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Abstract

Previous work has proposed many new loss functions and regularizers that improve
test accuracy on image classification tasks. However, it is not clear whether these
loss functions learn better representations for downstream tasks. This paper studies
how the choice of training objective affects the transferability of the hidden repre-
sentations of convolutional neural networks trained on ImageNet. We show that
many objectives lead to statistically significant improvements in ImageNet accu-
racy over vanilla softmax cross-entropy, but the resulting fixed feature extractors
transfer substantially worse to downstream tasks, and the choice of loss has little
effect when networks are fully fine-tuned on the new tasks. Using centered kernel
alignment to measure similarity between hidden representations of networks, we
find that differences among loss functions are apparent only in the last few layers of
the network. We delve deeper into representations of the penultimate layer, finding
that different objectives and hyperparameter combinations lead to dramatically
different levels of class separation. Representations with higher class separation
obtain higher accuracy on the original task, but their features are less useful for
downstream tasks. Our results suggest there exists a trade-off between learning
invariant features for the original task and features relevant for transfer tasks.

1 Introduction

Features learned by deep neural networks on ImageNet transfer effectively to a wide range of computer
vision tasks [23, 60, 34]. These networks are often pretrained using vanilla softmax cross-entropy [10,
11], but recent work reports that other loss functions such as label smoothing [66] and sigmoid
cross-entropy [8] outperform softmax cross-entropy on ImageNet. Although a previous investigation
suggested that label smoothing and dropout can hurt transfer learning [34], the vast majority of work
studying alternatives to softmax cross-entropy has restricted its empirical investigation to the accuracy
of the trained networks on the original dataset. While it is valuable to study the impact of objective
functions on classification accuracy, improving transfer accuracy of learned representations can have
a more significant practical impact for many applications.

This paper takes a comparative approach to understand the effects of different training objectives
for image classification through the lens of neural network representations and their transferability.
We carefully tune hyperparameters of each loss function and confirm that several loss functions
outperform softmax cross-entropy by a statistically significant margin on ImageNet. However, we
find that these improvements do not transfer to other tasks (see Table 1 and Figure 1). We delve deeper
and explain these empirical findings in terms of effects of different objectives on neural network
representations. Our key findings are as follows:

• We analyze the performance of 9 different objectives on ImageNet and in transfer settings. Although
many loss functions and regularizers lead to statistically significant improvements over vanilla
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softmax cross-entropy on ImageNet, these gains do not transfer. These alternative loss functions
produce fixed feature extractors that transfer substantially worse to other tasks, in terms of both
linear and k-nearest neighbors classification accuracy, and provide no benefit when representations
are fully fine-tuned.

• The choice of objective primarily affects representations in network layers close to the output.
Centered kernel alignment (CKA) reveals large differences in representations of the last few layers
of the network, whereas earlier layers are similar regardless of which training objective is used.
This helps explain why the choice of objective has little impact on fine-tuning transfer accuracy.

• All objectives that improve accuracy over softmax cross-entropy also lead to greater separation
between representations of different classes in the penultimate layer features. These alternative
objectives appear to collapse within-class variability in representations, which accounts for both
the improvement in accuracy on the original task and the reduction in the quality of the features on
downstream tasks.

2 Loss Functions and Output Layer Regularizers

We investigate 9 loss functions and output layer regularizers. Let z ∈ R
K denote the network’s

output (“logit”) vector, and let t ∈ {0, 1}K denote a one-hot vector of targets. Let x ∈ R
M denote

the vector of penultimate layer activations, which gives rise to the output vector as z = Wx + b,
where W ∈ R

K×M is the matrix of final layer weights, and b is a vector of biases.

All investigated loss functions include a term that encourages z to have a high dot product with t.
To avoid solutions that make this dot product large simply by increasing the scale of z, these loss
functions must also include one or more contractive terms and/or normalize z. Many “regularizers”
correspond to additional contractive terms added to the loss, so we do not draw a firm distinction
between loss functions and regularizers. We describe each objective in detail below, and provide
hyperparameters in Appendix A.1.

Softmax cross-entropy [10, 11] is the de facto loss function for multi-class classification in deep
learning:

Lsoftmax(z, t) = −

K
∑

k=1

tk log

(

ezk
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j=1 e
zj

)

= −
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tkzk + log
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The loss consists of a term that maximizes the dot product between the logits and targets, as well as a
contractive term that minimizes the LogSumExp of the logits.

