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Abstract

Large pretrained language models offer pow-001
erful generation capabilities, but suffer from002
a lack of interpretability and fine-grained con-003
trol. We propose an approach to fine-grained004
control in generating text directly from a se-005
mantic representation, Abstract Meaning Rep-006
resentation (AMR) by augmenting the nodes007
with syntactic tags. We experiment with008
English-language generation of three modes of009
syntax relevant to the framing of a sentence -010
verb voice (active or passive), verb tense, and011
realization of human entities - and demonstrate012
that they can be reliably controlled. Control-013
ling how information is framed is important014
for applications such as summarization, which015
aim to highlight salient information.016

1 Introduction017

Language models pretrained on enormous corpora018

have become a staple in natural language process-019

ing because of their power and adaptability (Devlin020

et al., 2019; Lewis et al., 2020; Raffel et al., 2020).021

These models exhibit strong performance across a022

range of applications, but lack inherent controllabil-023

ity. To place specific constraints on their output, we024

must modify them in some way, whether by insert-025

ing control codes during pretraining (Keskar et al.,026

2019) or by introducing additional components that027

provide control (Dathathri et al., 2020). Such meth-028

ods allow specification of high-level attributes (e.g.,029

topic or sentiment) but leave the specifics of sub-030

sentential realization to the model.031

In contrast, we investigate the setting in which a032

pretrained language model is used not as an end-to-033

end generator for some task, but rather to directly034

generate text from a predefined content plan. We035

focus on the controllability of BART when it is036

fine-tuned to generate text from an intermediate Ab-037

stract Meaning Representation (AMR) (Banarescu038

et al., 2013), a form of graphical semantic represen-039

tation. We choose AMR because it is a relatively040

widely used semantic representation that already 041

sees use as an intermediate representation in a vari- 042

ety of applications including summarization (Liu 043

et al., 2015) and machine translation (Song et al., 044

2019). Our work is particularly applicable to sum- 045

marization, as document-level graphical represen- 046

tations have been shown to be useful intermedi- 047

ate representations in long-document or multidocu- 048

ment summarization settings, where they capture 049

global context more directly than sequential repre- 050

sentations of long passages (Wu et al., 2021). 051

This setup allows us to make use of the pow- 052

erful generation abilities of a pretrained language 053

model, while also giving us direct access to a graph- 054

ical representation of the content, allowing us to 055

insert tags at specific nodes (i.e., constraining the 056

text-level realization of specific verbs or entities) 057

in order to impose fine-grained control. This is 058

not possible in an end-to-end approach to some 059

tasks, like summarization: although it is possible 060

to generate summaries that are controlled overall 061

for a high-level attribute, there is no way to insert 062

control codes or tags into the input that directly 063

control the realization of individual verbs or enti- 064

ties in the output, as verbs or entities in the input 065

document(s) may appear in different sentences and 066

contexts in the output summary. In cases where we 067

desire such control - for example, in query-focused 068

summarization, or when highlighting important en- 069

tities (Nenkova et al., 2005) - it is useful to have 070

a representation that allows us to specify syntactic 071

aspects at the level of individual verbs or entities. 072

In our experiments, we augment the AMR input 073

to our generator with three modes of syntax: verb 074

voice (i.e., active or passive), verb tense, and syntac- 075

tic realization of human entities (i.e., using names, 076

pronouns, or descriptors). Controlling voice and 077

entities contributes to the model’s ability to use 078

syntax to highlight a specific topic or focus, follow- 079

ing centering theory (Grosz et al., 1995). Given 080

that the input document may convey a different fo- 081
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cus, having the ability to specifically control focus082

