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Abstract
Sample efficiency is critical for online Reinforce-
ment Learning from Human Feedback (RLHF).
While existing works investigate sample-efficient
online exploration strategies, the potential of uti-
lizing misspecified yet relevant reward models to
accelerate learning remains underexplored. This
paper studies how to transfer knowledge from
those imperfect reward models in online RLHF.
We start by identifying a novel property due to KL-
regularization in the RLHF objective: a policy’s
coverability of the optimal policy is captured by its
sub-optimality. Building on this insight, we pro-
pose novel transfer learning principles and a theo-
retical algorithm—Transfer Policy Optimization
(TPO)—with provable benefits compared to stan-
dard online learning. Empirically, inspired by our
theoretical findings, we develop a win-rate-based
transfer policy selection strategy with improved
computational efficiency. Moreover, our empiri-
cal transfer learning technique is modular and can
be integrated with various policy optimization
methods, such as DPO, IPO and XPO, to further
enhance their performance. We validate the effec-
tiveness of our method through experiments on
summarization tasks.

1. Introduction
Reinforcement Learning from Human Feedback (RLHF)
has achieved remarkable success in fine-tuning Large-
Language Models (LLMs) to align with human preferences
(Bai et al., 2022; Christiano et al., 2017; Ouyang et al.,
2022). Using datasets annotated with human preferences
reflecting human intrinsic reward model, RLHF optimizes
LLM policies with reinforcement learning (RL) techniques.
Due to the high cost of collecting large amounts of human
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preference labels, there has been significant attention in re-
ducing the sample complexity—the amount of data required
for training—of online RLHF through efficient exploration
strategies (Cen et al., 2024; Wang et al., 2023; Xie et al.,
2024; Zhang et al., 2024). However, a largely overlooked op-
portunity is to additionally leverage existing reward models
for annotation, which have already aligned partially with the
human preferences. The growing number of available open-
source and high-quality reward models trained on diverse
tasks provide a rich pool of candidates for transfer learn-
ing. Harnessing guidance embedded in such reward models
holds great potential for improving sample efficiency.

There are a variety of practical scenarios where such source
reward models can be effectively utilized. Firstly, reward
models trained on relevant tasks often prove to be valuable
in similar tasks. A notable example is cross-lingual reward
transfer (Hong et al., 2024; Wu et al., 2024), where reward
models in one language can provide effective guidance for
tasks in another. Secondly, informative evaluation can also
be obtained from well-trained LLMs, such as GPT, LLaMA
and Gemini (Achiam et al., 2023; Dubey et al., 2024; Team
et al., 2024). For certain tasks, such models can provide
evaluation closely aligned with human preferences; see e.g.,
Ji et al. (2023); Lee et al. (2023). Lastly, there are scenar-
ios where rule-based or heuristic reward functions—built
upon experts knowledge and accumulated experience—are
inexpensive to obtain and instructive in evaluating the LLM.
Taking summarization tasks as an example, expert sum-
maries are available on datasets such as XSum (Narayan
et al., 2018) and TL-DR (Völske et al., 2017). Similarity
with those expert solutions can be measured through metrics
such as ROUGE (Lin, 2004) and BERTScore (Zhang et al.,
2019), and be employed for scoring the LLM generations.

Motivated by these considerations, this paper studies how
to leverage imperfect reward models to learn a near-optimal
policy with fewer human annotations. We consider the case
where several source reward models are available, yet their
quality, i.e., the similarity to human rewards, is unknown a
priori. Our contributions are summarized as follows.

• In Sec. 3, we identify a distinctive property of RLHF aris-
ing from its KL regularization: for any prospective policy
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candidates, its coverability for the optimal policy improves
as its policy value increases. Enlightened by this, we pro-
pose two new principles for transfer learning in the context
of RLHF (illustrated in Fig. 1).

Firstly, policy value serves as a crucial criterion to se-
lect the transfer policy, since exploiting policies with high
values does not conflict with exploration. Secondly, com-
bining insights from offline RL theory, we prove that the
policy distilled by offline learning techniques from the
online data generated by any no-regret online algorithm,
converges to the optimal one at a rate of Õ(T−

1
2 ) after

a finite time. Such a bound improves existing sample
complexity results and regret bounds in online RLHF by
eliminating the dependencies on the size of the state and
action space, or the complexity of the policy class (up to
log-covering number). This suggests the offline policy
computed with the data from the online learning process
is a promising candidate to transfer from, which we term
as “self-transfer learning”.

• In Sec. 4, following above principles, we design a transfer
learning algorithm named Transfer Policy Optimization
(TPO; Alg. 1) with provable benefits. At the core of TPO is
the self-transfer learning and an adaptive policy selection
strategy that picks transfer policies based on estimated
value gaps. In the early stage, the cumulative online regret
of TPO can be significantly reduced, as long as one of the
source rewards is of high quality. After finite time, the self-
transfer mechanism ensures the regret of TPO grows only
at a rate of Õ(

√
T ), independent of the standard structural

complexity measures. Compared with transfer learning in
the pure-reward maximization RL, our result is novel in
that it exploits the policy coverage property induced by the
regularization term in RLHF.

• To reduce computational overheads and improve scalablity
to practical RLHF scenarios, in Sec. 5, we propose an
empirical version of TPO that selects transfer policy based
on the win rates competing with the learning policy, rather
than relying on the estimated policy values. On the one
hand, win rates can be estimated much more efficiently
than the policy values. On the other hand, as justified by
our theory, win rates help to identify lower bounds for the
coverability of the optimal policy. Notably, our empirical
TPO is general: its core transfer learning technique can
be modularized and combined with various reward-model-
free policy optimization methods, such as DPO (Rafailov
et al., 2024), IPO (Azar et al., 2024), XPO (Xie et al.,
2024), to boost their performance. The effectiveness of
our approach is demonstrated in fine-tuning T5 models on
summarization tasks in Sec. 6.

1.1. Related Work

We summarize the most related ones on sample complexity
and transfer RL here and defer the others to Appx. B.2.
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Figure 1. The standard online RLHF pipeline only involves learn-
ing from online human feedback (left). Our setting additionally
leverages available imperfect reward models via transfer learning
(right). Inspired by the structure induced by KL regularization, we
propose novel principles for transfer learning in online RLHF: (1)
selecting transfer policy πTransfer with the highest policy value; (2)
self-transfer learning—involving as a candidate the policy πDstl

distilled from online collected data by offline learning techniques.

Sample Complexity in RLHF Online RLHF emphasizes
strategic exploration for sample-efficient learning in tabular
and linear settings (Du et al., 2024; Novoseller et al., 2020;
Pacchiano et al., 2021; Xu et al., 2020), as well as more
general function approximation cases (Cen et al., 2024;
Chen et al., 2022; Wang et al., 2023; Xie et al., 2024; Xiong
et al., 2024; Ye et al., 2024; Zhang et al., 2024). Our work
further improves sample efficiency by leveraging imperfect
reward models that are readily available in a variety of
practical scenarios. As an alternative, offline RLHF (Huang
et al., 2024; Liu et al., 2024; Zhan et al., 2023) focuses on
exploiting pre-collected datasets without exploration. What
lies in between online/offline RL is hybrid RL (Chang et al.,
2024; Gao et al., 2024). These methods harness online
feedback, while assuming the reference policy provides
good coverage and only engaging in passive exploration.

Transfer Learning in RL and RLHF Transfer learning in
pure-reward maximization RL has been extensively investi-
gated in previous literature (Taylor & Stone, 2009; Zhu et al.,
2023), and theoretical guarantees have been established un-
der various conditions (Golowich & Moitra, 2022; Huang &
He, 2023; Huang et al., 2022; Mann & Choe, 2013). Unlike
previous works, this paper unveils new insights for trans-
fer learning enabled by the KL regularization in RLHF. In
particular, it enables us to design a policy-value-based trans-
fer policy selection strategy, and identify a unique regime,
i.e., “self-transfer learning”, that can significantly improve
sample efficiency. We defer more discussions to Sec. 3.2.

Most works on transfer learning in RLHF focus on empirical
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approaches. For example, (Hong et al., 2024; Wu et al.,
2024) investigate the cross-lingual reward transfer. To our
knowledge, our empirical algorithm (Alg. 3) is novel in
that it studies active transfer policy selection, which is still
underexplored in existing literature. We further distinguish
our work from RLAIF (Ji et al., 2023; Lee et al., 2023)
or reward model selection literature (Nguyen et al., 2024).
Their goal is to align LLM policies with surrogate reward
models, while we study how to leverage those surrogates to
accelerate the alignment with ground-truth human rewards.

2. Preliminary
In this section, we review the mathematical formulation of
RLHF for LLMs and introduce our reward transfer setting.

2.1. Mathematical Formulation of RLHF

We adopt the contextual bandits framework (Lattimore &
Szepesvári, 2020; Ouyang et al., 2022), where we treat the
prompt space as the state space S and the response space as
the action space A. Without loss of generality, we assume
that both |S| and |A| are finite. We denote ρ ∈ ∆(S) as the
prompt distribution. An LLM can be modeled by a policy
π : S → ∆(A), where, given a prompt s ∈ S , the responses
are generated from the conditional distribution a ∼ π(·|s).
Throughout this paper, we assume that all considered LLM
policy π have positive support over the entire state-action
space, that is, mins,a π(a|s) > 0. This is ensured in practice
by the softmax layer in LLM architectures.

Reward Model and Preference Model A reward model
is a function r : S × A → [0, R], where R is a constant
indicating the largest possible reward value. In the RLHF
setting, the reward r is unobservable and we can only access
its induced preference model, denoted by Pr. Pr(y|s, a, ã)
denotes the probability that a is preferable to ã given s (y =
1) or not (y = 0), by reward model r. Following previous
works, we consider the Bradley-Terry (BT) model (Bradley
& Terry, 1952): Pr(y = 1|s, a, ã) = σ(r(s, a)− r(s, a′)),
where σ(x) := 1/(1 + e−x) is the sigmoid function.

RLHF Learning Setting Given a reward model r, in the
context of RLHF for LLM fine-tuning, we are interested in
optimizing the following the KL-regularized objective:

π∗r ← argmax
π

Jβ(π; r)

with Jβ(π; r) :=Es∼ρ,a∼π[r(s, a)]− βKL(π∥πref), (1)

where we use πref to denote the pretrained reference pol-
icy and KL(π∥πref) := Es∼ρ,a∼π(·|s)[log

π(a|s)
πref(a|s) ]. The

above optimization problem yields a closed-form solution:

π∗r (a|s) ∝ πref(a|s)e
r(s,a)

β . (2)

Here β > 0 is a moderate constant and is critical for RLHF

in practice, for detailed reasons discussed in Appx. B.1.

We use r∗ : S × A → [0, R] to denote the unknown true
reward function determining the human’s preference Pr∗ .
For simplicity, we omit r∗ and use Jβ(π) as a short note
for Jβ(π; r∗). Following previous works (Xie et al., 2024;
Zhang et al., 2024), we consider the function approximation
setting with access to a policy candidates class Π (|Π| <
+∞) satisfying standard assumptions as follows:

Assumption A. The policy class Π satisfies: (I) Realiz-
ability: The optimal policy π∗r∗ ∈ Π. (II) Bounded Policy
Ratio: For any π ∈ Π, maxs,a | log π(a|s)

πref(a|s) | ≤
R
β .

Note that maxs,a | log π∗r (a|s)
πref(a|s) | ≤

R
β holds as long as r ∈

[0, R] (see Lem. B.1 in Appx. B.1). Thus, Assump. A-(II)
is not actually an assumption, but can be interpreted as an
additional filtering step by leveraging the boundary of r∗.

Additional Notation We use the standard big-O notations
and use (̃·) (e.g. Õ) to suppress logarithmic terms, including
log-covering numbers. Given Π satisfying Assump. A,
conv(Π) denotes its convex hull, andRΠ denotes the reward
class induced by Π via Eq. (2), s.t., (1) ∀r ∈ RΠ, r ∈ [0, R];
(2) ∃r ∈ RΠ, π∗r = π∗r∗ . We defer to Appx. B.1 for detailed
converting process. Besides, we denote [n] := {1, 2, ..., n}
and a ∧ b := min{a, b}. We refer the reader to Appx. A for
a table of commonly used notation in this paper.

2.2. Reward Transfer Setting

We assume there are W source reward models available, de-
noted by {rw}Ww=1, s.t. ∀w, s, a, rw(s, a) ∈ [0, R]. As mo-
tivated in Sec. 1, those reward models are accessible in many
scenes. Given a source reward rw, let π∗rw be the correspond-
ing source policy and denote ∆(w) := Jβ(π

∗
r∗)− Jβ(π

∗
rw)

as its policy value gap. We define ∆min := minw∈[W ] ∆(w)
to be the minimal gap for all source policies. Note that
∆min ≥ 0 and ∆min = 0 implies r∗ ∈ {rw}w∈[W ]. We do
not assume prior knowledge on {∆(w)}w∈[W ].

LLM Policy as Reward Model Eq. (2) implies that there
is a way to convert a given LLM policy π to a reward model.
Concretely, by choosing an arbitrary distribution π0, we can
interpret β log π(·|·)

π0(·|·) as a reward function that π aligns with
given π0 as the reference policy (Rosset et al., 2024). There-
fore, while we consistently use the term “reward transfer”
throughout the paper for clarity, our framework is general
to handle transfer learning from any LLM policy through
the underlying reward function it aligns with.

2.3. Background on Policy Coverability

We first introduce the formal definition of the policy cov-
erage coefficient, which measures how well a given policy
distribution covers the other.
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Definition 2.2. Given any π, π̃, the coverage coefficient for
π̃ by π is defined by Covπ̃|π := Es∼ρ,a∼π̃(·|s)[

π̃(a|s)
π(a|s) ].

The concept of policy coverage originally emerged from
offline RL (Chen & Jiang, 2019; Yang et al., 2020; Zhan
et al., 2022), where one aims to find a good policy given
a fixed dataset. The coverage of the optimal policy by
the data-generating policy naturally governs the size of the
dataset required to find the optimal policy. Policy coverage
was later extended to online RL, inducing novel complexity
measures to characterize intrinsic statistical difficulty of the
underlying MDP (Amortila et al., 2024; Xie et al., 2022).

Compared to alternative complexity measures, policy cover-
age is particularly suited for studying sample complexity in
RLHF, since optimizing or exploring directly on the policy
(LLM) space is preferred for its computational tractability.
We use coverage as an analytical tool for reward transfer,
and our results are based on RPO (Liu et al., 2024) and XPO
(Xie et al., 2024) for offline and online RLHF, respectively:

Lemma 2.3 (Offline RLHF; Thm. 5.3 in (Liu et al., 2024);
Informal). Given a dataset D generated by a policy πD,
running RPO with anyR including r∗ and Π̃ yields π̂, s.t.,
∀π ∈ Π̃, Jβ(π)− Jβ(π̂) = Õ(e2RCovπ|πD |D|− 1

2 ).

Lemma 2.4 (Online RLHF; Thm. 3.1 in (Xie et al.,
2024); Informal). Running XPO with Π satisfying As-
sump. A for T steps yields a policy sequence {πt}Tt=1, s.t.∑T

t=1 Jβ(π
∗
r∗)− Jβ(π

t) = Õ(R · e2R ·
√
Cov∞(Π)T ).

Lem. 2.3 states that it is possible to compute an offline policy
competitive with any policy well-covered by the dataset.
Lem. 2.4 suggests that the sample efficiency of online RLHF
can be characterized by the L∞ coverability Cov∞(Π).
Here, Cov∞(Π) by Xie et al. (2022) is a worst-case version
of our Def. 2.2 as it takes the maximum over s, a and π̃. See
Appx. D for the formal definition.

