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ABSTRACT

Large Language Models (LLM) generate text they’ve memorized during train-
ing, which can raise privacy and copyright concerns. For example, in a recent
lawsuit from the New York Times against OpenAI, it was argued that GPT-4’s
verbatim memorization of NYT articles violated copyright laws The New York
Times Company (2023). Current production systems moderate content through a
combination of small text classifiers or string processing algorithms, which can
have generalization failures. In this work, we show that the internal computa-
tions of a model provide an effective signal for memorization. Probes trained to
detect LLM regurgitation of memorized training data are more sample-efficient,
parameter-efficient, and generalize better than text classifiers. We package this
into a rejection-sampling based filtering mechanism that can effectively mitigate
memorized completions.

1 INTRODUCTION

Transformer-based Large Language Models (LLMs) memorize samples from their training corpus,
which can leak private information or violate intellectual property rights. Currently, deployed sys-
tems use a combination of smaller LMs and deterministic algorithms to filter generations (OpenAI
et al., 2023).

Recent literature has shown that model-internals based methods can effectively predict many dif-
ferent, nuanced characteristics of model outputs (Gurnee & Tegmark, 2023; Todd et al., 2023). We
hypothesize that there exist distinct mechanisms for outputting memorized text. In the context of
memorization, we argue that the model’s internal activations might contain more useful information
than the text alone. If textual features were sufficient, we might expect that larger models would
memorize a superset of what smaller models in the same family memorize. However, this is not
the case, indicating that non-textual factors in individual training processes or architectures affect
memorization (Figure 1).

This paper takes the perspective of how to deploy a model internals based filtering mechanism to
prevent unwanted behaviors, such as verbatim generation of copyrighted training data or private
information. While other work focuses on training models with guarantees on memorization or
copyright Vyas et al. (2023), we focus on the narrower and more empirical setting of preventing
memorized completions from a pretrained model. We show that memorization is affected by factors
other than the text itself and verify this by training probes off of the layer activations that beat much
larger classifiers. We then structure these probes into an effective token-level rejection sampling
algorithm to prevent memorized completions.

2 RELATED WORK

Prior work has focused on formal methods for copyright prevention, but which require the training
or adaptation of a model Vyas et al. (2023). In this work, we focus on post-deployment filtering
which primarily has been approached from the angle of text classifiers Inan et al. (2023); Markov
et al. (2023)and hashing classifiers Mazeika et al. (2024).
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Other approaches have been tried for similar problems. For example, there is the related field of
membership inference attacks (MIA). They operate in the different setting of detecting data that
was trained on versus not trained on, while we focus on memorization where our negatives are also
from training data. The work on language models is mixed, most methods score near chance Duan
et al. (2024) and white-box methods are expensive, requiring gradient or neighborhood calculations
Mattern et al. (2023).

3 METHOD

Figure 1: (a) Intersections between the samples that different Pythia models memorize. (b) Diagram
of our filtering method on problematic inputs.

Memorization. We follow Carlini et al. (2021) and Biderman et al. (2023a) in constructing our
datasets using the k-extractability memorization score: the percentage of ordered matching tokens
between the model’s generation and the sample’s true continuation after prompting the model with
k-prior tokens. Here, we say a string s is memorized if its memorization score is 1 and unmemorized
if its score is less than 10%.

Datasets and Models. We analyze the Pythia suite of models as their training data is publically
available and Biderman et al. (2023a) have compiled a dataset of memorized training samples for
all models across the Pythia family. Our probe and classifier training dataset consists of 6k 64-token
samples, where positive labels are sampled from Pythia-Memorized-Evals and negative labels are
sampled from the Pile Gao et al. (2020). Memorization score is generated using k = 32. We focus
most experimental results on the largest model we consider: Pythia-12b.

Probes. Probes are tools used to understand the internal representations of models, which typically
take the form of linear classifiers (Alain & Bengio, 2018). Here, we use standard Logistic Regression
an inverse regularization strength of 10−5.

Text Classifiers. As a baseline, we use both a small model (Pythia-70m Biderman et al. (2023b))
and a large model (LLaMA-2-7b Touvron et al. (2023)) for the text classifiers. We report the best
accuracy after a grid search for hyperparameters which are provided in Appendix A.

Generalization Datasets. We expect an internals-based method to perform better than an output-
based approach on unseen distributions of memorized text. We construct several generalization
datasets to test this empirically.

1. Fuzzy Positives: Besides verbatim memorization, we might still care about almost verba-
tim memorization. For example, the NYT evidence features many cases of non-verbatim
memorization. We take fuzzy positives to be the samples from Pythia-Memorized Evals
that have a memorization score between 0.9 and 1, exclusive.
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2. Prefix: We append prefixes of varying lengths from 8 to 128 tokens from the Pile to simu-
late deployment scenarios with previous text in the context.

3. Quotes: We scrape quotes from historic figures and create a dataset based on which ones
the model has memorized.

4. Private Information: We scrape emails from Pythia-Memorized-Evals. Note that these
samples consist of just the email alone and not any surrounding context, making this gen-
eralization dataset especially challenging.

5. Copyrighted Text: We find song lyrics and passages from books that the model has mem-
orized, using the literature-openings dataset from Zou et al. (2023) as a starting point.