for the output summary is important, as there is083

no guarantee that an end-to-end model will learn084

implicitly how to do this. As plain AMR does not085

contain information about tense, which is important086

for maintaining faithful summaries, we additionally087

consider controlling verb tense to avoid generating088

hallucinations about when an event took place.089

We find that finetuning BART to generate from090

AMR augmented with syntax tags makes it largely091

controllable even when evaluated on a test set de-092

signed to have a radically different class distribu-093

tion (e.g., of voice, tense or pronouns) than the094

training set, without any tradeoff as to the fluency095

of the generated output. We further find that train-096

ing the same model with control on multiple syn-097

tactic modes improves performance on voice con-098

trollability, though not on tense. Our experiments099

show that our tagged models are far better at con-100

trolling voice, tense and entity realization than a101

model without tags.102

In summary, our contributions are:103

• A method of labeling relevant AMR nodes104

with each of three modes of fine-grained syn-105

tactic information (verb voice, verb tense, and106

entity realization);107

• Experiments demonstrating controllability in108

pretrained BART models finetuned for gen-109

eration from tag augmented AMR in both in-110

distribution and off-distribution settings;111

• Ablation analyses and experiments on interac-112

tions between modes of syntax demonstrating113

which modes work well together.114

We will make our code available upon publica-115

tion.116

2 Related Work117

Controllable generation. Most prior work on con-118

trollable generation focuses on global attributes119

that apply to the entire output (Hu et al., 2017;120

Shen et al., 2017; Chawla and Yang, 2020), rather121

than fine-grained control of the realization of in-122

dividual units of content, as we do. This includes123

work on controllable generation with pretrained124

language models (Keskar et al., 2019; Dathathri125

et al., 2020).126

Work on controllable summary generation also127

shares this focus on global attributes. Fan et al.128

(2018) trains a convolutional model to generate129

summaries controlled by attribute markers for 130

length, entities to focus upon, domain, and sub- 131

set of the text. He et al. (2020) fine-tunes a BART 132

model to generate output summaries that are con- 133

trolled using keywords or prompts, allowing the 134

model to focus on specific entities or desired infor- 135

mation. This approach addresses a similar prob- 136

lem to our work, but focuses on global rather than 137

fine-grained control, does not necessarily frame 138

a summary around selected relevant content, and 139

is applicable to classic single-document summa- 140

rization, whereas our approach is generalizable to 141

multi-document and long-document settings due to 142

its use of a content selection model 143

Pipelines in surface realization. Elder et al. 144

(2019) demonstrate that a symbolic intermediate 145

representation (based on a dependency graph) is 146

input to a neural generator, this can yield improve- 147

ments on the surface realization task. Castro Fer- 148

reira et al. (2019) find that a pipeline of discrete 149

modules can yield improvements over end-to-end 150

neural models for data-to-text generation. How- 151

ever, Farahnak et al. (2020) find that a pretrained 152

language model (BART) can outperform previous 153

state-of-the-art modular pipelines on surface real- 154

ization. We aim to take the best of both by using 155

BART as our generator, but leaving the choice of 156

content selector free. 157

AMR-to-text generation. There is an active 158

body of work on AMR-to-text generation (Konstas 159

et al., 2017; Wang et al., 2020; Bai et al., 2020; 160

Zhang et al., 2020), but most of this work uses ar- 161

chitectures specialized for the AMR-to-text setting. 162

In contrast, we focus on pretrained language mod- 163

els’ controllability when used in this setting. To 164

our knowledge, the most closely related work to 165

ours is that of Ribeiro et al. (2020), who investigate 166

the use of pretrained language models for multi- 167

ple graph-to-text generation settings, and whose 168

finetuning setup we follow closely. 169

3 Data and Methodology 170

The AMR Bank (Knight et al., 2020) is the largest 171

gold standard corpus for AMR, but it contains only 172

around 60,000 annotated sentences in total, which 173

is not enough data to finetune BART. Thus, in- 174

stead, we use a much larger text corpus which we 175

parse automatically using the published code for 176

the AMR parser of Cai and Lam (2020). As we are 177

interested in summarization as an application, we 178

use the multidocument summarization corpus of 179
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Sentence They had received a call to conduct a background check about 6:15 p.m.