3. The Blessing of Regularization: A Policy
Coverage Perspective

Unlike classical pure-reward maximization RL, the RLHF
objective in (1) incorporates regularization with respect to
πref. We start by identifying distinctive properties associ-
ated with such regularization in Sec. 3.1, and discuss their
implications on transfer learning in RLHF in Sec. 3.2.

3.1. Structural Property Induced by Regularization

Lemma 3.1. Under Assump. A and assume rw ∈ [0, R] for
all w ∈ [W ], then, for any policy π ∈ conv(Π)∪{π∗rw}Ww=1,

Covπ∗r∗ |π ≤ 1 + κ(e
2R
β ) · Jβ(π

∗
r∗)− Jβ(π)

β
, (3)

where κ(x) := (x−1)2
x−1−log x = O(x).

The key insight of Lem. 3.1 is that: for any prospective
candidates of the optimal policy (i.e., conv(Π)1) or any
transfer candidates (i.e., {π∗rw}Ww=1), its coverability of π∗r∗
is controlled by its policy value gap. Intuitively, Covπ̃|π

becomes extremely large or even unbounded if there is a
significant distribution shift between π and π̃. However,
in the presence of regularization (β > 0), we should only
consider policies with bounded policy ratio relative to πref
(see Assump. A-(II)), and exclude those (near-)deterministic
ones from our policy candidate class Π, because none of
them can be (near-)optimal. In other words, regularization
leverages prior knowledge from πref and enables a free
policy filtration step before learning begins, ensuring that the
remaining policies exhibit a favorable structure (Lem. 3.1).

To understand why such property is uniquely arising from
regularization, consider a bandit instance with a single op-
timal arm and multiple suboptimal arms yields rewards R
and R − 2ε, respectively. In pure reward maximization
RL (β = 0), the optimal policy π∗r∗ is deterministic. A
policy class Π satisfying Assump. A may include several
suboptimal deterministic policies. The coverage coefficient
between any of them and π∗r∗ is infinity, while their subopti-
mal gaps are 2ε and can be arbitrarily small.

3.2. New Insights for Transfer Learning in RLHF

In the online RLHF, the primary goal of exploration is to
discover high-reward regions, i.e., the states and actions cov-
ered by the optimal policy. Therefore, in our reward transfer
setup, we propose to transfer from the policy with the best
coverage of π∗r∗ . Inspired by Lem. 3.1, we identify two
novel principles for transfer learning for RLHF objective,
which we will further explore in later sections.

Principle 1: Select Transfer Policies with High Policy
Value By Lem. 3.1, exploiting a policy with high value for
data collection could “help” exploration, because such a
policy inherently provides good coverage for π∗r∗ . In other
words, regularization reconciles the trade-off between explo-
ration and exploitation. This insight allows us to use policy
value as a criterion and transfer from the policy achieving
the highest value among all candidates. This strategy is also
practical given that policy values can be estimated well.

We emphasize that this principle is unique in the regular-
ized setting. As exemplified by the bandit instance before,
near-optimality does not imply good coverage for π∗r∗ in the
absence of regularization. To avoid negative transfer in pure
reward maximization setting, previous algorithms typically
rely on additional assumptions about task similarity and
employ sophisticated strategies to balance exploiting good
source tasks with exploration (Golowich & Moitra, 2022;

1Here we consider the convex hull in order to incorporate all
possible uniform mixture policies induced by Π.

4



Can RLHF be More Efficient with Imperfect Reward Models? A Policy Coverage Perspective

Huang & He, 2023), which can be challenging to general-
ize beyond the tabular setting. In contrast, regularization
enables us to filter transfer policies directly with their policy
value, facilitating the applicablity beyond the tabular setup.

Principle 2: Transfer from the Policy Distilled from
Online Data—the “Self-Transfer Learning” We first
introduce a key result by combining Lem. 3.1 and offline
RLHF result in Lem. 2.3.
Theorem 3.2. Under Assump. A, w.p. 1−δ, given an online
datasetD generated2 by a policy series {πt}Tt=1 ∈ conv(Π),
running RPO with conv(Π) andRΠ on D yields a distilled
policy πDstl, such that,

Jβ(π
∗
r∗)− Jβ(πDstl) ≤ (4)

Õ
(
e2R

(
1 + κ(e

2R
β )

T∑
t=1

Jβ(π
∗
r∗)− Jβ(π

t)

βT

)√ 1

T

)
.

To understand the significance of Thm. 3.2, consider the
case when {πt}t∈[T ] are produced by a no-regret online
learning algorithm, such as XPO in Lem. 2.4. As a result,
the term

∑T
t=1

Jβ(π
∗
r∗ )−Jβ(π

t)
βT in Eq. (4) diminishes to 0

as T increases. This implies that the policy πDstl distilled
from online data by offline learning techniques converges
to π∗r∗ at a rate of O(T−

1
2 ), which does not depend on

|S|, |A| or other complexity measures such as Cov∞(Π) in
Lem. 2.4. This result not only strictly improves the sample
complexity bounds3 for existing online RLHF algorithms
(Cen et al., 2024; Xie et al., 2024; Xiong et al., 2024; Zhang
et al., 2024), but also reveals a fundamental difference from
the pure reward maximization setting, where lower bounds
depending on those structural complexity factors have been
established (Auer et al., 2002; Dani et al., 2008). We defer
detailed discussions to Appx. E.3.

More importantly, the faster rate of the convergence of πDstl
to π∗r∗ also indicates the potential of using πDstl as a candi-
date for policy transfer. We term this regime as “self-transfer
learning”, and refer πDstl as the “self-transfer policy”. No-
tably, πDstl continuously improves and converges to π∗r∗ as
the dataset grows, while the source policies {π∗rw}Ww=1 re-
tain fixed non-zero value gaps due to the imperfections in
reward models {rw}Ww=1. This reveals another benefit of
self-transfer learning: it helps to avoid being restricted by
suboptimal source reward models.

4. Provably Efficient Transfer Learning
In this section, we develop provably efficient transfer learn-
ing algorithms based on the principles in Sec. 3.2.

2See Cond. C.1 for the definition of data generation process.
3Beyond sample complexity, a regret bound improved to

Õ(
√
T ) for online RLHF can be established. We defer it to

Coro. 4.5 after presenting our main results.

Outline of Main Algorithm Our main algorithm TPO is
provided in Alg. 1, which leverages Alg. 2—Transfer Policy
Selection (TPS)—as a subroutine to select source policies to
transfer from. TPO can be regarded as a mixture of standard
online learning and transfer learning, balanced through a
hyper-parameter α ∈ (0, 1). Motivated by the implication
of Thm. 3.2, TPO returns the detailed policy computed
with all the data collected. For convenience, we divide
the total number of iterations T into K = T/N blocks,
each containing N sub-iterations. In each block, we first
run αN iterations of an OnLine learning algorithm AlgOL,
followed by (1 − α)N iterations of transfer learning with
policy selected by Alg. 2. Here, AlgOL can be any online
algorithm with per-step no-regret guarantees, for example,
XPO in Lem. 2.4. To save space, we defer to Appx. D
the formal behavior assumption on AlgOL (Def. D.2) and
concrete examples with verifications.

A Preview of Main Theorem Before diving into the de-
tails, we first highlight the benefits of transfer learning by
presenting an informal corollary regarding the regret bound
of TPO, under concrete choices of AlgOL and α.

Corollary 4.1. Choosing XPO (Xie et al., 2024) as AlgOL
and α = e−

R
β , TPO achieves Õ(W

√
T ) regret when T is

small and Õ(
√
T ) regret after T is large enough.

Coro. 4.1 is implied by our main result in Thm. 4.4. We
refer to Remark F.3 for a detailed quantification of “small”
and “large enough”. Compared with previous online RLHF
results without transfer learning, in the early stage, TPO im-
proves the structural complexity measure coefficients (e.g.
Cov∞ in XPO) to the number of source tasks W , which
is usually much smaller. Besides, it even gets rid of such
coefficient term and achieves Õ(

√
T ) regret over time.

Next, we take a closer look at the transfer policy selection
steps in Alg. 2 in Sec. 4.1, and provide detailed analyses
and discussion of TPO in Sec. 4.2.

4.1. Details for Alg. 2: The Transfer Policy Selection

The design of Alg. 2 follows the two principles in Sec. 3.2,
which are: (1) transfer the policy with the highest (esti-
mated) policy value, because higher policy value implies
better coverage for π∗r∗ ; (2) include the self-transfer policy
as a candidate, because it progressively converges to π∗r∗ at
a faster rate than the best-known ones for online policies.

We first clarify some notation. Given a dataset D :=

{(si, ai, ãi, yi, πi)}|D|i=1, LD(r) denotes the average nega-
tive log-likelihood (NLL) loss regarding the reward r:

LD(r) :=
1

|D|
∑
i≤|D|

−yi log σ
(
r(si, ai)− r(si, ãi)

)
− (1− yi) log σ

(
r(si, ãi)− r(si, ai)

)
. (5)
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Algorithm 1: Transfer Policy Optimization (TPO)

1 Input: Block size N ; Number of blocks K = T/N ; {rw}Ww=1; Π; α ∈ (0, 1); δ ∈ (0, 1)

2 For all (k, n), Dk,n denotes all the data collected up to (k, n), and Dk,n
OL only includes those collected by AlgOL.

See detailed definitions in Appx. F.1.
3 for k = 1, 2...,K do
4 for n = 1, ..., N do
5 if n ≤ αN then πk,n ← AlgOL(αT,Π, δ;Dk,n

OL ) else πk,n ← TPS(T,Π, δ, {rw}Ww=1;Dk,n)

6 Collect data (sk,n, ak,n, ãk,n, yk,n) ∼ ρ× πk,n × πref × Pr∗(·|·, ·, ·).
7 end
8 end
9 return π̂∗r∗ computed by RPO with DK,N+1.

We will use Eρ,π[r] := Es∼ρ,a∼π[r(s, a)] as a short note. In
Line 4 of Alg. 2, N(w;D) :=

∑
i≤|D| I[πi = π∗rw ] denotes

the number samples collected with π∗rw in the dataset, fol-
lowing the convention that 1/N(·, ·) = +∞ if N(·, ·) = 0.
In Line 6, we leverage RPO (Liu et al., 2024) to compute
the self-transfer policy πDstl and a reward function r̂Dstl. To
save space, we defer the details of RPO to Appx. C.

Next, we explain our value estimation strategy. Note that in
RLHF setting, we cannot access r∗ directly but only the pref-
erence comparison samples following the BT model. Thus,
we instead estimate the value gain relative to Jβ(πref).

Optimistic Estimation for Jβ(π
∗
rw)− Jβ(πref) For poli-

cies induced by imperfect source reward models, we adopt
UCB-style optimistic policy evaluation to efficiently balance
exploration and exploitation. Intuitively, by utilizing the
MLE reward estimator r̂MLE, the estimation error r̂MLE − r∗

under the distribution of π∗rw is related to the number of
samples from π∗rw occurring in the dataset. Therefore, we
can quantify the value estimation error as follows.

Lemma 4.2 (Value Est Error for {π∗rw}w∈[W ]). Under As-
sump. A and Def. D.2, w.p. 1− δ, in each call of Alg. 2:

∀w ∈ [W ], Jβ(π
∗
rw)− Jβ(πref) ≤ V̂ (π∗rw ;D)

≤Jβ(π∗rw)− Jβ(πref) + Õ(
e2R√

N(w;D)
).

Pessimistic Estimation for Jβ(πDstl)−Jβ(πref) The main
challenge in estimating the value of πDstl is that, πDstl is not
fixed but changing and improving. The previous optimistic
strategy is not applicable here, since the coverage of πDstl
by the dataset is unclear, making it difficult to quantify the
uncertainty in estimation via count-based bonus term. For-
tunately, given that πDstl is improving over time, it is more
important when it surpasses all the other source policies.
Therefore, it suffices to construct a tight lower bound for
Jβ(πDstl)−Jβ(πref); see line 7. By leveraging r̂MLE and the
optimality of (πDstl, r̂Dstl) for the RPO loss, we can show:

Lemma 4.3 (Value Est Error for πDstl). Under Assump. A

and Def. D.2, w.p. 1− δ, in each call of Alg. 2:

Jβ(π
∗
r∗)− Jβ(πref)− Õ

(Re2R√
|D|
· (Covπ∗r∗ |π

D
mix ∧

√
C(Π)
α

)
)

≤ V̂ (πDstl;D) ≤ Jβ(πDstl)− Jβ(πref). (6)

Here πDmix := 1
|D|

∑
i≤|D| π

i denotes the mixture policy. In
the LHS, the coefficient takes minimum over two factors
Covπ∗r∗ |π

D
mix and

√
C(Π)/α, resulting from two different

ways to estimate the value gap of πDstl. According to offline
RLHF theory (see Lem. C.2), πDstl is competitive with any
π ∈ conv(Π) well-covered by the dataset distribution, or
equivalently, Jβ(π∗r∗) − Jβ(πDstl) = Jβ(π

∗
r∗) − Jβ(π) +

Õ(|D|− 1
2Covπ|πDmix). By choosing π = π∗r∗ , we obtain the

first bound with the factor Covπ∗r∗ |π
D
mix . Next, considering

π = 1
αkN

∑
i≤k,j≤αN πi,j , the uniform mixture of poli-

cies generated by AlgOL so far, leads to the second bound
involving

√
C(Π)/α. This also explains why we still in-

volve normal online learning in TPO—to provide another
safeguard for the quality of the transfer policy.

4.2. Main Theorem and Interpretation

We establish the per-step regret bound for TPO below.

Theorem 4.4 (Total Regret). Suppose AlgOL is a no-
regret instance satisfying Def. D.2, whose regret grows as

Õ(Re2R
√
C(Π)T̃ ) for any intermediate step T̃ and some

policy class complexity measure C(Π). Then, w.p. 1 − 2δ,
for any T/K ≤ t ≤ T , running TPO yields a regret bound:∑
τ≤t

Jβ(π
∗
r∗)−Jβ(πk(τ),n(τ)) = Reg(t)

OL + Reg(t)Trf

Reg(t)OL :=Õ(Re2R
√
αC(Π)t), (7)

Reg(t)
Trf :=Õ

( ∑
τ≤t:αN<n(τ)≤N

∆min ∧ ιk(τ),n(τ) (8)

+ e2R
√
(1− α)Wt ∧

∑
w:∆(w)>0

e4R

∆(w)

)
.
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Algorithm 2: Transfer Policy Selection (TPS)

1 Input: Source tasks {rw}Ww=1; Policy class Π; T , δ; Dataset D := {(si, ai, ãi, yi, πi)}i≤|D|.
2 // Optimistic estimation for Jβ(π∗rw)− Jβ(πref).
3 r̂MLE ← argminr∈RΠ LD(r).

4 ∀w ∈ [W ], V̂ (π∗rw ;D)← Eρ,π∗
rw

[r̂MLE]− Eρ,πref [r̂MLE]− βKL(π∗rw∥πref) + 16e2R
√

1
N(w;D) log

|Π|WT
δ .

5 // Pessimistic estimation for Jβ(πDstl)− Jβ(πref).

6 πDstl, r̂Dstl ← RPO(conv(Π),RΠ,D, η) with η = c · (1 + eR)−2
√

1
|D| log

|Π|T
δ .

7 V̂ (πDstl;D)← Eρ,πDstl [r̂Dstl]−Eρ,πref [r̂Dstl]−βKL(πDstl∥πref)+ 1
ηLD(r̂Dstl)− 1

ηLD(r̂MLE)−2ce2R
√

1
|D| log

|Π|T
δ .

