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Abstract

Pairwise comparison of graphs is key to many applications in Machine Learning ranging
from clustering, kernel-based classification/regression and more recently supervised graph
prediction. Distances between graphs usually rely on informative representations of these
structured objects such as bag of substructures or other graph embeddings. A recently popu-
lar solution consists in representing graphs as metric measure spaces, allowing to successfully
leverage Optimal Transport, which provides meaningful distances allowing to compare them,
namely the Gromov-Wasserstein distance and its variant the Fused Gromov-Wasserstein
that applies on node attributed graphs. However, this family of distances overlooks edge
attributes, which are essential for many structured objects. In this work, we introduce
an extension of the Fused Gromov-Wasserstein distance for comparing graphs whose both
nodes and edges have features. We propose novel algorithms for distance and barycenter
computation. We present a range of studies that illustrate the properties of the proposed
distance and empirically demonstrate its effectiveness in supervised graph prediction tasks.

1 Introduction

Optimal Transport (OT) (Villani, 2009) has witnessed a growing attention in Machine Learning wherein
it has become a key tool to compare probability distributions (Shen et al., 2018). In particular, optimal
transport distances exhibit properties, such as their ability to take into account, via ground metrics, the
geometry of the sample space and their differentiability, that make them especially suitable as loss functions
(see for instance Wasserstein Auto-encoders (Tolstikhin et al., 2018) or Wasserstein Generative Adversar-
ial Neural Networks (Arjovsky et al., 2017)). Particularly of interest here are novel insights that recent
works have brought on graph-based learning, benefiting a series of tasks, e.g. graph classification (Vayer
et al., 2019), graph matching (Xu et al., 2019), dictionary learning (Vincent-Cuaz et al., 2021) or supervised
graph prediction (Brogat-Motte et al., 2022). Based on the representation of a graph as a metric measure
space, where the nodes of the graph are considered as the support of the probability measure, OT provides
a natural way to compute a meaningful distance between graphs, such as the Gromov-Wasserstein (GW)
distance (Mémoli, 2011; Sturm, 2012). The asymmetric structure of directed graphs has led to the general-
ization of GW via the Network Gromov-Wasserstein (NGW) distance (Chowdhury & Mémoli, 2019) while
the Fused Gromov-Wasserstein (FGW) distance (Vayer et al., 2019) was proposed to extend GW to node-
labeled graphs. Recently, Barbe et al. (2021) proposed the Diffused Gromov Wasserstein (DFGW) distance
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Figure 1: Different types of graphs represented by the GW-based distances

to smooth the node features along the graph structure through a heat diffusion operator which uses the
Laplacian kernel. Overall, this new class of distances enjoys useful metric and geodesic properties, allowing
for example to derive the minimum path between two structured objects (Sturm, 2012; Vayer et al., 2020).

On the other hand, many machine learning applications require dealing with graphs with complex edge
features, such as abstract meaning representation (AMR) (Banarescu et al., 2013) in natural language pro-
cessing, scene graphs (J. Johnson et al., 2015) in computer vision, or molecules in chemistry (Irwin et al.,
2012; Dührkop et al., 2015). For instance, when considering molecule identification tasks, leveraging the
Fused Gomov-Wasserstein distance as a loss does not allow to reach the same level of performance than
a kernel that considers more complex molecule representations. Dynamic graphs may also require more
sophisticated modeling, as they use temporal edge features which continuously evolve over time (Kazemi
et al., 2020). There have been several attempts in the literature to obtain meaningful graph representations
by including edge features: the two dominant solutions are to use graph kernels and Graph Neural Networks
(GNNs). Among graph kernels, the Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) (Costa &
Grave, 2010) takes edge labels into consideration to build graph-invariant encodings of subgraphs while more
involved graph kernels leverage bags of subgraphs (Grenier et al., 2015). The GNNs belonging to the Message
Passing Neural Networks (MPNNs) framework (Simonovsky & Komodakis, 2017; Gilmer et al., 2017; Fey
et al., 2018; Corso et al., 2020) may incorporate directly edge features via their aggregation procedure. Some
attention-based variants (Veličković et al., 2018; Shi et al., 2021; Brody et al., 2022) leverage edge features
to compute the attention weights.

Building on recent computational and theoretical results on GW distances, this paper proposes to represent
the edge features of a graph by equipping the original measure space with an additional binary function
whose codomain falls in a metric space. This generalization allows us to flexibly include edge features
into the computation of a novel fused GW distance while keeping its desirable topological properties. As a
consequence, barycenters of edge and node featured graphs can also be computed. These new tools especially
unlocks more accurate graph modeling for a wide array of tasks. In this work, we first propose to check
the relevance of the novel FNGW distance in distance-based learning where, for example, the distance is
used to define a kernel in the input space to solve graph classification tasks. We then target supervised
graph prediction applications where the FNGW distance is used as a loss function and the predictive model
provides a prediction under the form of a FNGW barycenter.

Summary of contributions:

• We propose a new OT-based distance (FNGW), which is a generalization of both the Network Gromov-
Wasserstein Distance and the Fused Gromov-Wasserstein Distance to edge-featured graphs.

• We derive an algorithm for the computation of the FNGW distance in the discrete case, along with
procedures for barycenter computation, unlocking supervised edge-featured graph prediction.

• We present extensive experiments on node and edge featured graph classification tasks that showcase the
relevance of the FNGW distance as a means for input graph comparison.

• We tackle supervised prediction of graphs where the loss function is the FNGW distance. On this task,
we consider two real-world problems with and without candidate test sets and extend a method based
on graph barycenters, by scaling it to large datasets. We observe a significant increase in performance
compared to the use of FGW distance.
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Notations: For two probability measures µ ∈ Prob(X0), ν ∈ Prob(X1) where X0 and X1 are both polish
spaces, we note Π(µ, ν) the set of all couplings of µ and ν, i.e., the set of probability measures π on the
product space X0 ×X1 satisfying π(A0, X1) = µ(A0) and π(X0, A1) = ν(A1) for all A0 ∈ B(X0), A1 ∈ B(X1)
where B(·) denotes the Borel σ-algebra. Σn = {h ∈ (R+)n |

∑n
i=1 hi = 1} is the simplex histogram with n

bins. In the case where both µ and ν are discrete, i.e. we can write µ =
∑n

i=1 aiδx0
i

and ν =
∑m

j=1 bjδx1
j

with
a ∈ Σn and b ∈ Σm, we note Π(a, b) the set of matrices π ∈ Rn×m satisfying

∑
i πi,j = bj and

∑
j πi,j = ai

despite the abuse of the notation. Here δ denotes the Dirac measure. We use # to denote the pushforward
operator on measures. We note ×n the n-mode tensor-matrix product. Given a tensor X ∈ RI1×I2···×IN

and a matrix A ∈ RJ×In , X ×n A gives a tensor of shape I1 × · · · × In−1 × J × In+1 × · · · × IN where
(X ×n A)(i1, · · · , in−1, j, in+1, · · · , iN ) =

∑In

in=1 X(i1, · · · , in, · · · , iN )A(j, in). We note IN×M a tensor of
shape N × N × M with IN×M (n1, n2,m) = δ̂n1n2 where δ̂ is the Kronecker delta function. A† denotes the
Moore-Penrose pseudoinverse of a matrix A.

2 Fused Network Gromov-Wasserstein Distance and Barycenter

In this section, we first give the discrete definition of the Fused Network Gromov-Wasserstein Distance,
designed for the representation of edge-featured graphs. We present our method for computing the distance,
along with its constraints. We also introduce a general form of our distance. We end with an algorithm for
computing a FNGW-based barycenter. Proofs of propositions and theorems are given in Appendix A.

2.1 Fused Network Gromov-Wasserstein Distance and Computation

Along the paper, we use the following definition for describing a node and edge featured graph.
Definition 2.1 (Node and Edge Featured Graph). A node and edge featured graph is a quadruple of the
form (F,A,E,p) where F ∈ Ψm is a tuple of points valued in a metric space (Ψ, dΨ), A ∈ Rm×m is a
real-valued matrix, E ∈ Ωm×m is a tuple of points valued in a metric space (Ω, dΩ) and p ∈ Σm is a simplex
histogram. We denote G as a set of such quadruples.

We illustrate this definition with the following example.
Example 2.2 (Node and Edge Featured Graph). Consider the graph (a) in Figure 1 as an illustration. Here,
the space Ψ = {red, yellow} can be chosen to be the node-color space, while Ω = {solid,dashed,non-edge}
can be designated as the edge-type space. The elements in both spaces are encoded using a one-hot encoding
scheme equipped with Euclidean distance dΨ and dΩ. Consequently, we can represent the graph with:

F =

[1, 0]
[1, 0]
[0, 1]

 , E =

[0, 0, 1] [0, 1, 0] [1, 0, 0]
[0, 1, 0] [0, 0, 1] [0, 0, 1]
[1, 0, 0] [0, 0, 1] [0, 0, 1]

 , A =

0 1 1
1 0 0
1 0 0

 , p =

1/3
1/3
1/3


where F (i) ∈ R2 represents the color type of the node i, E(i, j) ∈ R3 denotes the edge type between nodes i
and j, A represents the shortest path matrix of the graph and p represents the uniform weights on the nodes.
Graph (c) in Figure 1 is another example where edge features are vector-valued, giving Ω = R2, where the
first dimension indicates the length of the edge and the second dimension indicates its width.

Now, relying on the Definition 2.1, we introduce the Fused Network Gromov-Wasserstein (FNGW) distance
dedicated to the comparison of node and edge featured graphs 1.
Definition 2.3 (FNGW Distance, Discrete Case). Given g = (F,A,E,p) of size m, g̃ = (F̃ , Ã, Ẽ, p̃) of size
m̃ corresponding to two tuples of G, and trade-off parameters (α, β) ∈ [0, 1]2, the Fused Network Gromov-
Wasserstein distance between them for (p, q) ∈ [1,∞] is written as :

FNGWα,β,q,p(g, g̃) = min
π∈Π(p,p̃)

Eα,β,q,p((F,A,E), (F̃ , Ã, Ẽ), π) (1)

1A very recent paper (Kawano et al., 2024) introduced a similar notion under the name of Multidimensional Fused Gromov-
Wasserstein discrepancy.
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with

Eα,β,q,p((F,A,E), (F̃ , Ã, Ẽ), π) =
( ∑

i,j,k,l

[
αdΩ

(
E(i, k), Ẽ(j, l)

)q + β|A(i, k) − Ã(j, l)|q

+ (1 − α− β)dΨ
(
F (i), F̃ (j)

)q
]p

πk,lπi,j

) 1
p

(2)

Example 2.4 (FNGW Distance). By using the graph representation procedure described in Example 2.2,
the FNGW distance between the graph (a) and the graph (b) illustrated in Figure 1 is 0.296 when α = 1

3 ,
β = 1

3 , p = 1 and q = 2, while the FGW distance between them is 0.

Computing the FNGW Distance: Let us first examine the computational complexity of our distance in
this discrete case. We define the 4-dimensional tensors J(A, Ã) and L(E, Ẽ) as follows:

Ji,j,k,l(A, Ã) = |A(i, k) − Ã(j, l)|q Li,j,k,l(E, Ẽ) = dΩ
(
E(i, k), Ẽ(j, l)

)q (3)

and the cost matrix M(F, F̃ ):
Mi,j(F, F̃ ) = dΨ

(
F (i), F̃ (j)

)q (4)

Choosing p = 1, we can rewrite

Eα,β,q,p = ⟨(1 − α− β)M(F, F̃ ) + βJ(A, Ã) ⊗ π + αL(E, Ẽ) ⊗ π, π⟩ (5)

Here, ⊗ operator gives a matrix of the form (J ⊗ π)i,j =
∑

k,l Ji,j,k,lπk,l. Following Peyré et al. (2016), the
term J(A, Ã) ⊗ π can be computed efficiently when q = 2. The computation of L(E, Ẽ) ⊗ π is similarly
non-trivial, requiring O(m2m̃2T ) operations, where T is the number of operations necessary to compute
the distance dΩ(E(i, k), Ẽ(j, l)). However, by choosing again an appropriate metric space (Ω, dΩ) and q, its
complexity can be reduced via the application of the tensor-matrix multiplication trick from Proposition 1
of Peyré et al. (2016).
Proposition 2.5. When Ω = RT with its associated metric dΩ(a, b) = ∥a − b∥RT and q = 2, the term
L(E, Ẽ) ⊗ π becomes

L(E, Ẽ) ⊗ π = g(E)p1T
m̃ + 1mp̃Th(Ẽ)T − 2

T∑
t=1

E[t]πẼ[t]T (6)

where g : Rm×m×T → Rm×m is expressed as g(E)i,j = ∥E(i, j)∥2
RT , h : Rm̃×m̃×T → Rm̃×m̃ is expressed as by

h(Ẽ)i,j = ∥Ẽ(i, j)∥2
RT and the matrix E[t](i, j) = E(i, j, t) for any i, j, t. It can hence be computed with the

complexity O(m2m̃T +mm̃2T ).

