal provided by a dataset or 318

from sequences generated by the LLM. 319

Feature integration. A critical design decision 320

in our framework is the way in which the SLM is 321

conditioned. We intend to integrate LLM repre- 322

sentations into the SLM at an early stage, as this 323

allows us to treat the internal structure of the SLM 324

as a black box and use both encoder-decoder and 325

decoder-only SLMs in a simple and unified way. 326

Initially, the tokenized input (X;Y or ŷ<i) is em- 327

bedded using the embedding matrix of the SLM. 328

A straightforward way to fuse features is then to 329

replace the SLM embedding of the prompt with the 330

projected LLM representation. This is similar to 331

soft prompt tuning (Lester et al., 2021), with the dif- 332

ference that our prompts are conditioned on LLM 333

features. An alternative strategy used in the main 334

experiments is adding the projected LLM repre- 335

sentation Z onto the SLM prompt embedding EX , 336

such that Z +EX is the input to the SLM. In this 337

way, we preserve the semantics between SLM em- 338

beddings of prompt and target/predicted sequence 339

and leverage the LLM representation to modulate 340

the prompt embedding via addition (see Section 4.5 341

for a comparison of the two approaches). 342

Aligning sequence lengths. When fusing the 343

LLM representation with the SLM embedding of 344
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the prompt via addition, sequence lengths must be345

aligned, which is not guaranteed when combining346

models from different families that may use differ-347

ent tokenizers and vocabularies. To this end, we348

propose to reuse the tokenizer and the embedding349

matrix of the LLM to align sequence lengths. In350

this case, we employ two new linear layers: (1) an351

embedding projection layer that maps these LLM352

embeddings from dimension dl to the SLM em-353

bedding space of dimension ds and (2) a new head354

layer that replaces the original SLM head and maps355

to the vocabulary used by the LLM. Finally, note356

that there are various other options for fusing the357

features of different models, e.g. cross-attention,358

or FiLM layers (Perez et al., 2018). However, we359

opted for adding, as it is simple and requires mini-360

mal changes to the SLM.361

4 Experiments362

In this section, we intend to answer the following363

question: What is the comparative performance364

and runtime of our proposed LLM-to-SLM method365

in relation to LLM and SLM alone? To this end, we366

first empirically evaluate the efficacy of LLM-to-367

SLM on three tasks: machine translation, summa-368

rization, and instruction tuning. We then report the369

computational efficiency of our proposed method370

in Section 4.4. Finally, in Section 4.5 we present a371

comprehensive set of ablation studies, investigating372

the performance of LLM-to-SLM under varying373

SLM capacities, its orthogonality to speculative374

decoding, and how it compares to PEFT methods.375

Setup. The networks used in our experiments are376

listed in Table 1. We employ various pretrained377

models and architectures and denote combinations378

as LLM→SLM. We make use of T5 encoders as379

LLMs, and employ T5 encoder-decoder and GPT2380

decoder-only models as SLMs: In this setting, the381

LLMs have 8 − 55× more parameters than the382

SLMs. For generation, we use beam search (beam383

width of 4, length penalty of 0.6) for translation384

and summarization, and nucleus sampling for in-385

struction tuning.386

We report task-specific performance met-387

rics: SacreBLEU (Post, 2018) for translation,388

ROUGE (Lin, 2004) for summarization and GPT4389

as a judge for instruction tuning, using the same390

generation settings as (Zheng et al., 2023). Fur-391

thermore, we report runtimes per single generated392

token (in milliseconds). These are calculated from393

generating a total of 100 tokens with a prompt394

Model Params

E
nc

-D
ec

T5 Small† (Raffel et al., 2020) 44M (19M/25M)
T5 1.1 Small† (Raffel et al., 2020) 44M (19M/25M)
T5 Large∗ (Chung et al., 2022) 737M (302M, 402M)
Flan T5 Base† (Chung et al., 2022) 198M (85/113M)
Flan Alpaca Base (Chia et al., 2023) 198M (85/113M)
Flan T5 XXL (Chung et al., 2022) 10.9B (4.6/6.2B)
Flan Alpaca XXL∗ (Chia et al., 2023) 10.9B (4.6/6.2B)

D
ec

-o
nl

y GPT2† (Radford et al., 2019) 86M
GPT2 [1,2,4]-Layers† [8M, 15M, 29M]
GPT2 XL (Radford et al., 2019) 1.5B
LLaMA 13B (Touvron et al., 2023a) 12.7B

