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Figure 1: Our robot can traverse a variety of challenging terrain in indoor and outdoor environments, urban and
natural settings during day and night using a single front-facing depth camera. The robot can traverse curbs, stairs
and moderately rocky terrain. Despite being much smaller than other commonly used legged robots, it is able to
climb stairs and curbs of a similar height. Videos at https://blindsupp.github.io/visual-walking/

Abstract: Animals are capable of precise and agile locomotion using vision.
Replicating this ability has been a long-standing goal in robotics. The traditional
approach has been to decompose this problem into elevation mapping and foothold
planning phases. The elevation mapping, however, is susceptible to failure and large
noise artifacts, requires specialized hardware, and is biologically implausible. In
this paper, we present the first end-to-end locomotion system capable of traversing
stairs, curbs, stepping stones, and gaps. We show this result on a medium-sized
quadruped robot using a single front-facing depth camera. The small size of the
robot necessitates discovering specialized gait patterns not seen elsewhere. The
egocentric camera requires the policy to remember past information to estimate
the terrain under its hind feet. We train our policy in simulation and transfer to
the real world without any fine-tuning and can traverse a large variety of terrain
while being robust to perturbations like pushes, slippery surfaces, and rocky terrain.
Videos are at https://blindsupp.github.io/visual-walking/

1 Introduction
Of what use is vision during locomotion? It turns out that both humans [1] and robots [2, 3]
can do remarkably well at blind walking. Where vision becomes necessary is for locomotion in
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challenging terrains like staircases or stepping stones. In this paper, we will develop this capability for
a quadrupedal walking robot equipped with egocentric depth vision. We use a reinforcement learning
approach trained in simulation, which we are directly able to transfer to the real world. Figure 1 and
the accompanying videos shows some examples of our robot walking guided by vision.

The walking policy is trained by reinforcement learning with a recurrent neural network being used as
a short term memory of recent egocentric views, proprioceptive states, and action history. Competing
approaches which rely on metric localization to construct elevation maps which are noisy [4, 5, 6].
This hinders the ability of such systems to perform reliably on gaps and stepping stones.
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Figure 2: A smaller robot (a) faces challenges in climbing stairs and curbs due to the stair obstructing its feet
while going up and a tendency to topple over when coming down (b). Our robot deals with this by climbing
using a large hip abduction that automatically emerges during training (c).

Not having pre-programmed gait priors is useful for our relatively small robot 1 (see Figure 2).
Predefined gait priors or reference motions fail to generalize to obstacles of even a reasonable height
because of the relatively small size of the quadruped. The emergent behaviors like hip abduction
enable our robot to climb high obstacles.

2 Method: Legged Locomotion from Egocentric Vision

We train in two phases, RL in phase 1 and supervised learning in phase 2 (Fig. 3).

Phase 1: Reinforcement Learning Given the local elevation map in front of the robot, proprioception
and commanded action, we learn a policy using PPO without gait priors and with biomechanics
inspired reward functions to walk on a variety of terrains. The elevation map mt is passed through
a MLP β to get m̃t ∈ R32 which is concatenated along with the rest of the observations and fed
to a recurrent policy to obtain actions at. Similar to [7] we generate slopes, stairs, discrete terrain
and stepping stones of varying difficulty level. We randomize parameters of the simulation and add
small i.i.d. gaussian noise to observations to bridge the sim2real gap and make our policy robust. See
appendix for more implementation details.

Phase 2: Supervised Learning Having learnt a useful visuomotor policy in phase 1, we can now use
supervised learning to distil these into a phase 2 policy that receives depth input dt. We create a copy
of the recurrent base policy G2 ← G1, F 2 ← F 1. The scandots compression MLP β is replaced
with a convolutional depth backbone γ which processes depth map dt to produce a depth latent d̃t.
We use DAgger [8] with truncated backpropagation through time. The student can be deployed as-is
on the hardware using only the available onboard compute.

3 Experimental Setup

We use the Unitree A1 robot pictured in Fig. 2. For simulation, we use the IsaacGym (IG) simulator
with the legged gym library [7] to develop walking policies. We compare against two baselines

• Blind policy trained without access to any scandots. This must rely on proprioception to traverse
terrain and helps quantify the benefit of vision for walking.

• Noisy Methods which rely on elevation maps constructed using depth and tracking cameras
often have large noise due to sensor deficiencies. As a result, large noise must be added during
simulation as well. We distil our phase 1 policy to a student with large noise added to the elevation
map. We use the noise model in [5]. This shows the benefits of directly using the depth image.