Linearized AMR
(voice tags)

( receive :active :ARG0 ( they ) :ARG1 ( call :ARG0 they :ARG1 ( conduct :active
:ARG0 they :ARG1 ( check :ARG0 they :ARG1 ( background ) ) ) :ARG1 ( rate-
entity-91 :ARG2 ( temporal-quantity :quant 1 :unit ( minute ) ) :ARG4 ( temporal-
quantity :quant 1 :unit ( hour ) ) ) ) )

Table 1: Example linearized AMR with voice tags inserted. The verbs tagged for voice in the second example are
“receive" (active) and “conduct" (active). Tags are bolded for readability.

Gholipour Ghalandari et al. (2020), which consists180

of 10,200 clusters containing on average 235 docu-181

ments each. We refer to this as the reservoir corpus.182

Although we do not use the AMR Bank for finetun-183

ing, we use its proxy subset, which contains news184

documents and summaries, for additional evalua-185

tion.186

Split Sentences Usage

Train 4.38M Held in reserve. (10k
split for analysis.)

Val 581k Finetuning data (500k
train, 80k validation).

Test 543k 10k sampled for test set.

Table 2: Partitioning of the larger reservoir corpus.

Due to constraints on time and processing power,187

we do not use the entire reservoir corpus for fine-188

tuning, but rather finetune our models primarily189

on the reservoir validation set, which contains190

580,787 sentences in total. We split the reservoir191

corpus’ validation set into a training set of 500,000192

sentences and validation set of 80,000 sentences,193

which we use for finetuning. For evaluation, we194

sample 10,000 sentences from the reservoir training195

set to use for model analysis, and sample 10,000196

sentences from the reservoir test set for final per-197

formance numbers. We reserve the remainder of198

the reservoir training set for experiments that re-199

quire filtering out a portion of the data.We give an200

overview of the reservoir corpus’ split sizes and201

partitioning in Table 2.202

3.1 AMR Linearization203

As we use finetuned BART models as our AMR-204

to-text generators, the input we give them must205

be sequential rather than arbitrary directed graphs.206

Thus, following the methodology of Ribeiro et al.207

(2020), we linearize AMR graphs into a modified208

version of PENMAN format (Kasper, 1989) that209

omits identifying handles for each node: for each 210

AMR graph, we start at the root node and perform 211

a depth-first traversal of the graph, adding node 212

and edge labels in order to the linearized sequence, 213

as well as parentheses indicating depth levels (see 214

Table 1). 215

3.2 Syntax labeling 216

We describe the labeling procedure for each of our 217

three modes of syntax in this section. In overview, 218

our process is as follows: (1) extract syntactic la- 219

bels from the raw text using a parser or part-of- 220

speech tagger; (2) use the extracted labels to aug- 221

ment the linearized AMR we use to finetune our 222

AMR-to-text models; (3) extract syntactic labels a 223

second time from our models’ output to evaluate 224

against the original tags. We use spaCy (Honni- 225

bal et al., 2020) for dependency parsing and part- 226

of-speech tagging. When augmenting linearized 227

AMR, we insert syntactic tags as a modifier directly 228

following the relevant node (see Table 1). 229

We provide class distributions for each mode of 230

syntax in Appendix B. We note that the voice and 231

entity classes are highly imbalanced, while tense is 232

relatively more evenly distributed across classes. 233

Voice. To extract passive/active labels from a 234

sentence, we examine the automatically extracted 235

dependency parse for the sentence and individu- 236

ally label each verb as appearing in passive or ac- 237

tive tense by checking whether it has an active 238

subject (i.e., a child whose edge has the depen- 239

dency label nsubj or csubj) or a passive subject 240

(i.e., a child whose edge is labeled nsubjpass or 241

csubjpass). We evaluate the reliability of this 242

method in §6.4. 243

Given these labels, we identify corresponding 244

nodes in the AMR graph by performing exact string 245

matching between the lemmas of each labeled verb 246

and the concept labels of all AMR nodes repre- 247

senting a verb. Verb nodes that are not matched to 248

any labeled verb lemma are not assigned a label. 249

In linearization, the label appears as an additional 250
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modifier after the concept string of the verb: either251