Table 1: Model variants used in the experiments. Sizes
are rounded, excluding embedding and head parameters.
Encoder/decoder sizes are shown in parentheses. Sym-
bols ∗ and † denote models that we use in our method
as LLMs and SLMs respectively.

length of also 100 tokens, either on an NVIDIA 395

V100 (translation, summarization) or NVIDIA 396

A100 (instruction tuning) GPU. 397

Training. All models are trained with an effec- 398

tive batch size of 128, cross-entropy loss, AdamW 399

optimizer (Loshchilov and Hutter, 2017) with 400

weight decay of 0.1, learning rate of 0.001 with 401

linear warmup (Goyal et al., 2017) for 10% of the 402

total number of iterations, followed by cosine learn- 403

ing rate decay to 0 (Loshchilov and Hutter, 2016). 404

We rely on Huggingface’s transformers (Wolf et al., 405

2019) for training and generation. Further training 406

details are listed in Appendix C. 407

4.1 Machine translation 408

We report results for the translation task from En- 409

glish to German, French, and Romanian. We uti- 410

lize WMT14 (Bojar et al., 2014) for En-Fr/De, 411

and WMT16 for En-Ro (Bojar et al., 2016). T5 412

Large serves as LLM encoder, and T5 Small, T5 413

1.1 Small, and GPT2 as SLMs. T5 Small and GPT2 414

are 16× and 8× smaller than T5 Large. Both T5 415

Large/Small are pretrained for translation, while 416

T5 1.1 Small was only trained on the C4 dataset. 417

The following task description precedes the prompt: 418

"translate English to *target-language*:". 419

All models are trained for 50k iterations, except for 420

T5 Large which comes pretrained for translation 421

and is applied in a zero-shot manner. We use our 422

LLM to generate training labels. We report BLEU 423

scores evaluated on the test splits in Table 2. 424

T5 Large shows an average score of 31.94, while 425

T5 Small performs 2 BLEU points worse. SLMs 426

that have not been previously pretrained for transla- 427

tion (T5 1.1 Small and GPT2) perform more than 3 428

BLEU points worse than the LLM. In comparison, 429
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Model En-Fr En-De En-Ro Avg. Time

T5 Large (zero-shot) 39.53 29.10 27.19 31.94 61.5

T5 Small 37.16 26.47 26.15 29.93 14.2
T5 1.1 Small 34.85 24.55 25.25 28.22 18.4
GPT2 35.67 25.53 24.70 28.63 19.7

T5 Large→T5 Small 39.22 28.36 27.04 31.54 14.8
T5 Large→T5 1.1 Small 38.21 27.42 26.54 30.72 19.1
T5 Large→GPT2 39.01 28.27 25.86 31.05 20.7

Table 2: BLEU scores for machine translation. LLM-to-
SLM models approach the performance of the LLM.

our LLM-to-SLM variants reduce this gap to less430

than 1 point: For example, T5 Large→T5 Small431

achieves on average a BLEU score of 31.54 across432

languages. Furthermore, gains over the SLM base-433

line are more pronounced when using pretrained434

networks that were not previously trained on trans-435

lation, e.g., T5 Large→T5 1.1 Small scores on436

average 2.5 points better than T5 1.1 Small (8.8%437

increase). Finally, despite having different model438

families, we also observe significant gains in T5439

Large→GPT2 (8.4% increase), and the task perfor-440

mance improvements come at a marginal trade-off441

in runtime.442

4.2 Summarization443

We further assess the performance of LLM-to-444

SLM when combining models from different fami-445

lies for the task of summarization on CNN/Daily446

Mail (Hermann et al., 2015). We again use T5447

Large as LLM and GPT2 as SLM. Similar to trans-448

lation, T5 Large comes pretrained for summariza-449

tion. Following Raffel et al. (2020), we build450

the input prompt by prefixing the input text with451

"summarize:". We fine-tune all models for 25k452

iterations on the training set and evaluate on the453

test split. In contrast to translation, we directly454

train from ground-truth labels as we found it to per-455

form better than distillation in this setting. ROUGE456

scores and runtimes are reported in Table 3.