Label smoothing [66] “smooths” the targets for softmax cross-entropy. The new targets are given by
mixing the original targets with a uniform distribution over all labels, t′ = t× (1−α)+α/K, where
α determines the weighting of the original and uniform targets. In order to maintain the same scale
for the gradient with respect to the positive logit, in our experiments, we scale the label smoothing
loss by 1/(1− α). The resulting loss is:
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Müller et al. [43] previously showed that label smoothing improves calibration and encourages class
centroids to lie at the vertices of a regular simplex.

Dropout on penultimate layer: Dropout [64] is among the most prominent regularizers in the deep
learning literature. We consider dropout applied to the penultimate layer of the neural network, i.e.,
when inputs to the final layer are randomly kept with some probability ρ. When employing dropout,
we replace the penultimate layer activations x with x̃ = x⊙ ξ/ρ where ξi ∼ Bernoulli(ρ). Writing
the dropped out logits as z̃ = Wx̃+ b, the dropout loss is:

Ldropout(W , b,x, t; p) = Eξ [Lsoftmax(z̃, t)] = −

K
∑

k=1

tkzk + Eξ

[

log

K
∑

k=1

ez̃k

]

. (3)

Dropout produces both implicit regularization, by introducing noise into the optimization process [75],
and explicit regularization, by changing the parameters that minimize the loss [69].
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Extra final layer L2 regularization: It is common to place the same L2 regularization on the final
layer as elsewhere in the network. However, we find that applying greater L2 regularization to the
final layer can improve performance. The corresponding loss is:

Lextra_l2(W , z, t;λfinal) = Lsoftmax(z, t) + λfinal‖W ‖2
F
. (4)

In architectures with batch normalization, adding additional L2 regularization has no explicit regu-
larizing effect if the learnable scale (γ) parameters are unregularized, but it still exerts an implicit
regularizing effect by altering optimization.

Logit penalty: Whereas label smoothing encourages logits not to be too negative, and dropout
imposes a penalty on the logits that depends on the covariance of the weights, an alternative possibility
is simply to explicitly constrain logits to be small in L2 norm:

Llogit_penalty(z, t;β) = Lsoftmax(z, t) + β‖z‖2. (5)

Dauphin and Cubuk [19] showed that this regularizer yields accuracy improvements comparable to
dropout.

Logit normalization: We consider the use of L2 normalization, rather than regularization, of the
logits. Because the entropy of the output of the softmax function depends on the scale of the logits,
which is lost after normalization, we introduce an additional temperature parameter τ that controls
the magnitude of the logit vector, and thus, indirectly, the minimum entropy of the output distribution:

Llogit_norm(z, t; τ) = Lsoftmax(z/(τ‖z‖), t) = −
1

τ‖z‖

K
∑

k=1

tkzk + log

K
∑

k=1

ezk/(τ‖z‖). (6)

Cosine softmax: We additionally consider L2 normalization of both the penultimate layer features
and the final layer weights corresponding to each class. This loss is equivalent to softmax cross-
entropy loss if the logits are given by cosine similarity sim(x,y) = xTy/(‖x‖‖y‖) between the
weight vector and the penultimate layer plus a per-class bias:

Lcos(W , b,x, t; τ) =−

K
∑

k=1

tk (sim(Wk,:,x)/τ + bk) + log

K
∑

k=1

esim(Wk,:,x)/τ+bk , (7)

where τ is a temperature parameter as above. Similar losses have appeared in previous literature [54,
71, 76, 72, 73, 21, 38, 15], and variants have introduced explicit additive or multiplicative margins
to this loss that we do not consider here [38, 72, 73, 21]. We observe that, even without an explicit
margin, manipulating the temperature has a large impact on observed class separation.

Sigmoid cross-entropy, also known as binary cross-entropy, is the natural analog to softmax cross-
entropy for multi-label classification problems. Although we investigate only single-label multi-class
classification tasks, we train networks with sigmoid cross-entropy and evaluate accuracy by ranking
the logits of the sigmoids. This approach is related to the one-versus-rest strategy for converting
binary classifiers to multi-class classifiers. The sigmoid cross-entropy loss is:

Lsce(z, t) = −
∑K

k=1

(

tk log
(

ezk
ezk+1

)

+ (1− tk) log
(
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k=1 log(e
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The LogSumExp term of softmax loss is replaced with the sum of the softplus-transformed log-
its. We initialize the biases of the logits b to − log(K) so that the initial output probabilities are
approximately 1/K. Beyer et al. [8] have previously shown that sigmoid cross-entropy loss leads to
improved accuracy on ImageNet relative to softmax cross-entropy.

