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Abstract

Non-cooperative and cooperative games with a very large number of players1

remain generally intractable when the number of players increases. Introduced2

by Lasry and Lions (2007) and Huang et al. (2006), Mean Field Games (MFGs)3

rely on a mean-field approximation to allow the number of players to grow to4

infinity. In Mean-field reinforcement learning, When the state space is finite but5

very large, storing the population distribution in a tabular way for every state6

and computing the evolution of this distribution in an exact way is prohibitive7

in terms of memory and computational time. In continuous spaces, representing8

and updating the distribution is even more challenging, even if it is just for the9

purpose of implementing the RL environment and not to use it as an input to10

the policies. In this case, one needs to rely on approximations. This research11

aims to propose a model-based reinforcement learning algorithm, GD-MFRL that12

efficiently represents the distribution using function approximation in a two-part13

generative and discriminative setting; (i) one part learns to generate distributions14

by trial and error, and (ii) the other part tries to evaluate these distributions. The15

definition of such a framework requires answering several challenging research16

questions, including: How to evaluate the transfer quality in a Multiagent scenario?17

1 Introduction18

In Observing the mean field, we assume that the agent does not observe the distribution, or at least19

does not exploit this information to learn the equilibrium policy. Although this is the most common20

approach in the RL and MFGs literature, the question of learning population-dependent policies arises21

quite naturally since one could expect that agents learn how to react to the current distribution they22

observe. This is usual in MARL, see e.g. Yang et al. (2018) who consider Q-functions depending23

on the actions of all the other players. In MFGs, we can expect that, by learning a population-24

dependent policy, the agent will be able to generalize, i.e., to behave (approximately) optimally25

even for population configurations that have not been encountered during training. The concept26

of a value function depending on the population distribution is connected to the so-called Master27

equation in MFGs. Introduced by Lions (2012) in continuous MFGs (continuous time, continuous28

state, and action spaces), this partial differential equation (PDE) corresponds to the limit of systems29

of Hamilton-Jacobi-Bellman PDEs characterizing Nash equilibria in symmetric N-player games.30

We refer the interested reader to e.g. Bensoussan et al. (2015); and Cardaliaguet et al. (2019)31

for more details on this topic. With this approach, value functions and policies take as input a32

distribution, which is a high-dimensional object. As a consequence, they are much more challenging33

to approximate than population-independent policies. Perrin et al. (2022), introduced the concept of34
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master policies, which are population-dependent policies allowing to recover an equilibrium policy35

for any observed population distribution. They proposed to approximately compute master policies36

by a combination of Fictitious play, DRL, and suitable randomization of the initial distribution. Wu37

et al. (2024) extended the approach to non-stationary master policies and proposed an adaptation of38

the Munchausen OMD algorithm introduced by Lauriere et al., 2022 to compute policies taking the39

distribution as an input.40

In distribution estimation, When the state space is finite but very large, storing the population41

distribution in a tabular way for every state and computing the evolution of this distribution in42

an exact way is prohibitive in terms of memory and computational time. In continuous spaces,43

representing and updating the distribution is even more challenging, even if it is just for the purpose of44

implementing the RL environment and not to use it as an input to the policies. In this case, one needs45

to rely on approximations. As already mentioned, a possible method consists of using an empirical46

distribution, whose evolution can be implemented by Monte Carlo samples of an interacting agent47

system. This amounts to using a finite population of agents to simulate the environment. For example,48

in linear-quadratic MFGs the interactions are only through the mean, which can be estimated even49

using a single agent, see Angiuli et al., 2022c,b in the stationary setting and Angiuli et al., 2021;50

uz Zaman et al., 2020; Miehling et al., 2022; uz Zaman et al., 2023a in the finite-horizon setting.51

However, it should be noted that even if a finite number of agents is used in the environment, this52

approach does not directly reduce the problem to a MARL problem because the goal is still to learn53

the equilibrium policy for the MFG instead of the finite-agent equilibrium policy.54

Another approach consists of representing efficiently the distribution using function approximation.55

This raises the question of the choice of parameterization and the training method for the parameters.56

This approach can be implemented in a model-free way using Monte Carlo samples, which is57

particularly suitable for spaces that are too large to be explored in an exhaustive fashion.58

2 Research Goals and Expected Contributions59

This research aims to propose a model-based RL algorithm to allow distribution approximation60

in multi-agent reinforcement Learning, in a generative-discriminative setting. Specifying such a61

method requires the definition of (i) A model that learns the distributions and tries to consistently62

generate approximations; (ii) The second discriminative part that tries to understand and evaluate63

these approximations; and (iii) How to define knowledge interaction framework between the generator64

and discriminator. The agent extracts knowledge from trial and error and previously solved tasks to65

accelerate the learning of the distribution. The learning of this distribution can then be abstracted and66

added to the knowledge base.67

3 Background and Related Work68

3.1 Mean Field Games69

An MFG describes a game for a continuum of identical agents and is fully characterized by the70

dynamics and the payoff function of a representative agent. More precisely, denoting by µt the state71

distribution of the population, and by ξt ∈ Rl and αt ∈ Rk the state and the control of an infinitesimal72

agent, the dynamics of the infinitesimal agent is given by73

ξt+1 = ξt + b(ξt, µt, αt) + σϵt+1(1) (1)

where b : Rl × Rk × ρRlRl is a drift (or transition) function, σ is a l × l matrix and ϵt+1 is a74

noise term taking values in Rl. We assume that the sequence of noises ϵt(t ≥ 0) is i.i.d. (e.g.75