8 return argmaxπ∈{π∗
rw
}w∈[W ]∪{πDstl} V̂ (π;D). // Selecting Transfer Policy by Estimated Value

Here we denote k(τ) := ⌈ τ
N ⌉ and n(τ) := τ mod N to

be the block index and inner iteration index for step τ ;

ιk(τ),n(τ) := Õ(Re2R
(
Covπ∗r∗ |π

τ
mix ∧

√
C(Π)

α

)√
1
τ ), where

πτ
mix := 1

τ

∑
i≤τ π

k(i),n(i) is the mixture policy up to τ ;
∆(w) and ∆min denote value gaps as defined in Sec. 2.2.

We decompose the total regret into two parts depending on
their origins. Reg(t)

OL comes from the regret by running the
online algorithm AlgOL. It is weighted by α since we only
allocate α-proportion of the samples for AlgOL. Reg(t)Trf

represents the regret from transfer policies. The first term
in Eq. (8) reflects the benefits of utilizing transfer policy
over online learning. Here ∆min is contributed by source
reward models {rw}w∈[W ], and the term ιk(τ),n(τ) is due to
the “self-transfer policy” πDstl, as we derived in Lem. 4.3.
The second term in Eq. (8) results from the imperfection
of source reward models: without prior knowledge on their
quality, additional cost has to be paid during exploration.

Next, we elaborate the benefits of transfer learning by taking
a closer look at Reg(t)Trf in Eq. (8). Note that the lower
Reg(t)

Trf is, the faster π̂∗r∗ in TPO converges to π∗r∗ . When
∆min = 0, i.e. r∗ is realizable in {rw}w∈[W ], we have
Reg(t)

Trf = Õ(
√
Wt ∧

∑
w:∆(w)>0

1
∆(w) ) and the benefit of

transfer learning is clear. Thus, in the following, we only
focus on the case ∆min > 0. We separately consider two
scenarios, according to the relationship between t and ∆min.
For clarity, we will omit the constant terms R and eR.

Stage 1: t < W 2

∆2
min

This corresponds to the early learning
stage, when t is relatively small. In this case, Thm. 4.4
implies the following regret bound:

Reg(t)Trf = Õ(
√
1− α(

√
Wt+∆mint)) = Õ(W

√
t), (9)

which can be further improved to Õ(
√
Wt) if t < W

∆2
min

.
This suggests at the earlier stage, the benefits of transfer is
contributed mostly by the source reward models {rw}w∈[W ].
In general, we can expect the number of source tasks W

much lower than the policy class complexity measure C(Π).
Therefore, Eq. (9) implies a significant improvement over
the typical online learning regret bound without transfer.

Stage 2: t ≥ W 2

∆2
min

In this case, the second term in Eq. (8)

is controlled by O(
∑

w∈[W ]
1

∆(w) ) = O( W
∆min

) = O(
√
t),

and we have the following regret bound:

Reg(t)Trf = Õ
(√

C(Π)t
α2 ∧

∑
τ≤t(Cov

π∗
r∗ |π

τ
mix)2

)
. (10)

At the first glance, the RHS is controlled by Õ(
√
C(Π)t/α),

which implies transfer learning at most suffer a factor of 1/α
larger regrets than no transfer. However, in fact, the term√∑

τ≤t(Cov
π∗
r∗ |π

τ
mix)2 yields a much tighter bound, which

only grows as Õ(
√
t) after finite time, and is independent

of C(Π). To see this, by Lem. 3.1 and the concavity of

Jβ(·), we have Covπ∗r∗ |π
t
mix = 1+Õ(κ(e

2R
β ) · Reg(t)OL +Reg(t)Trf

βt ).
Note that Eq. (9) and (10) already indicate a regret upper
bound Reg(t)Trf = Õ(Γ

√
t), where Γ is a short note of a

coefficient depending on α, W, {∆(w)}w∈[W ] and C(Π),
but not t. This implies Covπ∗r∗ |π

t
mix converges to 1 at the rate

of O(1/
√
t), and Reg(t)Trf = Õ(

√
t) after finite time.

Although the above provable benefits in Stage 2 result pri-
marily from “self-transfer learning”, high-quality source
reward models also play an important role here. According
to Eq. (9), small ∆min can lead to small Γ and therefore,
accelerate the convergence of Covπ∗r∗ |π

t
mix towards 1.

Remarks on choice of α We treat α as a hyperparameter.
Without prior knowledge, a simple choice is α = e−

R
β with

guarantee in Coro. 4.1. Under prior beliefs that high-quality
source reward models are available, we may prefer smaller
α. Besides, due to the self-transfer learning, it is wise to
gradually decay α to 0 as the iteration number grows.

Improved regret bound for standard online RLHF as
a implication Although our focus is transfer learning, the
standard online RLHF setting can be recovered when no

7
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Algorithm 3: Empirical TPO

1 Input: K, N and {rw}w∈[W ]; Initialize: π1
OL ← πref;

2 For all (k, n) ∈ [K]× [N ], and all w ∈ [W ], Dk,n := ∪n−1j=1 {(sk,j , ak,j , ãk,j , yk,j)},
Nk,n(·) :=

∑
j<n I[· = πk,j ], and P̂k,n

r∗ (· ≻ πk
OL) :=

1
Nk,n(·)

∑
j<n I[· = πk,j ]yk,j .

3 for k = 1, 2...,K do
4 for n = 1, ...N do

5 ∀w ∈ [W ], ŴR
π∗rw ← P̂k,n

r∗ (π∗rw ≻ πk
OL) + c

√
log 1

δ /N
k,n(π∗rw);

6 ŴR
πk
OL ← Pr∗(π

k
OL ≻ πk

OL) = 0.5. // ŴR
πk
OL can be treated as a hyperparameter taking value other than 0.5.

7 πk,n ← argmaxπ∈{π∗
rw
}Ww=1∪{πk

OL} ŴR
π

.
8 Collect online data (sk,n, ak,n, ãk,n, yk,n) ∼ ρ× πk,n × πk

OL × Pr∗(·|·, ·, ·).
9 end

10 πk+1
OL ← AlgPO(π

k
OL,Dk,N+1);

11 end
12 return πK+1

OL .

source tasks are present, i.e., W = 0. As stated below,
TPO achieves Õ(

√
T ) regret over time by purely utilizing

“self-transfer learning”, thereby strictly improving existing
results (Cen et al., 2024; Xie et al., 2024; Xiong et al., 2024;
Zhang et al., 2024)4.

Corollary 4.5. When W = 0, under the same condition of
Thm. 4.4, TPO reduces to a standard online RLHF method
with Õ(

√
T ) regret after finite time.

5. From Theory to an Empirical Algorithm
In terms of computational overheads, TPO requires solving
multiple minimax optimization problems, which restricts its
applicability to fine-tune LLMs in practice. To address this,
adhering to the design principles of TPO, we introduce a
more computationally efficient alternative in Alg. 3.

Key Insight: Estimating Win Rates instead of Policy
Values As discussed in Sec. 4, several optimization steps
are designed to estimate policy values used for transfer
policy selection, because they help to identify the policies’
coverability for optimal policy (i.e. Covπ∗r∗ |·). The key
insight in our empirical algorithm design is to find a more
accessible indicator to infer Covπ∗r∗ |·. This leads us to the
policy win rates, i.e., the probability that human prefer the
generation by one policy over another. Formally, given
two policies π, π̃, the win rate of π̃ over π is defined by:
Pr∗(π̃ ≻ π) := Es∼ρ,a∼π̃,a′∼π[Pr∗(y = 1|s, a, a′)].

Win rates between two policies can be unbiasedly estimated
by querying human preferences with their generated re-
sponses. Moreover, win rates can be used to construct a
lower bound for Covπ∗r∗ |·, as stated in Lem. 5.1 below.

4While omitted in our result, the dependence on the log-
covering number (e.g., log |Π|) matches with those previous works.

Lemma 5.1. Under BT-model5, for any π: Covπ∗r∗ |π ≥
max
γ>0,π̄

(
√
(γ+2Pr∗(π≻ π̄)) log 1+γ

γ +
√

Jβ(π∗r∗ )−Jβ(π̄)

2β )−1.

Note that we may not identify the policy with the best cov-
erage for π∗r∗ through the lower bound above. However, it
still provides useful guidance for practice: we can filter out
policies yielding high lower bound. In Lem. 5.1, for any
fixed γ and comparator π̄, the lower bound for Covπ∗r∗ |π

increases as Pr∗(π ≻ π̄) decay to 0, suggesting prioritizing
transferring from policies with high win rates.

The key question now is how to choose the comparator π̄.
According to Lem. 5.1, ideally, the comparator should be
close to π∗r∗ , so that Jβ(π∗r∗)− Jβ(π̄) becomes negligible,
allowing the win rate term to dominate the lower bound.
Since we do not know π∗r∗ in advance, empirically, we
can choose the learning policy as the comparator, which is
optimized and progressively converges to π∗r∗ .

From Insights to Practice Next, we walk through em-
pirical TPO in Alg. 3 and explain how we integrate these
insights into the algorithm design. Alg. 3 utilizes an itera-
tive online learning framework, which repeatedly collects
online data and optimizes the policy. We start by initializ-
ing the online learning policy π1

OL with the reference pol-
icy πref. For computational efficiency, in each iteration k,
we avoid separately computing online exploration policies
and self-transfer learning policies as done in TPO. Instead,
we only compute one policy πk

OL (updated from πk−1
OL ) by

AlgPO. Here AlgPO is a placeholder for an arbitrary Policy
Optimization algorithm, and we do not restrict the concrete
choice. Such a design increases the modularity of our em-

5Lem. 5.1 can be generalized beyond BT-model. Besides, it is
possible to construct a lower bound involving Pr∗(π̄ ≻ π) instead.
See Lem. G.3 and Remark G.4 in Appx. G for more details.
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pirical TPO, making it possible to combine with various
policy optimization methods and enhance their performance.
For example, AlgPO may be instantiated by DPO (Rafailov
et al., 2024), resulting in a transfer learning framework built
on iterative-DPO (Xiong et al., 2024; Yuan et al., 2024). Be-
sides, one may consider other advanced (online) methods,
such as XPO (Xie et al., 2024), IPO (Azar et al., 2024), etc.

As the core ingredients of our empirical TPO, during
data collection, the algorithm selects the policy πk,n ∈
{π∗r∗}Ww=1 ∪ {πk

OL} with the highest win rate when compet-
ing against πk

OL. Intuitively, we encourage transfer learning
if {π∗r∗}Ww=1 includes high-quality candidates; otherwise,
the algorithm conducts standard iterative policy optimiza-
tion with AlgPO by default. This strategy also aligns with the
heuristic principle: learn from an expert until surpassing
it. Lastly, since the win rates are unknown in advance, the
selection process is formulated as a multi-armed bandit prob-
lem. We employ a UCB subroutine (line 7) to balance the
exploration and exploitation during the win rates estimation.

6. Experiments
In this section, we evaluate Alg. 3 on the summarization task
using the XSum dataset (Narayan et al., 2018). We consider
T5 series models (Raffel et al., 2020) and choose T5-small
(80M) as the base model for fine-tuning. Human reward
r∗ is simulated by the reward model (Dong et al., 2024)
distilled from Llama3-8B (Dubey et al., 2024). For the
source rewards in transfer learning, we consider a collection
of imperfect reward models and LLM policies, including, (a)
ROUGE-Lsum score (Lin, 2004), (b) BERTScore (Zhang
et al., 2019), (c) T5-base (250M), (d) T5-large (770M). As
illustrated in Sec. 2.2, for LLM policies (c) and (d), we treat
their log-probability predictions on the given prompt s and
response a as the reward scores.

For AlgPO, we consider three instantiations: DPO (Rafailov
et al., 2024), IPO (Azar et al., 2024) and XPO (Xie et al.,
2024). To save space, we present and interpret the results
with DPO as the choice below and defer other experiment
results and also the concrete setups to Appx. I.

Experiment Results and Discussion We run Alg. 3 for
K = 3 iterations and compare its performance with three
baselines: (I) vanilla iterative-DPO without transfer learn-
ing (i.e., setting AlgPO = DPO and W = 0); (II) purely
exploiting the worst source reward—ROUGE score; (III)
purely exploiting the best source reward—T5-large. Con-
cretely, baseline (I) removes the transfer learning compo-
nent in Alg. 3 by assigning πk,n = πk

OL for all n ∈ [N ]. For
baselines (II) and (III), the worst (ROUGE-LSum) and best
(T5-Large) reward models from the candidates (a)-(d) are
selected, and pure transfer learning is then performed using
the responses recommended by the chosen reward models,

Without
Transfer

Purely Exploit
ROUGE-Lsum

Purely Exploit
T5-Large

Iter 1 52.1± 1.2 53.1± 1.1 49.5± 0.9
Iter 2 53.3± 1.6 54.5± 1.3 49.1± 0.4
Iter 3 54.0± 1.2 53.3± 1.5 50.6± 0.3

Table 1. Win rates (%) of the policies trained by empirical TPO
(Alg. 3) are competed with 3 baselines, presented across 3 columns.
Baseline (I): without transfer, i.e., iterative-DPO. Baseline (II):
purely utilizing ROUGE-LSum (the lowest-quality source task)
in transfer learning. Baseline (III): purely utilizing T5-Large (the
highest-quality source task) in transfer learning. Results are aver-
aged with 3 random seeds and 95% confidence levels are reported.

i.e., πk,n = π∗rw in Alg. 3 for the selected rw. Here the
worst and best reward models are selected based on the final
policy value when aligning with the given reward model.

Table. 1 reports the win rates of the policies learned by
Alg. 3 competing with the three baselines. As shown in Col-
umn 1, comparing with normal online learning, our transfer
strategy demonstrates clear advantages. Furthermore, Col-
umn 2 and 3 suggest that, without prior knowledge of source
tasks quality, our method avoids being misled by low-quality
tasks and achieves competitive performance compared to
exploiting the best reward candidate.

Notably, as suggested by the additional results in Appx. I,
πk
OL improves over time and Pr∗(π

∗
rw ≻ πk

OL) for any
w ∈ [W ] continuously decreases. In iteration 3, our em-
pirical TPO automatically switches back to online learning
and avoids being restricted by the sub-optimality of source
reward models. In the end, it results in higher win rates than
purely exploiting the best source reward model T5-Large
over 3 iterations.

7. Conclusion
This paper studies reward transfer in the context of online
RLHF. We contribute TPO, a provable and efficient transfer
learning algorithm that leverages the structure induced by
the KL regularizer. Based on that, we further develop a
UCB-based empirical alternative and evaluate its effective-
ness through LLM experiments. Several promising direc-
tions remain for future exploration. Firstly, an interesting
avenue is to develop transfer learning strategies beyond
RLHF setting, for example, the Nash Learning from Human
Feedback setting. Secondly, while we focus on policy-level
transfer, a finer-grained prompt-wise knowledge transfer
may be possible, which allows transfer from different poli-
cies in different states. Thirdly, due to resource limitations,
we leave the examination of our methods in fine-tuning
much larger-scale language models to the future work.
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A. Frequently Used Notation

Notation Description
S,A State space and action space
ρ Prompt distribution (initial state distribution)
r Reward model
r∗ Ground-truth reward model (reflecting human preferences)
Pr(y|s, a, a′) Preference under r
Pr(π ≻ π̃) Win rate of π over π̃ under r
{rw}w∈[W ] Imperfect source reward model
π LLM policy
πt

mix Uniform mixture policy 1
t

∑
i≤t π

i of a policy sequence π1, ..., πt.
Sometimes, given a dataset D = {(xi, πi)}i≤|D|, with a bit abuse of notation,
we use πDmix to refer the mixture policy 1

|D|
∑

i≤|D| π
i.

Covπ̃|π Coverage coefficient
Π The policy class
RΠ The reward function class converted from Π, see Appx. B.1
conv(Π) Convex hull of Π
β Regularization coefficient in RLHF objective
Jβ(·) Regularized policy value (Eq. (1))
∆(w) Value gap for π∗rw , i.e. Jβ(π∗r∗)− Jβ(π

∗
rw)

∆min Minimal value gap minw∈[W ] ∆(w)

a ∧ b min{a, b}
[n] {1, 2, ..., n}
O(·),Ω(·),Θ(·), Õ(·), Ω̃(·), Θ̃(·) Standard Big-O notations, (̃·) omits the log terms.