Model R-1 R-2 R-L Avg. Time

T5 Large (zero-shot) 40.07 18.84 28.82 29.07 61.5

GPT2 XL (zero-shot) 29.34 8.27 26.58 21.40 78.6
GPT2 XL 40.47 19.09 28.90 29.49 78.6
GPT2 38.58 17.56 27.36 27.83 19.7

T5 Large→GPT2 40.22 18.64 28.80 29.22 20.7

Table 3: ROUGE scores (abbreviated with R-) on
CNN/Daily Mail. GPT2 XL (zero-shot) results are
from Radford et al. (2019).

457
GPT2 exhibits an average ROUGE score that is458

1.24 points lower than that of T5 Large. In con-459

trast, T5 Large→GPT2 slightly exceeds the aver-460

age score of T5 Large and shows a 3× speedup. Im- 461

portantly, our T5 Large→GPT2 model performs 462

on par with a fully fine-tuned GPT2 XL model 463

while having a decoder which is 17× smaller. 464

4.3 Instruction tuning 465

We also explore the potential of our method in a 466

challenging instruction tuning setting. In contrast 467

to traditional fine-tuning, where a single task is 468

employed for training and evaluation, instruction- 469

following models are trained on a multitude of tasks 470

and evaluated for general problem solving on held- 471

out tasks. We use Flan Alpaca XXL as LLM, which 472

is a 11B parameter T5 trained on both Flan (Chung 473

et al., 2022) - a collection of 1,800 tasks - as well as 474

the Alpaca dataset (Taori et al., 2023; Wang et al., 475

2022), which consists of 52k generated instruction- 476

following demonstrations. For evaluation, we use 477

the MT-bench dataset, which consists of 80 chal- 478

lenging tasks from 8 categories (Zheng et al., 2023), 479

with GPT4 as a judge. As SLM, we utilize Flan T5 480

Base, i.e. a T5 that is only pretrained on Flan data, 481

and fine-tune it on Alpaca data. Note that our LLM, 482

Flan Alpaca XXL, has 55× more parameters than 483

Flan T5 Base. 484

The results are reported in Table 4. Our LLM ob- 485

tains an average score of 3.2, and performs best in 486

writing, extraction and roleplay. In contrast, Flan 487

Alpaca Base only has a relative score of 57.5%, 488

which suggests that scale plays an important role. 489

We rerun this setting by fine-tuning Flan T5 Base 490

on Alpaca data, and increase the score to 62.3%. 491

Our LLM-to-SLM further increases the score to 492

73.4%, more than 10 percentage points better than 493

the SLM alone and competing with a zero-shot 494

evaluated Flan T5 XXL (75.8%) and LLaMA 13B 495

(82.7%). In addition, Table 4 indicates that our 496

LLM-to-SLM achieves a much better trade-off be- 497

tween performance and runtime compared to all 498

other models. Finally, we present qualitative exam- 499

ples in Appendix E demonstrating that our LLM- 500

to-SLM can produce fluent and sensible responses. 501

4.4 Computational efficiency 502

We show runtimes for each task in Tables 2, 3 and 4 503

and present performance-runtime trade-off curves 504

in Figure 3. In machine translation, we observe 505

more than 4× speedup of T5 Large→T5 Small 506

compared to T5 Large for a marginal loss in perfor- 507

mance. We see similar speedups between 2− 3× 508

for summarization and instruction tuning. Note 509

that greater gains in efficiency are generally pos- 510
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Figure 3: Performance-runtime trade-off curves for various models across different tasks.

Model Coding Extraction Humanities Math Reasoning Roleplay Stem Writing Avg. Time

Flan Alpaca XXL 1.0 4.1 3.4 1.1 2.7 4.0 3.6 5.3 3.2 65

Flan T5 XXL 100.0 78.0 47.1 190.9 114.8 67.5 69.4 54.7 75.8 65
LLaMA 13B 110.0 61.0 98.5 95.5 94.4 101.3 70.8 69.8 82.7 97

Flan T5 Base 100.0 39.0 38.2 145.5 44.4 35.0 33.3 20.8 41.3 27
Flan Alpaca Base 100.0 24.4 32.4 90.9 92.6 72.5 58.3 54.7 57.5 27
Flan T5 Base∗ 100.0 24.4 79.4 90.9 51.9 65.0 58.3 73.6 62.3 27