Hence, with a focus on computational efficiency, we have elected to operate within the metric space
Ω defined in Proposition 2.5, with p = 1, q = 2, for the applications to graphs targeted in this
work. In practice, calculating the FNGW distance amounts to solving a non-convex constrained quadratic
optimization problem. Following Vayer et al. (2019), we use the Conditional Gradient Descent (CGD) (i.e,
the Frank-Wolfe algorithm). The complete algorithm is given in Algorithm 1, with the gradient with respect
to the transport plan π(k−1) having the following form:

G = (1 − α− β)M(F, F̃ ) + 2βJ(A, Ã) ⊗ π(k−1) + 2αL(E, Ẽ) ⊗ π(k−1) (7)

General form: We now introduce the general definition of the FNGW distance, which extends both the
NGW-distance (Chowdhury & Mémoli, 2019) and the FGW-distance (Vayer et al., 2020). We propose
experiments illustrating this generalization in Appendix D.3 and Appendix D.4.
Definition 2.6 (FNGW Distance, General Form). Let G be the set of tuples of the form (X,ψX , φX , ωX , µX)
where X is a polish space, ψX : X → Ψ is a bounded continuous measurable function from X to a metric
space (Ψ, dΨ) , φX : X × X → R is a bounded continuous measurable function, ωX : X × X → Ω is a
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Algorithm 1 Computation of the FNGW Distance by CGD
input: g = (F,A,E,p), g̃ = (F̃ , Ã, Ẽ, p̃) and trade-off parameters (α, β)
init: π(0) = pp̃T ∈ Rm×m̃

for k = 1, . . . ,K do
Calculate gradient: G = ∇π(k−1)Eα,β((F,A,E), (F̃ , Ã, Ẽ), π(k−1))
Solve the optimization problem with an OT solver: π̃(k−1) ∈ arg minπ̃∈Π(p,p̃)⟨G, π̃⟩
Update the optimal plan: π(k) = (1 − γ(k))π(k−1) + γ(k)π̃(k−1) with γ(k) ∈ (0, 1) given by line-search

algorithm (See details in Appendix B).
end for
Calculate the distance: FNGWα,β(g, g̃) = Eα,β((F,A,E), (F̃ , Ã, Ẽ), π(K))
output: FNGWα,β(g, g̃) and π(K)

bounded continuous measurable function from X2 to a metric space (Ω, dΩ) and µX is a fully supported
Borel probability measure. Given two tuples gX = (X,ψX , φX , ωX , µX), gY = (Y, ψY , φY , ωY , µY ) from G
and trade-off parameters (α, β) ∈ [0, 1]2, the Fused Network Gromov-Wasserstein Distance between gX and
gY is defined for any (p, q) ∈ [1,∞] as follows:

FNGWα,β,q,p(gX , gY ) = min
µ∈Π(µX ,µY )

Eα,β,q,p(gX , gY , µ) (8)

with

Eα,β,q,p(gX , gY , µ) =
(∫

X×Y

∫
X×Y

[(1 − α− β)dΨ (ψX(x), ψY (y))q

+αdΩ(ωX(x, x′), ωY (y, y′))q + β|φX(x, x′) − φY (y, y′)|q]pdµ(x, y)dµ(x′, y′)
) 1

p

(9)

The particular form of the FNGW distance in Def. 2.3 aligns with the scenario in which we assume that X is
a finite set of size m and µX =

∑m
i piδxi . As a consequence, F is the result of evaluation of ψX on every point

of X, while A and E are outcomes of evaluating φX and ωX on every pair of points in X2. Note that φ are
not necessarily symmetric functions, which corresponds to the setting of the NGW (Chowdhury & Mémoli,
2019), as opposed to the GW distance. We do not impose that constraint on the newly introduced functions
ω either. In the context of edge-featured graphs, ψX serves as the node labeling function, φX represents the
function that calculates the shortest path between two nodes, and ωX acts as the edge labeling function.

The following theorem states the existence of the optimal coupling, so that the FNGW distance is well
defined.
Theorem 2.7 (Optimal Coupling). Given gX = (X,ψX , φX , ωX , µX), gY = (Y, ψY , φY , ωY , µY ), for
any (p, q) ∈ [1,∞] and (α, β) ∈ [0, 1]2, there exists an optimal coupling µ∗ ∈ Π(µX , µY ) which satisfies
FNGWα,β,q,p(gX , gY ) = Eα,β,q,p(gX , gY , µ

∗).

The following theorem states the metric properties of FNGW, which allows its application to a wide range
of machine learning algorithms that only require pairwise comparisons.
Theorem 2.8 (Metric Properties). The FNGW distance satisfies the following properties: for all gX =
(X,ψX , φX , ωX , µX), gY = (Y, ψY , φY , ωY , µY ) and gZ = (Z,ψZ , φZ , ωZ , µZ) from G:

• (Positivity) FNGWα,β,q,p(gX , gY ) ≥ 0

• (Symmetry) FNGWα,β,q,p(gX , gY ) = FNGWα,β,q,p(gY , gX)

• (Equality) FNGWα,β,q,p(gX , gX) = 0. Moreover, FNGWα,β,q,p(gX , gY ) = 0 if and only there is a Borel
probability space (Z, µZ) with measurable maps f : Z → X and g : Z → Y such that

f#µZ = µX g#µZ = µY (10)
∥(1 − α− β)dΨ (ψX ◦ f, ψY ◦ g)q + αdΩ(f#ωX , g

#ωY )q + β|f#φX − g#φY |q∥∞ = 0 (11)
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where f#ωX : Z × Z → Ω is the pullback weight function defined by (z, z′) → ωX(f(z), f(z′)), f#φX :
Z × Z → R is given by (z, z′) → φX(f(z), f(z′)), and g# is defined similarly.

• (Relaxed Triangle Inequality) FNGWα,β,q,p(gX , gZ) ≤ 2q−1(FNGWα,β,q,p(gX , gY ) +
FNGWα,β,q,p(gY , gZ))

Equations (10)-(11) define a weak isomorphism between the objects of G, while the last property states a
relaxed triangle inequality with a factor of 2q−1. Consequently, when q = 1, FNGW is a proper metric over
G endowed with such a weak isomorphism as an equivalence relation.

It should be noted that although FNGW theoretically satisfies the metric properties defined above, its
practical guarantees depend on the specific computation algorithm used.

2.2 Fused Network Gromov-Wasserstein Barycenter and Computation

The notion of (weighted) barycenter can be encountered in many approaches in data science. Considering
graph data, some recent works have successfully exploited GW-based barycenters in graph clustering (Peyré
et al., 2016; Vayer et al., 2019) or in supervised graph prediction (Brogat-Motte et al., 2022). Similarly, our
FNGW-based barycenter can be directly applied to the clustering of labeled graphs; we provide an example
in Appendix D.4. Additionally, Graph Dictionary Learning (GDL) is feasible with the FNGW barycenter,
where each graph is represented as the barycenter of the graphs in the dictionary. We develop this algorithm
in Appendix B.2 and present an example in Appendix D.5. In what follows, we give a formal definition of
such a barycenter, based on our proposed FNGW distance, and describe an algorithm to compute it.
Definition 2.9 (FNGW Barycenter). Given a set {gi}n

i=1 with gi = (Fi, Ai, Ei,pi) ∈ Rmi×S × Rmi×mi ×
Rmi×mi×T × Σmi

and a set of weights {λi}n
i=1 such that

∑
i λi = 1, the FNGW Barycenter for a pre-defined

histogram p ∈ Σm is defined as follows:

B({λi}i, {gi}i,p) = arg min
F ∈Rm×S ,A∈Rm×m,E∈Rm×m×T

∑
i

λiFNGWα,β((F,A,E,p), gi) (12)

The above optimization problem can be reformulated as:

min
A,E,F,(πi∈Π(p,pi))i

∑
i

λiEα,β ((F,A,E), (Fi, Ai, Ei), πi) (13)

To obtain the FNGW barycenter, we employ the Block Coordinate Descent (BCD) algorithm, which means
that we carry out the minimization in Equation 13 iteratively with respect to {πi}i, F , A and E. The
minimization with respect to E has a closed form, which is given in the following proposition:
Proposition 2.10. Optimizing Equation 13 with respect to tensor E has a closed-form solution:

E = 1
Im×T ×2 ppT

∑
i

λi(Ei ×2 πi) ×1 πi (14)

The complete optimization algorithm is detailed in Algorithm 2.

We can notice that the optimization procedure preserves an interesting property for the tensor E of the
resulting barycenter:
Proposition 2.11. If the set of tensors {Ei}i satisfies the condition: ∀j, l, i,

∑T
t Ei(j, l, t) = a ∈ R, then

the barycenter E given by Algorithm 2 also verify the same property.
Remark 2.12. When the set of edge features for the graphs {gi}n

i=1 lies in a simplex space, the above
proposition gives us the guarantee that the edge features of their barycenter will also be a simplex. For
example, when the edge labels of the graphs are represented using one-hot encoding, the resulting barycenter
can be discretized into a true graph by applying a simple argmax operation on the edge features, due to their
simplex nature. This can be seen as a generalization of the thresholding operation on the adjacency matrix.
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Algorithm 2 Computation of FNGW Barycenter with BCD
input: {gi}i, fixed histogram p, trade-off parameter (α, β)
init: Randomly initialize E(0), F (0) and A(0).
for k = 1, . . . ,K do

Calculate {πi}i with Alg. 1: π(k)
i = arg minπi∈Π(p,pi) Eα,β

(
(F (k−1), A(k−1), E(k−1)), (Fi, Ai, Ei), πi

)
Update E: E(k) = 1

Im×T ×2ppT

∑
i λi(Ei ×2 π

(k)
i ) ×1 π

(k)
i ▷ Proposition 2.10

Update A: A(k) = 1
ppT

∑
i λ

iπ
(k)
i Aiπ

(k)T
i ▷ Proposition 4 in Peyré et al. (2016)

Update F : F (k) =
∑

i λidiag( 1
p )π(k)

i Fi ▷ Equation 8 in Cuturi & Doucet (2014)
end for
output: The barycenter (F (K), A(K), E(K))
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Figure 2: FNGW barycenter (rightmost) of the graphs obtained by perturbing a random molecule (leftmost).

(a) Random circle samples (b) Circle barycenter

Figure 3: Illustration of graph barycenters with the FNGW distance. The color of the node indicates the
scalar value of the node feature.

The proofs of Proposition 2.10 and 2.11 can be found in Appendix A.
Example 2.13 (Barycenter Computation). To test the proposed barycenter computation algorithm, we
perturb a random molecule using the following operations: node addition, node deletion, edge addition,
and edge deletion. The resulting graphs are then used to compute the barycenter, successfully retrieving
the original molecule before the perturbation, as shown in Figure 2. The FNGW distance between the
barycenter (before discretization) and the original graph is 0.0079, with α = 1

3 , β = 1
3 , p = 1, and q = 2.

Another example of barycenter computation is shown in Figure 3. We randomly create 8 circle graphs, for
which the number of nodes is randomly drawn between 10 and 20. Node features are scalars following a Sine
function variation with additive Gaussian Noise N (0, 0.3). There exists two directed edges between each pair
of adjacent nodes, the ascending one being colored in blue and the descending one in green. Supplementary
edges are generated with probability 0.3 between every pair of nodes separated by another node. The toy
graphs are therefore node-labeled, edge-labeled, and directed. The samples are shown in Figure 3a. To
compute the FNGW barycenter, we take A as the adjacency matrix, and encode the presence of colors in
the one-hot tensor E. We choose the number of nodes of the barycenter to be 15, and the resulting graphs
are shown in Figure 3b. We observe that both node and edge features are well preserved in the predicted
barycenter, showing the effectiveness of Algorithm 2.

In the following section, we explore the application of the FNGW barycenter to supervised graph prediction.
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3 Supervised Graph Prediction with the FNGW Barycenter

Supervised Graph Prediction task consists in learning to predict an output graph g from a given input x in
input space X . An appealing and original application of Optimal Transport for graphs consists in using a
Gromov-Wasserstein distance as a loss in this supervised task (Brogat-Motte et al., 2022).

Let us define G, the set of labeled graphs with maximum number of nodes mmax.

G =
{

(F,A,E,p) | mg ≤ mmax, A ∈ {0, 1}mg×mg , F = (Fi)
mg

i=1 ∈ Fmg ,

E = (Eij) ∈ T mg×mg , p = mg
−11mg

}
(15)

where F ⊂ RS and T ⊂ RT are finite node feature and edge feature spaces, and mmax is the upper graph
size. Denote Gm the relaxed version of set G:

Gm =
{

(F,A,E,p) | A ∈ [0, 1]m×m, F = (Fi)m
i=1 ∈ Conv(F)m,

E = (Eij) ∈ Conv(T )m×m, p = m−11m

}
(16)

where Conv(·) denotes the convex hull of the set.