For completeness, we provide the definition of convex hull here.

Definition A.1 (Convex Hull). Given a policy class Π with finite cardinality (i.e. |Π| < +∞), we denote conv(Π) as its
convex hull, such that, ∀n ∈ [N∗], ∀λ1, ..., λn ≥ 0 with

∑n
i=1 λ

i = 1, and any π1, ..., πn ∈ Π, we have:

n∑
i=1

λiπi ∈ conv(Π).

Remark A.2. Note that in the contextual bandit setting, the state action density induced by a policy and the policy distribution
collapse with each other. Therefore, given a policy sequence π1, ..., πt, the uniform mixture policy πt

mix(·|·) = 1
t

∑
i≤t π

t(·|·)
is directly a valid policy as a mapping from S to ∆(A), which induces the state-action density πt

mix(·|·).

Besides, we will use OL and OFF as abbreviations of “online learning” and “offline learning”, respectively.

B. Missing Details in the Main Text
B.1. Extended Preliminary

More Elaborations on the Necessity of Regularization The RLHF objective Eq. (1) typically involves a regularization
term β ̸= 0. This regularization is critical in practice for several reasons. Firstly, it prevents overfitting to human preferences,
which can possibly be noisy and biased (Gao et al., 2023; Ouyang et al., 2022). Moreover, pure reward maximization
prefers near-deterministic policies, potentially causing mode collapse. In contrast, regularization encourages the fine-tuned
model to retain diversity from the reference policy (Jaques et al., 2017; 2019). Thirdly, reference policies are pretrained
on a significantly larger corpus than the post-training data, enabling them to encode more general-purpose knowledge.
Regularization helps mitigate catastrophic forgetting, ensuring the model retains this broad knowledge base.

15



Can RLHF be More Efficient with Imperfect Reward Models? A Policy Coverage Perspective

Formal Definition forRΠ Given a policy class Π satisfying Assump. A, we useRΠ to denote the reward function class
converted from Π, such that (1) ∀r ∈ RΠ, r(·, ·) ∈ [0, R]; (2) ∃r ∈ RΠ, π∗r = π∗r∗ . A possible construction satisfying this
is given by

RΠ := {r|π|r|π(s, a) := Clip[0,R][β log
π(a|s)

πref(a|s)
− min

a′∈A
β log

π(a′|s)
πref(a′|s)

], π ∈ Π}. (11)

The rationale behind such a construction lies in that r|π∗
r∗

provably differs from r∗ by at most of an action-independent
constant under Assump. A. We prove this in the following.

For any s ∈ S, we denote as := argmina′∈A log
π∗r∗ (a

′|s)
πref(a′|s) . According to Eq. (2) and the fact that r∗ ∈ [0, R], for any

s ∈ S and a, a′ ∈ A, we have:

0 ≤ β log
π∗r∗(a|s)
πref(a|s)

− min
a′∈A

β log
π∗r∗(a

′|s)
πref(a′|s)

= r∗(s, a)− r∗(s, as) ≤ R,

where the first inequality is because as takes the minimal overA. Therefore, r|π∗
r∗
(s, a) ∈ [0, R] and r|π∗

r∗
(s, a)−r∗(s, a) =

r∗(s, as), which is action-independent. In another word, r|π∗
r∗

induces the same optimal policy π∗r∗ .

Under the objective in Eq. (1), the realizability assumption in (Liu et al., 2024) can be relaxed and the reward model class
RΠ can be used in their RPO objective. Because any per-state action-independent shift on the reward space does not change
the induced policy in Eq. (2). As a result, throughout this paper, we will not distinguish between r∗ and r|π∗

r∗
.

Remarks on Assumption A-(II)
Lemma B.1. If r∗(s, a) ∈ [0, R] for all (s, a) ∈ S ×A, we have:

max
s∈S,a∈A

| log π∗r∗(a|s)
πref(a|s)

| ≤ Rmax

β
.

Proof. By definition, for any s,

∀a ∈ A, π∗r∗(a|s) = πref(a|s)e
r∗(s,a)

β /Z(s),

where Z(s) :=
∑

a∈A πref(a|s)e
r∗(s,a)

β . Because r∗(s, a) ∈ [0, R], obviously, 1 ≤ Z(s) ≤ e
R
β . Therefore,

∀a ∈ A, | log π∗r∗(a|s)
πref(a|s)

| = |r
∗(s, a)

β
− logZ(s)| ≤ max{R

β
− logZ(s), logZ(s)} ≤ R

β
.

□

B.2. Other Related Works

Other Related RLHF Literature Various approaches have been developed for reward-model-free online exploration. For
example, DPO (Rafailov et al., 2024) implicitly optimizes the same objective as RLHF without explicit reward modeling.
DPO is further extended to different settings; see e.g., online DPO (Guo et al., 2024), iterative DPO (Dong et al., 2024; Pang
et al., 2024; Xu et al., 2023), etc.

Another direction is to go beyond Bradley-Terry reward model assumption. A particularly promising set of techniques
formulates RLHF as a two-player zero-sum game (Yue et al., 2012), aiming to select policies preferred by the rater to others
(Munos et al., 2023; Rosset et al., 2024; Swamy et al., 2024; Ye et al., 2024). Investigating knowledge transfer within this
framework is an exciting direction for future work.

RL Theory in Pure-Reward Maximization Setting In the classical pure-reward maximization RL setting, sample
efficiency is a central topic, with extensive research dedicated to strategic exploration and fundamental complexity measures
for online learning (Du et al., 2021; Foster et al., 2021; Jiang et al., 2017; Jin et al., 2021a; Russo & Van Roy, 2013).

Besides the literature already mentioned in Sec. 2.3, there is a rich literature (Jiang & Huang, 2020; Jin et al., 2021b; Uehara
et al., 2020; Xie et al., 2021) investigating the role of policy coverage (or density ratio) in offline learning.
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Regularized RL Sample complexity in regularized RL has also been studied in previous works (Geist et al., 2019; Tiapkin
et al., 2023; Ziebart, 2010; Ziebart et al., 2008). Nonetheless, most of them focus on tabular settings and do not consider the
transfer learning.

C. Offline Learning Results in Previous Literature
In this section, we recall and adapt some results from (Liu et al., 2024), which are useful for proofs in other places.

RPO Optimization Objective For completeness, we provide the optimization objective of RPO. Given a policy class Π̃
and a reward function classR, the RPO objective solves a mini-max optimization problem defined as follows:

RPO(Π̃,R,D, η) = argmax
π∈Π̃

min
r∈R

LD(r) + ηEs∼ρ,a∼π,ã∼πref [r(s, a)− r(s, ã)]− βKL(π∥πref), (12)

where we choose πref as the base policy in (Liu et al., 2024). In Alg. 2, we set Π̃ = conv(Π) andR = RΠ.

Condition C.1 (Sequential Data Generation). We say a dataset D := {(si, ai, ãi, yi, πi)}i≤|D| is generated sequentially, if
it is generated following:

∀i ≤ |D|, πi ∼ Alg(·|{(sj , aj , ãj , yj , πj)}j<i),

si ∼ ρ, ai ∼ πi(·|si), ãi ∼ πref(·|si), yi ∼ Pr∗(·|si, ai, ãi),

where Alg denotes an algorithm computing the next policy only with the interaction history.

Lemma C.2. [Adapted from Thm. 5.3 in (Liu et al., 2024)] Under Assump. A, given any δ ∈ (0, 1), by running RPO
(Eq. (12)) with conv(Π),RΠ, δ and a dataset D := {(si, ai, ãi, yi, πi)}i≤|D| satisfying Cond. C.1, by choosing η =

(1 + eR)2
√

24|D| log |Π|δ , we have:

∀π ∈ conv(Π), Jβ(π)− Jβ(πDstl) ≤ COFFe
2R · Covπ|πDmix

√
1

|D|
log
|Π|
δ

,

where we use πDmix :=
1
|D|

∑
i≤|D| π

i as a short note of the uniform mixture policy.

Proof. The main difference comparing with (Liu et al., 2024) is that we consider sequentially generated dataset while they
study dataset generated by a fixed dataset distribution. In the following, we show how to extend their results to our setting.

Firstly, we check the assumptions. Note that we consider feed RPO (Liu et al., 2024) by the reward function class RΠ

converted from a policy class Π satisfying Assump. A, through Eq. (11). Therefore, the optimal reward is also realizabile in
RΠ, and the basic assumptions required by RPO (Liu et al., 2024) are satisfied.

Next, we adapt the proofs in (Liu et al., 2024). Note that we can directly start with their Eq. (D.4), because their bounds
in Eq. (D.2) and Eq. (D.3) only involve optimality of the choice of πDstl and realizability. We move the KL-regularization
terms to the LHS and merge to Jβ(π) and Jβ(πDstl), and we choose πref as the base policy in RPO. The adapted results to
our notations would be:

∀π ∈ conv(Π), Jβ(π)− Jβ(πDstl)

≤ max
r∈RΠ

Es∼ρ,a∼π(·|s),ã∼πref(·|s)[(r
∗(s, a)− r∗(s, ã))− (r(s, a)− r(s, ã))]

+ η−1(LD(r∗)− LD(r)).

Recall LD is the (unnormalized) negative log-likelihood (NLL) loss, defined in Eq. (5). Since the dataset D is generated
sequentially (Cond. C.1), we can apply the concentration results in Lem. H.2, which is a variant of Lemma D.1 in (Liu et al.,
2024) for sequentially generated data:

w.p. 1− δ, ∀π ∈ conv(Π), Jβ(π)− Jβ(πDstl)

≤Es∼ρ,a∼π(·|s),ã∼πref(·|s)[(r
∗(s, a)− r∗(s, ã))− (r←π(s, a)− r←π(s, ã))]
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+ η−1(LD(r∗)− LD(r←π))

≤Es∼ρ,a∼π(·|s),ã∼πref(·|s)[(r
∗(s, a)− r∗(s, ã))− (r←π(s, a)− r←π(s, ã))]

− 1

η|D|
∑
i≤|D|

Es∼ρ,a∼πi(·|s),ã∼πref(·|s)[H
2(Pr←π (·|s, a, ã)∥Pr∗(·|s, a, ã))] +

2

η|D|
log
|Π|
δ

=Es∼ρ,a∼π(·|s),ã∼πref(·|s)[(r
∗(s, a)− r∗(s, ã))− (r←π(s, a)− r←π(s, ã))]

− 1

η
Es∼ρ,a∼πDmix(·|s),ã∼πref(·|s)[H

2(Pr←π
(·|s, a, ã)∥Pr∗(·|s, a, ã))] +

2

η|D|
log
|Π|
δ

,

where we denote r←π := argmaxr∈RΠ Es∼ρ,a∼π(·|s),ã∼πref(·|s)[(r
∗(s, a)− r∗(s, ã))− (r(s, a)− r(s, ã))].

The rest of the proofs in (Liu et al., 2024) can be adapted here, and by choosing η = (1 + eR)−2
√

24
|D| log

|Π|
δ , we can

inherit the following guarantee:

w.p. 1− δ, ∀π ∈ conv(Π), Jβ(π)− Jβ(πDstl) ≤
√
6

4
· (1 + eR)2(CπDmix

(RΠ;π;πref)
2 + 1)

√
1

|D|
log
|Π|
δ

.

Here CπDmix
(RΠ;π;πref) is the coverage coefficient (adapted from Assump. 5.2 (Liu et al., 2024)) with πDmix, which can be

upper bounded by:

CπDmix
(RΠ;π;πref) ≤ max

r∈RΠ

Es∼ρ,a∼π(·|s),ã∼πref(·|s)[|(r∗(s, a)− r∗(s, ã))− (r(s, a)− r(s, ã))|]√
Es∼ρ,a∼πDmix(·|s),ã∼πref(·|s)[|(r∗(s, a)− r∗(s, ã))− (r(s, a)− r(s, ã))|2]

≤

√
Es∼ρ,a∼π(·|s)[

π(a|s)
πDmix(a|s)

]

(AM-GM inequality; Holds for any r and therefore including the one achieves the maximum)

=
√
Covπ|πDmix .

Therefore, we finish the proof. We simplify the upper bound by using Covπ|πDmix ≥ 1 and eR ≥ 1. □

D. Details for Online Learning Oracle Example in Sec. 4
Definition D.1 (L∞ Coverability; (Xie et al., 2022; 2024)). The L∞ coverability is defined by:

Cov∞(Π) := inf
µ∈∆(S)×∆(A)

sup
π∈Π

sup
s∈S,a∈A

π(a|s)
µ(a|s)

Definition D.2 (No-Regret Online Algorithm). Given any δ ∈ (0, 1), iteration number T̃ , and a policy class Π satisfying
Assump. A, the online learning algorithm AlgOL iteratively computes policy to collect samples and conducts no-regret
learning. W.p. 1− δ, it produces a sequence of online policies π1, ..., πT̃ , such that, ∀t ∈ [T̃ ],

∑
i≤t

Jβ(π
∗
r∗)− Jβ(π

i) ≤ COLRe2R

√
C(Π)t logc0

|Π|T̃
δ

,

where COL > 0 and c0 ≥ 1 are absolute constants, and C(Π) denotes some complexity measure for Π.

Proposition D.3. [Example for Online Oracle in Def. D.2] The XPO algorithm in (Xie et al., 2024) can fulfill the
requirements in Def. D.2.

Proof. We start by generalizing Eq.(35) in the proof of Theorem 3.1 in (Xie et al., 2024) to all t ∈ [T̃ ]. Note that we consider
bandit setting so R in (Xie et al., 2024) collapse with R. Suppose at the end of iteration t, XPO generated a sequence of
policies π1, ..., πt, we have:

1

t

t∑
i=1

Jβ(π
∗
r∗)− Jβ(π

i)
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≤6R

t
+

SECRLHF(Π, t, β, πref)

2ηt
+

η

2
R2 +

1

t
Et
i=2Es∼ρ,a∼πref(·|s)[β log πt(a|s)− β log π∗(a|s)]

+
η

2t

t∑
i=2

(i− 1)Es∼ρ,a∼πi−1
mix (·|s),ã∼ref(·|s)

[(
β log

πi(a|s)
πref(a′|s)

− r∗(s, a)− β log
πi(ã|s)
πref(ã|s)

+ r∗(s, ã)
)2]

,

where we choose π̃(t) in (Xie et al., 2024) to be πref and denote πi−1
mix = 1

i−1
∑i−1

j=1 π
j .

Note that Lemma C.5 in (Xie et al., 2024) holds w.p. 1− δ for all t ∈ [T̃ ]. Following their proofs till Eq.(43) in (Xie et al.,
2024), we can show that for any t ∈ [T̃ ]

1

t

t∑
i=1

Jβ(π
∗
r∗)− Jβ(π

i) ≤ O(Re2R
√

SECRLHF(Π, t, β, πref)

t
log
|Π|T
δ

),

Based on the arguments in (Xie et al., 2024), SECRLHF(Π, t, β, πref) can be controlled by c0 · CovΠ
∞ logc1(|Π|t) for some

absolute constant c0, c1 > 0. Here CovΠ
∞ is the L∞ coverability coefficient (Def. D.1) and plays the role. Therefore, we

finish the verification. □

E. Proofs for Results in Section 3
E.1. Proof for Lemma 3.1

We first introduce some useful results from (Sason & Verdú, 2016). Given two probability distribution P,Q ∈ ∆(A), we
use D+∞(P∥Q) to denote the Renyi divergence of order α = +∞. We follow the definition of χ2-divergence in (Sason &
Verdú, 2016) as follows:

χ2(P∥Q) = Es∼P [
P (x)

Q(x)
]− 1.

