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ABSTRACT

Diffusion Probabilistic Models (DPMs) achieve impressive performance in visual
generative tasks recently. However, the success of DPMs heavily relies on large
amounts of data and optimization steps, which limits the application of DPMs to
small datasets and limited computational resources. In this paper, we investigate
transfer learning in DPMs to leverage the DPMs pretrained on large-scale datasets
for generation with limited data. Firstly, we show that previous methods like
training from scratch or determining the transferable parts is not suitable for the
DPM due to its U-Net based denoising architecture with the external denoising
timestep input. To address it, we present a condition-based tuning approach to take
full advantages of existing pretrained models. Concretely, we obtain the semantic
embeddings of condition images by the pretrained CLIP model, and then inject
these semantic informations to the pretrained DPM via a “Attention-NonLinear”
(ANL) module. The adaptation to a new task can be achieved by only tuning the
ANL module inserted into the pretrained DPM hierarchically. To further enhance
the diversity of generated images, we introduce a masked sampling strategy based
on the condition mechanism. Extensive experiments validate the effectiveness
and efficiency of our proposed tuning approach in generative task transfer and
data augmentation for semi-supervised learning.
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Figure 1: Generated images by tuning the latent diffusion model Rombach et al. (2022) pretrained on Ima-
geNet Krizhevsky et al. (2012) with our proposed tuning approach (batch size=32). We illustrate the generated
images from iteration 500 to 4000 with the interval of 500 on three datasets: CelebA Liu et al. (2015), Flow-
ers Nilsback & Zisserman (2008) and StanfordCars Krause et al. (2013).
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1 INTRODUCTION

Recently, diffusion probabilistic models (DPMs) (Ho et al., 2020; Song et al., 2020b) have been
demonstrated the increasing power of generating complex and high-quality images by introducing
a hierarchy of denoising autoencoders. DPMs adopt a diffusion process to gradually inject noise
to the data distribution, and then learn the reverse process to generate images by a Markov model.
However, the success of diffusion models heavily depends on huge data and computation costs. For
instance, training DPMs often needs large-scale datasets (e.g., ImageNet (Krizhevsky et al., 2012)),
and takes hundreds of GPU days in extreme cases (e.g., 150-1000 V100 GPU days in (Dhariwal &
Nichol, 2021)). Considering that it is usually hard to collect adequate training data for a specific
domain (Long et al., 2015), we propose to leverage the released powerful DPMs pretrained on large-
scale datasets to facilitate downstream generative tasks.

This transfer learning paradigm is thoroughly investigated on discriminative tasks in many fields like
computer vision (Bengio, 2012; Yosinski et al., 2014; Zamir et al., 2018) and natural language pro-
cessing (Devlin et al., 2018; Mozafari et al., 2019; Peng et al., 2019). For computer vision, Yosinski
et al. (2014) observed that the representations learned by deep convolutional neural networks tran-
sit from general (e.g., Gabor filters and color blobs) to specific, which facilitates the “pretraining
and fine-tuning” learning paradigm. For natural language processing, reusing the pretrained BERT
model achieves impressive performance on multiple downstream tasks (Houlsby et al., 2019).

However, few efforts has been paid to investigate transfer learning in the generative tasks, especially
for the DPMs. (Zhao et al., 2020) is a recent work, which explores the transferability of generative
adversarial networks (GANs). Motivated by the insights from (Yosinski et al., 2014), they proposed
to preserve the low-level layers that capturing properties of generic patterns, and fine-tune the high-
level layers that are associated with the semantic aspects of data. However, the insight of determining
the transferable parts is not suitable for DPMs since DPMs often adopt a U-Net based denoising
architecture with the external denoising timestep input. DPMs generate images by progressively
predicting the statistics of the gaussian noise corresponding to a specific timestep, so it is hard to say
which part learns the general or task-specific representations.

We have also considered other two baselines: training from scratch and tuning the whole pretrained
DPM (“Tuning-All”). Based on empirical observations, we find training from scratch is infeasi-
ble for learning with limited data and optimization steps, and Tuning-All is likely to overfit small
training sets, resulting in slow convergence.