:active or :passive.252

Tense. We use the fine-grained part-of-speech253

tag under the Penn Treebank labeling scheme (Mar-254

cus et al., 1993) as the tense tag for each verb (i.e.,255

one of {VB, VBD, VBG, VBN, VBP, VBZ}). We256

obtain these tags directly from the part-of-speech257

tagger.258

Entity realization. In order to ensure that we259

can reliably distinguish which pronouns refer to260

which entities without introducing the potential for261

additional error from automatic coreference, we262

filter the data in our entity realization experiments263

to consider only sentences that fulfill two require-264

ments. First, there must be at most one person265

node in the AMR. Second, the sentence must con-266

tain at most one of the pronouns {she, he, they} or267

their associated forms (i.e., a sentence containing268

“he" and “himself" would be acceptable; a sentence269

containing “her" and “their" would be discarded).270

We assume that if one of these pronouns271

occurs in such a sentence, it is associated272

with the single person node in the AMR,273

and give that node the appropriate tag among274

:pronoun-{he/she/they}. If the person275

node is named in the AMR, we give it the tag276

:named.277

Otherwise, we assume that the person in question278

is described in some other way, such as by profes-279

sion (e.g. “scientist") or by an action they perform280

(e.g. “visitor"). The description class, however,281

contains not only cases where the entity described282

is a specific reference (i.e., a particular identifiable283

person), but also generic references (i.e., terms de-284

scribing classes of people, such as “visitors to the285

location"). As our focus is on realization of spe-286

cific entities and not generics, we omit the entire287

:desc class from our experiments. This has the288

additional benefit of leaving us with much more289

balanced data, as descriptions made up the majority290

class originally (approximately 80% of all person291

instances). Since this drops a substantial portion292

of our data, in our entity realization experiments,293

we filter out sentences with :desc tags or mul-294

tiple person nodes from the reservoir training set295

until we have an equivalent amount of data to that296

used in the other experiments, giving us an alter-297

nate training and validation set of equal size. To298

obtain our entity test set, we filter out sentences299

with :desc tags or multiple person nodes, as well300

as sentences with no person nodes, until we have301

10,000 sentences. 302

3.3 Finetuning 303

We closely follow the methodology of Ribeiro et al. 304

(2020) for finetuning. We fine-tune a pretrained 305

BART-large model on AMR graph-sentence pairs 306

to produce the sentence text given the linearized 307

AMR graph. Once we have the linearized AMR, we 308

insert our syntactic tags into the AMR as metadata 309

tags for the appropriate nodes, and train a family of 310

models to generate text with each of these types of 311

augmentations. For each mode of syntax, we addi- 312

tionally train a baseline “untagged" model without 313

control tags for comparison. 314

4 Experiments 315

In our experiments, we compare three types of mod- 316

els: first, a baseline BART model finetuned on pure 317

AMR-to-text generation with no control tags; sec- 318

ond, BART models finetuned to produce text from 319

linearized AMR with syntax tags for each mode 320

of syntax individually; and finally, a set of mod- 321

els finetuned with control tags for multiple modes 322

of syntax. For both voice and tense, we report re- 323

sults both on our own test set (10k sentences) as 324

well as the test set of the proxy subset of the AMR 325

Bank (approximately 800 sentences) for compari- 326

son on gold AMR parses; we do not report results 327

on the proxy set for entity, as after filtering out sen- 328

tences with :desc tags and sentences with greater 329

or fewer than one person node, only 16 sentences 330

remained. 331

4.1 Hyperparameter settings 332

We use Fairseq (Ott et al., 2019) for finetuning. 333

Based on preliminary experimental results, we eval- 334

uate all models after four epochs. We train all 335

models using the Adam (Kingma and Ba, 2014) 336

optimizer with a learning rate of 3 × 10−5 and 337

polynomial learning rate decay. (For full hyperpa- 338

rameter settings, see Appendix A.) 339

4.2 Syntactic control 340

To investigate the effect of finetuning with our syn- 341

tax tags, we automatically extract syntactic labels 342

from each verb in the output from each model using 343

our automatic labeling procedure. For each mode 344

of syntax, we measure performance on generation 345

with the corresponding labels as a classification 346

task using macro F1. As person nodes may have 347

both a :named tag and a pronoun tag attached, we 348
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measure entity realization performance on two sep-349