Squared error: Finally, we investigate squared error loss, as formulated by Hui and Belkin [30]:

Lmse(z, t;κ,M) =
1

K

K
∑

k=1

(

κtk(zk −M)2 + (1− tk)z
2
k

)

, (9)

where κ and M are hyperparameters. κ sets the strength of the loss for the correct class relative to
incorrect classes, whereas M controls the magnitude of the correct class target. When κ = M = 1,
the loss is simply the mean squared error between z and t. Like Hui and Belkin [30], we find that
placing greater weight on the correct class slightly improves ImageNet accuracy.
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3 Results

For each loss, we trained 8 ResNet-50 [29, 27] models on the ImageNet ILSVRC 2012 dataset [20, 57].
To tune loss hyperparameters and the epoch for early stopping, we performed 3 training runs per
hyperparameter configuration where we held out a validation set of 50,046 ImageNet training
examples. We provide further details regarding the experimental setup in Appendix A. We also
confirm that our main findings hold for Inception v3 [66] models in Appendix B.

3.1 Better objectives improve accuracy, but do not transfer better

Table 1: Objectives that produce higher ImageNet accuracy lead to less transferable fixed features. “Im-
ageNet” columns reflect accuracy of ResNet-50 models on the ImageNet validation set. “Transfer” columns
reflect accuracy of L2-regularized multinomial logistic regression or k-nearest neighbors classifiers trained to
classify different transfer datasets using the fixed penultimate layer features of the ImageNet-trained networks.
Numbers are averaged over 8 different pretraining runs; values not significantly different than the best are
bold-faced (p < 0.05, t-test). The strength of L2 regularization is selected on a holdout set, and k is selected
using leave-one-out cross-validation on the training set. See Appendix Table B.1 for a similar table for Inception
v3 models, Appendix D.2 for linear transfer accuracy evaluated at different epochs of ImageNet pretraining, and
Appendix D.3 for similar findings on the Chexpert chest X-ray dataset [31].

ImageNet Transfer

Pretraining loss Top-1 Top-5 Food CIFAR10 CIFAR100 Birdsnap SUN397 Cars Pets Flowers

Linear transfer:

Softmax 77.0 93.40 74.6 92.4 76.9 55.4 62.0 60.3 92.0 94.0

Label smoothing 77.6 93.78 72.7 91.6 75.2 53.6 61.6 54.8 92.9 91.9

Sigmoid 77.9 93.50 73.4 91.7 75.7 52.3 62.0 56.1 92.5 92.9

More final layer L2 77.7 93.79 70.6 91.0 73.7 51.5 60.1 50.3 92.4 89.8

Dropout 77.5 93.62 72.6 91.4 75.0 53.6 61.2 54.7 92.6 92.1

Logit penalty 77.7 93.83 68.1 90.2 72.3 48.1 59.0 48.3 92.3 86.6

Logit normalization 77.8 93.71 66.3 90.5 72.9 50.7 58.1 45.4 92.0 82.9

Cosine softmax 77.9 93.86 62.0 89.9 71.3 45.4 55.0 36.7 91.1 75.3

Squared error 77.2 92.79 39.8 82.2 56.3 21.8 39.9 15.3 84.7 46.7

K-nearest neighbors:

Softmax 77.0 93.40 60.9 88.8 67.4 38.4 53.0 28.9 88.8 83.6

Label smoothing 77.6 93.78 59.2 88.3 66.3 39.2 53.5 27.3 91.5 80.3

Sigmoid 77.9 93.50 58.5 88.2 66.6 34.4 52.8 26.7 90.8 81.5

More final layer L2 77.7 93.79 55.0 87.7 65.0 36.2 51.1 24.4 90.9 75.6

Dropout 77.5 93.62 58.4 88.2 66.4 38.1 52.4 27.8 91.1 80.1

Logit penalty 77.7 93.83 52.5 86.5 62.9 31.0 49.3 22.4 90.8 68.1

Logit normalization 77.8 93.71 50.9 86.6 63.1 35.1 45.8 24.1 88.2 63.1

Cosine softmax 77.9 93.86 45.5 86.0 61.5 28.8 41.8 19.0 87.0 52.7

Squared error 77.2 92.79 27.7 74.5 44.3 13.8 28.6 9.1 82.6 28.2
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Figure 1: Higher ImageNet accu-
racy is not associated with higher
linear transfer accuracy. Points
represent individual training runs.
See Appendix Figure D.1 for simi-
lar plots for individual datasets.