In this work, we present a condition-based tuning approach to achieve fast adaptation from pre-
trained DPMs to new datasets. To make the adaptation procedure efficient, we propose to take
maximum advantages of pretrained models. Firstly, we leverage the vision-text pretrained model
CLIP (Radford et al., 2021) to obtain the embedding of input images. It is worth noticing that the
CLIP embedding is highly associated with the semantic informations of images. To make use of
CLIP embeddings, we consider an “Attention-NonLinear” module (ANL), which injects the exter-
nal conditions (i.e., the CLIP embedding) to each block of the pretrained DPM. The ANL module
consists of a cross-attention and a non-linear mapping module. Note that the ANL module is in-
serted into each block of DPM, fusing the CLIP embedding and adjusting the DPM hierarchically.
Therefore, transferring pretrained DPM to a new dataset can be achieved by fine-tuning the ANL
modules only and freezing the pretrained CLIP model and DPM.

Introducing the trainable ANL modules into pretrained DPMs enjoys the following advantages:
(1) This tuning approach preserves the main structures of pretrained DPMs, but is able to achieve
effective transfer since the ANL module hierarchically adjusts each block of the pretrained DPM.
(2) Compared to training from scratch and tuning the whole DPM, our approach introduces less
trainable parameters and faster adaptation, which is beneficial for learning with limited data and
training resources. (3) Based on the CLIP semantic embeddings, our approach can be extended to
the language modality like simple text-to-image synthesis.

In summary, we have the following contributions:

1. We investigate transfer learning in recent DPMs, and uncover that previous methods like
training from scratch or determining the transferable parts are not efficient. To the best of
our knowledge, we are at the very early attempt to leverage pretrained DPMs for generation
with limited data and training resources.
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2. We present a condition-based tuning approach, that injects the CLIP embeddings to the
pretrained DPM via an “Attention-NonLinear” (ANL) module. Our tuning approach has
less parameters needed to be tuned and converges faster than the baselines.

3. We experimentally show that our tuning approach achieves fast adaptation with few train-
ing data and optimization steps, and outperforms previous generative transfer learning ap-
proaches. Further, we also evaluate the potential of our method in data augmentation for
the data-scarce scenarios like semi-supervised learning.

2 BACKGROUND

Diffusion Probabilistic Models (DPMs). DPMs construct a forward process that gradually adds
noise a data distribution p(x0) and learn to reverse this process for generation. Based on the Markov
forward process with a forward noise schedule βt ∈ (0, 1), t = 1, · · · , T , denoising diffusion prob-
abilistic models (DDPMs) formulate it as:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

where I is the identity matrix. The reverse (generation) process is defined as

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1|µθ(xt, t),Σθ(xt, t)), (2)

where Σθ(xt, t) is often fixed as a constant. The reverse (generation) process can be learned by
optimizing a variational bound on negative log-likelihood:

L = Eq

[
DKL(q(xT |x0)||p(xT )) +

∑
t>1

DKL(q(xt−1|xt,x0)||pθ(xt−1|xt))− log pθ(x0|x1)

]
.

(3)
Let αt = 1 − βt and αt =

∏t
s=1, x(x0, ε) can be reparameterized as

√
αtx0 +

√
1− αtε for

ε ∈ N (0, I). By parameterizing µθ with the predicted noise εθ, we have

LDDPM = Ex,ε∼N (0,I),t
[
||ε− εθ(

√
αtx0 +

√
1− αtε, t)||2

]
. (4)

Recently, Rombach et al. (2022) proposed to perform diffusion models on the latent code of images
rather than the original ones, and named it as latent diffusion models (LDMs). Specifically, LDMs
firstly train an autoencoder to convert the original images to a low-dimensional latent space that is
perceptually equivalent to the original data space. Let E be the encoder that encodes x to a latent
code z, D be the decoder that reconstructs x̂ from the latent code z: x̂ = D(E(x)), we can write the
learning objective of LDMs

LLDM = EE(x),ε∼N (0,I),t
[
||ε− εθ(zt, t)||2

]
. (5)

Since LDMs achieve state-of-the-art performance on image synthesis and are capable for high-
resolution synthesis with less inference costs, we build our method upon the LDM pretrained on the
large-scale dataset ImageNet (Krizhevsky et al., 2017) with the resolution of 256×256. To evaluate
the performance of generative models, we use the Frechet Inception Distance (FID) metric (Heusel
et al., 2017), which estimating the realism and variation of generated images.