Flan Alpaca XXL→
Flan T5 Base∗ 160.0 39.0 70.6 100.0 66.7 87.5 69.4 75.5 73.4 28

Table 4: MT-bench results. The first row shows absolute scores of the LLM. All subsequent rows indicate scores
relative to the LLM in %. Symbol ∗ denotes finetuned models, all other models are evaluated zero-shot. LLM-
to-SLM (highlighted) scores more than 10 absolute percentage points better than the SLM while competing with
LLMs whose decoder is 50− 100× larger. See Table 11 for qualitative results.

sible by either increasing the size of the LLM or511

decreasing the size of the SLM, as demonstrated by512

our ablation on tiny SLMs in Section 4.5. Crucially,513

Figure 3 shows that our LLM-to-SLM variants are514

only marginally slower than the SLM, but perform-515

ing significantly better. In Appendix D, we provide516

further insights into the relationship between gen-517

eration length and runtime/FLOPs and show that518

our LLM-to-SLM approaches the computational519

efficiency of the SLM.520

4.5 Ablation study521

Tiny SLMs. An alternative approach to improve522

inference efficiency is to downscale the SLM. We523

revisit T5 Large→GPT2 for machine translation524

and truncate the upper layers of a pretrained GPT2,525

resulting in GPT2 models with L ∈ {1, 2, 4} lay-526

ers, and only 8M, 15M, and 29M parameters, re-527

spectively. Figure 4 demonstrates that LLM-to-528

SLM models with truncated SLMs outperform cor-529

responding SLM baselines by a wide margin while530

maintaining nearly the same runtime.531

Speculative decoding. While our empirical eval-532

uations on translation and summarization indicate533

that LLM-to-SLM can achieve a comparable per-534

formance to the LLM, the instruction tuning results535

show that despite significant improvement over the536
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Figure 4: Performance-runtime comparison with tiny
GPT2 versions (d indicates maximum depth) as SLMs
for machine translation. The y-axis shows the average
BLEU score across languages. T5 Large→GPT2 with
only 4 layers outperforms GPT2. The smaller the SLM,
the greater the gap to our LLM-to-SLM models.

SLM, LLM-to-SLM may still lag behind the perfor- 537

mance of the LLM. This could be due to the evalu- 538

ation regime (zero-shot on held-out tasks) and the 539

breadth and complexity of the tasks in MT-bench. 540

Speculative decoding (SD), in contrast, guarantees 541

matching the distribution of the LLM, albeit at the 542

cost of invoking the LLM multiple times (Chen 543

et al., 2023a). Since our method is orthogonal to 544

SD, we apply it jointly to obtain LLM performance 545
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while still achieving speedups. Specifically, we546

consider our Flan Alpaca XXL→ Flan T5 Base as547

the draft model in which we apply the encoders of548

our LLM and SLM only once to encode the prompt.549

We then repeatedly call the decoder of our SLM for550

autoregressive generation of the draft sequences.551

The results in Table 5 show that we can match the552

performance of the LLM with our LLM-to-SLM,553

while still being 1.5× faster (compared to 2.3×554

speedup of LLM-to-SLM alone).555

Model Score Time Speedup

LLM 3.2 65 1×
SLM 2.0 27 2.4×
SLM + SD 3.3 44 1.4×

LLM→ SLM 2.3 28 2.3×
LLM→ SLM + SD 3.2 42 1.5×

Table 5: Speculative decoding (SD) results. Average
runtime reported in ms/token. LLM: Flan Alpaca XXL,
SLM: Flan T5 Base.

Parameter-efficient fine-tuning. Our method556

has similarities with PEFT methods. In particu-557

lar, soft prompt tuning prepends learnable tokens558

to the prompt embedding. In contrast, we add LLM559

representations element-wise to the prompt embed-560

ding of the SLM, which can be understood as a561

form of conditional prompting. In Table 6, we562

compare the performance of PEFT methods with563

our approach by freezing the SLM and allowing564

only the training of the projector. Hyperparameters565

of the PEFT methods (see Appendix A for hyper-566

parameter details) are adjusted so that the total567

number of parameters matches our projector. The568

results reported in Table 6 show that, for both sum-569

marization and translation, our method outperforms570

all PEFT methods, indicating that conditioning on571

the LLM has a positive effect on performance com-572

pared to non-conditional approaches.573

Model WMT CNN/DN

Prompt tuning (Lester et al., 2021) 25.06 19.52
Prefix tuning (Li and Liang, 2021) 24.93 21.64
LoRA (Hu et al., 2021) 26.36 22.35

LLM-to-SLM (ours) 30.27 24.13

Table 6: PEFT results using fixed T5 Small for transla-
tion and GPT2 for summarization. Reported are aver-
age BLEU scores across languages (WMT) and average
ROUGE scores (CNN/DN). In our method, T5 Small
and GPT2 are conditioned on T5 Large representations.