arate tasks: whether our model generated a name or350

not, and whether our model used the right pronoun351

(if it used a pronoun at all). For tense and pronouns,352

we additionally provide breakdowns of F1 per class353

on our test set.354

As we only measure F1 over the set of labeled355

nodes from the original sentence that are repro-356

duced in the generated text, we additionally record357

the percentage of such nodes, i.e. the node re-358

tention, which effectively indicates the proportion359

of labels that are dropped from our evaluation be-360

cause the corresponding nodes are not realized as361

the same lemma in the generated output. Across all362

models for all settings, node retention is upwards363

of .8 on our test set. We thus omit retention from364

our results tables.365

Evaluating directly on the test set measures how366

well our finetuned models can reproduce the de-367

sired syntax in a setting where syntactic labels fol-368

low a similar distribution to the training set, as369

they are both drawn from the same base corpus.370

In order to isolate the effect that using control371

tags gives us, we also report performance in an372

off-distribution setting. For each mode of syntax,373

we create a “flipped" evaluation set by perturbing374

the control tags inserted into the evaluation inputs,375

which directs BART to generate less distribution-376

ally plausible voices. For voice, this simply entails377

flipping between active and passive. For tense, we378

flip between past and present, i.e., VBG and VBN379

are swapped, and VBD is swapped with VBP and380

VBZ. (VB is left unchanged.) For entities, we flip381

as follows: if the node had only a pronoun tag,382

we replace it with a random pronoun tag that dif-383

fers from the original, and with 0.5 probability we384

add a dummy name node (drawn from a list of the385

top 100 most common unisex names in the United386

States1) and a :named tag. If the node originally387

had a :named tag, with 0.5 probability we remove388

it and add a random pronoun tag that differs from389

the one it had, if any.390

4.3 Sentence quality391

To measure fluency, we compute BLEU score (Pa-392

pineni et al., 2002) of the generated text against the393

original sentence. While smatch (Cai and Knight,394

2013) could be used to compare automatic AMR395

parses of the generated text against the input AMR,396

1https://github.com/fivethirtyeight/data/tree/master/unisex-
names

that would also inherently evaluate the AMR parser 397

used, which is not our focus. 398

5 Results 399

Original Proxy
Model F1 Flip F1 Flip

Untagged 0.833 0.048 0.630 0.086
Voice 0.965 0.498 0.909 0.516
v + t 0.957 0.500 0.934 0.546
v + e 0.972 0.463 0.941 0.541

v + t + e 0.965 0.499 0.979 0.581

Table 3: F1 of finetuned BART variants for verb voice,
in original and flipped settings, on our test set and the
proxy test set. Components of combined models are
abbreviated: voice (v), tense (t), entity (e).

5.1 Voice 400

We report performance of each model on the ac- 401

tive/passive reproduction task in Table 3. The 402

‘flipped’ statistics (shown on the right) are on the 403

flipped evaluation set, i.e. with all voice tags 404

flipped, which forces the model to generate against 405

the regular voice distribution. 406

The model finetuned with control tags performs 407

noticeably better than the untagged model on the 408

regular evaluation set, but its controllability truly 409

shows through on the flipped set, where it outper- 410

forms the uncontrolled model by an order of magni- 411

tude. Though there is a sharp drop in performance 412

from the original setting, it still manages to repro- 413

duce a nontrivial proportion of verbs in the speci- 414

fied voice even when the tags are flipped, indicating 415

that it is indeed able to some extent to disregard 416

whatever signal may be present in the raw AMR. 417

We note that, although we naïvely flip all tags in 418

the flipped setting, some verbs actually cannot ap- 419

pear in the passive (e.g., intransitive verbs such 420

as “sleep"), which lowers the maximum possible 421

score. 422

Interestingly, even the untagged model achieves 423

impressive performance on the evaluation set, sug- 424

gesting that the model does receive some signal 425

as to verb voice. We hypothesize that it is pick- 426

ing up on the highly skewed verb distribution (see 427

Appendix B), as the active voice is about an order 428

of magnitude more prevalent in the data than the 429

passive. However, its performance on the flipped 430

evaluation set is trivially far worse, as the untagged 431
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Model Flipping Macro F1 Proxy F1 VB VBD VBG VBN VBP VBZ