Lemma E.1 (Theorem 7 in (Sason & Verdú, 2016)). Given P,Q ∈ ∆(A), such that P ̸= Q and P (a), Q(a) > 0 for all
a ∈ A, we have:

KL(P∥Q) ≤ κ1(e
D+∞(P∥Q)) · KL(Q∥P ),

where κ1 : (0, 1) ∪ (1,+∞)→ (0,+∞), κ1(t) =
t log t+(1−t)
(t−1)−log t .

Lemma E.2 (Eq. 182; Theorem 9 in (Sason & Verdú, 2016) for α = 2). Under the same condition as Lem. E.1,

χ2(P∥Q) ≤ KL(P∥Q)

κ2(eD+∞(P∥Q))
,

where κ2(t) :=
t log t+(1−t)

(t−1)2 .

Lemma E.3. For any policy π,

Jβ(π
∗
r∗)− Jβ(π) = βEs∼ρ[KL(π(·|s)∥π∗r∗(·|s))].

Proof. A shorter proof can be done by directly assigning ν = π in Lemma 3.1 of (Xie et al., 2024), and here we provide
another one without detouring through it.

Jβ(π
∗
r∗)− Jβ(π)

=Es∼ρ,a∼π∗
r∗
[r∗(s, a)]− Es∼ρ,a∼π[r

∗(s, a)]− βEs∼ρ,a∼π∗
r∗
[log

π∗r∗(a|s)
πref(a|s)

] + βEs∼ρ,a∼π[log
π(a|s)

πref(a|s)
]

=
������������

βEs∼ρ,a∼π∗
r∗
[log

π∗r∗(a|s)
πref(a|s)

]− βEs∼ρ,a∼π[log
π∗r∗(a|s)
πref(a|s)

]−
������������

βEs∼ρ,a∼π∗
r∗
[log

π∗r∗(a|s)
πref(a|s)

] + βEs∼ρ,a∼π[log
π(a|s)

πref(a|s)
]
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=βEs∼ρ,a∼π[log
π(a|s)
π∗r∗(a|s)

]

=βEs∼ρ[KL(π(·|s)∥π∗r∗(·|s))].

where the second equality holds because for any s, a

r∗(s, a) = β log
π∗r∗(a|s)
πref(a|s)

+ Z(s)

for some Z(s) independent w.r.t. a. □

Lemma 3.1. Under Assump. A and assume rw ∈ [0, R] for all w ∈ [W ], then, for any policy π ∈ conv(Π) ∪ {π∗rw}Ww=1,

Covπ∗r∗ |π ≤ 1 + κ(e
2R
β ) · Jβ(π

∗
r∗)− Jβ(π)

β
, (3)

where κ(x) := (x−1)2
x−1−log x = O(x).

We prove a stronger result in Lem. E.4 below, where we consider the policy class including all the policy having bounded
ratio with πref.

Π≤R
β
:= {π : S → ∆(A)|max

s,a
| log π(a|s)

πref(a|s)
| ≤ R

β
}.

Lem. 3.1 then holds directly as a corollary by combining with Lem. H.1, Lem. B.1 and the fact that rw ∈ [0, R] for all
w ∈ [W ].

Lemma E.4. For any policy π ∈ Π≤R
β

,

Covπ∗r∗ |π ≤ 1 + κ(e
2R
β ) · Jβ(π

∗
r∗)− Jβ(π)

β
, (13)

where κ(x) := (x−1)2
x−1−log x = O(x).

Proof. Given any π ∈ Π≤R
β

, we consider a fixed s > 0, and apply Lem. E.1 and Lem. E.2 with P = π∗r∗(·|s) and
Q = π(·|s). Since those two lemmas holds when P ̸= Q, we first check the case when π∗r∗(·|s) ̸= π(·|s):

Ea∼π∗
r∗ (a|s)[

π∗r∗(a|s)
π(a|s)

]− 1 =χ2(π∗r∗(·|s)∥π(·|s)) ≤
1

κ2(ζ)
KL(π∗r∗(·|s)∥π(·|s))

≤ 1

κ2(ζ)
· κ1(ζ) · KL(π(·|s)∥π∗r∗(·|s))

=
(ζ − 1)2

ζ − 1− log ζ
· KL(π(·|s)∥π∗r∗(·|s)).

where we use ζ := eD+∞(π∗r∗ (·|s)∥π(·|s)) > 1 as a short note.

We define κ(x) = (x−1)2
x−1−log x . Note that,

κ′(x) =
2(x− 1)

x− 1− log x
− (x− 1)2(1− x−1)

(x− 1− log x)2

=
x− 1

x− 1− log x

2(x− 1)− 2 log x− (x− 1)(1− x−1)

x− 1− log x

=
x− 1

x− 1− log x

x− x−1 − 2 log x

x− 1− log x
.
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Now, we consider g(x) := x− x−1 − 2 log x for x ∈ (1,+∞). Note that, g(1) = 0 and

g′(x) = 1 +
1

x2
− 2

x
≥ 0.

Therefore, κ′(x) ≥ 0, which implies κ(x) is increasing for all x > 1.

Under Assump. A,

D+∞(π∗r∗(·|s)∥π(·|s)) = log exp(max
a

π∗r∗(a|s)
π(a|s)

) ≤ 2R

β
,

which implies ζ ≤ e
2R
β . Therefore,

Ea∼π∗
r∗ (a|s)[

π∗r∗(a|s)
π(a|s)

]− 1 ≤κ(e
2R
β ) · KL(π(·|s)∥π∗r∗(·|s)).

Note that the above inequality also holds when π(·|s) = π∗r∗(·|s). Therefore, combining with Lem. E.3, we have:

Covπ∗r∗ |π =Es∼ρ,a∼π∗
r∗ (a|s)[

π∗r∗(a|s)
π(a|s)

] ≤ 1 + κ(e
2R
β ) · Es∼ρ[KL(π(·|s)∥π∗r∗(·|s))]

=1 + κ(e
2R
β ) · Jβ(π

∗
r∗)− Jβ(π)

β
.

□

E.2. Another Bound for Policy Coverage Coefficient

In the following, we provide another bound for the coverage coefficient between the optimal policies induced by different
reward models. Although we do not use this lemma in the proofs for other results in this paper, it indicates a different upper
bound, and possibly, it is tighter than the one in Lem. 3.1 in some cases.
Lemma E.5. Under Assump. A, given any bounded reward model r, and the associated optimal policy π∗r (defined by
Eq. (1)), the coverage coefficient between π∗r and π∗r∗ can be controlled by:

Covπ∗r∗ |π
∗
r ≤ min

b∈R
Es∼ρ[E2

a∼π∗
r∗
[exp(

|r∗(s, a)− r(s, a)− b|
β

)]].

Proof. By definition, the state-wise coverage coefficient

Covπ∗r∗ |π
∗
r (s) :=Ea∼π∗

r∗ (·|s)[
π∗r∗(a|s)
π∗r (a|s)

]

=Ea∼π∗
r∗ (·|s)[exp(

r∗(s, a)− r(s, a)

β
)] · Zr(s)

Zr∗(s)

Here we denote Zr(s) =
∑

a πref(a|s) exp(
1
β r(s, a)) and similar for Zr∗(s). Therefore,

Zr(s)

Zr∗(s)
=

∑
a

πref(a|s) exp( 1β r(s, a))
Zr∗(s)

=
∑
a

π∗r∗(s) · exp(
1

β
(r(s, a)− r∗(s, a))) = Ea∼π∗

r∗
[exp(

r(s, a)− r∗(s, a)

β
)].

We remark that one important fact we leverage in the second equality is that π∗r∗(a|s) > 0 for all a ∈ A. Considering
introducing an arbitrary b ∈ R, we should have:

Covπ∗r∗ |π
∗
r =Ea∼π∗

r∗ (·|s)[exp(
r∗(s, a)− r(s, a) + b

β
)] · Ea∼π∗

r∗ (·|s)[exp(
r(s, a)− r̃(s, a)− b

β
)]

≤E2
a∼π∗

r∗ (·|s)
[exp(

|r∗(s, a)− r(s, a) + b|
β

)]

Given that b is arbirtary, we can pick the best one:

Covπ∗r∗ |π
∗
r ≤ min

b∈R
E2
a∼π∗

r∗
[exp(

|r∗(s, a)− r(s, a)− b|
β

)].

□
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E.3. Proof for Theorem 3.2

Theorem 3.2. Under Assump. A, w.p. 1− δ, given an online dataset D generated6 by a policy series {πt}Tt=1 ∈ conv(Π),
running RPO with conv(Π) andRΠ on D yields a distilled policy πDstl, such that,

Jβ(π
∗
r∗)− Jβ(πDstl) ≤ (4)

Õ
(
e2R

(
1 + κ(e

2R
β )

T∑
t=1

Jβ(π
∗
r∗)− Jβ(π

t)

βT

)√ 1

T

)
.

We refer to Lem. C.2 for the detailed hyperparameter setups.

Proof. By Lem. C.2, w.p. 1− δ,

Jβ(π
∗
r∗)− Jβ(πDstl) ≤ COFFe

2R · Covπ∗r∗ |π
T
mix

√
1

T
log
|Π|
δ

,

where πT
mix := 1

T

∑
t∈[T ] π

t is the uniform mixture policy, and the coverage coefficient can be upper bounded by:

Covπ∗r∗ |π
T
mix ≤1 + κ(e

2R
β ) · Jβ(π

∗
r∗)− Jβ(π

T
mix)

β
(Lem. 3.1)

≤1 + κ(e
2R
β ) ·

T∑
t=1

Jβ(π
∗
r∗)− Jβ(π

t
mix)

βT

Here in the last step, we use the fact that KL divergence is convex, and therefore, KL(πT
mix∥πref) ≤ 1

T

∑T
t=1 KL(πt∥πref),

which implies Jβ(πT
mix) ≥ 1

T

∑T
t=1 Jβ(π

t).

□

Implication for Online RLHF If we consider the policy sequence generated by a no-regret online learning algorithm, we
have the following corollary.

Corollary E.6. Under Assump. A, suppose π1, ..., πT is generated by a no-regret online learning algorithm
with

∑T
t=1 Jβ(π

∗
r∗) − Jβ(π

t) = Õ(C(Π)
√
T ) for some structural complexity measure C(Π), as long as T =

Ω̃(β−2C(Π)2κ2(e
2R
β )), running RPO yields an offline policy s.t. Jβ(π∗r∗)− Jβ(πDstl) = Õ(e2RT−

1
2 ).

The proof is straightforward by noting that
∑T

t=1
Jβ(π

∗
r∗ )−Jβ(π

t)
βT = O(C(Π)

√
T/T ), which decays to 0 as T increases.

Coro. E.6 is remarkable as it implies an Õ(ε−2) sample complexity bound to learn an ε-optimal policy for online RLHF (for
ε smaller than a threshold), which does not depend on the number of states and actions or other complexity measures. In
contrast, in previous online RLHF literature (Cen et al., 2024; Xie et al., 2024; Xiong et al., 2024; Zhang et al., 2024), for
the uniform mixture policy πT

mix := 1
T

∑T
t=1 π

t, the regret-to-PAC conversion implies a value gap Jβ(π
∗
r∗)− Jβ(π

T
mix) =

Õ(
√
C(Π)
T ), which has an additional factor C(Π) regarding the complexity of the function class. This suggests a strict

improvement.

Moreover, this marks a fundamental difference from the pure reward maximization setting, where lower bounds depending
on those factors has been established (Auer et al., 2002; Dani et al., 2008).

Other Previous Works Reporting Faster Convergence Rate Several recent works also report faster convergence rate
than the information-theoretic lower bounds for online pure reward maximization RL, by exploiting the structure induced
by KL regularization. (Shi et al., 2024) investigates the tabular softmax parametrization setting and establishes quadratic
convergence results. In contrast, our result is more general, applying to arbitrary policy class.

The work of (Zhao et al., 2024) is more related to ours. They consider general reward function classes and derive an
O(ε−1Poly(D)) sample complexity bound, where D is a coefficient related to the coverage of the distribution ρ× πref.

6See Cond. C.1 for the definition of data generation process.

22



Can RLHF be More Efficient with Imperfect Reward Models? A Policy Coverage Perspective

While their dependence on ε is better than ours, their definition of D is not always satisfactory. For example, in the worst
case one would have D = Ω( 1

mins∈S ρ(s) ). This indicates that their bound scales with the number of states, once noticing that
1

mins∈S ρ(s) is no smaller than |S|. In contrast, the largest coverage-related coefficient in our result is O(κ2(e
2R
β )) = O(e

4R
β ),

which remains small and is free of |S|. Therefore, our Coro. E.6 can outperform the bound in (Zhao et al., 2024) in many
scenarios.

More importantly, the primary focus of our work is on reward transfer, which is orthogonal to these studies.

F. Proofs for the Main Algorithm and Results in Sec. 4
F.1. Additional Algorithm Details

Missing Details for TPO (Alg. 1) For any given (k, n) ∈ [K] × [N ], we use Dk,n :=

∪i<k or i=k,j<n{si,j , ai,j , ãi,j , yi,j , πi,j} to denote all the collected data up to step (k, n); Dk,n
OL :=

∪i<k,j≤αN or i=k,j≤n∧αN{si,j , ai,j , ãi,j , yi,j , πi,j} denotes the data collected by AlgOL up to step (k, n).

F.2. Some Useful Lemmas

Lemma F.1 (MLE Reward Estimation Error). In each call of Alg. 2 with a policy class Π satisfying Assump. A and a dataset
D generated by a sequence of policies π1, ..., π|D|, then, for any policy π, given any δ ∈ (0, 1), with probability at least
1− δ, for all w ∈ [W ], we have:

∣∣∣(Eρ,π[r
∗]− Eρ,πref [r

∗]
)
−
(
Eρ,π[r̂MLE]− Eρ,πref [r̂MLE]

)∣∣∣ ≤ 16e2R

√
Covπ|πDmix

|D|
· log |Π|

δ
,

where we use πDmix :=
1
|D|

∑
i≤|D| π

i as a short note.

Proof. For any policy π ∈ Π, by applying Lem. H.3 with πDmix and r ← r̂MLE, we have:∣∣∣(Eρ,π[r
∗]− Eρ,πref [r

∗]
)
−
(
Eρ,π[r̂MLE]− Eρ,πref [r̂MLE]

)∣∣∣
≤Es∼ρ,a∼π(·|s),ã∼πref(·|s)[|

(
r∗(s, a)− r∗(s, ã)

)
−
(
r̂MLE(s, a)− r̂MLE(s, ã)

)
|]

≤8
√
2e2R

√√√√Covπ|πDmix · 1

|D|
·
∑
i≤|D|

Es∼ρ,a∼πi(·|s),ã∼πref(·|s)[H2(Pr̂MLE(·|s, a, ã)∥Pr∗(·|s, a, ã))].

By applying Lem. H.2, and the fact that r̂MLE, r∗ ∈ RΠ, for any δ ∈ (0, 1), w.p. 1− δ, we have:

1

|D|
∑
i≤|D|

Es∼ρ,a∼πi(·|s),ã∼πref(·|s)[H
2(Pr̂MLE(·|s, a, ã)∥Pr∗(·|s, a, ã))]

≤LD(r̂MLE)− LD(r
∗) +

2

|D|
log
|Π|
δ

≤ 2

|D|
log
|Π|
δ

. (Assump. A and r̂MLE minimizes the negative log-likelihood)

Therefore, we finish the proof. □

Lemma 4.2 (Value Est Error for {π∗rw}w∈[W ]). Under Assump. A and Def. D.2, w.p. 1− δ, in each call of Alg. 2:

∀w ∈ [W ], Jβ(π
∗
rw)− Jβ(πref) ≤ V̂ (π∗rw ;D)

≤Jβ(π∗rw)− Jβ(πref) + Õ(
e2R√

N(w;D)
).
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Proof. Note that Covπ∗
rw
|πDmix

|D| ≤ 1
N(w;D) , where we recall that N(w;D) :=

∑
i≤|D| I[πi = π∗rw ] denotes the number of

occurrences of π∗rw in the dataset. By Lem. F.1, w.p. 1− δ′, for all w ∈ [W ], and any (k, n) ∈ [K]× [N ] occurs in the call
of Alg. 1 such that n > αN :

∣∣∣(Eρ,π∗
rw

[r∗]− Eρ,πref [r
∗]
)
−
(
Eρ,π∗

rw
[r̂MLE]− Eρ,πref [r̂MLE]

)∣∣∣ ≤16e2R√ 1

N(w;Dk,n)
log
|Π|W
δ′

.