1A1 standing height is 40cm as measured by us. Spot, ANYmalC both are 70cm tall reported here and here.
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Figure 3: We train our locomotion policy in two phases to avoid rendering depth for too many samples. (a)
In phase 1, we use RL to train a policy π1 that has access to a low-resolution elevation map that is cheap to
compute. (b) In phase 2, we use π1 to provide ground truth actions which another policy π2 is trained to imitate.
This student has access to depth map from the front camera.

Terrain Average Distance (↑) Mean Time to Fall (s)

Blind Privileged Noisy Ours Blind Privileged Noisy Ours

Slopes 29.1 18.0 26.0 31.5 155.5 13.3 18.0 89.2
Stepping Stones 0.5 2.2 5.3 18.1 3.8 1.9 4.3 46.3

Stairs 11.1 7.0 12.5 23.8 70.6 5.8 9.6 60.5
Discrete Obstacles 22.0 18.3 26.0 30.0 124.1 12.7 17.7 80.6

Table 1: We measure the average distance travelled and mean time to fall for all methods on different terrains in
simulation. Our method outperforms the baselines on all terrains for average distanced traveled.

4 Results and Analysis

Simulation Results We report mean time to fall and mean distance travelled before crashing for
different terrain and baselines in Table 1. For each method, we train a single policy for all terrains
and use that for evaluation. Although the blind policy makes non trivial progress on stairs, discrete
terrain and slopes, it is significantly less efficient at traversing these terrains. On slopes our method
travels a greater distance in nearly half of the time implying that the blind baseline gets stuck often.
Similarly, on stairs and discrete obstacles the distance travelled by the vision baseline is much greater
in a shorter amount of time. The noisy baseline has worse average distances and mean time to fall.
This trend is even more significant on the stepping stones terrain where both baselines barely make
any progress. The blind policy has no way of estimating the position of the stone and crashes as soon
as it steps into the gap. For the noisy policy, the large amount of added noise makes it impossible for
the student to reliably ascertain the location of the stones since it cannot rely on proprioception any
more.

Real World Comparisons We compare the performance of our method to the blind baseline in the
real world. In particular we have 4 testing setups as shows in Figure 4: Upstairs, Downstairs, Gaps
and Stepping stones. We see that the blind baseline is incapable of walking upstairs beyond a few
steps and fails to complete the staircase even once On downstairs, we observe that the blind baseline
achieves 100% success, although it is unstable which led to the detaching of the rear right hip of the
robot during our experiments. We additionally show results in stepping stones and gaps, where the
blind robot fails completely. We show a 100% success on all tasks except for stepping stone on which
we achieve 94% success, which is very high given the challenging setup.

Urban Environments We experiment on stairs, ramps and curbs (Fig. 1). The robot was success-
fully able to go upstairs as well as downstairs for stairs of height upto 24cm in height and 28cm as
the lowest width. It sometimes misses a step, but shows impressive recovery behaviour and continues
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Figure 4: We show success rates and time-to-failure (TTF) for our method and the blind baseline on curbs,
stairs, stepping stones and gaps.

climbing or descending. The robot is able to climb curbs and obstacles as high as 26cm which is
almost as high as the robot 2. This requires an emergent hip abduction movement.

Gaps and Stepping Stones We construct an obstacle course consisting of gaps and stepping stones
out of tables and stools (Fig. 4). The robot achieves a 100% success rate on gaps of upto 26cm from
egocentric depth and 94% on difficult stepping stones. The stepping stones experiment shows that
our visual policy can learn safe foothold placement behavior even without an explicit elevation map
or foothold optimization objectives. The blind baseline achieves zero success rate on both tasks and
falls as soon as any gap is encountered.

Natural Environments We also deploy our policy on outdoor hikes and rocky terrains next to river
beds (Fig. 1). We see that the robot is able to successfully traverse rugged stairs covered with dirt,
small pebbles and some large rocks. It also avoids stumbling over large tree roots on the hiking trail.
On the beach, we see that the robot is able to successfully navigate the terrain despite several slips
and unstable footholds given the nature of the terrain.

5 Related Work
Legged locomotion Legged locomotion an important problem which has been studied for decades.
Several classical works use model based techniques, or define heuristic reactive controllers to achieve
the task of walking [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Other works use RL for walking
in real and simulation [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 3, 37, 38, 39].
However, most of these methods are blind, and only use proprioceptive signal to walk.