Untagged None 0.691 0.448 0.830 0.747 0.687 0.757 0.562 0.564
Tense None 0.979 0.961 0.990 0.981 0.994 0.979 0.949 0.982
v + t None 0.978 0.953 0.988 0.976 0.992 0.974 0.953 0.986

v + t + e None 0.971 0.941 0.986 0.968 0.991 0.967 0.933 0.983
Untagged Flipped 0.185 0.196 0.826 0.114 0.035 0.075 0.006 0.055

Tense Flipped 0.784 0.806 0.986 0.909 0.871 0.830 0.143 0.964
v + t Flipped 0.786 0.899 0.983 0.902 0.859 0.800 0.207 0.966

v + t + e Flipped 0.760 0.736 0.981 0.891 0.818 0.736 0.173 0.959

Table 4: Performance of finetuned BART models for verb tense. F1 is reported on both our test set and the proxy
test set; individual class F1 scores are on our test set.

Model Flipping Name F1 Pronoun F1 she he they

Untagged None 0.399 0.720 0.473 0.782 0.906
Entity None 0.407 0.996 0.993 0.998 0.998
v + e None 0.395 0.995 0.992 0.997 0.996

v + t + e None 0.403 0.999 1.000 0.998 0.998
Untagged Flipped 0.401 0.204 0.083 0.283 0.245

Entity Flipped 0.399 0.980 0.986 0.985 0.970
v + e Flipped 0.426 0.976 0.978 0.988 0.961

v + t + e Flipped 0.433 0.967 0.974 0.975 0.953

Table 5: Performance of finetuned BART models for entity realization. F1 is reported for the binary named - not
named task as well as for the pronoun generation task. Numbers here are only on our test set, as there were only
16 sentences remaining in the proxy set after filtering.

model does not see the control tags at test time and432

produces exactly the same output either way.433

We note that results on the proxy set are slightly434

lower in the original setting, but slightly higher in435

the flipped setting as compared to our original test436

set.437

5.2 Tense438

We report performance on tense in Table 4. We439

have a much more dramatic improvement for tense440

than for voice when comparing the model fine-441

tuned with tags to the model fine-tuned without;442

the untagged model does poorly even on the in-443

distribution evaluation set, whereas the tagged444

model does quite well on both. This may indicate445

that the distinctions between the multiple types446

of verb tense are more difficult for the model to447

learn without supervision than the active/passive448

distinction. One note is that the VBP class seems449

to be more difficult to accurately reproduce than450

the others, perhaps due to its relatively small size451

(approximately 5% of all verbs).452

5.3 Entity realization 453

Finally, we report performance on entity realization 454

in Table 5. Interestingly, it seems that names are 455

quite difficult to learn - our scores simply measure 456

whether the model generated a name or not, regard- 457

less of whether it was the correct name, and even 458

in that case, F1 is quite low. The other interesting 459

observation is that flipping does not seem to have a 460

large effect either on names or on pronouns. 461

In the case of pronouns, this suggests that the 462

model has learned to generalize across the differ- 463

ent types of pronouns quite well - there is not a 464

noticeable difference between performance across 465

pronoun classes, even though there is a moderate 466

imbalance in the distribution. 467

In the case of names, scores for some models ac- 468

tually go up slightly in the flipped setting. This may 469

indicate that the model actually has a tendency to 470

guess something closer to the randomized distribu- 471

tion of name information in the flipped evaluation 472

sets. 473
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Model Syntax mode BLEU

Untagged Voice 0.679
Voice Voice 0.688

Untagged Tense 0.679
Tense Tense 0.703

Untagged Entity 0.670
Entity Entity 0.707

Table 6: BLEU scores for generated outputs from base
tagged and untagged models against original sentences.