We consider a set of training pairs consisting of inputs and graphs to be predicted {(xi, gi)}n
i=1 drawn

from a fixed but unknown distribution ρ on X × G. We are interested in the relaxed supervised graph
prediction problem, i.e., finding a estimator f : X → Gm of the minimizer f∗ of the expected risk R(f) =
Eρ[FNGWα,β(f(X), G)] where the FNGWα,β-distance’s definition is extended to Gm × G. We choose, as
a solution to this problem, an estimator based on surrogate least square regression (Ciliberto et al., 2020)
proposed by Brogat-Motte et al. (2022) that expresses as a barycenter of the output training data weighted
by a function ξ of the input x :

f̂(x) = arg min
g∈Gm

n∑
i=1

ξ(x)iFNGWα,β(g, gi) (17)

with ξ(x) = (K + nλI)−1κx, where K ∈ Rn×n is the Gram matrix of the positive definite kernel k defined
on the input space X such that Kij = k(xi, xj), κx = (k(x, x1), . . . , k(x, xn))T ∈ Rn, and λ > 0 is a ridge
regularization parameter. Note that for a given x, ĝ ∈ G is obtained by discretization of f̂(x).

The proposed estimator relies on the Implicit Loss Embedding (ILE) condition(Ciliberto et al., 2020), which
expresses that an ILE loss can be written as an inner product of feature maps in some well-chosen Hilbert
space. The ILE framework justifies the relevance of solving a surrogate regression problem in the so-called
output feature space and ensures theoretical guarantees for this class of estimators. The next proposition
guarantees that the estimator proposed in Equation 17 fits ILE condition.
Proposition 3.1. The FNGW loss admits an Implicit Loss Embedding (ILE).

Informally, this implies that our estimator is universally consistent and its learning rate is of order n−1/4

with additional assumptions. The proof is given in Appendix A.6.

Sketched ILE for big data regime. To avoid computational issues when scaling-up the number of
samples, we propose a sketched version of the previous estimator. Sketching (Woodruff et al., 2014) applied
on kernel approximation (Rudi et al., 2015; Avron et al., 2017; El Ahmad et al., 2023) leverages random
projections of the Gram matrix, allowing to work with low-rank matrices and thus reducing compute time.
Here, it gives ξ(x) = KST(SK2ST + nλSKST)†Sκx where S ∈ Rs×n with s ≪ n is a sketching random
matrix.

In order to conduct the prediction process described by Equation 17, we distinguish two possible situations.
When a limited set of candidates from a set Gc is provided, one can resort to computing the score for each
candidate. Otherwise, we resort to the method described in Alg. 2. We will showcase the two situations
respectively with the experiments presented in Section 4.2 and Section 4.3.
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4 Numerical Experiments

In this section, we conduct a series of studies around the proposed distance; then, we assess its relevance in
supervised graph prediction problems, including the Fingerprint to Molecule task and Metabolite Identifica-
tion task. A Python implementation of the algorithms presented for these tasks can be found on Github2.
We leave additional experiments on clustering for Appendix D.

4.1 Study of the FNGW Distance

We begin our investigation by studying the potential benefit brought by our FNGW distance to graph-level
supervised classification tasks. Then, we use these tasks to investigate how well the associated loss converges,
and the impact of its hyperparameters on performance.

4.1.1 Edge-featured Graph Classification

We represent input graphs to be classified by kernels based on the FNGW-distance; hence, we choose to
use a variety of datasets where both node and edge features are present: Cuneiform (Kriege et al., 2018),
MUTAG (Debnath et al., 1991; Kriege & Mutzel, 2012), PTC-MR (Helma et al., 2001; Kriege & Mutzel,
2012), BZR-MD, COX2-MD, DHFR-MD and ER-MD (Sutherland et al., 2003; Kriege & Mutzel, 2012). All
these datasets were collected by Kersting et al. (2016). Our classifier is a Support Vector Machine (SVM) for
which the kernel matrix K is computed with Ki,j = exp(−γFNGW(gi, gj)). The kernel defined by FNGW
is indefinite. While there exist in the literature SVM algorithms dedicated to indefinite kernels (see for
instance (Ong et al., 2004; Luss & D’ aspremont, 2007)), in these experiments, we rely on the classic SVM
implementation. To compute the FNGW distance, we consider F as the matrix of node features, and we
set A to be the matrix of shortest path distance and E as the tensor of edge features where the non-edge
position is attributed to a random vector of the same dimension. Details about the node and edge features
present in each dataset, as well as details about graph representation for the FNGW computation are given
in Appendix C.1.

We choose to use both kernel-based methods and graph neural networks (GNNs) for our baselines. We include
a large set of kernels in our experiments: the Shortest Path Kernel (SPK) (Borgwardt & Kriegel, 2005), the
Random Walk Kernel (RWK) (Gärtner et al., 2003), the Weisfeler Lehman Kernel (WLK) (Shervashidze
et al., 2011), the Graphlet Sampling Kernel (GSK) (Shervashidze et al., 2009), the Neighborhood Subgraph
Pairwise Distance Kernel (NSPDK) (Costa & Grave, 2010), the Hopper Kernel (HOPPERK) (Feragen
et al., 2013), the Edge Histogram Kernel (EHK), the Vertex-edge Histogram Kernel (VEHK) (Sugiyama
& Borgwardt, 2015) and the Propagation Kernel (PROPAK) (Neumann et al., 2016). For the GNNs, we
consider the Principal Neighbourhood Aggregation (PNA) (Corso et al., 2020) and the Graph Attention
Networks (GAT) (Veličković et al., 2018). Lastly, we also include in our experiments a kernel-based classifier
induced by the FGW distance, computed with the same matrices F and A. It should be noted that similarly
to this last baseline, models don’t necessarily use all available features.

We perform nested cross-validation with 50 iterations of the outer CV loop and report our graph classification
results in Table 1. In Appendix C.1, we provide detailed information on hyperparameter search for all
methods conducted during the inner CV loop. Our FNGW-based classifier outperforms consistently other
graph kernel methods and GNN-based classifiers on most of the datasets. Furthermore, FNGW offers
performances similar to FGW on PTC-MR, and significantly improves them on all the others datasets,
except for MUTAG. We conjecture that the mutagenic effect on a bacterium (MUTAG) or carcinogenicity on
rodents (PTC-MR) of molecules may not be sensitive to their chemical bond type, which is the information
encoded in the edge features. But when combined with information about the distance between atoms,
these features seem useful for distinguishing between active and inactive molecules (BZR-MD, COX2-MD,
DHFR-MD, ER-MD).

2https://github.com/chunchiehy/fngw
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Table 1: Graph classification performance on real datasets. The best results are highlighted in Bold. The
last seven rows show the results for methods leveraging the edge features.

Methods Cuneiform MUTAG PTC-MR BZR-MD COX2-MD DHFR-MD ER-MD
RWK 73.93 ± 7.73 88.42 ± 7.59 57.43 ± 7.61 71.81 ± 8.48 62.65 ± 7.93 67.20 ± 5.67 70.22 ± 6.32
SPK 74.00 ± 7.39 84.00 ± 8.80 57.37 ± 8.16 71.10 ± 6.71 64.90 ± 8.43 65.85 ± 5.87 69.78 ± 6.14
GSK 15.63 ± 6.84 83.89 ± 8.04 54.86 ± 8.24 48.13 ± 6.73 44.90 ± 6.94 67.45 ± 6.33 59.16 ± 6.44
WLK-VH 73.70 ± 7.34 88.00 ± 7.95 61.71 ± 6.18 63.10 ± 6.92 56.71 ± 7.82 66.65 ± 5.54 66.98 ± 6.19
HOPPERK 74.00 ± 7.39 83.89 ± 9.50 54.29 ± 7.36 73.81 ± 7.00 61.10 ± 7.86 67.60 ± 5.85 70.84 ± 6.97
PROPAK 73.26 ± 7.49 76.84 ± 9.59 58.57 ± 8.09 73.10 ± 7.03 58.58 ± 8.45 66.85 ± 6.14 66.44 ± 6.34
FGW 86.59 ± 7.51 86.11 ± 8.34 63.77 ± 9.20 73.61 ± 6.60 64.90 ± 7.43 62.70 ± 5.95 72.09 ± 7.14
NSPDK 77.48 ± 8.91 88.63 ± 5.99 59.94 ± 8.33 73.10 ± 7.03 60.00 ± 8.70 67.30 ± 6.46 63.16 ± 7.41
EHK 5.63 ± 3.65 67.68 ± 9.76 55.43 ± 7.73 66.97 ± 7.34 60.26 ± 7.11 67.35 ± 6.35 70.09 ± 7.20
VEHK 74.00 ± 7.39 77.26 ± 9.32 58.97 ± 8.14 72.52 ± 7.67 80.06 ± 7.09 66.80 ± 7.65 75.24 ± 6.93
WLK-VEH 73.48 ± 7.46 82.53 ± 8.90 62.23 ± 7.07 64.00 ± 7.25 58.65 ± 8.48 66.65 ± 5.54 71.20 ± 5.83
PNA 84.15 ± 8.05 83.79 ± 8.01 59.94 ± 7.33 71.14 ± 9.60 71.48 ± 7.99 67.60 ± 6.30 77.24 ± 6.51
GAT 37.19 ± 11.90 75.26 ± 10.38 57.94 ± 7.94 70.20 ± 7.46 70.13 ± 9.93 69.10 ± 5.80 72.40 ± 6.89
FNGW 89.41 ± 6.06 83.05 ± 8.95 63.94 ± 7.54 75.68 ± 7.01 68.90 ± 8.33 73.45 ± 7.28 79.78 ± 5.85
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Figure 4: (Left) Convergence rate of FNGW with the CGD algorithm. (Middle) Classification accuracy on
MUTAG w.r.t different values of α and β. (Right) Classification accuracy on BZR-MD w.r.t different values
of α and β. The optimal values of α and β vary across different datasets.

4.1.2 Convergence of the FNGW Distance

The left panel of Figure 4 shows the convergence of the FNGW distance using the conditional gradient
descent (CGD) in Algorithm 1 on the MUTAG and BZR-MD datasets. Each computation step involves
randomly selecting two graphs, with this procedure being repeated 10 times. We can see that during this
computation, the FNGW converges in fewer than 10 steps of CGD, on both datasets.

4.1.3 Impact of the Parameters Presented in the FNGW

We explore the influence of parameters α and β on the FNGW distance on classification performance. The
heat maps illustrating test set accuracies for the MUTAG and BZR-MD datasets are presented respectively
in the central and right panels of Figure 4. These visuals show that for α, which governs the weighting of
edge features, a small value (even approaching zero) yields commendable accuracy on MUTAG. Conversely,
it is a larger α that seems to give optimal results for BZR-MD. These observations reinforce our previous
hypothesis: it does not seem useful to exploit edge features on MUTAG, which could explain why FNGW
lags behind FGW for that dataset.
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4.2 Supervised Graph Prediction: Fingerprint to Molecule

In this experiment, we delve into to a novel graph prediction problem. The aim is to predict a molecule from
its fingerprint representation: hence, we will use here our FNGW distance as a loss, through Supervised
Graph Prediction estimators, as defined in Section 3. It should be noted that this is a very difficult end-to-end
task as it implies to predict new molecules rather than selecting them from a candidate set.

Dataset. To conduct our experiment, we have chosen the widely used QM9 molecule dataset (Ruddigkeit
et al., 2012; Ramakrishnan et al., 2014). QM9 is a collection of small organic molecules, totaling around
130,000 in number. We use a subset of 2,000 molecules as test set. The molecules are kekulized 3 by the
chemical software RDKit 4, accompanied by the removal of hydrogen atoms. After the pre-processing, each
molecule contains up to 9 atoms of Carbon, Nitrogen, Oxygen, or Fluorine. There is three types of edges:
single, double, and triple bonds. We adopt a fingerprint representation of the molecules as input features;
these fingerprints are generated using the Morgan algorithm provided by RDKit, with a specified radius of
2 and a size of 2048. For each molecule, we represent it by an atom matrix F ∈ Rm×4 and a bond tensor
E ∈ Rm×m×3 where m is the number of the atoms. Both the atom features and bond features are encoded
by one-hot encoding. To apply the FNGW distance on the molecules of QM9, we use the uniform measure
over the atoms and the parameter β is set to 0. We name the resulting dataset Fin2Mol.

Graph Edit Distance and Correlation with FNGW. We utilize Graph Edit Distance (GED) as a
metric to assess the effectiveness of graph prediction, given its widespread use in measuring the similarity
between pairs of graphs. Given two graphs g1 and g2, the graph edit distance between them is defined by:

GED(g1, g2) = min
(o1,··· ,ok)∈O(g1,g2)

k∑
i

c(oi) (18)

where O(g1, g2) is the set of all edit paths allowing to transform g1 into a graph isomorphic to g2 and c(o) ≥ 0
is the cost of each elementary edit operation o which is one of vertex substitution, edge substitution, vertex
deletion, edge deletion, vertex insertion, and edge insertion. We use the GED implementation provided by
the package NetworkX (Hagberg et al., 2008) and the cost of each elementary edit operation is set to one.