Gaussian). The objective of each infinitesimal agent is to maximize its total expected payoff, given76

a flow of distributions µ = µt(t ≥ 0) and a strategy α (i.e., a stochastic process adapted to the77

filtration generated by ϵt(t ≥ 0) as: Jµ(α) = Eξtαt[Σt ≥ 0γtϕ(ξt, µt, αt)], where γ ∈ (0, 1) is78

a discount factor and ϕRl × Rk × ρRlRl is an instantaneous payoff function. Since this payoff79

depends on the population’s state distribution, and since the other agents would also aim to maximize80

their payoff, a natural approach is to generalize the notion of Nash equilibrium to this framework. A81

mean-field (Nash) equilibrium is defined as a pair (µ̂, α̂ = (µ̂t, ˆαt)(t ≥ 0) of a flow of distributions82
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and strategies such that the following two conditions are satisfied: α̂ is the best response against µ̂83

(optimality) and µ̂ is the distribution generated by α̂ (consistency), i.e.,84

1. α̂ maximizes αJµ̂(α); 2. for every t ≥ 0, µ̂t is the distribution of ξt when it follows the dynamics85

(1) with (αt, µt) replaced by ˆαt), µ̂t.86

Finding a mean field equilibrium thus amounts to finding a fixed point in the space of (flows of)87

probability distributions. The existence of equilibria can be proven through classical fixed point88

theorems (Carmona and Delarue, 2018). In most mean field games considered in the literature, the89

equilibrium is unique, which can be proved using either a strict contraction argument or the so-called90

Lasry-Lions monotonicity condition (Lasry and Lions, 2007). Computing solutions to MFGs is91

a challenging task, even when the state is in a small dimension, due to the coupling between the92

optimality and the consistency conditions. This coupling typically implies that one needs to solve a93

forward-backward system where the forward equation describes the evolution of the distribution and94

the backward equation characterizes the optimal control. One can not be solved prior to the other one,95

which leads to numerical difficulties.96

3.2 Reinforcement Learning97

The Reinforcement Learning (RL) paradigm is the machine learning answer to the optimal control98

problem. It aims at learning an optimal policy for an agent that interacts in an environment composed99

of states, by performing actions. Formally, the problem is framed under the Markov Decision100

Processes (MDP) framework. An MDP is a tuple (S, A, p, r, γ) where S is a state space, A is an action101

space, p : S×AP (S) is a transition kernel, r : S×AR is a reward function and γ is a discount factor102

(see Eq. (2)). Using action a when the current state is s leads to a new state distributed according103

to P(s, a) and produces a reward R(s, a). A policy π : SP (A), sπ(|s) provides a distribution over104

actions for each state RL aims at learning a policy π∗ which maximizes the total return defined as the105

expected (Discounted) the sum of future rewards:106

R(π) = Eat,s t+1[Σ(t ≥ 0)γt(st, at)](2) (2)

with at ∼ π(|st) and st+1p(|st, at). Note that if the dynamics (p and r) are known to the agent,107

the problem can be solved using e.g. dynamic programming. Most of the time, these quantities are108

unknown and RL is required. A plethora of algorithms exist to address the RL problem. Yet, we109

need to focus on methods that allow continuous action spaces as we want to control accelerations.110

One category of such algorithms is based on the Policy Gradient (PG) theorem (Sutton et al., 1999)111

and makes use of the gradient ascent principle: ππ + α(π)/∂π, where α is a learning rate. Yet,112

PG methods are known to be high-variance because they use Monte Carlo rollouts to estimate the113

gradient. A vast literature thus addresses the variance reduction problem. Most of the time, it involves114

a hybrid architecture, namely Actor-Critic, which relies on both a representation of the policy and115

of the so-called state-action value function (s, a)Qπ(s, a). Qπ(s, a) is the total return conditioned116

on starting in state s and using action a before using policy π for subsequent time steps. It can be117

estimated by bootstrapping, using the Markov property, through the Bellman equations. Most recent118

implementations rely on deep neural networks to approximate π and Q (e.g. (Haarnoja et al., 2018)).119

4 Partial Results120

In order to define a representation that allows distribution approximation, we propose a GD-MFRL121

extension to MAS, called Generative Discriminative Mean-Field Reinforcement Learning. GD-MFRL122

is inspired by the insight that approximation can be seen and modeled as a game in the MAS; hence,123

the environment is described by a set of a generator and a discriminator, in which the former can124

generate approximations and the latter enhances these approximations. While GD-MFRL enables125

distribution approximation by trial and error, eliminating the need for recalibration to have neural126

networks satisfying that the model is calibrated w.r.t f.127
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5 Next Steps128

GD-MFRL is a promising model that allows approximation of the distribution. Now, the next step in129

our research is to define how the method will iteratively adjust the interactions between the generative130

and discriminative components until they reach a consensus on a value that accurately reflects reality131

and aligns with their initial beliefs. Abstract policies have been successfully used, thus we now plan132

to build abstract policies based on GD-MFRL. We still need to specify a mapping method to find133

correspondences between generators and discriminators in different domains, and how the transfer of134

knowledge among agents may be executed with abstract policies.135
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