5.4 Sentence quality474

We report BLEU scores in the original (not-flipped)475

setting in Table 6. Adding tags in finetuning476

slightly improves BLEU score, suggesting that the477

additional signal is helpful to the model. At min-478

imum, this indicates that we can finetune BART479

to use syntax control tags without having to worry480

about interfering with the content of its generated481

output.482

6 Analysis483

6.1 Syntax interactions484

In order to investigate the interaction between485

the different modes of syntax, we additionally486

train a set of models that incorporate multiple487

types of tags. These are reported in the results488

tables as the “voice+tense", “voice+entity", and489

“voice+tense+entity" models.490

Interestingly, adding tense seems to improve per-491

formance on voice, whereas the converse does not492

hold, while entity realization seems to be an or-493

thogonal task: the “voice+tense" model achieves494

better performance on voice but not on tense in the495

more difficult flipped setting, whereas combining496

entity realization with other types of syntax leads497

to a drop in performance.498

6.2 Qualitative analysis499

We provide examples of generated output with500

voice tags in Table 7. The first example is a fairly501

straightforward case from the original evaluation502

set where the tagged voice model correctly gen-503

erates the main verb (“lead") in the passive voice,504

whereas the untagged model incorrectly guesses505

that it should be active. In cases like these, where a506

verb is generated in an unusual voice, the untagged507

model seems to make its best guess based on what508

voice it usually sees the verb in, whereas the tagged509

model is still able to adjust its output based on the 510

control tag. 511

The second example illustrates a different inter- 512

esting phenomenon that we observed in some cases 513

- here, the input is taken from the flipped evaluation 514

set, and the untagged model generates the voice 515

that would have been correct in the original set- 516

ting (but is incorrect here). In this case, the tagged 517

model correctly generates the main verb (“seen") in 518

the passive tense, but it actually makes a semantic 519

error in doing so, changing the shrine to the object 520

rather than the subject of the seeing. In a sense, the 521

model seems to be overcorrecting for the change in 522

voice. 523

6.3 Structural ablation 524

We have now seen that we can successfully use 525

tagged AMR as input to give us fine-grained con- 526

trollability. However, it is still unclear exactly how 527

much information from the AMR the model is us- 528

ing, or how much it is able to fill in on its own. 529

In order to investigate precisely which parts of the 530

AMR are necessary, we additionally train a series 531

of ablation models for comparison on the voice 532

control task by gradually removing components of 533

the input AMR. 534

We train three ablated AMR-to-text models: a 535

model where we remove relation tags (i.e., edge 536

labels); a model where we remove relations and 537

graph structure (i.e., parentheses); and a model 538

where we remove relations, structure, and the syn- 539

tax control tags themselves. 540

We present results on ablated models alongside 541

the original tagged model in Table 8, and include 542

the ablated models’ content metrics in Table 9. 543

Somewhat surprisingly, our first two ablations (re- 544

moving edge labels and removing parentheses) 545

both yield slight improvements in voice control- 546

lability. However, this comes at the expense of 547

BLEU score, which has a drop of 2 points when 548

edges are removed and a drop of 7 points when both 549

edges and structure are removed, suggesting that re- 550

moving edge and structural information somehow 551

makes it easier for the models to focus on the corre- 552

spondence between tags and syntax in the training 553

data, but at the cost of information about content. 554

6.4 Voice tagging accuracy 555

As our voice labels are derived from automatic de- 556

pendency parses, we check that our tagging method 557

is giving us reasonable labels by evaluating it sepa- 558

rately. We compare the voice tags from our tagging 559
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Generator Example sentence

Input ( lead :passive :ARG0 ( this ) :ARG0 ( chief :ARG0-of ( act :active ) ) :ARG1 ( organiza-
tion :name ( Pentagon ) ) :frequency 3 :time ( history ) )

Untagged This is the third time in history that an acting chief has led the Pentagon.
Voice This is the third time in history that the Pentagon has been led by an acting chief.
Input ( see :passive :ARG0 ( shrine ) :ARG1 ( person :ARG0-of ( visit ) :source ( religion :mod

( all ) ) ) :duration ( multiple :op1 ( temporal-quantity :quant 1 :unit ( century ) ) ) )
Untagged For centuries, the shrine has seen visitors from all religions.
Voice The shrine has been seen by visitors from all religions for centuries.