In Figure 5, the left panel shows the correlation between GED and FNGW across various values of α.
Specifically, we randomly select 1000 pairs of molecules from the QM9 dataset and compute both the GED
and the FNGW distance for each pair. Subsequently, we determine the Pearson and Spearman correlation
coefficients between the GED and the FNGW distance. The results reveal a strong correlation between the
FNGW and the GED, particularly for commonly chosen values of α. This correlation demonstrates well the
interest of employing FNGW as loss function for graph prediction: FNGW effectively serves as a viable proxy
or approximation for GED, which is prohibitively expensive to compute in practice, and is not differentiable.

Choice of the Parameter α. While α, as an hyper-parameter of the FNGW loss, can be selected via
cross-validation, our preceding observation prompts us to propose an alternative approach. Indeed, we can
use correlation between the GED and the FNGW values resulting from α as signal to select the latter.
Subsequently, the α value yielding the strongest correlation with the GED is selected to define the training
loss in the graph prediction model. The underlying philosophy of this strategy is straightforward: by ensuring
consistence between the training loss and the evaluation metric, we anticipate achieving a good performance.

Experimental Settings. We build five training-test splits using different seeds. Each split has 131,885
training samples and 2,000 test samples. We choose to compare our ILE-FNGW with ILE-FGW (Brogat-
Motte et al., 2022). Additionally, we adapt the NNBary estimator proposed by Brogat-Motte et al. (2022)
with FNGW loss to study its effect. NNBary expresses the predicted graph as the barycenter of several
graph templates, which are jointly learned with the coefficients of the templates parameterized by a neural
network. At prediction time, we provide the true number of atoms to the estimators in order to compute
the barycenter. For the ILE estimator, we choose the kernel k used to compute the coefficient ξ(x) to be
Gaussian; given the large quantity of data, we use SubSample sketching (Rudi et al., 2015) for the input
kernel approximation. For the NNBary estimator, a MLP of one hidden layer is used to encode input features

3Kekulize: converts aromatic rings to their Kekule form. https://www.rdkit.org/docs/RDKit_Book.html
4RDKit: Open-source cheminformatics. https://www.rdkit.org
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Figure 5: (Left) A strong correlation exsits between the FNGW and the GED for commonly chosen values
of α. (Right) The performances of ILE-FNGW and the correlation coefficients between GED and FNGW
with various values of α. The optimal α values for correlation generally lead to favorable performance.

Table 2: Graph edit distances of different methods on the Fin2Mol test set. The symbol ‡ indicates the
result where α is chosen based on the correlation coefficient, while in other cases, it is selected through
cross-validation. Best results are in Bold.

GED w/o edge feature ↓ GED w/ edge feature ↓
NNBary-FGW 5.000 ± 0.140 -
NNBary-FNGW 5.311 ± 0.090 5.756 ± 0.073
Sketched ILE-FGW 3.037 ± 0.111 -
Sketched ILE-FNGW 1.449 ± 0.034 1.534 ± 0.029
Sketched ILE-FNGW ‡ 1.739 ± 0.068 1.809 ± 0.065
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Figure 6: (Left) Quantitative results with respect the number of training points used to compute the pre-
diction. Fewer training points are needed for the barycenter with ILE-FNGW while it provides better
performance than ILE-FGW. (Right) Qualitative comparison of the predicted QM9 molecules.

into templates weights. The FNGW parameter α, the ridge regularization parameter λ, the parameter of
the Gaussian kernel γ, the sketching size, the number of points used to compute the barycenter and the
dimension of the NNBary MLP are chosen through cross-validation over a subset of size 500. We provide an
additional result on ILE with FNGW, where α is chosen based on the correlation coefficient with GED, as
described above. More details about the cross-validation are given in Appendix C.2.
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Table 3: Top-k accuracies on the metabolite identification test set. Best results are in Bold.

Top-1 ↑ Top-10 ↑ Top-20 ↑
WL kernel 9.8% 29.1% 37.4%
IOKR - Fingerprint w/ linear kernel 28.6% 54.5% 59.9%
IOKR - Fingerprint w/ gaussian kernel 41.0% 62.0% 67.8%
ILE-FGW diffuse 28.1% 53.6% 59.9%
ILE-FNGW diffuse + Bond stereo 27.7% 55.2% 60.9%
ILE-FNGW diffuse + Bond type 34.6% 55.1% 60.0%
ILE-FNGW diffuse + Mix 36.2% 58.2% 61.9%

Experimental Results. Our results are presented in Table 2. They clearly indicate that FNGW, as loss
function, outperforms FGW with ILE and achieves comparable performance to FGW with NNBary. The
results for NNBary can be attributed to the model’s limited expressibility. For ILE, we envision two different
explanations, which may overlap: firstly, from a learning standpoint, it is conceivable that FNGW induces
a more meaningful implicit graph embedding than FGW, thereby facilitating the resolution of the surrogate
regression problem. Secondly, from an optimization viewpoint, the incorporation of bond type constraints
within FNGW aids in computing the barycenters, consequently resulting in more realistic molecules. Addi-
tionally, FNGW’s ability to predict the bond types of molecules enables us to evaluate with a version of the
GED that takes edge features into account. The final row of Table 2 highlights that selecting α using the
best Pearson/Spearman correlation coefficient yields comparable performance to what is achieved through
cross-validation. Additionally, as depicted in the right panel of Figure 5,the optimal α values for correlation
generally lead to favorable performance of predictions. Finally, the left panel of Figure 6 shows the influence
of varying number of training points used in the barycenter computation on the performance of ILE . It is
evident that increasing the size of training data generally enhances model performance. However, beyond
a threshold of 15 training points, the observed improvement becomes less significant. A visual compari-
son showcasing predicted graphs generated by various methods is presented in the right panel of Figure 6.
The first two examples demonstrate how the FNGW method enhances predictions related to atom types
and molecule structure, while the final example validates its efficacy concerning the optimizing during the
barycenter computation. See Appendix D.6 for more examples of prediction.

4.3 Supervised Graph Prediction: Metabolite Identification

In this last experiment, our task is again to predict a molecule; however, this application differs from the
first one, as a candidate set Gc is given at inference time.

Dataset. As in Brouard et al. (2016a); Brogat-Motte et al. (2022), we use the Metabolite Identification
dataset processed by Dührkop et al. (2015). The learning algorithm is expected to predict the metabolites
given a tandem mass spectra. For each spectra, a set of possible metabolites of the same chemical formula
is provided. The candidate sets were built with molecular structures from PubChem. The dataset is split
into a training set of size n = 3000 and a test set of size ntest = 1022. More details about the dataset can
be found in Appendix C.3.

Experimental Settings. In order to represent the metabolites, we encode their adjacency into A and the
atom types as one-hot vectors into F . Following Brogat-Motte et al. (2022), we use the matrix diffused
by the normalized Laplacian of the adjacency matrix: Fdiff = e−τLap(A)F . To obtain E, we use three
configurations: the chemical bond type, the chemical bond stereochemistry (which are embedded through
one-hot encodings) and the concatenation of both (Mix). The input representation is obtained through a
probability product kernel (Heinonen et al., 2012) on the input mass spectra, which has been shown effective
on this problem (Brouard et al., 2016a). Due to the computational cost, during prediction, only the 5 training
samples with the greatest weights ξ(x)i are taken into account, rather than all the samples, as described in
Equation 17. Details about the hyperparameter choices are given in Appendix C.3.
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Experimental Results. We measure the performance of various models on Metabolite Identification via
Top-k accuracy with k ∈ {1, 10, 20}. The results are presented in Table 3. Results for the WL kernel and
IOKR(Brouard et al., 2016b) are taken from Brogat-Motte et al. (2022). We observe that with mixed edge
features, FNGW significantly outperforms FGW. Our method approaches the performance of fingerprint
with a Gaussian kernel, which uses an expert-derived molecular representation. This results further confirms
that using a more complete representation of the output space, able to exploit more structure information,
is crucial for graph prediction.

5 Conclusion

We propose a novel Optimal Transport distance for pairwise graph comparison in the presence of edge
features, unlocking many applications where this information is available and relevant. This distance is built
on the Network Gromov-Wasserstein and Fused Gromov-Wassertein distances and inherits similar geometric
properties; to apply it on graph data, we devise algorithms to compute both the novel distance and the
associated barycenter in the discrete case. Comprehensive experimentation on our proposed distance gives a
deeper understanding of the behavior of FNGW as a tool for graph representation, and empirical evaluation
on real-world datasets shows that the use of this distance as a loss function yields significant improvements in
terms of performance in supervised graph prediction tasks. Future works will be dedicated to scale-up both
the distance computation and the barycenter computation algorithms to target very large graph datasets.
We also plan to investigate propagating edge information to nodes and reverse.

Acknowledgments

The authors are grateful to Luc Brogat-Motte for the insightful discussions at the beginning of the project.
They also thank reviewers for their comments and suggestions. The first author is supported by a PhD grant
provided by Hi! PARIS Center.

References
Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein Generative Adversarial Networks. In Pro-

ceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 214–223. PMLR, August 2017.

Haim Avron, Kenneth L Clarkson, and David P Woodruff. Faster kernel ridge regression using sketching
and preconditioning. SIAM Journal on Matrix Analysis and Applications, 38(4):1116–1138, 2017.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight,
Philipp Koehn, Martha Palmer, and Nathan Schneider. Abstract Meaning Representation for Sembanking.
In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse, pp. 178–186.
Association for Computational Linguistics, August 2013.

Amélie Barbe, Marc Sebban, Paulo Gonçalves, Pierre Borgnat, and Rémi Gribonval. Graph Diffusion
Wasserstein Distances. In Machine Learning and Knowledge Discovery in Databases, pp. 577–592. Springer
International Publishing, 2021.

Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-Path Kernels on Graphs. In Proceedings of the 5th
IEEE International Conference on Data Mining, pp. 74–81. IEEE Computer Society, November 2005.

Shaked Brody, Uri Alon, and Eran Yahav. How Attentive are Graph Attention Networks? In International
Conference on Learning Representations, 2022.

Luc Brogat-Motte, Rémi Flamary, Celine Brouard, Juho Rousu, and Florence d’Alché Buc. Learning to
Predict Graphs with Fused Gromov-Wasserstein Barycenters. In Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 2321–
2335. PMLR, July 2022.

14



Published in Transactions on Machine Learning Research (07/2024)

Céline Brouard, Huibin Shen, Kai Dührkop, Florence d’Alché Buc, Sebastian Böcker, and Juho Rousu. Fast
Metabolite Identification with Input Output Kernel Regression. Bioinformatics, 32(12):i28–i36, 2016a.

Céline Brouard, Marie Szafranski, and Florence d’Alché Buc. Input Output Kernel Regression: Supervised
and Semi-Supervised Structured Output Prediction with Operator-Valued Kernels. Journal of Machine
Learning Research, 17(176):1–48, 2016b.

Samir Chowdhury and Facundo Mémoli. The Gromov–Wasserstein Distance Between Networks and Stable
Network Invariants. Information and Inference: A Journal of the IMA, 8(4):757–787, 2019.

Carlo Ciliberto, Lorenzo Rosasco, and Alessandro Rudi. A General Framework for Consistent Structured
Prediction with Implicit Loss Embeddings. Journal of Machine Learning Research, 21(98):1–67, 2020.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal Neighbourhood
Aggregation for Graph Nets. In Advances in Neural Information Processing Systems, volume 33, pp.
13260–13271. Curran Associates, Inc., 2020.

Fabrizio Costa and Kurt De Grave. Fast Neighborhood Subgraph Pairwise Distance Kernel. In Proceedings
of the 27th International Conference on International Conference on Machine Learning, ICML’10, pp.
255–262. Omnipress, 2010.

Marco Cuturi and Arnaud Doucet. Fast Computation of Wasserstein Barycenters. In Proceedings of the 31st
International Conference on Machine Learning, volume 32 of Proceedings of Machine Learning Research,
pp. 685–693. PMLR, June 2014.

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Corwin Hansch.
Structure-activity Relationship of Mutagenic Aromatic and Heteroaromatic Nitro Compounds. Correlation
with Molecular Orbital Energies and Hydrophobicity. Journal of medicinal chemistry, 34(2):786–797, 1991.

Kai Dührkop, Huibin Shen, Marvin Meusel, Juho Rousu, and Sebastian Böcker. Searching Molecular Struc-
ture Databases with Tandem Mass Spectra using CSI: FingerID. Proceedings of the National Academy of
Sciences, 112(41):12580–12585, 2015.

Tamim El Ahmad, Pierre Laforgue, and Florence d’Alché Buc. Fast Kernel Methods for Generic Lipschitz
Losses via \p\-Sparsified Sketches. Transactions on Machine Learning Research, 2023.

Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and Karsten Borgwardt. Scalable
Kernels for Graphs with Continuous Attributes. In Proceedings of the 26th International Conference on
Neural Information Processing Systems, volume 1 of NIPS’13, pp. 216–224. Curran Associates Inc., 2013.

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. SplineCNN: Fast Geometric Deep
Learning With Continuous B-Spline Kernels. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural Message
Passing for Quantum Chemistry. In Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 1263–1272. PMLR, August 2017.