3 METHOD

In this section, we elaborate how to train a DPM with limited data. Considering that training a DPM
from scratch usually needs large amounts of data and training resources (Rombach et al., 2022),
we propose to transfer a DPM pretrained on large-scale datasets to a new task with limited samples
from distinct categories and domains. Specifically, given a pretrained DPM, we preserve the main
structures, and inject external semantic conditions via an ”Attention-NonLinear” (ANL) module.
Hence, via this method, the number of parameters that need to be tuned is reduced, alleviating the
overfit issue when learning with limited data. Here, we introduce our tuning approach in detail:
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Figure 2: (Best viewed in color.) An overview of three approaches for task transfer with the U-Net based
diffusion probabilistic model (DPM): (a) random initializing the DPM and learning from scratch, (b) tuning
the whole DPM pretrained on large-scale datasets, (c) the proposed tuning approach, which takes advantages
of pretrained models and only adapts the “Attention-NonLinear” module to achieve fast and effective transfer.
Taking the latent diffusion model pretrained on ImageNet with the resolution of 256×256 as an example: the
number of trainable parameters is 400M for (a) and (b), 169M for (c) our tuning approach.

3.1 CONDITION DPMS WITH CLIP EMBEDDING

Many approaches have been proposed for conditional DPMs like conditioning with a classi-
fier (Nichol & Dhariwal, 2021), conditioning during sampling with a reference image (Choi et al.,
2021), learning a conditional score (Song et al., 2020b) and injecting external conditions during
learning (Rombach et al., 2022; Giannone et al., 2022). The condition mechanism is usually recog-
nized as a technique for conditional generation like class-conditional generation and text-to-image
synthesis. Recently, (Giannone et al., 2022) reveal that conditioning a DPM with rich and expres-
sive information promotes learning. To achieve this, Giannone et al. (2022) introduce an additional
trainable vision transformer for learning the conditional representations. However, both training the
vision transformer and DPM may suffer from overfitting when limited target data are provided. Fol-
lowing the criteria that take full advantages of pretrained models, we propose to directly obtain the
conditional representations by the vision-language pretrained model CLIP (Radford et al., 2021):

c = φ(x), (6)

where φ is a pretrained CLIP model, c is the semantic embedding corresponding to the image input
x. We take the LDMs as an example, the learning objective can be written as:

L := EE(x),ε∼N (0,I),t
[
||ε− εθ(zt, t, c)||2

]
, c = φ(x). (7)

CLIP is a powerful pretrained model that learning directly from 400 million text-image pairs. Com-
pared to (Giannone et al., 2022), our approach shows the following advantages: (1) Using the CLIP
embedding fastens the learning process since we get rid of training an additional embedding net-
work. (2) Thanks to the shared text-image embedding space, we can achieve simple text-to-image
generation even without training with explicit text-image pairs.

3.2 “ATTENTION-NONLINEAR” MODULES FOR EFFECTIVE TUNING

Given the semantic embedding c, we present an “Attention-NonLinear” (ANL) module that injects
the rich semantic information to the pretrained DPM. The ANL module consists a cross-attention
and a non-linear mapping module. In practice, DPMs usually adopt the UNet backbone, in which
residual convolutional blocks are stacked hierarchically. In order to adapt each block of pretrained
UNet, we add the ANL module after each residual convolutional block. Based on this, we present an
efficient and effective tuning approach for transferring pretrained DPMs: tuning the ANL modules
only, and freezing the pretrained residual convolutional blocks. Here, we elaborate each component
of the ANL module by taking the pretrained LDM as an example.