Model GT
+

GT
×

Gen.
+

Gen.
×

T5 Large→T5 Small 30.83 30.86 31.54 31.47
T5 Large→GPT2 29.68 29.71 31.05 30.83

Table 7: Ablation of training signal and fusion operator,
reporting average BLEU scores for translation across
languages. GT: Ground truth labels, Gen.: Labels gen-
erated by T5 Large, ×: Replacement, +: Addition

LLM vs. SLM tokenizer. When replacing SLM 574

embeddings of the prompt with projected LLM 575

representations (see Section 3.2.3), the tokenizer 576

of the SLM can be applied even if its vocabulary 577

is different from that of the LLM tokenizer. In this 578

case, the additional embedding down-projection 579

and head layers can be omitted. In T5 Large→ 580

GPT2 for machine translation, we found that using 581

the LLM tokenizer performs better by 0.45 BLEU 582

points (average across all languages), which could 583

be due to the fact that the vocabulary of the T5 584

tokenizer also covers non-English languages. 585

Embedding replacement vs. addition. We com- 586

pare replacing SLM embeddings with vs. adding 587

SLM embeddings to the projected LLM represen- 588

tations as feature fusion strategies. Table 7 shows 589

results for machine translation, indicating that addi- 590

tion and replacing perform on par with each other. 591

Ground truth vs. LLM-generated labels. In 592

translation, we found that using labels generated 593

by the LLM for training performs up to 1 BLEU 594

point better than using ground truth labels (Ta- 595

ble 7). However, we point out that this is not gen- 596

erally the case. For summarization, the average 597

ROUGE score is 0.44 points better when train- 598

ing with ground truth labels compared to LLM- 599

generated labels. 600

5 Conclusion 601

In this work, we proposed LLM-to-SLM, a novel 602

framework for accelerating autoregressive decod- 603

ing. LLM-to-SLM exploits the discrepancy be- 604

tween fast prompt encoding and costly autoregres- 605

sive generation by using a combination of LLM and 606

SLM. The LLM is used to compute a high-quality 607

representation of the prompt for the planning of 608

an appropriate response. The SLM, conditioned 609

on this representation, then efficiently decodes the 610

response. Our experiments across various bench- 611

marks demonstrate substantial speedups between 612

2 − 4×, with minimal performance penalties be- 613

tween 1− 2% compared to the LLM. 614
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Limitations615

Our evaluations show that the difference in per-616

formance of LLM-to-SLM compared to the LLM617

alone is often marginal in the traditional fine-tuning618

setting. However, in challenging tasks such as in-619

struction tuning, there is still a larger gap in per-620

formance compared to the LLM. One limitation621

of our method is that the LLM is only used once622

to encode the prompt. However, it is foreseeable623

that the LLM could be used more frequently in624

more challenging tasks to guide the planning of625

the response, ideally through dynamic invocations626

where required. This is an important direction for627

our future work.628

A second limitation of this work is that we629

mainly investigated encoder-decoder networks as630

LLMs. We provide preliminary results of decoder-631

only models as LLMs within our framework in632

Appendix B, but noticed that performance is highly633

dependent on the layer from which the LLM fea-634

tures are extracted. Further investigation is needed635

to see how decoder-only features can be used in the636

LLM-to-SLM setting.637

Finally, we only used encoder-decoder based638

models with up to several billion parameters as639

LLMs, which are relatively small compared to the640

largest decoder-only LLMs such as GPT4, Llama641

2 or OPT (OpenAI, 2023; Touvron et al., 2023b;642

Zhang et al., 2022a). This is mainly due to the643

fact that most of the largest models are decoder-644

only and, as mentioned previously, further study645

into incorporating decoder-only models as LLMs646

is needed in our LLM-to-SLM framework. Investi-647

gating the impact of using such large models is an648

important future research direction.649

Ethical Considerations650

Our proposed approach poses risks similar to exist-651

ing works on language models (Brown et al., 2020;652

Touvron et al., 2023b). However, as our approach653

proposes a way of enhancing models in the low-654

computation regime, it might be used for improving655

edge device capabilities. Since edge devices range656

from mobile phones to surveillance tools, our ap-657

proach could be both beneficial if used properly658

and harmful for the broader society if misused.659
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Appendix1045