We found that, when properly tuned, all investigated objectives ex-
cept squared error provide a statistically significant improvement
over softmax cross-entropy, as shown in the left two columns of
Table 1. The gains are small but meaningful, with sigmoid cross-
entropy and cosine softmax both leading to an improvement of
0.9% in top-1 accuracy over the baseline. For further discussion
of differences in the training curves, robustness, calibration, and
predictions of these models, see Appendix C.

Although networks trained with softmax cross-entropy attain
lower ImageNet top-1 accuracy than any other loss function, they
nonetheless provide the most transferable features. We evaluated
the transferability of the fixed features of our ImageNet-pretrained
models by training linear or k-nearest neighbors (kNN) classi-
fiers to classify 8 different natural image datasets: Food-101 [9],
CIFAR-10 and CIFAR-100 [36], Birdsnap [6], SUN397 [77],
Stanford Cars [35], Oxford-IIIT Pets [51], and Oxford Flow-
ers [48]. The results of these experiments are shown in Table 1 and Figure 1. In both linear and kNN
settings, representations learned with vanilla softmax cross-entropy perform best for most tasks.
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Table 2: The training objective has little impact on the performance of fine-tuned networks. Accuracy of
fine-tuning pretrained networks on transfer datasets, averaged over 3 different pretraining initializations. We
tune hyperparameters separately for each objective and dataset. Numbers not significantly different than the best
are bold-faced (p < 0.05, t-test for individual datasets, two-way ANOVA for average). See Appendix A.3 for
training details.

Pretraining loss Food CIFAR10 CIFAR100 Birdsnap SUN397 Cars Pets Flowers Avg.

Softmax 88.2 96.9 84.1 76.2 63.4 91.3 93.1 96.7 86.2
Label smoothing 88.3 96.7 84.0 76.3 63.6 91.2 93.7 96.3 86.3
Sigmoid 88.3 96.9 83.6 76.2 63.5 91.8 93.7 96.3 86.3

More final layer L2 88.1 96.9 84.4 75.9 64.5 91.5 93.8 96.2 86.4
Dropout 88.3 96.7 84.2 76.5 63.9 91.2 93.9 96.3 86.4
Logit penalty 88.4 96.9 83.9 76.4 63.3 91.2 93.4 96.0 86.2
Logit normalization 87.9 96.9 82.9 76.0 58.3 91.2 92.7 95.9 85.2
Cosine softmax 88.3 96.9 83.2 75.6 56.9 91.3 92.5 95.9 85.1
Squared error 87.8 96.9 84.0 75.7 61.0 91.4 93.0 95.2 85.6

As shown in Table 2, when networks are fully fine-tuned on downstream tasks, the pretraining
objective has little effect on the resulting accuracy. When averaging across all tasks, the best loss
provides only a 0.2% improvement over softmax cross-entropy, which does not reach statistical
significance and is much smaller than the 0.9% difference in ImageNet top-1 accuracy. Thus, using
a different loss function for pretraining can improve accuracy on the pretraining task, but this
improvement does not appear to transfer to downstream tasks.

3.2 The choice of objective primarily affects hidden representations close to the output

Our observation that “improved” objectives improve only on ImageNet and not on transfer tasks
raises questions about which representations, exactly, they affect. We use two tools to investigate
differences in the hidden representations of networks trained with different loss functions. First, we
use centered kernel alignment [33, 17, 18] to directly measure the similarity of hidden representations
across networks trained with different loss functions. Second, we measure the sparsity of the ReLU
activations in each layer. Both analyses suggest that all loss functions learn similar representations
throughout the majority of the network, and differences are present only in the last few ResNet blocks.

Linear centered kernel alignment (CKA) provides a way to measure similarity of neural network
representations that is invariant to rotation and isotropic scaling in representation space [33, 17,
18]. Unlike other ways of measuring representational similarity between neural networks, linear
CKA can identify architectural correspondences between layers of networks trained from different
initializations [33], a prerequisite for comparing networks trained with different objectives. Given two
matrices X ∈ R

n×p1 and Y ∈ R
n×p2 containing activations to the same n examples, linear CKA

computes the cosine similarity between the reshaped n× n covariance matrices between examples:

CKAlinear(X,Y ) =
vec(cov(X)) · vec(cov(Y ))

‖cov(X)‖F‖cov(Y )‖F

. (10)

We measured CKA between all possible pairings of ResNet blocks from 18 networks (2 different
initializations for each objective). To reduce memory requirements, we used minibatch CKA [47]
with minibatches of size 1500 and processed the ImageNet validation set for 10 epochs.