The cross-attention module is used to fuse the intermediate representations of the pretrained LDM
and the semantic embeddings of input images:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, Q = W
(i)
Q · hi(zt), K = W

(i)
K · c, V = W

(i)
V · c,

(8)
where hi(zt) ∈ RN,di is the intermediate representation of i-th residual convolutional block, c ∈
RN,dc is the CLIP embedding of input x and independent of the timestep. W (i)

Q ∈ Rdk,di , W (i)
K ∈

Rdk,dc and W (i)
V ∈ Rdk,dc are the learnable mapping matrices (Vaswani et al., 2017). Recalling that
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we hope to preserve the main structures of pretrained DPMs, and adapt them with tuning a specific
module, we propose a non-linear adapter that mapping the semantic-fused representations to match
the pretrained LDM. Therefore, the ANL module can be written as:

ANL(hi(zt), c) = f(Attention(hi(zt), c)), (9)
where ANL() is the ANL module parameterized by θANL, f is the non-linear mapping module con-
sisting two linear layers and an activation layer, Attention() is the cross-attention module defined in
Eq. (8), fusing the intermediate representation of the pretrained LDM hi(zt) and the semantic CLIP
embedding of the image input c = φ(x). Here, we present our learning objective:

min
θANL

EE(x),ε∼N (0,I),t
[
||ε− εθ(zt, t, c)||2

]
. (10)

To better illustrate the insight of our tuning approach, we discuss three baselines here: (i) training
from scratch, (ii) tuning the whole pretrained DPM, and (iii) determining the transferable part of the
pretrained DPM. Training a DPM from scratch usually needs large amounts of training samples and
takes a long iterative process to converge (Nichol & Dhariwal, 2021). Training a DPM from scratch
usually needs large amounts of data, and fails to generate meaningful images with limited training
samples and optimization steps (Sec. 4.2). Tuning the whole model is able to adapt to a new task,
but still introduces lots of parameters to be trained. The third method takes from (Zhao et al., 2020),
which freezes the transferable part that extracts the general features and fine-tunes the remaining
part that mainly learns the task-specific features to achieve task transfer. However, this paradigm is
infeasible for DPMs. Because the timestep is an external input for DPM, and the output of DPM is
the predicted mean and variance of gaussian noise. Hence, it is not reasonable to indicate which part
is general or task-specific. An overview of baselines (i), (ii) and our approach is illustrated in Fig. 2.

3.3 MASKED SAMPLING AND UNCONDITIONAL SAMPLING

In the sampling stage, our model takes an image as the condition input for conditional generation.
Since the generation process is guided by the CLIP embedding, the generated images may be over-
constrained by the training data. To ensure the diversity of generated images, we present a simple
masked sampling strategy to mask part of the condition image. Concretely, given a mask rate δ ∈
(0, 1) and condition images X ∈ Rbs,ch,he,wi where bs is the batch size, ch is the number of
channels, he and wi are the height and width, respectively, we generate the mask matrix M ∈
Rhe,wi by masking a matrix with all values of 1. It can be easily implemented by identifying the
coordinates of upper left corner (rand(0, (1 − δ)he), rand(0, (1 − δ)wi)) and lower right corner
(δhe+ rand(0, (1− δ)he), δwi+ rand(0, (1− δ)wi)), where rand() is an integer random function.
Then, we can obtain the masked images X ′ by repeating the mask matrix to match the size of
inputs. By forwarding the masked images to the CLIP model, we obtain the perturbed semantic
representations for diverse conditional sampling.

Another extension of our work is unconditional generation. Recalling that the key insight of our
work is the efficient tuning approach based on the ANL module, which can be generalized to the
unconditional generative models. Specifically, we replace the cross-attention module with the self-
attention module since unconditional generative models take no condition input. In other words, we
tune the self-attention layers and non-linear mapping layers to achieve task transfer. By this way, the
semantic encoder (e.g., CLIP) is discarded. Compared to the aforementioned conditional models,
unconditional models take more optimization steps, but show more flexibility since they have no
need of the condition input during sampling.

4 EXPERIMENTS

In this section, we evaluate the proposed techniques in natural image generation and its poten-
tial application on semi-supervised learning. Specifically, following the protocols in (Zhao et al.,
2020), we transfer the latent diffusion model (LDM) pretrained on the large-scale dataset Ima-
geNet (Krizhevsky et al., 2012) to three smaller datasets: CelebA (Liu et al., 2015) (202,599),
Flowers (Nilsback & Zisserman, 2008) (8,189), StanfordCars (Krause et al., 2013) (7,350) and their
variants: CelebA-1k, Flowers-1k, StandfordCars-1k and the extreme scenario with 25 training sam-
ples. (Zhao et al., 2020) also conducts experiments on the Cathedral dataset, which is not released
now. Further, we take our approach as a data augmentation technique, and demonstrate its effective-
ness in semi-supervised learning (StandfordCars (Krause et al., 2013)).
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Table 1: FID scores (↓) of GAN-based and DPM-based approaches after 60k iterations. “failed” indicates
training or mode collapse. “*” means the results are obtained on CelebA-10k rather than CelebA-full.