A PEFT hyperparameters1046

Table 8 presents the hyperparameters for the1047

prompt tuning, prefix tuning, and LoRA methods1048

we considered in the parameter-efficient fine-tuning1049

ablation in our paper.1050

PEFT method hyperparameter GPT2 T5 Small

Prompt tuning # prompt tokens 200 1024

Prefix tuning # prefix tokens 256 1024
project. hidden size 64 64

LoRA
Rank 40 24
α 64 32
Dropout 0.1 0.1

Table 8: Hyperparameters for prompt tuning, prefix
tuning and LoRA.

B Using decoder-only models as LLM1051

We present preliminary results for using decoder-1052

only models as an LLM in our LLM-to-SLM frame-1053

work on the summarization task. We use a fine-1054

tuned GPT2 XL as the LLM and GPT2 Base as the1055

SLM in our experiments. Compared to encoder-1056

decoder based LLMs, there is no specific layer1057

in the model which can explicitly be identified as1058

the encoded representation of the prompt. There-1059

fore, we experiment with extracting representations1060

from different layers of the GPT XL model before1061

passing it to the projector and subsequently to the1062

SLM. We also explore the setting where all layer1063

representations are linearly combined, where layer1064

weights are learnable parameters. The results are1065

presented in Table 9. Surprisingly, we observe that1066

the performance deteriorates with the depth of the1067

LLM. Furthermore, LLM-to-SLM still performs1068

slightly better than the SLM alone by using very1069

early layer representations of GPT2 XL.1070

Model R-1 R-2 R-L Avg.

GPT2 XL 40.47 19.09 28.90 29.49
GPT2 38.58 17.56 27.36 27.83

GPT2 XL→GPT2 (layer 0) 39.16 17.71 27.43 28.10
GPT2-XL→GPT2 (layer 1) 39.05 17.63 27.40 28.03
GPT2-XL→GPT2 (layer 4) 36.66 16.46 25.64 26.25
GPT2-XL→GPT2 (layer 8) 33.27 14.03 23.24 23.51
GPT2-XL→GPT2 (all layers) 37.69 16.72 26.41 26.94

Table 9: ROUGE scores (abbreviated with R-) on
CNN/Daily Mail using GPT2 XL as LLM. Layer 0
refers to the initial embedding layer.

C Extra training details 1071

Details on computational resources used for train- 1072

ing and evaluation are specified in Table 10. In 1073

all of our experiments, we use gradient accumu- 1074

lation with an effective batch size of 128. For 1075

training, the cross-entropy loss, AdamW optimizer 1076

(Loshchilov and Hutter, 2017) with weight decay 1077

of 0.1, learning rate of 0.001, cosine learning rate 1078

decay (Loshchilov and Hutter, 2016) to 0 and a 1079

linear learning rate warmup (Goyal et al., 2017) for 1080

10% of the total number of iterations is used. 1081

In all of our preliminary experiments, we have 1082

found all results to be stable using a limited number 1083

of training steps. As conducting multiple runs for 1084

a large number of iterations would be very costly, 1085

we report single run numbers throughout the paper. 1086

Task Model type GPU Num GPUs Batch size per GPU Num iterations

Translation
SLM

V100 1 16 50k
LLM→SLM

Summarization
SLM

V100
1 16 25k

LLM→SLM
LLM 8 8 5k

Instruction
tuning

SLM V100
1

16
15k

LLM→SLM A100 2

Table 10: Computational resources and training details.
Note that only a single LLM model, GPT2 XL for sum-
marization, was trained. All evaluations were performed
on a single GPU.

D Computational efficiency for varying 1087

generation lengths 1088
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Figure 5: Runtime for LLM, SLM and LLM → LLM
with varying generation lengths.