Table 7: Example inputs and outputs from tagged and untagged models, with correct syntactic realizations in bold
and incorrect underlined. Control tags in the input are italicized; these tags are not present in the version of the
input passed to the untagged model.

Components removed F1 Flipped F1

None (untagged) 0.838 0.047
None (voice tags) 0.953 0.431

Edges 0.964 0.438
Edges + structure 0.964 0.462

Edges + structure + tags 0.796 0.052

Table 8: Performance of full and ablated BART models
on the analysis set for verb voice.

Ablation BLEU

None (untagged) 0.717
None (voice tags) 0.731

Edges 0.713
Edges + structure 0.666

Edges + structure + tags 0.642

Table 9: BLEU scores for base and ablated models on
the analysis set for voice.

method against the gold voice labels from two Uni-560

versal Dependencies treebanks in English (GUM561

and LinEs) and present the results in Table 10. Both562

treebanks present a similar active/passive skew to563

our data. On both treebanks, performance on the564

majority active class is very high, whereas perfor-565

mance on passive verbs differs between the two:566

on GUM, our tagging method still picks up pas-567

sive verbs quite well, whereas on LinEs, recall on568

the passive class is much lower. Given the GUM569

results, in our experiments, we assume that our tag-570

ging method is reliable enough to use as gold stan-571

dard, but in future research, further work on picking572

up the missing passive instances from LinEs-like573

sentences may thus prove valuable.574

Treebank True voice Prec. Recall F1

GUM Passive 0.982 0.885 0.931
GUM Active 0.993 0.936 0.964
LinEs Passive 0.937 0.468 0.625
LinEs Active 0.941 0.918 0.930

Table 10: Our automatic voice tagging on the develop-
ment sets of Universal Dependencies treebanks. Preci-
sion, recall and F1 are evaluated against gold labels.

7 Conclusion and future directions 575

In this paper, we have investigated the controlla- 576

bility of three modes of syntax - verb voice, verb 577

tense, and syntactic entity realization - when gen- 578

erating from augmented AMR inputs with BART. 579

We find that all three modes of syntax can be more 580

reliably reproduced when the model is given these 581

augmentations, yielding more accurate and more 582

faithful outputs. We find that even when we arti- 583

ficially engineer the distribution of tags to be as 584

far from training as possible, the models with tags 585

still far outperform the model without, with no 586

drop in fluency. Ultimately, using a content plan 587

augmented with syntactic tags allows us to control 588

syntactic realization at a fine-grained level in the 589

output. This is particularly useful in tasks such as 590

summarization, where there is no one-to-one map- 591

ping between input and output content, and thus no 592

appropriate place to insert fine-grained tags in the 593

original input. 594

A natural future direction for this research would 595

be an expansion of the setting from individual sen- 596

tence AMRs to a collection of AMRs forming a 597

contiguous passage or document, as is the ultimate 598

goal of this work. 599
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A Finetuning details807

In our experiments, we use Fairseq to finetune from808

a pretrained bart-large model for four epochs using809

Adam; we use a learning rate of 3e-05, dropout of810

0.1, and polynomial learning rate decay with 500811

warmup updates and 2,000,000 total updates.812

B Data Imbalance813

Mode Classes

Voice
Active (0.926)
Passive (0.074)

Tense

VB (0.216)
VBD (0.259)
VBG (0.165)
VBN (0.230)
VBP (0.053)
VBZ (0.078)

Entity

desc (0.770)
named (0.109)
pronoun-she (0.010)
pronoun-he (0.041)
pronoun-they (0.070)

Table 11: Class distributions for each syntax mode.
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