Recall

V̂ (π∗rw ;D) :=Eρ,π∗
rw

[r̂MLE]− Eρ,πref [r̂MLE]− βKL(π∗rw∥πref) + 16e2R

√
1

N(w;Dk,n)
log
|Π|WT

δ
.

By taking the union bound for all T iterations (choosing δ′ = δ/T ), we finish the proof. □
Lemma F.2 (Estimation Error for Self-Transfer Policy). For any k > 1 and αN < n ≤ N , in each call of Alg. 2 in the
iteration (k, n) of Alg. 1 with a dataset D := {(si, ai, ãi, yi, πi)}i≤|D| satisfying Cond. C.1, then, given any δ ∈ (0, 1), w.p.
1− δ:

V̂ (πDstl;D) ≤Jβ(πDstl)− Jβ(πref)

V̂ (πDstl;D) ≥Jβ(π∗r∗)− Jβ(πref)− c′ ·Re2R ·
(
Covπ∗r∗ |π

D
mix ∧

√
C(Π)

α

)
·

√
1

|D|
logc0

|Π|T
δ

,

where we use πDmix :=
1
|D|

∑
i≤|D| π

|D| as a short note, and c′ is some absolute constant.

Proof. Recall that

V̂ (πDstl;D) :=Eρ,πDstl [r̂Dstl]− Eρ,πref [r̂Dstl]− βKL(πDstl∥πref)

+
1

η
LD(r̂Dstl)−

1

η
LD(r̂MLE)− bonus,

Here we use bonus := 2c · e2R
√

1
|D| log

|Π|T
δ as a short note of the bonus term. By definition,

V̂ (πDstl;D)

≤Eρ,πDstl [r
∗]− Eρ,πref [r

∗]− βKL(πDstl∥πref) +
1

η
LD(r

∗)− 1

η
LD(r̂MLE)− bonus

(Pessimistic estimation of r̂Dstl in Eq. (12))

≤Jβ(πDstl)− Jβ(πref) +
2

η|D|
log
|Π|
δ
− bonus (Lem. H.2)

≤Jβ(πDstl)− Jβ(πref) + 2c · e2R
√

1

|D|
log
|Π|T
δ
− bonus. (14)

The last step is because of our choice of η = (1 + eR)−2
√

24
|D| log

|Π|T
δ .

For the lower bound, note that for any policy π ∈ conv(Π), we have:

Jβ(π)− Jβ(πref)− V̂ (πDstl;D)

=
(
Eρ,π[r

∗]− Eρ,πref [r
∗]− βKL(π∥πref)

)
−
(
Eρ,πDstl [r̂Dstl]− Eρ,πref [r̂Dstl]− βKL(πDstl∥πref) +

1

η
LD(r̂Dstl)

)
+

1

η
LD(r̂MLE) + bonus

≤
(
Eρ,π[r

∗]− Eρ,πref [r
∗]− βKL(π∥πref)

)
− min

r∈RΠ

(
Eρ,π[r]− Eρ,πref [r]− βKL(π∥πref) +

1

η
LD(r)

)
(Optimality of πDstl in RPO;)
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+
1

η
LD(r

∗) + bonus (r̂MLE minimizes LD)

≤Es∼ρ,a∼π,ã∼πref [|r∗(s, a)− r∗(s, ã)− rπ;D(s, a) + rπ;D(s, ã)|] +
1

η
LD(r

∗)− 1

η
LD(rπ;D) + bonus

(We use rπ;D to denote the reward achieves the above minimum)

≤ 2

η|D|
log
|Π|
δ

+ 8
√
2e2R

√√√√Covπ|πDmix

|D|
·
∑
i≤|D|

Es∼ρ,a∼πi(·|s),ã∼πref(·|s)[H2(Prπ;D (·|s, a, ã)∥Pr∗(·|s, a, ã))]

− 1

η

∑
i≤|D|

Es∼ρ,a∼πi,ã∼πref
[H2(Prπ;D (·|s, a, ã)∥Pr∗(·|s, a, ã))] + bonus (Lem. H.2 and Lem. H.3)

≤ 2

η|D|
log
|Π|
δ

+ 64ηe4R
Covπ|πDmix

|D|
+ bonus (ax− bx2 ≤ a2

4b )

≤4c2 · e2R · Covπ|πDmix ·

√
1

|D|
log
|Π|T
δ

+ bonus. (15)

where the last step is because of our choice of η = c · (1 + eR)−2
√

24
|D| log

|Π|T
δ .

Next, we evaluate some choice of π. We first consider π = π∗r∗ ∈ conv(Π), the above result implies,

Jβ(π
∗
r∗)− Jβ(πref)− V̂ (πDstl;D) ≤ 4c2 · e2R · Covπ∗r∗ |π

D
mix ·

√
1

|D|
log
|Π|T
δ

+ bonus. (16)

Secondly, we consider the mixture policy π = πk−1
mix := 1

α(k−1)N
∑k−1

i=1 πi,j ∈ conv(Π). Because of the convexity of KL
divergence, J(π) is concave in π, by Jensen’s inequality, we have:

Jβ(π
∗
r∗)− Jβ(π

k−1
mix ) =Jβ(π

∗
r∗)− Es∼ρ,a∼πk−1

mix (·|s)[r
∗(s, a)] + βKL(πk−1

mix ∥πref)

≤Jβ(π∗r∗)−
1

α(k − 1)N

k−1∑
i=1

∑
1≤j≤αN

(
Es∼ρ,a∼πi

OL(·|s)[r
∗(s, a)]− βKL(πi,j∥πref)

)

≤COLRe2R

√
C(Π)

α(k − 1)N
logc0

|Π|T
δ
≤ COLRe2R

√
2C(Π)

αkN
logc0

|Π|T
δ

. (Cond. D.2)

Note that |D|πDmix ≥ α(k − 1)Nπk−1
mix , which implies Covπk−1

mix |π
D
mix ≤ |D|

α(k−1)N ≤
kN

α(k−1)N ≤
2
α . Therefore, by Eq. (15),

Jβ(π
k−1
mix )− Jβ(πref)− V̂ (πDstl;D) ≤ 4c2 · e2R ·

2

α
·

√
1

|D|
log
|Π|T
δ

.

Combining the above two inequalities together, we have:

Jβ(π
∗
r∗)− Jβ(πref)− V̂ (πDstl;D)

≤Jβ(π∗r∗)− Jβ(π
k−1
mix ) + Jβ(π

k−1
mix )− Jβ(πref)− V̂ (πDstl;D)

≤COLRe2R
√

2C(Π)

αkN
logc0

|Π|T
δ

+ 4c2 · e2R ·
2

α
·

√
1

|D|
log
|Π|T
δ

+ bonus

≤c3R · e2R
√
C(Π)

α2|D|
logc0

|Π|T
δ

+ bonus. (17)

Therefore, under our choice of bonus = 2c ·
√

1
|D| log

|Π|T
δ , Eq. (14), Eq. (16) and Eq. (17) imply,

V̂ (πDstl;D) ≤Jβ(πDstl)− Jβ(πref)
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V̂ (πDstl;D) ≥Jβ(π∗r∗)− Jβ(πref)− c′Re2R ·
(
Covπ∗r∗ |π

D
mix ∧

√
C(Π)

α

)
·

√
1

|D|
logc0

|Π|T
δ

.

□
Lemma 4.3 (Value Est Error for πDstl). Under Assump. A and Def. D.2, w.p. 1− δ, in each call of Alg. 2:

Jβ(π
∗
r∗)− Jβ(πref)− Õ

(Re2R√
|D|
· (Covπ∗r∗ |π

D
mix ∧

√
C(Π)

α
)
)

≤ V̂ (πDstl;D) ≤ Jβ(πDstl)− Jβ(πref). (6)

Proof. By applying Lem. F.2 with appropriate constants, and taking the union bound over all iterations, we can finish the
proof. □

F.3. Proof for Thm. 4.4

Theorem 4.4 (Total Regret). Suppose AlgOL is a no-regret instance satisfying Def. D.2, whose regret grows as

Õ(Re2R
√
C(Π)T̃ ) for any intermediate step T̃ and some policy class complexity measure C(Π). Then, w.p. 1 − 2δ,

for any T/K ≤ t ≤ T , running TPO yields a regret bound:∑
τ≤t

Jβ(π
∗
r∗)−Jβ(πk(τ),n(τ)) = Reg(t)

OL + Reg(t)Trf

Reg(t)OL :=Õ(Re2R
√
αC(Π)t), (7)

Reg(t)
Trf :=Õ

( ∑
τ≤t:αN<n(τ)≤N

∆min ∧ ιk(τ),n(τ) (8)

+ e2R
√

(1− α)Wt ∧
∑

w:∆(w)>0

e4R

∆(w)

)
.

Here we denote k(τ) := ⌈ τ
N ⌉ and n(τ) := τ mod N to be the block index and inner iteration index for step τ ; ιk(τ),n(τ) :=

Õ(Re2R
(
Covπ∗r∗ |π

τ
mix ∧

√
C(Π)

α

)√
1
τ ), where πτ

mix := 1
τ

∑
i≤τ π

k(i),n(i) is the mixture policy up to τ ; ∆(w) and ∆min

denote value gaps as defined in Sec. 2.2.

Throught the proof, we follow the convention that 1/0 = +∞.

Proof. Since we divide the total budget T to K batches with batch size N , we will use two indices K̃ ∈ [K] and Ñ ∈ [N ]

to represent the current iteration number, i.e. the Ñ -th iteration in the K̃-th batch. We will divide the indices of previous
iterations to two parts, depending on whether we conduct normal online learning (the first αN samples in each batch) or do
transfer learning (the rest (1− α)N samples in each batch):

IOL
K̃,Ñ

:= {(k, n)|k < K̃, n ≤ αN, or k = K̃, n ≤ Ñ ∧ αN},

ITrf
K̃,Ñ

:= {(k, n)|k < K̃, αN < n ≤ N, or k = K̃, αN < n ≤ Ñ},

IK̃,Ñ := IOL
K̃,Ñ
∪ ITrf

K̃,Ñ
= {(k, n)|k < K̃, n ≤ N, or k = K̃, n ≤ Ñ}.

For the policies generated by online algorithm, under the condition in Def. D.2, w.p. 1− δ, for any K̃ ∈ [K], Ñ ∈ [N ] we
have: ∑

(k,n)∈IOL
K̃,Ñ

Jβ(π
∗
r∗)− Jβ(π

k,n) ≤ COLRe2R
√
C(Π)|IOL

K̃,Ñ
| logc0 |Π|T

δ
. (18)

Next, we focus on the performance of transfer policies. We first introduce a few notation for convenience.
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Additional Notations We use πk,n
Dstl to denote the offline policy computed by Alg. 2 called by Alg. 1 at iteration (k, n)

for some αN < n ≤ N . We denote Ek,nDstl := {π
k,n
Dstl = πk,n} to be the event that Alg. 2 returns πk,n

Dstl as the policy, and use
Ek,nw := {π∗rw = πk,n} to denote the event that Alg. 2 pick and return π∗rw . Besides, we use ¬Ek,nDstl :=

⋃
w∈[W ] Ek,nw as a

short note for the event that Alg. 2 does not return the offline policy πk,n
Dstl . Recall the definition ∆(w) := Jβ(π

∗
r∗)−Jβ(π

∗
rw),

and ∆min = minw∈[W ] ∆(w). We will use w∗ to denote the index of the task achieves ∆min (or any of the tasks if multiple
maximizers exist). Given the dataset Dk,n we use πk,n

mix := 1
|Dk,n|

∑
i,j∈Dk,n πi,j to be the uniform mixture policy from

Dk,n.

Then, we decompose the accumulative value gap depending on whether Ek,nDstl is true or not. We use I[E ] as the indicator
function, which takes value 1 if E happens and otherwise 0. For any K̃ ∈ [K], Ñ ∈ [N ], we have:∑

(k,n)∈ITrf
K̃,Ñ

Jβ(π
∗
r∗)− Jβ(π

k,n)

=
∑

(k,n)∈ITrf
K̃,Ñ

I[Ek,nDstl ](Jβ(π
∗
r∗)− Jβ(π

k,n)) +
∑

(k,n)∈ITrf
K̃,Ñ

I[¬Ek,nDstl ](Jβ(π
∗
r∗)− Jβ(π

k,n)). (19)

Part-(1) Upper Bound the First Part in Eq. (19) We first bound the accumulative error when I[Ek,nDstl ] = 1. On the good
events in Lem. 4.2 and Lem. 4.3 (which holds w.p. 1− δ), I[Ek,nDstl ] = 1 implies

V̂ (πDstl;Dk,n) ≥ max
w∈[W ]

V̂ (π∗rw ;Dk,n) ≥ max
w∈[W ]

Jβ(π
∗
rw)− Jβ(πref) = Jβ(π

∗
r∗)− Jβ(πref)−∆min,

and as implied by Lem. 4.3

Jβ(π
∗
r∗)− Jβ(πDstl) ≤∆min,

Jβ(π
∗
r∗)− Jβ(πDstl) ≤c2Re2R ·

(
Covπ∗r∗ |π

k,n
mix ∧

√
C(Π)

α

)
·

√
1

|Dk,n|
logc0

|Π|T
δ

.

Combining all the results above, we conclude that

Jβ(π
∗
r∗)− Jβ(πDstl) ≤∆min ∧ c2Re2R ·

(
Covπ∗r∗ |π

k,n
mix ∧

√
C(Π)

α

)
·

√
1

|Dk,n|
logc0

|Π|T
δ

=∆min ∧ ιk,n.

Here for simplicity, we use

ιk,n := c2Re2R ·
(
Covπ∗r∗ |π

k,n
mix ∧

√
C(Π)

α

)
·

√
1

|Dk,n|
logc0

|Π|T
δ

as a short note, indexed by k, n. Therefore,∑
(k,n)∈ITrf

K̃,Ñ

I[Ek,nDstl ](Jβ(π
∗
r∗)− Jβ(π

k,n)) =
∑

(k,n)∈ITrf
K̃,Ñ

I[Ek,nDstl ](∆min ∧ ιk,n). (20)

Part-(2) Upper Bound the Second Part in Eq. (19) Next, we bound the accumulative error when I[¬Ek,nDstl ] = 1. Note
that, ∑

(k,n)∈ITrf
K̃,Ñ

I[¬Ek,nDstl ](Jβ(π
∗
r∗)− Jβ(π

k,n)) =
∑

(k,n)∈ITrf
K̃,Ñ

∑
w∈[W ]
∆(w)>0

I[En,kw ]∆(w)
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Here we only focus on those source tasks with ∆(w) > 0, since transferring from π∗rw with ∆(w) = 0 does not incur regret.
We separate source tasks into two setsW≤2∆min := {w ∈ [W ]|∆(w) ≤ 2∆min} andW>2∆min := {w ∈ [W ]|∆(w) >
2∆min}. For w ∈ W>2∆min , on the same good events in Lem. 4.2 and Lem. 4.3, I[En,kw ] = 1 implies

∆min =Jβ(π
∗
r∗)− Jβ(πref)− Jβ(π

∗
rw∗ ) + Jβ(πref)

≥Jβ(π∗r∗)− Jβ(πref)− V̂ k,n(π∗rw∗ ;D
k,n−1)

≥Jβ(π∗r∗)− Jβ(πref)− V̂ k,n(π∗rw ;Dk,n−1)

≥Jβ(π∗r∗)− Jβ(πref)− Jβ(π
∗
rw) + Jβ(πref)− 32 · e2R

√
1

N(w;Dk,n)
log
|Π|WT

δ

=∆(w)− 32 · e2R
√

1

N(w;Dk,n)
log
|Π|WT

δ
.