Locomotion from Elevation Maps To achieve visual control of walking, classical methods build
metric elevation maps and plan footsteps over them [40, 41, 42, 43, 44, 45, 46, 4, 47, 48, 6, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 5, 59, 7, 60, 61, 62]. Elevation maps can be noisy or incorrect and
dealing with imperfect maps is a major challenge to building robust locomotion systems. Solutions
to this include incorporating uncertainty in the elevation map [40, 63, 64] and simulating errors at
training time to make the walking policy robust to them [5].

Locomotion from Egocentric Depth Closest to our method is the line of work that does not
construct explicit elevation maps and predicts actions directly from depth frames. [39] learn a
policy that for obstacle avoidance from egocentric depth on flat terrain, [65] train a hierarchical
policy which uses depth to traverse curved cliffs and mazes in simulation, [66] use lidar scans to
show zero-shot generalization to difficult terrains. Yu et al. [67] train a policy to step over gaps by
predicting high-level actions from egocentric depth from the head and below the torso. Relatedly,
Margolis et al. [68] train a high-level policy to jump over gaps from egocentric depth using a whole
body impulse controller. In contrast, we directly predict target joint angles from egocentric depth
without constructing metric elevation maps.
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Algorithm 1 Pytorch-style pseudo-code for phase 2
Require: Phase 1 policy π1 = (G1, F 1, β), parallel environments E, max iterations M , truncated

timesteps T , learning rate η
Initialize phase 2 policy π2 = (G2, F 2, γ) with G2 ← G1, F 2 ← F 1.
n← 0
while n ̸= M do

Loss l← 0
t← 0
while t ̸= T do

s← E.observations
a1 ← π1(s)
a2 ← π2(s)
l← l + ∥a1 − a2∥22
E.step

(
a2
)

t← t+ 1
end while
Θπ2 ← Θπ2 − η∇Θπ2 l

π2 ← π2.detach()
n← n+ 1

end while

A Observation Space

We denote the observation space by o1
t =

(
pt,qt, q̇t,at−1, v

cmd
x , wcmd

z ,mt

)
:

• Proprioception contains (1) IMU information pt = (ωt,θt) i.e. the angular velocity ωt ∈ R3

and roll, pitch values θt ∈ R2 of the robot base (2) joint angles qt ∈ R12 and velocities q̇t ∈ R12

from the servo motors. We also include the last action taken at−1 ∈ R12 as this leads to smoother
policies. Actions and joint positions are normalized to lie in the range [−1, 1] with zero being the
mean standing position of the robot.

• Command contains target linear velocity in x direction
(
vcmd
x

)
t

and yaw angular velocity
(
ωcmd
z

)
t
.

• Elevation map is an ego-centric map of the terrain in front of the robot that is close to the field of
view of the camera. In particular, it consists of the height values mt = {h(x, y) | (x, y) ∈ P} at
88 points P = {0.3, 0.2 . . . 1.0} × {−0.5,−0.4, . . . , 0.5}. Note that we add small i.i.d. gaussian
noise to all input observations (except at−1) as specified in appendix.

B Rewards

Previous work [3, 69] has shown that task agnostic energy minimization based rewards can lead to the
emergence of stable and natural gaits that obey high-level commands. We use this same basic reward
structure along with penalties to prevent behavior that can damage the robot on complex terrain. Now
onwards, we omit the time subscript t for simplicity.

• Absolute work penalty −|τ · q| where τ are the joint torques. We use the absolute value so that
the policy does not learn to get positive reward by exploiting inaccuracies in contact simulation.

• Command tracking vcmd
x −

∣∣vcmd
x − vx

∣∣ − |ωcmd
z − ωz| where vx is velocity of robot in forward

direction and ωz is yaw angular velocity (x, z are coordinate axes fixed to the robot).
• Foot jerk penalty

∑
i∈F ∥f it − f it−1∥ where f it is the force at time t on the ith rigid body and F is

the set of feet indices. This prevents large motor backlash.
• Feet drag penalty

∑
i∈F I

[
f i
z ≥ 1N

]
·
(∣∣vix∣∣+ ∣∣viy∣∣) where I is the indicator function, and vix, v

i
y

is velocity of ith rigid body. This penalizes velocity of feet in the horizontal plane if in contact
with the ground preventing feet dragging on the ground which can damage them.
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• Collision penalty
∑

i∈C∪T I
[
f i ≥ 0.1N

]
where C, T are the set of calf and thigh indices. This

penalizes contacts at the thighs and calves of the robot which would otherwise graze against edges
of stairs and discrete obstacles.