Pierre-Anthony Grenier, Luc Brun, and Didier Villemin. From Bags to Graphs of Stereo Subgraphs in
Order to Predict Molecule’s Properties. In Graph-Based Representations in Pattern Recognition: 10th
IAPR-TC-15 International Workshop, pp. 305–314. Springer, 2015.

Thomas Gärtner, Peter Flach, and Stefan Wrobel. On Graph Kernels: Hardness Results and Efficient
Alternatives. In Learning Theory and Kernel Machines, pp. 129–143. Springer Berlin Heidelberg, 2003.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring Network Structure, Dynamics, and
Function using NetworkX. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman (eds.), Proceedings of
the 7th Python in Science Conference, pp. 11 – 15, Pasadena, CA USA, 2008.

15



Published in Transactions on Machine Learning Research (07/2024)

Markus Heinonen, Huibin Shen, Nicola Zamboni, and Juho Rousu. Metabolite Identification and Molecular
Fingerprint Prediction through Machine Learning. Bioinformatics, 28(18):2333–2341, September 2012.

Christoph Helma, Ross D. King, Stefan Kramer, and Ashwin Srinivasan. The Predictive Toxicology Challenge
2000–2001. Bioinformatics, 17(1):107–108, 2001.

John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G. Coleman. ZINC: A Free
Tool to Discover Chemistry for Biology. Journal of Chemical Information and Modeling, 52(7):1757–1768,
July 2012.

J. Johnson, R. Krishna, M. Stark, L. -J. Li, D. A. Shamma, M. S. Bernstein, and L. Fei-Fei. Image Retrieval
using Scene Graphs. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 3668–3678, June 2015.

Keisuke Kawano, Satoshi Koide, Hiroaki Shiokawa, and Toshiyuki Amagasa. Multi-dimensional fused gro-
mov wasserstein discrepancy for edge-attributed graphs. IEICE TRANSACTIONS on Information and
Systems, 107(5):683–693, 2024.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and Pascal
Poupart. Representation Learning for Dynamic Graphs: A Survey. Journal of Machine Learning Research,
21(70):1–73, 2020.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Benchmark
Data Sets for Graph Kernels, 2016. URL http://graphkernels.cs.tu-dortmund.de.

Nils Kriege and Petra Mutzel. Subgraph Matching Kernels for Attributed Graphs. In Proceedings of the
29th International Coference on International Conference on Machine Learning, ICML’12, pp. 291–298.
Omnipress, 2012.

Nils M. Kriege, Matthias Fey, Denis Fisseler, Petra Mutzel, and Frank Weichert. Recognizing Cuneiform
Signs Using Graph Based Methods. In Proceedings of The International Workshop on Cost-Sensitive
Learning, volume 88 of Proceedings of Machine Learning Research, pp. 31–44. PMLR, May 2018.

Ronny Luss and Alexandre D’ aspremont. Support Vector Machine Classification with Indefinite Kernels.
In Advances in Neural Information Processing Systems, volume 20. Curran Associates, Inc., 2007.

Facundo Mémoli. Gromov–Wasserstein Distances and the Metric Approach to Object Matching. Foundations
of Computational Mathematics, 11(4):417–487, 2011.

Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting. Propagation Kernels:
Efficient Graph Kernels from Propagated Information. Machine Learning, 102(2):209–245, 2016.

Cheng Soon Ong, Xavier Mary, Stéphane Canu, and Alexander J. Smola. Learning with Non-positive Kernels.
In Proceedings of the Twenty-First International Conference on Machine Learning, pp. 81. Association
for Computing Machinery, 2004.

Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-Wasserstein Averaging of Kernel and Distance
Matrices. In Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Pro-
ceedings of Machine Learning Research, pp. 2664–2672. PMLR, June 2016.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von Lilienfeld. Quantum chem-
istry structures and properties of 134 kilo molecules. Scientific Data, 1, 2014.

Lars Ruddigkeit, Ruud van Deursen, Lorenz C. Blum, and Jean-Louis Reymond. Enumeration of 166 Billion
Organic Small Molecules in the Chemical Universe Database GDB-17. Journal of Chemical Information
and Modeling, 52(11):2864–2875, November 2012.

Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is More: Nyström Computational Reg-
ularization. In Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015.

16

http://graphkernels.cs.tu-dortmund.de


Published in Transactions on Machine Learning Research (07/2024)

Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein Distance Guided Representation Learning
for Domain Adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
April 2018.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Efficient
Graphlet Kernels for Large Graph Comparison. In Proceedings of the Twelth International Conference on
Artificial Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pp. 488–495.
PMLR, April 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt.
Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research, 12(77):2539–2561, 2011.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked Label
Prediction: Unified Message Passing Model for Semi-Supervised Classification. In Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 1548–1554. International
Joint Conferences on Artificial Intelligence Organization, August 2021.

Martin Simonovsky and Nikos Komodakis. Dynamic Edge-Conditioned Filters in Convolutional Neural
Networks on Graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

Karl-Theodor Sturm. The Space of Spaces: Curvature Bounds and Gradient Flows on the Space of Metric
Measure Spaces. arXiv preprint arXiv:1208.0434, 2012.

Mahito Sugiyama and Karsten Borgwardt. Halting in Random Walk Kernels. In Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

Jeffrey J Sutherland, Lee A O’brien, and Donald F Weaver. Spline-fitting with a Genetic Algorithm: A
Method for Developing Classification Structure-activity Relationships. Journal of chemical information
and computer sciences, 43(6):1906–1915, 2003.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein Auto-Encoders. In
International Conference on Learning Representations, 2018.

Titouan Vayer, Laetitia Chapel, Rémi Flamary, Romain Tavenard, and Nicolas Courty. Optimal Transport
for structured data with application on graphs. In Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 6275–6284. PMLR, June
2019.

Titouan Vayer, Laetitia Chapel, Remi Flamary, Romain Tavenard, and Nicolas Courty. Fused Gromov-
Wasserstein Distance for Structured Objects. Algorithms, 13(9):212, 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph Attention Networks. In International Conference on Learning Representations, 2018.

Cédric Villani. Optimal Transport: Old and New, volume 338. Springer, 2009.

Cédric Vincent-Cuaz, Titouan Vayer, Rémi Flamary, Marco Corneli, and Nicolas Courty. Online Graph
Dictionary Learning. In Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp. 10564–10574. PMLR, July 2021.

David P Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations and Trends® in
Theoretical Computer Science, 10(1–2):1–157, 2014.

Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin Duke. Gromov-Wasserstein Learning for
Graph Matching and Node Embedding. In Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 6932–6941. PMLR, June 2019.

Hongtengl Xu. Gromov-Wasserstein Factorization Models for Graph Clustering. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pp. 6478–6485, April 2020.

17



Published in Transactions on Machine Learning Research (07/2024)

The supplementary material is structured as follows: In Appendix A, we present the proofs and detailed
computations related to our theoretical derivations. Appendix B complements the main part of the paper
by providing additional details on our algorithms as well as a method for dictionary learning. Appendix C
gives additional information about the data and settings of the experiments presented in the main part of
the paper. Finally, Appendix D includes additional experiments.

A Technical Proofs

In Sections A.1 and A.2, we present the proofs of the theoretical properties of the FNGW distance that can
appear as natural extensions of the properties of the NGW distance Chowdhury & Mémoli (2019) and the
FGW distance Vayer et al. (2020). We therefore leverage results from both Chowdhury & Mémoli (2019)
and Vayer et al. (2020), and additionally the metric properties of space Ω for our proofs of Theorem 2.7
and 2.8. In Sections A.3, A.4 and A.5, we provide proofs and calculation of the expressions we need when
computing the distance itself and the barycenter. In Section A.6, we demonstrate the ILE property for the
FNGW distance.

For the sake of completeness, we recall first the definitions of the NGW and the FGW distance.
Definition A.1 (Network Gromov-Wasserstein Distance (Chowdhury & Mémoli, 2019)). Let G be the set
of tuple of the form (X,φX , µX) where X is a polish space, φX : X × X → R is a bounded continuous
measurable function and µX is a fully supported Borel probability measure. Given two tuples gX =
(X,φX , µX), gY = (Y, φY , µY ) from G, the Network Gromov-Wasserstein Distance between gX and gY is
defined for any p ∈ [1,∞] as follows:

NGWp(gX , gY ) = min
µ∈Π(µX ,µY )

Ep(gX , gY , µ) (19)

with

Ep(gX , gY , µ) =
(∫

X×Y

∫
X×Y

|φX(x, x′) − φY (y, y′)|pdµ(x, y)dµ(x′, y′)
) 1

p

(20)

It should be noted that the FNGW distance extends NWG into a fused case and generalize the codomain
space of φ from R to a metric space. In the discrete case, when applied to graphs, we leverage this property
to take into account edge labels as feature vectors.
Definition A.2 (Fused Gromov-Wasserstein Distance (Vayer et al., 2020)). Let G be the set of tuple of the
form (X,ψX , φX , µX) where X is a polish space, ψX : X → Ψ is a bounded continuous measurable function
from X to a metric space (Ψ, dΨ) , φX : X × X → R+ is a metric, and µX is a fully supported Borel
probability measure. Given two tuples gX = (X,ψX , φX , µX), gY = (Y, ψY , φY , µY ) from G and trade-off
parameter α ∈ [0, 1], the Fused Network Gromov-Wasserstein Distance between gX and gY is defined for
any (p, q) ∈ [1,∞] as follows:

FGWα,q,p(gX , gY ) = min
µ∈Π(µX ,µY )

Eα,q,p(gX , gY , µ) (21)

with

Eα,q,p(gX , gY , µ) =
(∫

X×Y

∫
X×Y

[(1 − α)dΨ (ψX(x), ψY (y))q

+ α|φX(x, x′) − φY (y, y′)|q]pdµ(x, y)dµ(x′, y′)
) 1

p

(22)

Compared with the FGW distance, FNGW fuses another more general function: ωX : X × X → Ω, while
releasing the symmetric constraint of φ and allowing for feature vectors as edge labels.
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A.1 Proof of Theorem 2.7: Existence of FNGW Distance

The proof takes mainly advantage of the Weierstrass theorem, which will use the following lemmas:

Lemma A.3 (Compactness of Couplings; Lemma 10, Chowdhury & Mémoli (2019)). Let X, Y be two Polish
spaces and let µX ∈ Prob(X), µY ∈ Prob(Y ). Then Π(µX , µY ) is compact in Prob(X × Y ).

Lemma A.4 (Continuity of the Functional µ 7→ Eα,β,q,p(gX , gY , µ)). For (p, q) ∈ [1,∞]2, let gX =
(X,ψX , φX , ωX , µX), gY = (Y, ψY , φY , ωY , µY ) both from G, then the functional

Π(µX , µY ) → R+
⋃

+∞

µ 7→ Eα,β,q,p(gX , gY , µ)

is lower semicontinuous on Π(µX , µY ) for the weak convergence of measures.

Proof. We define the functional f : X × Y ×X × Y → R+
⋃

+∞ with

f((x, y), (x′, y′)) = [(1 − α− β)dΨ (ψX(x), ψY (y))q + αdΩ(ωX(x, x′), ωY (y, y′))q

+β|φX(x, x′) − φY (y, y′)|q]p (23)

then, f is lower semicontinuous due to the continuity of (dΨ, dΩ) and (ψX , ψY , ωX , ωY , φX , φY ). Using
Lemma 3 from Vayer et al. (2020) by considering W = X × Y , which is a polish space, we can conclude
µ 7→ Eα,β,q,p(gX , gY , µ) is lower semicontinuous on Π(µX , µY ) for the weak convergence of measures.

We can now prove Theorem 2.7, which mainly takes advantage of the Weierstrass theorem.

Proof. Since Π(µX , µY ) ⊂ Prob(X × Y ) is compact and the functional µ → Eα,β,q,p(gX , gY , µ) is lower
semicontinous on Π(µX , µY ), we can conclude the functional achieves its infimum for some µ∗ by applying
directly the Weierstrass theorem.

A.2 Proof of Theorem 2.8: Metric Properties of FNGW Distance.

We divide Theorem 2.8 into four lemmas, and we suppose gX = (X,ψX , φX , ωX , µX), gY =
(Y, ψY , φY , ωY , µY ) and gZ = (Z,ψZ , φZ , ωZ , µZ) are from G.

Lemma A.5 (Positivity). FNGWα,β,q,p(gX , gY ) ≥ 0

Proof. FNGWα,β,q,p(gX , gY ) ≥ 0 since dΨ and dΩ are both metrics and (α, β) ∈ [0, 1]2.