Method/Target CelebA Flowers Cars CelebA-1k Flowers-1k Cars-1k

TransferGAN 18.69 failed failed - - -
ScratchGAN 16.51 29.65 11.77 20.75 58.18 39.97
(Zhao et al., 2020) 9.90 16.76 10.10 19.77 43.05 35.88

ScratchDiff *46.97 failed failed failed failed failed
Tuning-All *17.88 15.75 13.30 24.60 29.79 29.54
Ours (unconditional) *12.77 12.31 16.89 15.30 22.43 22.76
Ours (conditional) *8.76 9.97 11.15 14.34 21.87 15.70

Table 2: Classification accuracy (%) on StandfordCars with semi-supervised learning evaluation protocols in
the unified benchmark (Jiang et al., 2022).

Label Set/Method ERM Pseudo Label UDA Fixmatch Self Tuning Flexmatch Avg

4 labels per category 37.1 40.4 42.7 44.8 59.8 55.3 46.68
+ augmentation (ours) 40.3 43.0 43.9 46.5 59.6 56.1 48.23

4.1 EVALUATION PROTOCOLS AND IMPLEMENTATION DETAILS

To demonstrate the effectiveness of proposed tuning approach in natural image generation, we com-
pare our approach with three GAN-based baselines: TransferGAN (Wang et al., 2018), Scratch-
GAN, (Zhao et al., 2020), and two DPMs-based baselines: ScratchDiff, Tuning-All. TransferGAN
initializes with the pretrained model (Mescheder et al., 2018) and fine-tunes the whole parameters.
ScratchGAN trains GP-GAN (Mescheder et al., 2018) from scratch. (Zhao et al., 2020) investigates
the transferable parts of pretrained GANs, and fine-tunes them with a further proposed adaptive filter
modulation. As for the DPM-based methods, the insight of ScratchDiff and Tuning-All are similar
to ScratchGAN and TransferGAN, respectively. For implementation, we adopt the latent diffusion
model (LDM) (Rombach et al., 2022) pretrained on ImageNet with the resolution of 256×256. The
hyper-parameters in LDM are retained. To obtain the semantic embeddings of inputs, we use the
pretrained CLIP model (Radford et al., 2021) with ViT-B/32 backbone (Dosovitskiy et al., 2020).
The base learning rate is set to 2.0e-6 and will be scaled up by the batch size and the number of
GPUs. For sampling, we use the DDIM sampler (Song et al., 2020a) with 200 sampling timesteps.
We use 4×RTX 3090 GPUs with a batch size of 8. Due to the fewer training parameters, our method
can also be implemented on a single RTX 2080 Ti GPU with 11GB memory.

To validate the potential applications in data-scarce scenarios, we take the semi-supervised learning
(SSL) as an example, which aims at learning a great recognition model with annotating few training
samples. We randomly sample four labels per category, and then generate additional 10 samples
for each labeled sample. The generated images will be involved into the labeled sample set. We
evaluate it with the empirical risk minimization (ERM) baseline and five state-of-the-art SSL meth-
ods: Pseudo Label (Lee et al., 2013), UDA (Xie et al., 2020), FixMatch (Sohn et al., 2020), Self
Tuning (Wang et al., 2021) and Flexmatch (Zhang et al., 2021).