In the following, we use c1 = 32 as a short note, then the above implies

N(w;Dk,n) ≤ c21e
4R

(∆(w)−∆min)2
log
|Π|WT

δ
≤ 4c21e

4R

∆(w)2
log
|Π|WT

δ

and therefore,

∀w ∈ W>2∆min
,

∑
(k,n)∈ITrf

K̃,Ñ

I[En,kw ]∆(w) ≤ 16c21e
4R

∆(w)
log
|Π|WT

δ
,

For w ∈ W≤2∆min , we introduce a new event En,k2ι<∆min
:= {2ιk,n ≤ ∆min}. Note that, when I[En,k2ι<∆min

] = 0, i.e.
2ι ≥ ∆min, we automatically have:

∀w ∈ W≤2∆min , I[En,kw ]∆(w) ≤ 2I[En,kw ]∆min ≤ 4I[En,kw ] · (∆min ∧ ιn,k). (21)

On the other hand, on the good events of Lem. 4.2 and Lem. 4.3, when I[En,kw ∩ En,k2ι<∆min
] = 1, we must have:

Jβ(π
∗
r∗)− Jβ(πref)− ιk,n ≤V̂ k,n(πk,n

Dstl ;D
k,n−1) (Lem. 4.2 and Lem. 4.3)

≤V̂ k,n(π∗rw ;Dk,n−1) (w is chosen)

≤Jβ(π∗rw)− Jβ(πref) + 32 · e2R
√

1

N(w;Dk,n)
log
|Π|WT

δ
,

which implies,

N(w;Dk,n) ≤ c21e
4R

(∆min − ιk,n)2
log
|Π|WT

δ
≤ 4c21e

4R

∆2
min

log
|Π|WT

δ
.

Therefore,

∀w ∈ W≤2∆min ,
∑

(k,n)∈ITrf
K̃,Ñ

I[En,kw ∩ En,k2ι<∆min
]∆(w) ≤ 8c21e

4R

∆(w)
log
|Π|WT

δ
.

Combining with Eq. (21), we have:

∀w ∈ W≤2∆min ,
∑

(k,n)∈ITrf
K̃,Ñ

I[En,kw ]∆(w) ≤ 4
∑

(k,n)∈ITrf
K̃,Ñ

I[En,kw ] · (∆min ∧ ιn,k) +
8c21e

4R

∆(w)
log
|Π|WT

δ
.

By merging the analysis for w ∈ W≤2∆min and w ∈ W>2∆min , we have:

∀w ∈ [W ],
∑

(k,n)∈ITrf
K̃,Ñ

I[En,kw ]∆(w) ≤16c21e
4R

∆(w)
log
|Π|WT

δ
+ 4

∑
(k,n)∈ITrf

K̃,Ñ

I[En,kw ]∆min ∧ ιn,k, (22)
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Note that for those ∆(w) ≤ 4c1e
2max ·

√
1∑

(k,n)∈ITrf
K̃,Ñ

I[En,k
w ]

log |Π|WT
δ , we automatically have

∑
(k,n)∈ITrf

K̃,Ñ

I[En,kw ]∆(w) ≤4c1e2max ·

√√√√ 1∑
(k,n)∈ITrf

K̃,Ñ

I[En,kw ]
log
|Π|WT

δ

∑
(k,n)∈ITrf

K̃,Ñ

I[En,kw ]

=4c1e
2max ·

√√√√ ∑
(k,n)∈ITrf

K̃,Ñ

I[En,kw ] log
|Π|WT

δ
.

On the other hand, when ∆(w) > 4c1e
2max ·

√
1∑

(k,n)∈ITrf
K̃,Ñ

I[En,k
w ]

log |Π|WT
δ , the bound in Eq. (22) is tighter, since

16c21e
4R

∆(w)
log
|Π|WT

δ
≤ 4c1e

2max

√√√√ ∑
(k,n)∈ITrf

K̃,Ñ

I[En,kw ] log
|Π|WT

δ
.

Combining the above discussions,∑
(k,n)∈ITrf

K̃,Ñ

I[¬Ek,nDstl ](Jβ(π
∗
r∗)− Jβ(π

k,n)) =
∑

(k,n)∈ITrf
K̃,Ñ

∑
w∈[W ]
∆(w)>0

I[En,kw ]∆(w)

≤
∑

w∈[W ]
∆(w)>0

min{16c
2
1e

4R

∆(w)
log
|Π|WT

δ
, 4c1e

2max

√√√√ ∑
(k,n)∈ITrf

K̃,Ñ

I[En,kw ] log
|Π|WT

δ
}

+ 4
∑

(k,n)∈ITrf
K̃,Ñ

I[En,kw ]∆min ∧ ιn,k

≤min{
∑

w∈[W ]
∆(w)>0

16c21e
4R

∆(w)
log
|Π|WT

δ
,

∑
w∈[W ]
∆(w)>0

4c1e
2max

√√√√ ∑
(k,n)∈ITrf

K̃,Ñ

I[En,kw ] log
|Π|WT

δ
}

(min{a, b}+min{x, y} ≤ min{a+ x, b+ y})

+ 4
∑

(k,n)∈ITrf
K̃,Ñ

I[En,kw ]∆min ∧ ιn,k

≤min{
∑

w∈[W ]
∆(w)>0

16c21e
4R

∆(w)
log
|Π|WT

δ
, 4c1e

2max

√
W |ITrf

K̃,Ñ
| log |Π|WT

δ
}

(Cauchy-Schwarz inequality and
∑

w∈[W ]
∆(w)>0

I[En,kw ] ≤ |ITrf
K̃,Ñ
|)

+ 4
∑

(k,n)∈ITrf
K̃,Ñ

I[En,kw ]∆min ∧ ιn,k. (23)

Merge Everything Together Combining Eq. (20) and Eq. (23), we have:∑
(k,n)∈ITrf

K̃,Ñ

Jβ(π
∗
r∗)− Jβ(π

k,n)

=
∑

(k,n)∈ITrf
K̃,Ñ

I[Ek,nDstl ](Jβ(π
∗
r∗)− Jβ(π

k,n)) +
∑

(k,n)∈ITrf
K̃,Ñ

I[¬Ek,nDstl ](Jβ(π
∗
r∗)− Jβ(π

k,n))

≤min{
∑

w∈[W ]
∆(w)>0

16c21e
4R

∆(w)
log
|Π|WT

δ
, 4c1e

2max

√
W |ITrf

K̃,Ñ
| log |Π|WT

δ
}
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+ 4
∑

(k,n)∈ITrf
K̃,Ñ

∆min ∧ ιn,k.

Combining the value gap for the online parts, we have:∑
(k,n)∈I

K̃,Ñ

Jβ(π
∗
r∗)− Jβ(π

k,n)

≤COLRe2R
√
C(Π)|IOL

K̃,Ñ
| logc0 |Π|αT

δ
+ 4

∑
(k,n)∈ITrf

K̃,Ñ

∆min ∧ ιn,k

+min{
∑

w∈[W ]
∆(w)>0

16c21e
4R

∆(w)
log
|Π|WT

δ
, 4c1e

2max

√
W |ITrf

K̃,Ñ
| log |Π|WT

δ
}.

Note that for K̃ > 1, denote tK̃,Ñ := (K̃ − 1)N + Ñ , we have:

|IOL
K̃,Ñ
| ≤ αK̃N ≤ 2αtK̃,Ñ , |ITrf

K̃,Ñ
| ≤ (1− α)K̃N ≤ 2(1− α)tK̃,Ñ .

Therefore, ∑
(k,n)∈I

K̃,Ñ

Jβ(π
∗
r∗)− Jβ(π

k,n)

=Õ
( ∑

(k,n)∈ITrf
K̃,Ñ

∆min ∧ ιn,k +Re2R
√
αC(Π)tK̃,Ñ + e2max

√
(1− α)WtK̃,Ñ ∧

∑
w∈[W ]
∆(w)>0

e4R

∆(w)

)
,

where in the last step, we omit the constant and logarithmic terms. By replacing tK̃,Ñ ← t,
∑

(k,n)∈I
K̃,Ñ
←

∑
τ≤t,

k ← k(τ) := ⌈ τ
N ⌉ and n← n(τ) := τ%N , we finish the proof.

□
Remark F.3. Under the choices of AlgOL ← XPO (Xie et al., 2024) and α = e−

R
β , according to Eq. (9), TPO achieves

Õ(W
√
T ) regret if T < W 2

∆2
min

. On the other hand, by Lem. 3.1,

Covπ∗r∗ |π
t
mix = 1 + Õ(κ(e

2R
β ) · Reg(t)

OL + Reg(t)
Trf

βt
) = 1 + Õ(κ(e

2R
β ) · 1

αβ

√
C(Π)

t
).

Therefore, consider T0 = Θ̃(κ
2(e

2R
β C(Π)

α2β2 ), where Θ̃(·) hides at most poly-log of T . At least when T > T0, Eq. (10) implies

Reg(t)
Trf = 1+O(1) < C for some constant C. Since α = e−

R
β , we also have Reg(T )

OL = Õ(
√
T ) for any T > 0. As a result,

the total regret of TPO grows as Õ(
√
T ) as long as T > T0.

G. Connection between Win Rate and Policy Coverage Coefficient
Lemma G.1. Given two probability vector u, v ∈ ∆(A) and a reward function r : A → R, consider a preference model
based on r, satisfying,

Pr(y = 1|a, a′) ≥ 1

2
,

for any a, a′ ∈ A satisfying r(a) ≥ r(a′). Then,∑
a

√
u(a)v(a) ≤ min

γ>0

√
(γ + 2Pr(v ≻ u)) log

1 + γ

γ
,

where Pr(u ≻ v) := Ea∼u,a′∼v[Pr(y = 1|a, a′)].
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Proof. We first of all sort the action space A to Asorted := {a1, a2, ..., a|A|} according to reward function r, such that, for
any 1 ≤ i < j ≤ |A|, r(ai) ≤ r(aj). Besides, we use Fu(·) to denote the cumulative distribution function regarding u:

∀1 ≤ i ≤ |A|, Fu(ai) :=

i∑
j=1

u(ai),

and F v is defined similarly. Then we have:

∑
a∈A

√
u(a)v(a) =

|A|∑
i=1

√
u(ai)v(ai) =

|A|∑
i=1

√
u(ai)

γ + Fu(ai)
·
√

(γ + Fu(ai))v(a) (Introducting a parameter γ > 0)

≤

√√√√ |A|∑
i=1

u(ai)

γ + Fu(ai)
·

√√√√ |A|∑
i=1

(γ + Fu(ai))v(ai) (Cauchy–Schwarz inequality)

≤

√√√√ |A|∑
i=1

u(ai)

γ + Fu(ai)
·
√

γ + 2Pr(v ≻ u),

where in the last step, we use the fact that γ
∑|A|

i=1 v(ai) = γ and

Pr(v ≻ u) =Ea∼v,a′∼u[Pr(y = 1|a, a′)] ≥
|A|∑
i=1

v(ai)

i∑
j=1

u(aj)Pr(y = 1|ai, aj) ≥
1

2

|A|∑
i=1

v(ai)F
u(ai).

For the first part, we can upper bound by the following:

|A|∑
i=1

u(ai)

γ + Fu(ai)
=

|A|∑
i=1

u(ai)

γ +
∑i

j=1 u(aj)
=

A∑
i=1

1−
γ +

∑i−1
j=1 u(aj)

γ +
∑i

j=1 u(aj)

≤
A∑
i=1

log
γ +

∑i
j=1 u(aj)

γ +
∑i−1

j=1 u(aj)
(1− x ≤ log 1

x )

≤ log
1 + γ

γ

Therefore,
∑

a∈A
√

u(a)v(a) ≤
√
(γ + 2Pr(v ≻ u)) log 1+γ

γ . Since γ is arbitrary, we can take the minimum over γ > 0,

and finish the proof. □
Lemma G.2. For any policy π, π̃,

1− TV(π(·|s)∥π̃(·|s)) ≤ min
γ>0

√
(γ + 2Pr∗(π(·|s) ≻ π̃(·|s))) log 1 + γ

γ
,

1− Es∼ρ[TV(π(·|s)∥π̃(·|s))] ≤ min
γ>0

√
(γ + 2Pr∗(π ≻ π̃)) log

1 + γ

γ
.

Proof.

1− TV(π(·|s)∥π̃(·|s)) ≤1−H2(π(·|s)∥π̃(·|s)) =
∑
a∈A

√
π(a|s)π̃(a|s)

≤min
γ>0

√(
γ + 2Pr∗(π(·|s) ≻ π̃(·|s))

)
log

1 + γ

γ
.

where in the last step we apply Lem. G.1 with π(·|s) as v(·), π̃(·|s) as u(·), r∗(s, ·) as the reward function. Then, we finish
the proof for the first inequality.
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For the second inequality, by taking the expectation over s ∼ ρ and the concavity of
√
· function, we have:

1− Es∼ρ[TV(π(·|s)∥π̃(·|s))] ≤ min
γ>0

√(
γ + 2Pr∗(π ≻ π̃)

)
log

1 + γ

γ
.

By choosing γ = Pr∗(π ≻ π̃) (note that this choice ensures γ > 0 since π̃(·|·) > 0), we finish the proof. □

Lemma G.3. [The Complete Version of Lem. 5.1] Given any policy π, under the assumption that Pr∗(y = 1|s, a, a′) ≥ 1
2

for any a, a′ ∈ A satisfying r∗(s, a) ≥ r∗(s, a′), we have:

Covπ∗r∗ |π ≥ max
γ>0,π̄

(√
γ + 2Pr∗(π̄ ≻ π) log

1 + γ

γ
+

√
Jβ(π∗r∗)− Jβ(π̄)

2β

)−1
(24)

Covπ∗r∗ |π ≥ max
γ>0,π̄

(√
γ + 2Pr∗(π ≻ π̄) log

1 + γ

γ
+

√
Jβ(π∗r∗)− Jβ(π̄)

2β

)−1
. (25)

where π̄ is an arbitrary intermediate policy, Pr∗(π ≻ π̃) := Es∼ρ,a∼π,a′∼π̃[Pr∗(y = 1|s, a, a′)] and Pr∗(π̃ ≻ π) =
1− Pr∗(π ≻ π̃) = Es∼ρ,a∼π̃,a′∼π[Pr∗(y = 1|s, a, a′)].

Proof. We have:

Ea∼π∗
r∗ (·|s)[

π∗r∗(a|s)
π(a|s)

]− 1 =χ2(π∗r∗(·|s)∥π(·|s))

≥ exp(KL(π∗r∗(·|s)∥π(·|s)))− 1 (Theorem 5 in (Gibbs & Su, 2002))

≥1

2
· 1

1− TV(π∗r∗(·|s)∥π(·|s))
− 1. (Bretagnolle–Huber inequality)

Now, we introduce an arbitrary intermediate policy π̃,

TV(π∗r∗(·|s)∥π(·|s)) ≥TV(π̄(·|s)∥π(·|s))− TV(π̄(·|s)∥π∗r∗(·|s)) (Reverse triangle inequality)

≥TV(π̄(·|s)∥π(·|s))−
√

1

2
KL(π̄(·|s)∥π∗r∗(·|s)). (Pinsker’s inequality)

Applying Lem. G.2 with (π, π̃)← (π, π), we have:

Ea∼π∗
r∗ (·|s)[

π∗r∗(a|s)
π(a|s)

] ≥ 1

1− TV(π̄(·|s)∥π(·|s)) +
√

1
2KL(π̄(·|s)∥π∗r∗(·|s))

≥ 1√
(γ + 2Pr∗(π̄(·|s) ≻ π(·|s))) log 1+γ

γ +
√

1
2KL(π̄(·|s)∥π∗r∗(·|s))

.