As shown in Figure 2, representations of the majority of network layers are highly similar regardless
of loss function, but late layers differ substantially. Figure 2a shows similarity between all pairs
of blocks from pairs of networks, where one network is trained with vanilla softmax cross-entropy
and the other is trained with either softmax or a different loss function. The diagonals of these
plots indicate the similarity between architecturally corresponding layers. For all network pairs, the
diagonals are stronger than the off-diagonals, indicating that architecturally corresponding layers
are more similar than non-corresponding layers. However, in the last few layers of the network,
the diagonals are substantially brighter when both networks are trained with softmax than when
the second network is trained with a different loss, indicating representational differences in these
layers. Figure 2b shows similarity of representations among all loss functions for a subset of blocks.
Consistent differences among loss functions are present only in the last third of the network, starting
around block 13.
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Figure 2: The choice of loss function affects representations only in later network layers. All plots show
linear centered kernel alignment (CKA) between representations computed on the ImageNet validation set.
a: CKA between network layers, for pairs of ResNet-50 models trained from different initializations with
different losses. As controls, the top-right plot shows CKA between two networks trained with softmax, and the
bottom-right plot shows CKA between a model trained with softmax loss and a model at initialization where
batch norm moments have been computed on the training set. b: CKA between representations extracted from
corresponding layers of networks trained with different loss functions. Diagonal reflects similarity of networks
with the same loss function trained from different initalizations. See Appendix Figure B.1 for a similar figure for
Inception v3 models.
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Figure 3: Loss functions affect sparsity of later layer representations. Plot shows the average % non-zero
activations for each ResNet-50 block, after the residual connection and subsequent nonlinearity, on the ImageNet
validation set. Dashed lines indicate boundaries between stages.

The sparsity of activations reveals a similar pattern of layer-wise differences between networks trained
with different loss functions. Figure 3 shows the proportion of non-zero activations in different layers.
In all networks, the percentage of non-zero ReLU activations decreases with depth, attaining its
minimum at the last convolutional layer. In the first three ResNet stages, activation sparsity is broadly
similar regardless of the loss. However, in the final stage and penultimate average pooling layer, the
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Table 3: Regularization and alternative losses im-
prove class separation in the penultimate layer. Re-
sults are averaged over 8 ResNet-50 models per loss
on the ImageNet training set.

Loss/regularizer ImageNet top-1 Class sep. (R2)

Softmax 77.0 ± 0.06 0.349 ± 0.0002
Label smooth. 77.6 ± 0.03 0.420 ± 0.0003
Sigmoid 77.9 ± 0.05 0.427 ± 0.0003

Extra L2 77.7 ± 0.03 0.572 ± 0.0006
Dropout 77.5 ± 0.04 0.461 ± 0.0003
Logit penalty 77.7 ± 0.04 0.601 ± 0.0004
Logit norm 77.8 ± 0.02 0.517 ± 0.0002
Cosine softmax 77.9 ± 0.02 0.641 ± 0.0003
Squared error 77.2 ± 0.04 0.845 ± 0.0002
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Figure 4: Class separation in different layers of ResNet-
50, averaged over 8 models per loss on the ImageNet
training set. For convolutional layers, we compute co-
sine distances by flattening the representations of exam-
ples across spatial dimensions.

degree of sparsity depends greatly on the loss. Penultimate layer representations of vanilla softmax
networks are the least sparse, with 92.8% non-zero activations. Logit normalization, cosine softmax,
and squared error all result in much sparser (<25% non-zero) activations.

These results immediately suggest an explanation for the limited effect of the training objective
on networks’ fine-tuning performance. We observe differences among objectives only in later
network layers, but previous work has found that these layers change substantially during fine-
tuning [79, 53, 46], an observation we replicate in Appendix D.4. Thus, the choice of training
objective appears to affect parts of the network that are specific to the pretraining task, and do not
transfer when the network is fine-tuned on other tasks.