4.2 QUANTITATIVE RESULTS

Quality of Generated Images. We compare the quality of generated images by different approaches
quantitatively, as measured by the widely used FID score (Heusel et al., 2017). For training with the
full dataset, the FID score is computed w.r.t. the training set, as is standard practice (Ho et al., 2020).
For training with a subset of the dataset, we compute the FID score on the full dataset. From Table 1,
we have the following findings: (1) For the limited training data scenarios, fine-tuning the pretrained
GP-GAN leads to mode collapse, while training the LDM from scratch fails to generate meaningful
images with limited training steps. (2) Tuning the whole pretrained LDM is able to transfer the
learned knowledge to a new task, and is comparable to the previous state-of-the-art (Zhao et al.,
2020) on the limited data scenarios (i.e., CelebA-1k, Flowers-1k and StandfordCars-1k). (3) Our
proposed tuning approach achieves the best FID scores on most cases, significantly outperforms
other DPM-based methods with much less training parameters.
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Figure 3: Images generated by our proposed tuning approach. We illustrate the results on three datasets:
CelebA, Flowers and StandfordCars with different training sample sizes: full, 10k, 1k and 25. In the top three
rows, the condition images come from the training set (i.e., is seen for the model). In the next three rows, the
condition images are unseen for the model. Note that for Flowers-full and StandfordCars-full, all images are
generated by the seen conditions.

Ablation Study. Our conditional model leverages the CLIP embeddings to achieve fast task transfer.
To verify the effectiveness of this technique, we show the performance of unconditional model in
Table 1. We can observe that the unconditional model performs slightly worse than the conditional
ones since it lacks the semantic guidance. However, the unconditional model shows superiority
on flexibility since it has no need of condition input during sampling. This ablation study reveals
that the pre-trained encoder (e.g., CLIP) is not necessary for transferring pre-trained DPMs, but it
can provide a noticeable boost. It is worth noticing that both unconditional and conditional mod-
els perform better than the baseline Tuning-All, demonstrating the efficacy of our proposed tuning
approach.

Tuning DPMs for Data Augmentation. In this part, we empirically demonstrate the potential of
our tuning approach in data augmentation. From Table 2, the augmented samples generated by our
tuning approach improves the classification accuracy on five SSL methods. It is worth noticing
that the augmented samples brings 3.2% and 2.6% improvement on the ERM and Pseudo Label,
respectively. Compared to other SSL methods, the learning strategies of these two methods are
simple, implying the effectiveness of the high-quality generated samples in data augmentation.

4.3 QUALITATIVE RESULTS

Image Synthesis with Different Sample Sizes. In Fig. 3, we show the generated images by our tun-
ing method with different training sample sizes. We can observe that our method effectively transfers
the pretrained DPM to generate with limited data. For CelebA-10k, Flowers-full and StandfordCars-
full, the adapted model is able to generate high-quality images for both seen and unseen conditions.
For small training size (e.g., CelebA-1k), the quality and reality of generated images are still com-
petitive. As for learning with extremely limited data (e.g., 25) and sampling with unseen conditions,
the generated images are slightly blurred, and the model conditioned with different images tends to
generate similar images. This is because that the tuned model inevitably suffers from over-fitting
when training with extremely limited data. However, when generating with seen conditions, our
tuning approach is still effective with extremely limited training data. Another interesting finding
is that the images generated with unseen conditions on CelebA usually focus on the faces and have
blank backgrounds. More generated images are provided in Appendix C.
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Image Synthesis with Few Tuning Steps. To validate the efficiency of our proposed tuning ap-
proach, we show the generated images with different tuning steps from 500 to 4000 with the interval
of 500. From Fig. 1, we can see the coarse-to-fine adaptation process during tuning the pretrained
LDM. In the beginning, our method learns the general outlines and shapes, and then supplements
the details continually. From Fig. 4, we show the comparison between Tuning-All and our approach.
We can find with less trainable parameters, our approach shows faster and better adaptation. It is
worth noting that our tuning approach shows impressive generation quality with very limited iter-
ations, which provides a convincing path for transferring pretrained DPMs to a new dataset with
limited data and training resources.

 (0.5K: 33.83)                   (1K: 45.38)            (1.5K: 34.25)                  (2K: 33.86)            (2.5K: 27.76)                  (3K: 30.26)

  (0.5K: 32.86)                  (1K: 27.47)             (1.5K: 28.27)                   (2K: 22.97)                    (2.5K: 22.74)                    (3K: 21.76)

Tuning A
ll         O

urs

Figure 4: Generated images by Tuning-All and our approach with few tuning steps. To better validate our
approach, the Tuning-All also utilizes the CLIP embeddings here. The first number under the image is the
number of iterations, and the one after it is the FID score.