By taking the expectation over s ∼ ρ, and leveraging the convexity of 1/x and the concavity of
√
· functions, we have:

Es∼ρ,a∼π∗
r∗ (·|s)[

π∗r∗(a|s)
π(a|s)

] ≥ 1

Es∼ρ[
√
(γ + 2Pr∗(π̄(·|s) ≻ π(·|s))) log 1+γ

γ ] + Es∼ρ[
√

1
2KL(π̄(·|s)∥π∗r∗(·|s))]

≥ 1√
(γ + 2Pr∗(π̄ ≻ π)) log 1+γ

γ +
√

Jβ(π∗r∗ )−Jβ(π)

2β

.

Note that the above results hold for any γ > 0 and any π̄, we finish the proof by taking the maximum over them.

The second inequality in Lem. G.3 can be proved similarly by applying Lem. G.2 with (π, π̃)← (π, π̄). All the discussion
are the same. □
Remark G.4. We provide some remarks about Lem. G.3.
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• Lem. 5.1 is a direct corollary of Eq. (25).

• Notably, Eq. (24) has a different implication compared with Eq. (25) that we follow in the algorithm design in Sec. 5.
More concretely, Eq. (24) suggests we should also disregard those source policies that strongly dominate π̄ when π̄ is
close to π∗r∗ . This makes sense because those source policies may achieve high rewards or win rates by incurring a
high KL divergence with πref, and therefore, they may not provide good coverage for π∗r∗ .

• However, in Alg. 3, we intentionally do not filter out but instead prioritize source policies with exceptionally high win
rates. Because they likely provide good coverage for high-reward regions and can be advantageous for practical LLM
training. Nonetheless, for completeness, we bring this theory-practice gap into attention.

H. Useful Lemmas
Lemma H.1 (Convex Hull Fulfills Assump. A). Given Π satisfying Assump. A, conv(Π) also satisfies Assump. A.

Proof. The realizability condition is obviously. We verify Assump. A. Note that for any π ∈ conv(Π), there exists
λ1, ..., λn ≥ 0 and π1, ..., πn ∈ Π, s.t.

∑n
i=1 λ

i = 1 and π =
∑n

i=1 λ
iπi, which implies,

∀s, a π(a|s)
πref(a|s)

=
n∑

i=1

λi πi(a|s)
πref(a|s)

≥ exp(−R

β
),

π(a|s)
πref(a|s)

=
n∑

i=1

λi πi(a|s)
πref(a|s)

≤ exp(
R

β
).

Therefore, conv(Π) fulfills Assump. A-(II), which finishes the proof. □
Lemma H.2 (MLE Guarantees; Adapated from Lemma C.6 in (Xie et al., 2024)). Consider a policy class Π satisfying
Assump. A, and recall the reward classRΠ converted by Eq. (11). Given a dataset D := {(si, ai, ãi, yi, πi)}i≤|D| satisfying
Cond. C.1 and any δ ∈ (0, 1), w.p. 1− δ,

∀r ∈ RΠ,
1

|D|
∑
i≤|D|

Es∼ρ,a∼πi(·|s),ã∼πref(·|s)[H
2(Pr(·|s, a, ã)∥Pr∗(·|s, a, ã))] ≤ LD(r)− LD(r

∗) +
2

|D|
log
|Π|
δ

.

Proof. The proof is almost identical to Lemma C.6 in (Xie et al., 2024), except we replace Pπ in their paper by Pr. So we
omit it here. Besides, note that our NLL loss is normalized, while (Xie et al., 2024) consider unnormalized version. This
results in the additional 1

|D| factor here. □

Lemma H.3 (From reward error to Hellinger Distance). Given any policy π, any reward function r with bounded value
range [−R,R], and another arbitrary π̃ with positive support on S ×A, we have:

Es∼ρ,a∼π(·|s),ã∼πref(·|s)[|
(
r∗(s, a)− r∗(s, ã)

)
−

(
r(s, a)− r(s, ã)

)
|]

≤8
√
2e2R

√
Covπ|π̃ · Es∼ρ,a∼π̃(·|s),ã∼πref(·|s)[H2(Pr(·|s, a, ã)∥Pr∗(·|s, a, ã))].

Proof. For any reward function r, we have:∣∣∣(Eρ,π[r
∗]− Eρ,πref [r

∗]
)
−
(
Eρ,π[r]− Eρ,πref [r]

)∣∣∣
≤Es∼ρ,a∼π(·|s),ã∼πref(·|s)[|

(
r∗(s, a)− r∗(s, ã)

)
−

(
r(s, a)− r(s, ã)

)
|]

≤4e2REs∼ρ,a∼π(·|s),ã∼πref(·|s)[|σ
(
r∗(s, a)− r∗(s, ã)

)
− σ

(
r(s, a)− r(s, ã)

)
|] (Lem. H.4 with C = 2R)

=4e2R
∑
s,a,ã

√
ρ(s)πref(ã|s)

π(a|s)√
π̃(a|s)

·
√
ρ(s)πref(ã|s)

√
π̃(a|s)

∣∣∣σ(r∗(s, a)− r∗(s, ã)
)
− σ

(
r(s, a)− r(s, ã)

)∣∣∣
≤4e2R

√√√√∑
s,a,ã

ρ(s)πref(ã|s)
π2(a|s)
π̃(a|s)
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Es∼ρ,a∼π̃(·|s),ã∼πref(·|s)[

∣∣∣σ(r∗(s, a)− r∗(s, ã)
)
− σ

(
r(s, a)− r(s, ã)

)∣∣∣2]
(Cauchy–Schwarz inequality)

=4e2R
√
Covπ|π̃ ·

√
Es∼ρ,a∼π̃(·|s),ã∼πref(·|s)[

∣∣∣σ(r∗(s, a)− r∗(s, ã)
)
− σ

(
r(s, a)− r(s, ã)

)∣∣∣2]. (26)

Note that,

Es∼ρ,a∼π̃(·|s),ã∼πref(·|s)[
∣∣∣σ(r∗(s, a)− r∗(s, ã)

)
− σ

(
r(s, a)− r(s, ã)

)∣∣∣2]
≤8Es∼ρ,a∼π̃(·|s),ã∼πref(·|s)[|

√
σ(r∗(s, a)− r∗(s, ã))−

√
σ(r(s, a)− r(s, ã))|2] ((x− y)2 ≤ 4(x+ y)(

√
x−√y)2)

≤8Es∼ρ,a∼π̃(·|s),ã∼πref(·|s)[H
2(Pr(·|s, a, ã)∥Pr∗(·|s, a, ã))]. (27)

By plugging into Eq. (26), we finish the proof. □
Lemma H.4 (Sigmoid Function). Given x, y ∈ [−C,C] for some C > 0,

|x− y| ≤ 4 exp(C)|σ(x)− σ(y)|.

Proof. Without loss of generality, we assume x ≥ y. Because σ(·) is a monotonically increasing function and it is
continuous, we know there exists z ∈ [y, x] s.t.

σ(x)− σ(y)

x− y
= σ′(z) = σ(z)(1− σ(z)) = σ(z)σ(−z).

Because x, y ∈ [−C,C], we have σ(−C) ≤ σ(z) ≤ σ(C). Note that the axis of symmetry of function f(a) = a(1− a) is
1/2 and 1

2 − σ(C) = σ(−C)− 1
2 . Therefore,

|x− y| = 1

σ′(z)
|σ(x)− σ(y)| ≤ (1 + exp(C))(1 + exp(−C)) · |σ(x)− σ(y)|

≤2(1 + exp(C))|σ(x)− σ(y)| ≤ 4 exp(C)|σ(x)− σ(y)|

□

I. Experiment Details and Additional Results
I.1. Details in Experiment Setup

Setup of r∗ Due to the high cost of collecting real human feedback, we use preferences generated by
Llama3-8B (Dubey et al., 2024) to simulate the ground-truth human annotations. More concretely, we adopt
sfairXC/FsfairX-LLaMA3-RM-v0.1 (Dong et al., 2024) as the true reward model r∗, which is distilled from
meta-llama/Meta-Llama-3-8B-Instruct. This reward model can be queried with prompt-response pairs and
returns reward scores for each of them.

Best-of-N as an Approximation of π∗rw We recall that we consider 4 source tasks for transfer learning, including, (a)
ROUGE-Lsum score (Lin, 2004), (b) BERTScore (Zhang et al., 2019), (c) T5-base (250M) πbase, (d) T5-large (770M) πlarge.

To reduce computational complexity, instead of explicitly training the optimal policies {π∗rw}w∈[W ] associated with each
source reward model, we use Best-of-N (BoN) approach, a.k.a. rejection sampling, to approximate the responses generated
by π∗rw . Specifically, we generate N7 responses by the online learning policy πk

OL in Alg. 3, rank them according to the
reward model, and select the top-ranked ones.

Furthermore, even for source LLM policies (3) and (4), we find that transferring from BoN-selected responses generated by
πk
OL actually outperforms directly using the responses generated by T5-base/large. We hypothesize that it is because the

responses by T5-base/large usually have quite low probability of being generated by the online learning policy, leading to a

7To distinguish with N used to denote the block size in Alg. 3, we use N to denote the size of BoN.
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distribution shift that complicates learning. In contrast, BoN-selected responses maintain non-trivial probability of being
sampled, without significant distributional mismatch.

Next, we elaborate the BoN process with more details. In our experiment, we choose N = 32. For source reward models
(1) and (2), we generate N responses, and we compute the ROUGE-Lsum/BERTScore between the generated response
and the human-provided summary in XSum dataset as the reward value. For source policies (3) and (4), motivated by the
closed-form solution in Eq. (2), given any prompt s and response a, we infer the log-probability of T5-base/large predicting
a given s as the reward score, i.e. log πbase(a|s) or log πlarge(a|s). In another word, we interpret T5-base/large as the optimal
policies fine-tuned from uniform distribution to align with some reward models, which we treated as source rewards for
transfer learning.

Training Details Our training setup is based on and adapted from (Xie et al., 2024; Xiong et al., 2024). We run for 3
iterations (K = 3), and in each iteration, we sample a training dataset of size 10k (i.e., the block size N =10k). For each
prompt, we collect 8 responses as follows. Firstly, we generate N+4 responses by the online learning policy πk

OL. The initial
N responses are used for Best-of-N (BoN) selection, where we choose a source reward model via the UCB strategy in Alg. 3,
and then pick the top 4 from N responses with the highest source rewards. These 4 responses are merged with the remaining
4 responses and we get a total of 8 responses. After that, we query r∗ to label the reward for those responses, and record the
ones with the highest and lowest rewards to serve as positive and negative samples for DPO training.

In contrast to the procedure presented in Alg. 3, we utilize 8 responses for each prompt. Therefore, the win rates are
computed in a relatively different way. Specially, we set yk,n = 1 if the response achieving the highest reward comes
from the 4 responses selected by the BoN step, and yk,n = 0 otherwise. The updates of the win rates estimation and the

computation of UCB bonus terms align with Alg. 3, except that we set ŴR
πk
OL

= 0.55 instead of 0.5. This adjustment
establishes a higher threshold for enabling transfer learning, requiring source tasks to outperform the baseline policy πk

OL by
a larger margin before being considered. We believe it enhances overall performance.

Regarding other hyperparameters during the training, the learning rate is 5e-5 with a cosine annealing schedule. Training

is conducted on 4 H-100 GPUs with total batch size 64. We set the constant parts in the UCB bonus c
√
log 1

δ = 1.0 in
practice, considering the value range of win rates is [0, 1].

Evaluation Details During the evaluation phase, we randomly sample 10k prompts from XSum test dataset without
repetition. For each prompt, we generate one response for each of the policies being compared, and query their reward
values from r∗ (i.e., the sfairXC/FsfairX-LLaMA3-RM-v0.1 reward model). The win rate is then estimated as the
frequency of that one policy generates a response with higher rewards than the other across the 10k prompts.

I.2. Additional Experiment Results

Results under Other Choices for AlgPO in Alg. 3 In the following, we report the results with two alternative instaniations
of AlgPO: by optimizing the XPO loss (Xie et al., 2024) or the IPO loss (Azar et al., 2024). All the training setups are the
same as the experiments where AlgPO is DPO, except that we choose a smaller learning rate 1e-5 for AlgPO is IPO.
Remark I.1. Different from DPO and IPO, XPO is an online algorithm itself and in their original design, the pairs of online
data are generated by an online exploration policy and another fixed base policy, respectively. However, empirically, Xie
et al. (2024) follow the iterative-DPO and utilize the same online learning policy to generate pairs of online data. This
exactly aligns with the no transfer baseline we compete with—instantiating AlgPO with XPO in Alg. 3 and setting W = 0,
which we refer as iterative-XPO in this paper.

Investigation on Source Task Selection Fig. 2 provides further investigations on the source task selection process. For
each iteration k = 1, 2, 3, we count the number of times that πk,n is occupied by different transfer policies {π∗rw}w∈[W ]

or the online learning policy πk
OL (i.e. without transfer), and provide the results on the top sub-figure in Fig. 2. Besides,

in the bottom sub-figure, we report the win rates Pr∗(π ≻ πk
OL) for all π ∈ {π∗rw}w∈[W ] ∪ {πk

OL}. As illustrated, the UCB
sub-routine efficiently explores and identify the source task with the highest win rates against the learning policy πk

OL.

Notably, as the improvement of πk
OL over the three iterations, we can observe the transition from transfer learning by

leveraging high-quality source tasks to standard online learning. In other words, our method can automatically switch back
to online learning and avoid being restricted by source reward models.
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Without
Transfer

Purely Exploit
ROUGE-Lsum

Purely Exploit
T5-Large

Iter 1 52.3± 1.0 50.4± 1.6 49.9± 0.4
Iter 2 55.2± 1.4 52.3± 0.3 50.1± 0.3
Iter 3 55.3± 1.1 51.8± 0.5 50.3± 0.5

(a) IPO as AlgPO in Alg. 3

Without
Transfer

Purely Exploit
ROUGE-Lsum

Purely Exploit
T5-Large

Iter 1 52.3± 1.1 53.4± 0.8 50.2± 0.3
Iter 2 51.6± 1.3 54.7± 1.6 49.1± 1.3
Iter 3 52.2± 1.6 53.8± 2.9 49.2± 1.1

(b) XPO as AlgPO in Alg. 3

Table 2. Similar to Table 1, we report the win rates (%) of the policies trained by empirical TPO (Alg. 3) competed with 3 baselines,
presented across 3 columns. Baseline (I): without transfer, i.e., iterative-IPO or iterative-XPO. Baseline (II): purely utilizing ROUGE-
LSum (the lowest-quality source task) in transfer learning. Baseline (III): purely utilizing T5-Large (the highest-quality source task) in
transfer learning. Results are averaged with 3 random seeds and 95% confidence levels are reported.
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Figure 2. Deeper investigation on the source reward models selection process. We report the allocation of transfer budgets on each source
tasks averaged over 3 trials (top figure) and the win rates Pr∗(· ≻ πk

OL) (bottom figure) for iterations k = 1, 2, 3. Due to space limit,
we use abbreviation rather than the full name of source tasks. R, B, TB, TL and NT stand for ROUGE-Lsum, BERTScore, T5-Base,
T5-Large and No Transfer, respectively.
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