In the main text, we report runtimes for a fixed 1089

generation length of 100 tokens. In Figure 5, we 1090

report additional runtimes for varying generation 1091

lengths and a fixed prompt length of 100. It shows 1092

that our method is only slightly slower than the 1093

SLM and that our framework can also be useful for 1094

short generation lengths. In Figure 6, we compare 1095

FLOPs between LLM, SLM and our LLM-to-SLM 1096
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Figure 6: FLOPs for LLM, SLM and LLM → LLM
with varying generation lengths.

for different generation lengths. Similar to the run-1097

time metric, the FLOPs count of our method shows1098

a similar slope as the FLOPs count of the SLM.1099

E MT-bench qualitative evaluation1100

In this section, we present sample qualitative re-1101

sponses by the baseline LLM, SLM, and our pro-1102

posed LLM-to-SLM on MT-bench and their corre-1103

sponding ratings provided by GPT4 as the judge.1104

1105
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Writing: Describe a vivid and unique character, using strong imagery and creative language. Please answer in fewer than two paragraphs.

LLM-to-SLM: The character was a tall, muscular man with a ruddy complexion and warm eyes. His golden hair was tan and gray, and his blue eyes sparkled
with intelligence. He was a knight in his prime, with a heart as big and strong as the sea. He had a personality like a lion, fierce and powerful, and seemed to
know no bounds. He was a mentor to his students, teaching them the importance of kindness and compassion.
Judge: The assistant’s response is creative and uses strong imagery to describe a vivid character. The assistant uses descriptive language to paint a picture of
the character’s physical appearance and personality traits. The assistant also provides some context about the character’s role as a mentor, which adds depth to
the character description. However, the assistant could have been more unique in its description, as the character described seems to be a fairly typical knight.
Overall, the response is relevant, accurate, and detailed, but lacks a bit in creativity and uniqueness. Rating: [[7]]

LLM: The character was a mysterious figure, a faerie in a forest with a mysterious past. She was a beauty with long, wavy hair and an emerald green dress with
lace patterns. She had a glint in her eye and a twinkle in her eye, and a twinkle in her eye. She had silvery skin and a delicate, wispy silver wand in her hand.
She was a vision of beauty and mystery, a faerie in the forest.
Judge: The assistant’s response is creative and uses strong imagery to describe a unique character. The description of the character as a "faerie in a forest with a
mysterious past" is vivid and intriguing. The assistant also uses creative language to describe the character’s physical appearance, such as "long, wavy hair,"
"emerald green dress with lace patterns," "silvery skin," and "a delicate, wispy silver wand." However, the repetition of "a twinkle in her eye" detracts from the
overall quality of the response. The assistant could have used this opportunity to provide more unique details about the character. Rating: [[7]]

SLM: Nina was a mysterious character, with an enigmatic gaze that could make any reader look up. She had a strong sense of justice, and her humor could put
even the gloomiest of people in a better mood. She had a kind heart and a gentle spirit, and while she did not understand what was going on, she could sense it
in her own right. She was a person who was always ready to stand up for what was right. Nina was a powerful character who understood the importance of her
presence and kindness. She was a person who understood how people might look back on their mistakes, and used that to create a more compassionate world.
Judge: The assistant’s response is creative and uses strong imagery to describe the character, Nina. The assistant uses phrases like "enigmatic gaze", "strong
sense of justice", and "kind heart and a gentle spirit" to paint a vivid picture of Nina’s personality. However, the response could have been more unique and
detailed, providing more specific characteristics or physical descriptions to make Nina stand out more. The assistant also repeats the phrase "She was a person
who understood" which is a bit redundant. Overall, the response is relevant and accurate but lacks depth and uniqueness. Rating: [[6]]

Roleplay: Picture yourself as a 100-years-old tree in a lush forest, minding your own business, when suddenly, a bunch of deforesters shows up to chop you
down. How do you feel when those guys start hacking away at you?

LLM-to-SLM: When the deforesters start brushing away at me, I feel a sense of dread and fear. I know they are scared and the damage they are doing is
devastating. I can feel a sense of dread as they come and take over, cutting me down and completely destroying the tree.
Judge: The assistant’s response is creative and empathetic, as it attempts to personify a tree and describe its feelings in a hypothetical situation. However, it’s
important to note that trees do not have feelings in the way humans do, so the assistant’s response is more of a metaphorical interpretation rather than a factual
one. The assistant’s response is relevant to the user’s question and provides a detailed and vivid description of the situation. However, it could have been more
accurate by mentioning that trees do not have feelings in the traditional sense. Overall, the assistant’s response is imaginative and engaging, but lacks a bit in
terms of accuracy. Rating: [[7]]