Simple Text-to-Image Synthesis. Recalling that we leverage the pretrained CLIP model to obtain
the semantic embeddings of condition images, our method can achieve simple text-to-image synthe-
sis since the CLIP embedding space is share by both vision and language modalities. We illustrate
some language-prompted examples on the StandfordCars dataset in Fig. 5. We can observe that our
method is able to generate suitable images w.r.t the given prompt texts like “a red car”, “A black car
driving on the road.” and “There is a white car in front of the house”. However, when given the
prompt texts like “a truck”, “a green car” or “A car driving in the rain.”, the model fails to generate
the corresponding images.

prompt text: a red car prompt text: A black car driving on the road.

prompt text: There is a white car in front of the house. prompt text (failure case): A car driving in the rain.

Figure 5: Illustration of simple text-to-image synthesis on the StandfordCars dataset.

Masked Sampling. We set the mask rate δ = 0.5 (Sec. 3.3) and show the sampling results in
Fig. 6. We can find that masked sampling promote the diversity of generated images when given the
same condition image. Note that the mask rate is a trade-off between quality and diversity. When
increasing the value of mask rate δ, the diversity of generated images will be improved while the
quality will be impaired. We find δ = 0.5 is a great choice for balancing the diversity and quality.
We provide detailed quantitative results in Appendix A.

condition sampled images

Figure 6: The results of diverse sampling.
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5 RELATED WORKS

Transfer Learning and Few-Shot Image Generation. Transfer learning focuses on reusing learned
knowledges from previous tasks for the learning of new tasks (Pan & Yang, 2009). For GAN-
based image generation, TransferGAN (Wang et al., 2018) propose to fine-tune the whole model
pretrained on source domain with limited target data. Zhao et al. (2020) follow the insights of
transfer learning in discriminative tasks, and proposed to freeze the generally-applicable low-level
filters of convolutional neural networks.

Another similar topic is few-shot image generation (Hong et al., 2020; Noguchi & Harada, 2019;
Ojha et al., 2021; Liu et al., 2020). Despite that a few works are proposed, most of them focus on
GANs, and infeasible for DPMs since they share totally different architectures and learning objec-
tives. For DPM-based few-shot image generation, Sinha et al. (2021) uses a learned diffusion-based
prior over the latent representations to improve generation. (Sinha et al., 2021) mainly addresses
minor manipulations like generating faces with the blond hair or adding the beard for a male face.
Recently, a concurrent work (Giannone et al., 2022) propose few-shot diffusion models by intro-
ducing a trainable vision transformer to condition diffusion models. It is worth noticing that (Gian-
none et al., 2022) trains an additional vision transformer and the whole diffusion models, while our
method propose to take full advantages of pretrained models and only tunes the ANL modules.

Diffusion Probabilistic Models. Diffusion probabilistic models (DPMs) have been demonstrated
the effectiveness in high-quality image synthesis (Ho et al., 2020). The DPM is first proposed
by (Sohl-Dickstein et al., 2015) to generate by reversing a diffusion process using a Markov chain
with discrete timesteps. DDPM (Ho et al., 2020) leverages noise prediction networks to parame-
terize the mean of the Markov chain, in which different timesteps share the same parameters. To
improve DDPM, various approaches are proposed from different aspects, such as learning on latent
space (Pandey et al., 2022; Rombach et al., 2022), faster sampling (Song et al., 2020a; Liu et al.,
2022). Song et al. (2020b) propose that the DPM with infinitesimal timesteps can be representation
by stochastic differential equations (SDEs). To improve the score-based diffusion models, Song
et al. (2021) further propose likelihood-based training scheme, and lots of efforts are paid for faster
sampling like designing faster SDEs solvers (Jolicoeur-Martineau et al., 2021; Popov et al., 2021)
or analytically estimate the optimal reverse variance (Bao et al., 2022a;b).