3.3 Regularization and alternative losses increase class separation

The previous section suggests that different loss functions learn very different penultimate layer
representations, even when their overall accuracy is similar. However, as shown in Appendix C.4,
combining different losses and penultimate layer regularizers provides no accuracy improvements
over training with only one, suggesting that they share similar mechanisms. In this section, we
demonstrate that a simple property of networks’ penultimate layer representations can explain their
beneficial effect on accuracy relative to vanilla softmax cross-entropy, as well as their harmful effect
on fixed features. Specifically, compared to vanilla softmax cross-entropy, all investigated losses
cause the network to reduce the relative within-class variance in the penultimate layer representation
space. This reduction in within-class variance corresponds to increased separation between classes,
and is harmful to linear transfer.

The ratio of the average within-class cosine distance to the overall average cosine distance measures
the dispersion of representations of examples belonging to the same class relative to the overall
dispersion of embeddings. We take one minus this quantity to get a closed-form index of class
separation that is between 0 and 1:

R2 = 1− d̄within/d̄total (11)

d̄within =

K
∑

k=1

Nk
∑

m=1

Nk
∑

n=1

1− sim(xk,m,xk,n)

KN2
k

, d̄total =

K
∑

j=1

K
∑

k=1

Nj
∑

m=1

Nk
∑

n=1

1− sim(xj,m,xk,n)

K2NjNk

where xk,m is the embedding of example m in class k ∈ {1, . . . ,K}, Nk is the number of examples

in class k, and sim(x,y) = xTy/(‖x‖‖y‖) is cosine similarity between vectors. As we show in
Appendix E.1, if the embeddings are first L2 normalized, then 1 − R2 is the ratio of the average
within-class variance to the weighted total variance, where the weights are inversely proportional to
the number of examples in each class. For a balanced dataset, R2 is equivalent to centered kernel
alignment [17, 18] between the embeddings and the one-hot label matrix, with a cosine kernel. See
Appendix E.2 for results with other distance metrics.

As shown in Table 3 and Figure 4, all regularizers and alternative loss functions we investigate produce
greater class separation in penultimate layer representations as compared to vanilla softmax loss.
Importantly, this increase in class separation is specific to forms of regularization that affect networks’
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Figure 5: Class separation
negatively correlates with lin-
ear transfer accuracy. a:
Mean linear transfer accuracy
across all tasks vs. class separa-
tion on ImageNet, for different
loss functions. b: For cosine
softmax loss, training at higher
temperature produces greater
class separation but worse lin-
ear transfer accuracy.
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Table 4: Temperature of cosine softmax loss controls ImageNet accuracy, class separation (R2), and linear
transfer accuracy.

ImageNet Transfer

Temp. Top-1 R2 Food CIFAR10 CIFAR100 Birdsnap SUN397 Cars Pets Flowers

0.01 74.9 0.236 73.4 91.9 76.5 57.2 60.5 62.9 91.7 93.6
0.02 77.0 0.358 72.1 91.8 76.2 56.5 60.4 58.5 92.2 91.2
0.03 77.5 0.475 69.1 91.5 74.9 53.7 59.1 51.8 92.3 87.4
0.04 77.6 0.562 66.0 90.7 73.8 50.3 57.4 45.1 91.7 82.2
0.05 77.6 0.634 62.8 90.4 72.2 47.6 55.4 38.6 91.0 78.3
0.06 77.5 0.693 60.3 89.3 69.8 43.3 53.8 33.3 91.0 72.7
0.07 77.5 0.738 57.1 88.7 68.6 39.6 51.4 29.1 90.2 67.9
0.08 77.6 0.770 53.7 87.7 66.5 35.5 49.4 25.7 89.3 63.2

final layers. In Appendix E.3, we show that adding regularization through data augmentation improves
accuracy without a substantial change in class separation. We further investigate the training dynamics
of class separation in Appendix E.4, finding that, for softmax cross-entropy, class separation peaks
early in training and then falls, whereas for other objectives, class separation either saturates or
continues to rise as training progresses.

3.4 Greater class separation is associated with less transferable features

Although losses that improve class separation lead to higher accuracy on the ImageNet validation set,
the feature extractors they learn transfer worse to other tasks. Figure 5a plots mean linear transfer
accuracy versus class separation for each of the losses we investigate. We observe a significant
negative correlation (Spearman’s ρ = −0.93, p = 0.002). Notably, vanilla softmax cross-entropy
produces the least class separation and the most transferable features, whereas squared error produces
much greater class separation than other losses and leads to much lower transfer performance.