• Survival bonus constant value 1 at each time step to prioritize survival over following commands
in challenging situations.

C Phase 1 policy architecture
The elevation map mt is passed through a two-layer MLP β with a tanh non-linearity on the
output to get m̃t ∈ R32. This information bottleneck forces the network to learn a low dimensional
representation of terrain that is less susceptible to noise. m̃t is concatenated along with the rest of
the observations and fed to a recurrent policy to obtain actions at.

m̃t = β (mt)

ht, ct = G1
(
pt,qt, q̇t,at−1, v

cmd
x , wcmd

z , m̃t | ht−1, ct−1

)
at = F 1 (ht)

where G1 is a GRU with hidden and cell state ht, ct respectively and F 1 is a two layer MLP with
tanh output non-linearity.

D Phase 2 architecture
We create a copy of the recurrent base policy G2 ← G1, F 2 ← F 1. The elevation map com-
pression MLP β is replaced with a convolutional depth backbone γ which processes depth map
dt ∈ R58×87 to produce a depth latent d̃t ∈ R32, predicted actions ât are then computed:

d̃t = γ (dt)

ht, ct = G2
(
pt,qt, q̇t,at−1, v

cmd
x , wcmd

z , d̃t | ht−1, ct−1

)
ât = F 2 (ht)

E Experimental Setup and Implementation Details
Pseudo-code Phase 1 is simply reinforcement learning using policy gradients. We describe the
pseudo-code for the phase 2 training in Algorithm 1.

Hardware We use the Unitree A1 robot pictured in Figure 2 of the main paper. The robot has 12
actuated joints, 3 per leg at hip, thigh and calf joints. The robot has a front-facing Intel RealSense
depth camera in its head. The onboard compute consists of the UPboard and a Jetson NX. The
UPboard has limited CPU compute and can command the motors while the NX has a small GPU
and is connected to the camera. The UPboard and Jetson are on the same local network. Since
depth processing is an expensive operation we run the convolutional backbone on the Jetson’s
GPU and send the depth latent over a UDP socket to the UPboard which runs the base policy. The
policy operates at 50Hz and sends joint position commands which are converted to torques by a
low-level PD controller running at 400Hz with stiffness Kp = 40 and damping Kd = 0.5.

Simulation Setup We use the IsaacGym (IG) simulator with the legged gym library [7] to
develop walking policies. IG can run physics simulation on the GPU and has a throughput of
around 2e5 time-steps per second on a Nvidia RTX 3090 during phase 1 training with 4096 robots
running in parallel. For phase 2, we can render depth using simulated cameras calibrated to be in
the same position as the real camera on the robot. Since depth rendering is expensive and memory
intensive, we get a throughput of 500 time-steps per second with 256 parallel environments. We
run phase 1 for 15 billion samples (13 hours) and phase 2 for 6 million samples (6 hours).

Environment We construct a large elevation map with 100 sub-terrains arranged in a 20× 10
grid. Each row has the same type of terrain arranged in increasing difficulty while different rows
have different terrain. Each terrain has a length and width of 8m. We add high fractals (upto
10cm) on flat terrain while medium fractals (4cm) on others. Terrains are shown in Figure 5 with
randomization ranges described in Table 2.
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Stairs Slopes

Rough Flat Gaps

Stepping Stones Discrete Obstacles

Figure 5: Set of terrain we
use during training

Name Range

Height map update frequency* [80ms, 120ms]
Height map update latency* [10ms, 30ms]

Added mass [−2kg, 6kg]
Change in position of COM [−0.15m, 0.15m]

Random pushes Every 15s at 0.3m/s
Friction coefficient [0.3, 1.25]

Height of fractal terrain [0.02m, 0.04m]
Motor Strength [90%, 110%]

PD controller stiffness [35, 45]
PD controller damping [0.4, 0.6]

Table 2: Parameter randomization in simulation. * indicates that ran-
domization is increased to this value over a curriculum.

Figure 6: The privileged baseline receives terrain information from all around the robot including
from around the hind feet.

Policy architecture The elevation map compression module β consists of an MLP with 2 hidden
layers. The GRUs G1, G2 are single layer while the feed-forward networks F 1, F 2 have two
hidden layers with ReLU non-linearities. The convolutional depth backbone γ consists of a series
of 2D convolutions and max-pool layers.
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