4 EXPERIMENTS

Initial exploratory analysis reveals that PCA can separate unmemorized samples from memorized
samples and that different kinds of memorized text roughly cluster together (Figure 2). Since these
concepts can be linearly separated in an unsupervised way, we take this as suggestive evidence of
different memorization mechanisms in Pythia-12b. We frame most of our following experiments
from the perspective of deployment-level considerations.

To determine which layers and token indices to train our probes on, we do a sweep, which is shown
in the figure below:

Figure 2: Probe Accuracy in Pythia 12b after sweeping over layers and token indices

4.1 CLASSIFIERS

Table 1: Pythia suite

Probe Acc
410M 92.08
1.4B 94.50
2.8B 94.90
6.9B 95.45
12B 94.52

First, we show that probes beat text classifiers on our in-distribution
dataset of samples from Pythia-Memorized-Evals and the Pile. Our
training dataset for our probes consists of activations at layer 34
(picked based off of validation set accuracy) at 5 different token
positions (split equidistant in the final 32 generated tokens at each
sample). Since each sample generates 5 training data points for our
probe, our training dataset for our text classifiers consists of the re-
striction of each sample to those token lengths. We use a 60/10/30
train/validation/test split for experiments. We find that probing
reliably outperforms text classifiers in-distribution with orders-of-
magnitude fewer parameters (Table 2). In Table 1, we verify that
probing continues to work for different sized models in the Pythia suite.

4.2 GENERALIZATION

In practice, the deployment distribution may be different from the train distribution. For example,
there may be irrelevant text in the context (prefix), users may try to ‘jailbreak’ the filtering system by
asking for close-to-verbatim memorization (fuzzy positive), or there may simply be different kinds
of memorization than what was originally trained on (quotes, emails, lyrics, books). Results on these
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Table 2: Probes vs. Classifiers

Acc AUC # Params
Probe 94.52 97.90 5k

Pythia-70M 88.21 92.67 70M
LLaMA-2-7B 91.67 94.13 6.6B

Figure 3: Left: PCA on activations. Labels for memorized text are generated using GPT-4. Right:
Probe and text classifier classification result on our datasest of memorized and unmemorized sam-
ples, with a comparison in parameter count.

5 generalization datasets are shown in Table 3. Again, we find that our probe-based classifier outper-
forms the text classifier baseline. Note again that since the emails dataset just consists of individual
emails from the Pile, taken out of the longer context that was used to verify their memorization by
Pythia-12b, it’s surprising that the probes do better than chance at all.

Table 3: Generalization results (Accuracy)

Fuzzy Positive Prefix Quotes Emails Lyrics/Books
Probe 81.3% 81.7% 78.9% 59.8% 80.0%

Pythia-70M 66.4% 72.4% 46.9% 49.4% 46.4%
LLaMA-2-7B 70.6% 70.6% 70.0% 44.4% 51.9%

4.3 SAMPLE EFFICENCY

In Figure 4, we find that probes are more sample efficient than finetuned LLMs. This is especially
important in the deployment setting where there will be new inputs that are flagged by users, and
we’d like to catch that entire class of inputs in the future. We perform normal training as before on
the 6k samples from the Pythia-12b dataset, but restrict the size of the training dataset substantially
to show sample efficiency.

Figure 4: Sample efficiency of the probe vs the text classifier
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4.4 REJECTION SAMPLING

Given a high accuracy classifier, we can either simply block all entries that trigger the classifier
and ask the user to try again or we can generate responses don’t trigger the classifier. Performance
on the former is characterized by accuracy, but for the latter there are other considerations such as
quality. We implement a simple token-level rejection sampling algorithm to turn our classifier into
a filtering system. We take a distribution of fully memorized text, so the baseline failure rate is
100%. We probe at intervals i of 3, 5, 7, 9, or 32 tokens after the model begins generating. We
choose these token separations for breadth. If the generation triggers the probe, we blacklist that
sequence of length i and generate again. We also track the quality of the final generated text as
measured by perplexity from a different model (Llama-2-7b) (Touvron et al., 2023). We check our
final generations for failure based on Levenshtein distance ≥ 0.9. We find a trade-off between final
perplexity of our generated text and the percentage that is memorized under our sampling algorithm
that is modulated through the interval i.

Table 4: Rejection Sampling Results

No filtering i = 3 i = 5 i = 7 i = 9 i = 32
Perplexity 4.89 12.12 11.64 9.88 9.17 6.44

Failure Rate 100% 1.7% 3.4% 0% 1.7% 30.0%

5 LIMITATIONS AND FUTURE WORK

In this paper, we make progress towards creating internals based approaches to model control strate-
gies in the context of memorization. However, there are both limitations and areas for exciting future
work.

First, any work focused on a model’s representations of certain concepts benefits from causal anal-
ysis. Exciting future work would consist of figuring out whether these probe directions are causally
used by the model during inference. Additionally, we’d be excited to see expanding our scope of
analysis outside the Pythia suite and using different probing methodologies. In terms of targeting
the real-world harms of memorization—copyright infringement and leakage of private informa-
tion—our paper would do well to make those scenarios more realistic. In a real deployment setting,
it would also be critical to analyze the false positive rate of the classifiers on a diverse range of
expected text.
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A APPENDIX

A.1 CLASSIFIER HYPERPARAMETERS
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Figure 5: Grid search for optimal lr and batch size for Pythia-70M
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