Lemma A.6 (Symmetry). FNGWα,β,q,p(gX , gY ) = FNGWα,β,q,p(gY , gX)

Proof. For any µ ∈ Π(µX , µY ), let µ⋆ := T#µ be the push forward of µ via a Borel map T defined as follows

T : X × Y → Y ×X

(x, y) 7→ (y, x)
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Then we have, (by the property of the push forward)

Eα,β,q,p(gY , gX , µ
⋆)

=
(∫

(Y ×X)2

[
(1 − α− β)dΨ(ψY (y), (ψX(x))q + αdΩ(ωY (y, y′), ωX(x, x′))q

+ β|φY (y, y′) − φX(x, x′)|q
]p
dµ⋆(y, x)dµ⋆(y′, x′)

) 1
p

=
(∫

(X×Y )2

[
(1 − α− β)dΨ(ψY (y), (ψX(x))q + αdΩ(ωY (y, y′), ωX(x, x′))q

+ β|φY (y, y′) − φX(x, x′)|q
]p
dµ(x, y)dµ(x′, y′)

) 1
p

=
(∫

(X×Y )2

[
(1 − α− β)dΨ (ψX(x), ψY (y))q + αdΩ(ωX(x, x′), ωY (y, y′))q

+ β|φX(x, x′) − φY (y, y′)|q
]p
dµ(x, y)dµ(x′, y′)

) 1
p

=Eα,β,q,p(gX , gY , µ)

The first equality is given by property of the push forward (
∫
fdT#µ =

∫
f◦Tdµ ); the second equality is given

by the symmetry of dΨ and dΩ. As a consequence, we have FNGWα,β,q,p(gY , gX) = FNGWα,β,q,p(gX , gY ).

Lemma A.7 (Equality). FNGWα,β,q,p(gX , gX) = 0. Moreover, FNGWα,β,q,p(gX , gY ) = 0 if and only there
is a Borel probability space (Z, µZ) with measurable maps f : Z → X and g : Z → Y such that

f#µZ = µX (24)
g#µZ = µY (25)

∥(1 − α− β)dΨ (ψX ◦ f, ψY ◦ g)q + αdΩ(f#ωX , g
#ωY )q + β|f#φX − g#φY |q∥∞ = 0 (26)

where f#ωX : Z × Z → Ω is the pullback weight function defined by (z, z′) → ωX(f(z), f(z′)), f#φX :
Z × Z → R is given by (z, z′) → φX(f(z), f(z′)), and g# is defined similarly.

Proof. The proof is analogous to the proof of Theorem 18 in Chowdhury & Mémoli (2019). We first deal with
the case where p ∈ [1,+∞). For the backward direction, let us assume that there exists a Borel probability
space (Z, µZ) and measurable maps f : Z → X, g : Z → Y verifying Equation 24 - 26. We consider
µ⋆ := (f, g)#µZ . First of all, it is easy to prove that µ⋆ ∈ C (µX , µY ):

∀A ∈ B(X), µ⋆(A× Y ) = µZ((f, g)−1[A× Y ]) = µZ(f−1[A]) = µX(A)
∀B ∈ B(Y ), µ⋆(X ×B) = µZ((f, g)−1[X ×B]) = µZ(g−1[B]) = µY (B)

Then we have

FNGWα,β,q,p(gX , gY )

≤(
∫

(X×Y )2

[
(1 − α− β)dΨ (ψX(x), ψY (y))q + αdΩ(ωX(x, x′), ωY (y, y′))q

+ β|φX(x, x′) − φY (y, y′)|q
]p
dµ⋆(x, y)dµ⋆(x′, y′))

1
p

=∥(1 − α− β)dΨ (ψX ◦ f, ψY ◦ g)q + αdΩ(f#ωX , g
#ωY )q + β|f#φX − g#φY |q∥Lp(µZ ⊗µZ )

which is equal to 0. Conversely, let µ⋆ ∈ C (µX , µY ) be the optimal coupling satisfying
FNGWα,β,q,p(gX , gY ) = 0. So we have ∥(1−α−β)dΨ (ψX , ψY )q+αdΩ(ωX , ωY )q+β|φX −φY |q∥Lp(µ⋆⊗µ⋆) = 0.
To prove the existence of the desired probability space and measurable maps, we define

Z := X × Y, µZ := µ⋆

f := projX , g := projY
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where projX : Z → X and projY : Z → Y are projection maps. It can be shown that

∀A ∈ B(X), f#µZ(A) = µ⋆(f−1[A]) = µ⋆(A× Y ) = µX(A)
∀B ∈ B(Y ), g#µZ(B) = µ⋆(g−1[B]) = µ⋆(X ×B) = µY (B)

and

∥(1 − α− β)dΨ (ψX ◦ f, ψY ◦ g)q + αdΩ(f#ωX , g
#ωY )q + β|f#φX − g#φY |q∥∞

=∥(1 − α− β)dΨ (ψX , ψY )q + αdΩ(ωX , ωY )q + β|φX − φY |q∥∞ = 0

The proof for the case p = ∞ is analogous.

For the specific case gX = gY , we consider (Z, µZ) = (X,µX) and identity maps (f, g), then Equation 24 -
26 are well verified, so we have FNGWα,β,q,p(gX , gX) = 0. The proof is thus concluded.

Lemma A.8 (Relaxed Triangle Inequality).

FNGWα,β,q,p(gX , gZ) ≤ 2q−1(FNGWα,β,q,p(gX , gY ) + FNGWα,β,q,p(gY , gZ))

Proof. Let µab be the optimal coupling between (gX , gY ) and µbc be the optimal coupling between (gY , gZ).
By the Gluing Lemma, there exists a probability mesure µ̃ ∈ Prob(X,Y, Z) with marginals µab on (X × Y )
and µbc on (Y × Z). Let µac be the marginal of µ̃ on (X × Z). Due to the fact that µac is not necessary a
optimal coupling between (gX , gZ), we have

FNGWα,β,q,p(gX , gZ)
≤∥(1 − α− β)dΨ (ψX , ψZ))q + αdΩ(ωX , ωZ)q + β|φX − φZ |q∥Lp(µac⊗µac)

≤∥(1 − α− β) (dΨ (ψX , ψY ) + dΨ (ψY , ψZ))q + α (dΩ(ωX , ωY ) + dΩ(ωY , ωZ))q

+ β(|φX − φY | + |φY − φZ |)q∥Lp(µ̃⊗µ̃)

≤∥(1 − α− β)2q−1 (dΨ (ψX , ψY )q + dΨ (ψY , ψZ)q) + α2q−1 (dΩ(ωX , ωY )q + dΩ(ωY , ωZ)q)
+ β2q−1(|φX − φY |q + |φY − φZ |q)∥Lp(µ̃⊗µ̃)

=2q−1∥ ((1 − α− β)dΨ(ψX , ψY )q + αdΩ(ωX , ωY )q + β|φX − φY |q)
+ ((1 − α− β)dΨ(ψY , ψZ)q + αdΩ(ωY , ωZ)q + β|φY − φZ |q) ∥Lp(µ̃⊗µ̃)

≤2q−1(∥(1 − α− β)dΨ(ψX , ψY )q + αdΩ(ωX , ωY )q + β|φX − φY |q∥Lp(µ̃⊗µ̃)

+ ∥(1 − α− β)dΨ(ψY , ψZ)q + αdΩ(ωY , ωZ)q + β|φY − φZ |q∥Lp(µ̃⊗µ̃))
=2q−1(∥(1 − α− β)dΨ(ψX , ψY )q + αdΩ(ωX , ωY )q + β|φX − φY |q∥Lp(µab⊗µab)

+ ∥(1 − α− β)dΨ(ψY , ψZ)q + αdΩ(ωY , ωZ)q + β|φY − φZ |q∥Lp(µab⊗µab))
=2q−1 (FNGWα,β,q,p(gX , gY ) + FNGWα,β,q,p(gY , gZ))

The second inequality is the result of the triangle inequality of the inner metrics, the third inequality is due
to the fact that ∀q ≥ 1, ∀a, b ≥ 0, (a+ b)q ≤ 2q−1(aq + bq). The fourth inequality is the consequence of the
Minkowski’s inequality of the norm Lp(µ̃⊗ µ̃). Finally, it proves the relaxed triangle inequality with a factor
of 2q−1. When q = 1, the triangle inequality is well satisfied.
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A.3 Proof of Proposition 2.5: Computation Complexity Reduction for FNGW

Proof. Given tensor E, we define the matrix E[t] by E[t](i, k) = E(i, k, t) for any i, k, t. By the definition of
tensor-matrix multiplication ⊗, we have(

L(E, Ẽ) ⊗ π
)

i,j
=
∑
k,l

∥E(i, k) − Ẽ(j, l)∥2
RT πk,l

=
∑
k,l

∑
t

|E(i, k, t) − Ẽ(j, l, t)|2πk,l

=
∑

t

∑
k,l

(
E(i, k, t)2 + Ẽ(j, l, t)2 − 2E(i, k, t)Ẽ(j, l, t)

)
πk,l

=
∑

t

∑
k,l

(
E[t](i, k)2 + Ẽ[t](j, l)2 − 2E[t](i, k)Ẽ[t](j, l)

)
πk,l (27)

We note that the inner sum over k and l, in the last equation above, is the same as the one that is computed
in the GW distance, considering that E[t] and Ẽ[t] are the similarity matrices. Taking advantage of Prop.1
in Peyré et al. (2016), the above equation becomes:

(
L(E, Ẽ) ⊗ π

)
i,j

=
(∑

t

E[t]2p1T
m̃ + 1np̃TẼ[t]2T − 2E[t]πẼ[t]T

)
i,j

=
(
g(E)p1T

m̃ + 1mp̃Th(Ẽ)T − 2
T∑

t=1
E[t]πẼ[t]T

)
i,j

where g : Rm×m×T → Rm×m is defined by g(E)i,j = ∥E(i, j)∥2
RT and h : Rm̃×m̃×T → Rm̃×m̃ is defined by

h(Ẽ)i,j = ∥Ẽ(i, j)∥2
RT .

A.4 Proof of Proposition 2.10: Justification of the Barycenter Algorithm

Proof. Using Equation 5 and Equation 6, we can write

arg min
E∈Rm×m×T

∑
i

λiEα,β ((F,A,E), (Fi, Ai, Ei), πi)

= arg min
E∈Rm×m×T

∑
i

λi

〈∑
t

E[t]2p1T
mi

+ 1mpi
TEi[t]2T − 2E[t]πiEi[t]T, πi

〉
= arg min

E∈Rm×m×T

∑
t

∑
i

λi

〈
E[t]2p1T

mi
+ 1mpi

TEi[t]2T − 2E[t]πiEi[t]T, πi

〉
Now let us write the first-order optimality condition. If E∗ is a minimum of the previous expression, we
have:

(
∇E(

∑
t

∑
i

λi

〈
E[t]2p1T

mi
+ 1mpi

TEk[t]2T − 2E[t]πiEi[t]T, πi

〉)
|E=E∗

= 0

which reads

∀t,
∑

i

λi

(
∇E[t]

〈
E[t]2p1T

mi
+ 1mpi

TEi[t]2T − 2E[t]πiEi[t]T, πi

〉)
|E[t]=E∗[t] = 0

We notice that for each t we have the same optimization problem as the one described by Equation 12 of
Peyré et al. (2016). Taking advantage of Proposition 13 of Peyré et al. (2016) and with the notations of the
tensor operations, we obtain the desired solution.
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A.5 Proof of Proposition 2.11: Property of the FNGW Barycenter

Proof. By Equation14, we have the expression for each element of the barycenter tensor (we omit here the
iteration index for the sake of clarity):

E(s, r, t) = 1
pspr

∑
i

λi

∑
j

∑
l

πi(s, j)Ei(j, l, t)πT
i (l, r)

Summing it up along the third dimension, we have

∑
t

E(s, r, t) =
∑

t

1
pspr

∑
i

λi

∑
j

πi(s, j)
∑

l

Ei(j, l, t)πT
i (l, r)

= 1
pspr

∑
i

λi

∑
j

πi(s, j)
∑

l

πi(r, l)
∑

t

Ei(j, l, t)

= a
1

pspr

∑
i

λi

∑
j

πi(s, j)
∑

l

πi(r, l)

= a
1

pspr

∑
i

λipspr

= a

A.6 Proof of Proposition 3.1: Statistical Guarantees for Supervised Graph Prediction Estimator

Before going through the proof, let us recall the definition of ILE property.

Definition A.9 (ILE, Ciliberto et al. (2020)). A continuous map ℓ: Z × Y → R is said to admit an
Implicit Loss Embedding (ILE) if there exists a separable Hilbert Space H and two measurable bounded
maps ψ : Z → H and φ : Y → H, such that for any z ∈ Z and y ∈ Y we have

ℓ(z, y) = ⟨ψ(z), φ(y)⟩H, (28)

and ∥φ(y)∥H ≤ 1.