6 LIMITATIONS AND SOCIETAL IMPACT

Limitations. While our proposed tuning approach significantly reduces optimization steps and the
demand for training data, it fails to generate high-quality images with unseen conditions when ex-
tremely limited data (e.g., 25) are provided. Another limitation is that although our approach reduces
the training parameters from 400M (conditional LDM pretrained on ImageNet with the resolution
of 256×256) to 169M, 169M trainable parameters are still a little bit large. The parameters mainly
come from the non-linear mapping module which consists two fully-connected layers and an acti-
vation layer. Further reducing the parameters that need tuning is a direction for future works.

Societal Impact. Our paper presents a general transfer learning approach for DPMs, so it may help
expand any impact that generative models had on the broader world. For natural image generation,
generative models may encounter biased, deliberate synthesis and copyright infringement issues.
Our method enables transferring a pretrained DPM to a specific task using much less data and
computing resources. We hope that our approach can be used to achieve various creative and positive
generations, such as synthesizing early prototypes for artists, or augmenting and extending datasets
for the data-scarce scenarios (Antoniou et al., 2017).

7 DISCUSSIONS

We introduce a new tuning approach for leveraging pretrained DPMs to generate high-quality natu-
ral images with limited training data and optimization steps. The advances in DPMs such as faster
sampling algorithms can be used to further improve our tuned model since our method are orthog-
onal to them. To the best of our knowledge, we are at the very early attempt to investigate transfer
learning in diffusion probabilistic models. We hope our work paves the way for small laboratories
and companies as well as individual researchers to train task-specific generative models.
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A RESULTS OF DIFFERENT MASK RATE

In Sec. 3.3, we propose a simple masked sampling approach for conditional diverse sampling. In-
tuitively speaking, the masked sampling will increase the diversity of generated samples, but hurt
the quality. To verify it, we use the FID score to evaluate the quality, and the Inception Score (IS)
to evaluate the diversity, respectively. The results are shown in Table 3. Since the StandfordCars
is a single-class dataset, the inception score will always keep a small value. From Table 3, we can
find the FID and IS scores increase by enlarging the mask rate, revealing that there exists a trade-off
between the quality and diversity of generated images.

Table 3: The FID and IS scores of the generated images with different mask rate. The evaluated model is
trained on StandfordCars dataset with 4k tuning iterations.

mask rate 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

IS ↑ 3.18 3.14 3.10 3.18 3.25 3.46 3.56 3.87 4.12 4.21
FID ↓ 22.74 23.23 22.96 24.08 25.08 27.28 35.08 44.20 55.86 68.38

B GENERALIZE TO OTHER DPMS

In this paper, we focus on natural image generation with latent diffusion models (LDM). Here,
we provide intuitions for other DPMs like DDPM. Unlike the pre-trained LDM, the pre-trained
DDPM does not contain the ANL module, thus may introduce more optimization steps since the
ANL module will be randomly initialized. However, since LDM inserts the ANL module into
each residual convolutional block of U-Net, it is not convenient to further reduce the number of
layers that needed to be tuned. For DDPM, we suggest to discover a more efficient insert pattern
to further reduce the tuning parameters. Another interesting direction is to extend our method to
other generative tasks like text-to-image generation, text-to-speech synthesis and protein structure
generation. For example, stable diffusion model (Rombach et al., 2022) has achieved impressive
performance on text-to-image generation, and our method can be used to transfer it to a specific
domain.

C ADDITIONAL SAMPLES

In Fig. 3, we have shown some images sampled by different models. Here, we provide more gener-
ated images with different conditions in Fig. 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16. To avoid the pdf
file being too large, we compressed these images to 96 dpi.
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Figure 7: The 256×256 sampled images on CelebA-10k with seen condition images.
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Figure 8: The 256×256 sampled images on CelebA-10k with unseen condition images.
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Figure 9: The 256×256 sampled images on CelebA-1k with seen condition images.
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Figure 10: The 256×256 sampled images on CelebA-1k with unseen condition images.
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Figure 11: The 256×256 sampled images on Flowers-full.
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Figure 12: The 256×256 sampled images on Flowers-1k with seen condition images.
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Figure 13: The 256×256 sampled images on Flowers-1k with unseen condition images.
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Figure 14: The 256×256 sampled images on Cars-full.
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Figure 15: The 256×256 sampled images on Cars-1k with seen condition images.
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Figure 16: The 256×256 sampled images on Cars-1k with unseen condition images.
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