To confirm this relationship between class separation, ImageNet accuracy, and transfer, we trained
models with cosine softmax with varying values of the temperature parameter τ .1 As shown in
Table 4, lower temperatures yield lower top-1 accuracies and worse class separation. However, even
though the lowest temperature of τ = 0.01 achieved 2.7% lower accuracy on ImageNet than the best
temperature, this lowest temperature gave the best features for nearly all transfer datasets. Thus, τ
controls a tradeoff between the generalizability of penultimate-layer features and the accuracy on
the target dataset. For τ ≥ 0.04, ImageNet accuracy saturates, but, as shown in Figure 5b, class
separation continues to increase and transfer accuracy continues to decrease.

Is there any situation where features with greater class separation could be beneficial for a downstream
task? In Figure 6, we use L2-regularized logistic regression to relearn the original 1000-way ImageNet
classification head from penultimate layer representations of 40,000 examples from the ImageNet
validation set.2 We find that features from networks trained with vanilla softmax loss perform worst,
whereas features from networks with greater class separation perform substantially better. Thus, it

1Training at τ < 0.05 was unstable; we scale the loss by the τ to reduce the effect of τ on the size of the
gradient WRT the correct class logit. Relationships for τ ≥ 0.05 remain consistent without loss scaling.

2We use this experimental setup to avoid training linear classifiers on examples that were also seen during
pretraining. However, results are qualitatively similar if we train the linear classifier on a 50,046 example subset
of the training set and test on the full validation set.
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Figure 6: Class separation positively correlates with accuracy
when relearning how to classify ImageNet classes from limited
data. All accuracy numbers are computed on a 10,000 example
subset of the ImageNet validation set (10 examples per class). Blue
dots indicate accuracy of the weights of the original ImageNet-
trained model. Orange dots indicate accuracy of a linear classifier
trained on the other 40,000 examples from the ImageNet validation
set. Lines connect blue and orange dots corresponding to the same
objective. The gap between the accuracies of the original and
relearned classifiers narrows as class separation increases. Class
separation is measured on the ImageNet training set. All numbers
are averaged over 8 models.
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seems that representations with greater class separation are “overfit,” not to the pretraining datapoints,
but to the pretraining classes—they perform better for classifying these classes, but worse when the
downstream task requires classifying different classes.

Our results above provide some further evidence that greater class separation can be beneficial
in real-world scenarios where downstream datasets share classes with the pretraining dataset. In
Tables 1 and 4, representations with the lowest class separation perform best on all datasets except for
Oxford-IIIT Pets, where representations with slightly greater class separation consistently perform
slightly better. We thus explore class overlap between transfer datasets and ImageNet in Appendix F,
and find that, of the 37 cat and dog breeds in Oxford-IIIT Pets, 25 correspond directly to ImageNet
classes. Furthermore, it is possible to achieve 71.2% accuracy on Oxford-IIIT Pets simply by taking
the top-1 predictions of an ImageNet classifier and and mapping them directly to its classes, but this
strategy achieves much lower accuracy on other datasets.

4 Related work

Understanding training objectives. There is a great deal of previous work that investigates why
some objectives perform better than others, using both theoretical and empirical approaches. On
linearly separable data, theoretical analysis shows that gradient descent on both unregularized logistic
or multinomial logistic regression objectives (i.e., linear models with sigmoid or softmax cross-
entropy loss) eventually converges to the minimum norm solution [63]. These results can be extended
to neural networks in certain restricted settings [28, 74]. However, the convergence to this solution
is very slow. Theoretical analysis of dropout has bounded the excess risk of single-layer [70] and
two-layer [42] networks. Empirical studies have attempted to understand regularization in more
realistic settings. Label smoothing has been explained in terms of mitigation of label noise [39, 13],
entropy regularization [52, 41], and accelerated convergence [78]. Other work has shown that dropout
on intermediate layers has both implicit and explicit effects, and both are important to accuracy [74].
Janocha and Czarnecki [32] previously studied both empirical and mathematical similarities and
differences among loss functions for supervised classification in the context of deep learning.

Training objectives for transfer. Our study of the transferability of networks trained with different
objectives extends the previous investigation of Kornblith et al. [34], which showed that two of the
regularizers considered here (label smoothing and dropout) lead to features that transfer worse. Similar
results have been reported for self-supervised learning, where the loss parameters that maximize
accuracy on the contrastive task do not provide the best features for linear classification [14]. Our
work demonstrates that this phenomenon is pervasive, and connects it to properties of hidden
representations. By contrast, work that explores out-of-distribution (OOD) generalization, where
the training and evaluation datasets consist of the same classes but with some degree of distribution
shift, finds that ImageNet accuracy is highly predictive of OOD accuracy across many pretrained
models [55, 67]. In Appendix Table C.2, we show that, across loss functions, ImageNet validation set
accuracy is not entirely correlated with OOD accuracy, but different losses produce much smaller
differences in OOD accuracy than linear transfer accuracy.