Then we recall the FNGWα,β-distance’s definition when extended to Gm ×G. Given gm = {F,E,A,p} ∈ Gm

and g = {F̃ , Ẽ, Ã, p̃} ∈ G,

FNGWα,β(gm, g) = min
π∈Π(p,p̃)

∑
i,j,k,l

[
α∥E(i, k) − Ẽ(j, l)∥2

RT + β|A(i, k) − Ã(j, l)|2

+ (1 − α− β)∥F (i) − F̃ (j)∥2
RS

]
πk,lπi,j (29)

Proof. Using Theorem 12 from (Ciliberto et al., 2020), we are going to show that FNGWα,β satisfies the ILE
property by proving that i) Gm is compact, ii) G is finite (trivial with the definition) and iii) the function
FNGWα,β(·, g) is continuous.
First of all, we can see that Gm is compact, since [0, 1]m×m, Conv(F)m, and Conv(T )m×m are compact (F
and T are finite and thus compact). Secondly, G is finite by definition (Equation 15). Now, we will prove
the continuity of FNGWα,β(·, g) for any g ∈ G. Denote dgm = (dF,dA,dE) ∈ Gm. For a given g ∈ G, we
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have, for any (gm, dgm):

|FNGWα,β(gm + dgm, g) − FNGWα,β(gm, g)|

≤ sup
π∈Π(p,p̃)

∑
i,j,k,l

[
α
(
2⟨dE(i, k), E(i, k) − Ẽ(j, l)⟩RT + ∥dE(i, k)∥2

RT

)
+ β

(
2dA(i, k) × (A(i, k) − Ã(j, l)) + dA(i, k)2)

+ (1 − α− β)
(
2⟨dF (i), F (i) − F̃ (j)⟩RS + ∥dF (i)∥2

RS

) ]
πk,lπi,j

≤
∑

i,j,k,l

[
α
(
2∥dE(i, k)∥RT ∥E(i, k) − Ẽ(j, l)∥RT + ∥dE(i, k)∥2

RT

)
+ β

(
2|dA(i, k)| × |A(i, k) − Ã(j, l)| + dA(i, k)2)

+ (1 − α− β)
(
2∥dF (i)∥RS ∥F (i) − F̃ (j)∥RS + ∥dF (i)∥2

RS

)
(30)

The first inequality is due to the fact that ∀f, g : Π(p, p̃) → R, | minπ f(π) − minπ g(π)| ≤ supπ |f(π) − g(π)|.
The second is a direct application of the Cauchy-Schwarz inequality and the fact that ∀i, j, πi,j ≤ 1. Since
E, F and A are all bounded, there exists M ∈ R such that for any i, j, k, l:

M ≥ ∥E(i, k) − Ẽ(j, l)∥RT (31)
M ≥ |A(i, k) − Ã(j, l)| (32)
M ≥ ∥F (i) − F̃ (j)∥RS (33)

Then we have

|FNGWα,β(gm + dgm, g) − FNGWα,β(gm, g)|

≤
∑

i,j,k,l

[
α
(
2∥dE(i, k)∥RTM + ∥dE(i, k)∥2

RT

)
+ β

(
2|dA(i, k)|M + dA(i, k)2)

+ (1 − α− β)
(
2∥dF (i)∥RSM + ∥dF (i)∥2

RS

)
(34)

Now when ∥dgm∥Rm×m×Rm×S×Rm×m×T → 0, we have ∥dF∥Rm×S → 0, ∥dA∥Rm×m → 0, and ∥dE∥Rm×m×T →
0, we can easily deduce from Equation 34 that

|FNGWα,β(gm + dgm, g) − FNGWα,β(gm, g)| −→
∥dgm∥→0

0 (35)

Hence, we have that for any g ∈ G, FNGWα,β(·, g) is continuous on Rm×m × Rm×S × Rm×m×T , and thus on
Gm.

Since FNGWα,β admits an ILE, Theorems 8 and 9 from Ciliberto et al. (2020) can be instantiated on the
FNGWα,β-based estimator in Equation 17 which gives us the following results.
Theorem A.10 (Universal Consistency). Let k be a bounded universal reproducing kernel. For any n ∈ N
and any distribution ρ on X × G, let fn : X → Gm be the estimator defined in Equation 17 trained on
{(xi, yi)}n

i=1 samples independently drawn from ρ and with λ = n−1/2, then

lim
n→∞

R(fn) = R(f∗) with probability 1 (36)

with R(f) = Eρ[FNGWα,β(f(X), G)] and f∗ denotes the bayes estimator.
Theorem A.11 (Excess-risk Bounds). Let H be the Hilbert space associated with the loss FNGWα,β :
Gm × G → R+ in the ILE definition. Let k : X × X → R be a continuous reproducing kernel on X with
associated RKHS F such that κ2 := supx∈X k(x, x) < +∞. Let ρ be a distribution on X × G and suppose
that the solution h∗ of the surrogate regression problem belongs to the considered hypothesis space H ⊗ F .
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Let δ ∈ (0, 1] and n0 sufficiently large such that n−1/2
0 ≥ 9κ2

n0
log n0

δ . Then, for any n ≥ n0, the estimator fn

defined in Equation 17 trained on n points independently sampled from ρ and with λ = n−1/2 is such that,
with probability at least 1 − δ

R(fn) − R(f∗) ≤ c log(4/δ) n−1/4, (37)

with c a constant independent of n and δ.

A.7 Proof of Invariance of FNGW to Node Permutation

Proposition A.12 (Invariance of FNGW to Node Permutation). Given graphs g1 = (F1, A1, E1,p1), g2 =
(F2, A2, E2,p2), and a new graph ĝ1 = (F̂1, Â1, Ê1, p̂1) obtained by applying a node permutation σ on g1,
then we have

FNGWα,β,q,p(g1, g2) = FNGWα,β,q,p(ĝ1, g2) (38)

Proof. Given two graphs g1 = (F1, A1, E1,p1) and g2 = (F2, A2, E2,p2), the FNGW distance between them
is given by

min
π∈Π(p1,p2)

( m1∑
i=1

m1∑
k=1

∑
j,l

[
αdΩ (E1(i, k), E2(j, l))q+β|A1(i, k)−A2(j, l)|q+(1−α−β)dΨ (F1(i), F2(j))q

]p

πk,lπi,j

) 1
p

(39)
Suppose that ĝ1 = (F̂1, Â1, Ê1, p̂1) is isomorphic to g1 with a permutation application σ : J1,m1K → J1,m1K,
so the FNGW distance between the new permuted graph ĝ1 and g2 is

min
π̂∈Π(p̂1,p2)

( m1∑
i=1

m1∑
k=1

∑
j,l

[
αdΩ

(
Ê1(i, k), E2(j, l)

)q

+β|Â1(i, k)−A2(j, l)|q+(1−α−β)dΨ

(
F̂1(i), F2(j)

)q
]p

π̂k,lπ̂i,j

) 1
p

(40)
Since Ê1(i, k) = E1(σ−1(i), σ−1(k)) , Â1(i, k) = A1(σ−1(i), σ−1(k)), F̂1(i) = F1(σ−1(i)), π̂k,l = πσ−1(k),l and
π̂i,j = πσ−1(i),j due to the permutation, Equation 40 can be rewritten by

min
π∈Π(p1,p2)

( m1∑
i=1

m1∑
k=1

∑
j,l

[
αdΩ

(
E1(σ−1(i), σ−1(k)), E2(j, l)

)q + β|A1(σ−1(i), σ−1(k)) −A2(j, l)|q

+(1 − α− β)dΨ
(
F1(σ−1(i)), F2(j)

)q
]p

πσ−1(k),lπσ−1(i),j

) 1
p

(41)

Denoting s = σ−1(i) and t = σ−1(k) and set S = {σ−1(i) | i ∈ J1,m1K}, we obtain thus

min
π∈Π(p1,p2)

(∑
s∈S

∑
t∈S

∑
j,l

[
αdΩ (E1(s, t), E2(j, l))q+β|A1(s, t)−A2(j, l)|q+(1−α−β)dΨ (F1(s), F2(j))q

]p

πs,lπt,j

) 1
p

(42)
Since the permutation σ is bijective from J1,m1K to J1,m1K, we have S = J1,m1K, which leads to

min
π∈Π(p1,p2)

( m1∑
s=1

m1∑
t=1

∑
j,l

[
αdΩ (E1(s, t), E2(j, l))q+β|A1(s, t)−A2(j, l)|q+(1−α−β)dΨ (F1(s), F2(j))q

]p

πs,lπt,j

) 1
p

(43)
It’s clear that Equation 43 describes the same minimization as the one of Equation 39, the proof is thus
concluded.

B Additional Details on Algorithms

In this section, we present additional details on our algorithms.
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Algorithm 3 Line-Search in Conditional Gradient Descent
Input: a, b
if a > 0 then

γ(k) = min(1,max(0,− 2a
b ))

else
if a+ b < 0 then

γ(k) = 1
else

γ(k) = 0
end if

end if
Output: γ(i)

B.1 Line Search in Algorithm 1

Denoting ∆ = π̃(k−1) − π(k−1), Λ1 = A2p1T
m̃ + 1mp̃TÃT2 and Λ2 = g(E)p1T

m̃ + 1mp̃Th(Ẽ)T, then we have
π(k) = π(k−1) + γ(k)∆ and

Eα,β(π(k))

=
〈

(1 − α− β)M(F, F̃ ) + βJ(A, Ã) ⊗ π(k) + αL(E, Ẽ) ⊗ π(k), π(k)
〉

=
〈

(1 − α− β)M(F, F̃ ) + β(Λ1 − 2Aπ(k)ÃT) + α(Λ2 − 2
T∑

t=1
E[t]π(k)Ẽ[t]T), π(k)

〉

=
〈

(1 − α− β)M(F, F̃ ) + β(Λ1 − 2A(π(k−1) + γ(k)∆)ÃT)

+ α(Λ2 − 2
T∑

t=1
E[t](π(k−1) + γ(k)∆)Ẽ[t]T), π(k−1) + γ(k)∆

〉
(44)

Then we can rewrite Eα,β(π(k)) as aγ(k)2 + bγ(k) + c with

a =
〈

−2α
T∑

t=1
E[t]∆Ẽ[t]T − 2βA∆ÃT,∆

〉
(45)

b =
〈

(1 − α− β)M(F, F̃ ) + α(Λ2 − 2
T∑

t=1
E[t]π(k−1)Ẽ[t]T) + β(Λ1 − 2Aπ(k−1)ÃT),∆

〉

+
〈

−2α
T∑

t=1
E[t]∆Ẽ[t]T − 2βA∆ÃT, π(k−1)

〉
(46)

Hence, the line-search presented in Algorithm 1 can be performed with Algorithm 3 using a and b as defined
above.

B.2 Graph Dictionary Learning with the FNGW Barycenter

We now describe a learning task that exploits the notion of FNGW-barycenter. Dictionary learning based
on graphs is an extension of factorization methods to graphs and was popularized by the seminal works
of Xu (2020) and Vincent-Cuaz et al. (2021). In our setting, given a set of labeled graphs {gi}n

i=1 with
gi = (Fi, Ai, Ei,pi) , we want to learn a dictionary of atoms {gs}S

s=1 so that each graph of the training set
can be reconstructed as a FNGW-barycenter of the dictionary atoms.
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Algorithm 4 Unmixing Problem Solver
input: Graph g, Dictionary {gs}S

s=1
init: Initialize uniformly w.
repeat

With w fixed, compute the barycenter with Algorithm 2, obtaining g̃ = B(w, {gs}S
s=1,p) and save S

independent optimal transport plans πs between g̃ and gs.
Compute the optimal transport plan π between g and g̃.
Compute the optimal w by minimizing Equation 48 with fixed transport plans π and {πs}s using the

CG algorithm.
until Convergence of the reconstruction loss.
output: w, π and {πs}s

Assuming that the probability distributions for the atoms {ps}S
s=1 are fixed beforehand, our dictionary

learning problem writes as:

min
{wi}n

i=1s.t.wi∈ΣS

{(Es,As,F s)}S
s=1

n∑
i=1

FNGWα,β

(
gi,B(wi, {gs}S

s=1,pi)
)

− λ

n∑
i

∥wi∥2
2 (47)

where the weights {wi}i describe the embeddings of our graphs in the dictionary and λ is a regularization
parameter which controls their sparsity.

Remark B.1. It should be noted that this problem setting corresponds to the dictionary learning in Xu
(2020) rather than the one presented in Vincent-Cuaz et al. (2021), where a graph is projected on a linear
representation of atoms. Here, representing a graph as a FNGW-barycenter of the atoms allows in particular
to use atoms comprising various number of nodes.

We propose to solve the optimization problem of Equation 47 with a stochastic iterative procedure, which
for each sampled batches of data alternatively updates the embeddings {wi}i and atoms {(Es, As, F s)}S

s=1.
Finding the embedding {wi}i for a fixed dictionary requires an intermediate procedure called unmixing,
which is in our case a bi-level optimization problem, since the reconstructed graph is the solution of a
FNGW-barycenter problem. Assuming a small change in wi will not affect the solution of the barycenter
problem, we propose therefore to solve the latter first, and find the optimal wi with the fixed OT plans of
the barycenter.

Let us formalize the unmixing procedure, which can be described as solving the following problem:

min
w∈ΣS

FNGWα,β

(
g,B(w, {gs}S

s=1,p)
)

− λ∥w∥2
2 (48)

Our detailed algorithm is provided in Algorithm 4.