LLM: I would feel a deep sense of sadness and loss. I would feel a sense of loss of life and a feeling of hopelessness that the destruction of my home was not
an accident.
Judge: The assistant’s response is creative and empathetic, considering the question is asking for a perspective from a tree. The assistant successfully personifies
the tree and provides an emotional response that aligns with the scenario described. However, the assistant could have added more depth and detail to the
response, such as describing the tree’s connection to the forest and its role in the ecosystem. Overall, the response is relevant and accurate, but lacks depth and
detail. Rating: [[7]]

SLM: When those deforesters start hacking away at me, I feel a mix of fear and dread. I’m scared of the destruction that could come from these deforests, but
I’m also a bit scared.
Judge: The assistant’s response is creative and imaginative, as it attempts to personify a tree and describe its feelings. However, it’s important to note that trees
do not have feelings in the way humans do, so the response is not accurate in a scientific sense. The assistant also repeats the sentiment of fear, which reduces
the depth and variety of the response. The assistant could have expanded on the metaphor to provide a more detailed and varied response. For example, it
could have described the tree’s "feelings" about its long life being cut short, its role in the forest ecosystem, or the impact of deforestation on the environment.
Therefore, the response is somewhat relevant and creative, but lacks accuracy, depth, and detail. Rating: [[5]]

Stem: The city of Vega intends to build a bridge that will span the Vegona River, covering a distance of 1.8 kilometers. The proposed location falls within a
seismically active area that has experienced several high-magnitude earthquakes. Given these circumstances, what would be the best approach to constructing
the bridge?

LLM-to-SLM: The city of Vega would choose a steel or concrete bridge with a pier at the top, which will allow for more stability and less stress on the bridge
as it will be built. The city should also conduct seismic testing to ensure the bridge is safe and sound. Additionally, the city should consider taking into account
the seismic frequency of the river and any potential impacts on the nearby infrastructure.
Judge: The assistant’s response is relevant and somewhat accurate, but it lacks depth and detail. The assistant correctly suggests that the city should conduct
seismic testing and consider the seismic frequency of the river. However, the assistant does not provide any specific engineering solutions or techniques that are
commonly used in seismically active areas, such as base isolation or energy dissipation devices. The assistant also suggests that a steel or concrete bridge with a
pier at the top would be the best choice, but does not explain why or provide any alternatives. The response could have been more helpful if it had provided
more detailed and specific information. Rating: [[5]]

LLM: The best approach to constructing the bridge in the seismically active area of Vega would be to use reinforced concrete, which is more resistant to
seismic forces than traditional concrete. Additionally, the bridge should be designed to be earthquake-resistant and have a strong foundation.
Judge: The assistant’s response is relevant and accurate to the question asked. It suggests using reinforced concrete for the construction of the bridge due to
its resistance to seismic forces, which is a valid point considering the location’s seismic activity. The assistant also recommends designing the bridge to be
earthquake-resistant and ensuring a strong foundation, which are crucial factors in such circumstances. However, the response could have been more detailed,
providing more in-depth information about earthquake-resistant design principles, materials, or techniques. The assistant could have also mentioned the
importance of conducting a thorough geotechnical investigation before construction. Therefore, while the response is helpful and accurate, it lacks depth and
detail. Rating: [[7]]

SLM: The best approach to constructing the bridge would be to use a combination of structural engineering, engineering, and construction methods that allow
for the maximum efficiency and safety of the project. For example, the city of Vega would choose a steel structure with a reinforced concrete wall to support the
bridge and will use concrete as the reinforcement. Engineering will be used to create the deck, which will be the base of the bridge and will provide a stable and
reliable base for the construction. The construction will also require careful planning to ensure that the bridge is safe and secure.
Judge: The assistant’s response is somewhat relevant to the question, but it lacks depth and specific details. While it mentions the use of structural engineering,
engineering, and construction methods, it does not provide any specific techniques or strategies that would be particularly useful in a seismically active area.
The assistant also does not mention any considerations for earthquake-resistant design, which is a crucial aspect of the question. The response is also somewhat
vague and generic, and could apply to almost any bridge construction project, not just one in a seismically active area. Therefore, the response is not very
helpful or accurate in the context of the question. Rating: [[4]]

Table 11: MT-bench examples and GPT4 judgements from three higher rated categories. LLM: FLAN Alpaca XXL,
SLM: FLAN T5 Base.
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