Other related work has attempted to devise loss functions to learn more transferable embeddings for
few-shot learning [62, 65, 7, 15, 49], but embeddings of models trained with softmax cross-entropy
often perform on par with these more sophisticated techniques [68]. Doersch et al. [22] motivate their
few-shot learning method as a way to mitigate “supervision collapse,” which they do not directly
quantify, but is closely related to our notion of class separation. While our paper was under review,
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two studies reported advantages for increased final layer L2 regularization when performing few-shot
linear transfer from very large pretraining datasets to some, but not all, downstream tasks [80, 1]. Our
findings suggest that these advantages may arise because the pretraining and downstream tasks share
classes, but further investigation is needed to confirm this hypothesis.

Class separation. Prior work has investigated class separation in neural networks in a variety of
different ways. Theoretical work connects various concepts of the normalized margin between classes
to the generalization properties of neural networks [4, 44, 5, 45]. Empirically, Chen et al. [12]
measure class separation via “angular visual hardness,” the arccosine-transformed cosine similarity
between the weight vectors and examples, and suggested an association between this metric and
accuracy. However, as shown in Appendix Figure E.1, this metric is unable to differentiate between
networks trained with softmax and sigmoid cross-entropy. Papyan et al. [50] describe a phenomenon
they call “neural collapse,” which occurs after training error vanishes and is associated with the
collapse of the class means, classifier, and activations to the vertices of an equiangular tight frame,
implying maximal class separation. We relate our observations to theirs in Appendix Table E.2. More
generally, studies have investigated how class information evolves through the hidden layers of neural
networks using linear classifiers [2], binning estimators of mutual information [61, 58, 26], Euclidean
distances [59], the soft nearest neighbor loss [24], and manifold geometry [3, 16]. In the context of a
study of representational consistency across networks trained from different initializations, Mehrer
et al. [40] previously reported increased class separation in CIFAR-10 networks trained with dropout.

Other work has explored relationships between measures of class separation in embedding spaces and
accuracy in few-shot and deep metric learning settings. In deep metric learning, Roth et al. [56] show
that objectives that lead to greater class separation generally produce higher recall, and find a similar
relationship for a measure of the uniformity of the singular value spectrum of the representation
space. In few-shot learning, different work has reached different conclusions: Goldblum et al. [25]
find that regularization that increases class separation improves few-shot classification performance
on mini-ImageNet and CIFAR-FS, whereas Liu et al. [37] find that introducing a negative margin
into a cosine softmax loss yields both lower class separation and higher accuracy.

5 Limitations

Although we investigate many losses and multiple architectures, our experiments are limited to
moderately sized datasets with moderately sized models, and our conclusions are limited to supervised
classification settings. ResNet-50 on trained on ImageNet is a realistic transfer scenario where our
analysis is computationally tractable, but bigger models trained on bigger datasets with more classes
achieve better performance. These bigger datasets with richer label spaces could potentially help to
mitigate the trade-off between pretraining accuracy and feature quality, and may also have class-level
overlap with many downstream tasks, making greater class separation helpful rather than harmful.

Our results establish that a wide variety of losses that improve over vanilla softmax cross-entropy
lead to greater class separation, but this observation does not immediately lead to a recipe for higher
pretraining accuracy. The relationship between class separation and pretraining accuracy is non-
monotonic: squared error achieves the highest class separation but does not significantly outperform
vanilla softmax cross-entropy.

6 Conclusion

In this study, we find that the properties of a loss that yields good performance on the pretraining task
are different from the properties of a loss that learns good generic features. Training objectives that
lead to better performance on the pretraining task learn more invariant representations with greater
class separation. However, these same properties are detrimental when fixed features are transferred
to other tasks. Moreover, because different loss functions produce different representations only in
later network layers, which change substantially during fine-tuning, gains in pretraining accuracy do
not lead to gains when models are fine-tuned on downstream tasks.

Our work suggests opportunities for improving fixed feature representations in deep neural networks.
We see no inherent reason that features learned by softmax cross-entropy should be optimal for
transfer, but previous work has optimized for pretraining accuracy, rather than transferable features.
With the increasing importance of transfer learning in deep learning, we believe that future research
into loss functions should explicitly target and evaluate performance under transfer settings.
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