This procedure is applied to the graphs in {gi}i, giving us corresponding {wi}i and transport plans, which
allows us to update atoms {(gs)}S

s=1 by gradient descent. Given a batch of graph samples {gb}B
b=1, we define

the following functional, representing the batch loss:

L(F s, As, Es) = 1
B

B∑
b=1

Eα,β

(
(Eb, Ab, Fb) ,

(
Ẽb, Ãb, F̃b

)
, πb

)
(49)
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Algorithm 5 Stochastic Graph Dictionary Learning
input: Graph dataset {gi}n

i=1
init: Randomly initialize the atoms {(Es, As, F s)}S

s=1
for k = 1, . . . ,K do

Sample a mini-batch of graphs from dataset: {(Eb, Ab, Fb,pb)}B
b=1

for b = 1, . . . , B do
With {(Es, As, F s)}S

s=1 fixed, solve the unmixing problem: wb, πb, {πb,s}s =
Alg.4((Eb, Ab, Fb,pb), {(Es, As, F s)}S

s=1)
end for
for s = 1, . . . , S do

With fixed wb, πb, {πb,s}s, compute the gradients of the mini-batch loss with respect to {Es, As, F s}.
Update {Es, As, F s} using gradients from Equation 53 to Equation 55.

end for
end for
Output: The atoms of the dictionary {(Es, As, F s)}S

s=1

with (Ẽb, Ãb, F̃b) the reconstructed graph of the batch sample gb from the results of the unmixing problem
and πb the optimal transport plan between them. The reconstructed graph is then expressed as:

Ẽb = 1
Im×T ×2 ppT

∑
s

ws,b(Cs ×2 πs,b) ×1 πs,b (50)

Ãb = 1
ppT ◦

∑
s

ws,bπs,bAsπ
T
s,b (51)

F̃b =
∑

s

ws,bdiag( 1
p

)πs,bF s (52)

where πs,b denotes the optimal transport plan between the reconstructed graph g̃b and atom gs. Then the
estimated gradients is written as:

∇F s
L = 2

B

B∑
b=1

ws,bπ
T
s,b

(
F̃b − Diag( 1

pb

)πT
b Fb

)
(53)

∇As
L = 2

B

B∑
b=1

ws,bπ
T
s,b

(
Ãb − 1

pbpT
b

◦ πT
b Abπb

)
πs,b (54)

∇Es
L = 2

B

B∑
b=1

ws,b

((
Ẽb − 1

Im×T ×2 pbpT
b

◦
(
Eb ×2 π

T
b

)
×1 π

T
b

)
×2 π

T
s,b

)
×1 πs,b (55)

The complete algorithm for dictionary learning is summarized by Algorithm 5.

C Additional Details on Experiments

This section is dedicated to additional details about the experiments carried out in Section 4.

C.1 Edge-featured Graph Classification

Datasets. We consider 7 graph datasets for classification: Cuneiform (Kriege et al., 2018), MUTAG (Deb-
nath et al., 1991; Kriege & Mutzel, 2012), PTC-MR (Helma et al., 2001; Kriege & Mutzel, 2012), BZR-MD,
COX2-MD, DHFR-MD and ER-MD (Sutherland et al., 2003; Kriege & Mutzel, 2012). While Cuneiform
is one of the earliest systems of writing realized by wedge-shaped marks on clay tablets, the rest of
the datasets are of the nature of small molecules. Table 4 describes the details of features occurring in
these datasets. All the datasets can be downloaded from https://ls11-www.cs.tu-dortmund.de/staff/
morris/graphkerneldatasets.

28

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets


Published in Transactions on Machine Learning Research (07/2024)

Table 4: The details of the features concerning the datasets used in graph classification.

Features Cuneiform MUTAG PTC-MR BZR-MD COX2-MD DHFR-MD ER-MD
Node label (Discrete) Yes Yes Yes Yes Yes Yes Yes
Node attribute (Real-valued) Yes No No No No No No
Edge label (Discrete) Yes Yes Yes Yes Yes Yes Yes
Edge attribute (Real-valued) Yes No No Yes Yes Yes Yes

Table 5: The types of the features treated by the methods used in graph classification.

Features RWK SPK GK WLK-VH HOPPERK PROPAK FGW NSPDK EHK VEHK WLK-VEH PNA GAT FNGW
Node label (Discrete) Yes Yes No Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes
Node attribute (Real-valued) No No No No No No Yes No No No No Yes Yes Yes
Edge label (Discrete) No No No No No No No Yes Yes Yes Yes Yes Yes Yes
Edge attribute (Real-valued) No No No No No No No No No No No Yes Yes Yes

Experimental Settings. For datasets whose node features are discrete, as in Vayer et al. (2020), we
use Weisfeiler-Lehman (WL) labeling to transform them into vectors of dimension K, being the number of
iterations in WL labeling. We use a dataset-specific random vector as feature for empty edges. To compute
the FNGW distance, regarding the distance dΨ, we use the Hamming distance when WL labeling is used,
or the ℓ2-norm otherwise. The distance dΩ between edge features is the ℓ2-norm in all cases.

For all methods, we conduct nested cross-validation with 50 iterations of the outer CV loop and 10-fold inner
CV. In each outer CV loop, the dataset is split into a training set and a test set, with 10% of the data held
out for the latter. The splitting is kept consistent across all methods for a fair comparison. We report the
mean and standard deviation of the test accuracy.

For the classifiers based on FNGW or FGW, the coefficient γ presented in the Gram matrix computation
is cross-validated within {2i | i ∈ J−10, 10K} while the number of iteration K in WL labeling is searched in
J0, 4K for MUTAG and PTC-MR or J0, 3K for the other datasets (0 means no WL labeling is used) except
Cuneiform. For FNGW, we cross-validate 7 values of the trade-off parameter α via a logspace search in [0, 0.5]
and the same strategy is applied to β, while a total of 15 values are drawn from logspaces [0, 0.5] and [0.5, 1]
to cross-validate α for FGW. For the kernel-based methods, decay factor λ of RWK is cross-validated from
{10i | i ∈ J−6,−2K}, the number of iterations of WLK is cross-validated in J1, 10K while the one of PROPAK
is chosen from {1, 3, 5, 8, 10, 15, 20}. For GK, the CV range of the graphlet size is {3, 4, 5} and the one of the
precision level ϵ and the confidence δ is {0.1, 0.05}. For NSPDK, the maximum considered radius r between
vertices is cross-validated within J0, 5K, and neighborhood depth d is chosen from {3, 4, 5, 6, 8, 10, 12, 14, 20}.
Finally, the regularization coefficient C of the SVM is cross-validated within {10i | i ∈ J−7, 7K} for all the
methods except for the case MUTAG-FNGW where the value 107 is not included.

Runtime Comparison. We compare the Gram matrix computation time of the different graph kernels,
FGW and FNGW used in the experiments. The results are presented in Table 6.

C.2 Fingerprint to Molecule.

Experimental Settings. Table 7 outlines the details of the hyper-parameter searching range for the cross-
validation for both FGW and FNGW loss. The constrained exploration of the NNBary range reflects the
substantial computational resources demanded by this method.

C.3 Metabolite Identification.

Dataset. To evaluate the performance for metabolite identification from tandem mass spectra, we use the
data extracted and processed in Dührkop et al. (2015), which is a set of 4,022 small compounds from the public
GNPS Public Spectral Libraries (https://gnps.ucsd.edu/ProteoSAFe/libraries.jsp). The candidate
sets were built with molecular structures from PubChem. The dataset can be downloaded from https:
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Table 6: Runtime of Gram matrix computation for graph classification on MUTAG, PTC-MR, and BZR-MD
datasets. 10 times of computation are conducted for each method. The last five rows show the results for
methods leveraging the edge features.

Methods MUTAG PTC-MR BZR-MD
RWK 38.756 ± 0.126 64.095 ± 0.473 114.663 ± 0.646
SPK 0.283 ± 0.019 0.431 ± 0.019 1.423 ± 0.078
GK 42.201 ± 0.317 78.518 ± 0.124 83.448 ± 0.122
WLK-VH 0.072 ± 0.006 0.089 ± 0.011 0.385 ± 0.016
HOPPERK 11.491 ± 0.048 46.148 ± 0.549 14.411 ± 0.070
PROPAK 0.344 ± 0.033 0.796 ± 0.026 0.633 ± 0.016
FGW 66.120 ± 0.202 167.880 ± 0.209 99.201 ± 0.152
NSPDK 1.736 ± 0.019 2.242 ± 0.040 34.017 ± 0.259
EHK 0.002 ± 0.000 0.003 ± 0.000 0.022 ± 0.004
VEHK 0.005 ± 0.000 0.008 ± 0.001 0.069 ± 0.019
WLK-VEH 0.076 ± 0.002 0.120 ± 0.009 0.731 ± 0.010
FNGW 240.508 ± 4.958 565.021 ± 8.726 881.524 ± 27.510

Table 7: Hyper-parameter searching ranges during the cross-validation on Fing2Mol dataset.

Hyper-parameters NNBary ILE
α of the FGW/FNGW {0.01, 0.5, 0.9} {0.01, 0.1, 0.5, 0.9, 0.99}
Number of graphs for barycenter {10, 15} {15, 20, 25}
γ of the Gaussian input kernel - {10−6, 10−5, 10−4, 10−3, 10−2, 10−1}
Ridge regularization parameter λ - {10−10, 10−8, 10−6, 10−4, 10−2}
Sketching size - {1000, 5000}
Hidden dimension of MLP {128} -

//zenodo.org/record/804241#.Yi9bzS_pNhE, which is released under Creative Commons Attribution 4.0
International license.

Experimental Settings. We choose the ridge regularization parameter (λ = 10−4) and the diffusion rate
(τ = 0.6) following Brogat-Motte et al. (2022). We use a separate validation set (1/5 of the training set) to
select the hyperparameters α and β of FNGW loss. α and β are chosen from {0.1, 0.33, 0.5, 0.67} with the
constraint α+β < 1. For the experiment with FGW, we keep the same hyper-parameter as in Brogat-Motte
et al. (2022).

D Additional Experiments

In this section, we present additional experiments showing the application of our proposed FNGW distance.

D.1 Runtime of FNGW Computation with Respect to Graph Size

To give an idea of the scales involved, the run-time with respect to the number of nodes (the graphs are
randomly created with both node feature and edge feature of dimension 2; the graphs to be compared are of
the same size) is shown in Table 8. The maximum number of CGD steps K is set to 100 for both distances.
The experiments are conducted on an Intel(R) Xeon(R) CPU E5-2650 v2. While experiments in this paper
are made on small graphs, where the difference in computation time between FGW and FNGW is reasonable,
applying FNGW efficiently on large graphs will require further investigation.
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Table 8: Runtime (s) of computation of the FNGW w.r.t graph size.

# nodes FNGW FGW
25 0.0294 ± 0.0089 0.0039 ± 0.0003
50 0.0949 ± 0.0290 0.0047 ± 0.0009
100 1.4640 ± 0.5598 0.0137 ± 0.0005
200 10.2419 ± 2.8562 0.0435 ± 0.0063

Table 9: Computation runtime (s) comparison of FNGW and GED on QM9 molecules.

FNGW (α = 0.33, β = 0.33) GED w/ Edge feature
0.63 ± 0.01 276.84 ± 0.56

D.2 Runtime Comparison Between FNGW and GED

We randomly select 100 pairs of molecules from the QM9 dataset and compute the distance between each
pair using FNGW or GED. This procedure is repeated 10 times, and the total time required is reported in
Table 9. We utilize the NetworkX implementation of GED.

D.3 Real Migration Network Clustering

In this experiment, we use the global bilateral migration networks released by the World Bank and processed
by Chowdhury & Mémoli (2019) to test our distance. Differently than Chowdhury & Mémoli (2019), the
capacity of the FNGW distance to model higher dimensional edge features allows us to take in account both
networks (corresponding to the male migration and the female migration, separated) conjointly, by combining
their edge features. The resulting dataset consists of 5 graphs, each containing 225 nodes representing
countries or administrative regions. The feature of each edge (i → j) is a two-dimensional vector, where
each indicates the number of respectively male and female migrating from region i to region j. Since the
networks are complete and do not possess any node features, the trade-off parameter α of the FNGW
distance is set to 1. The weights of the nodes in the network are uniformly distributed. Figure 7 shows the
dissimilarity matrix of the migration networks and its associated single-linkage clustering dendrogram.
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Figure 7: Results of migration networks
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D.4 Synthetic Labeled Graph Clustering

In this synthetic task, we generate 3 groups of graphs, following the Stochastic Block Model (SBM) with
the number of blocks in each graph chosen from {1, 2, 4}. For each cluster, we generate 15 graphs whose
numbers of nodes are randomly chosen from {20, 30, 40}. For each graph, the feature of the nodes from
block i is sampled from N (i, 1). For the edges, we consider the following 3 labels: {black, blue, green}.
Edges between nodes in the same block are labeled as black with probability 1. For every pair of nodes
(p, q) with p from block i and node q from block i + 1, there exists an edge p → q labeled as green, and
there exists an edge q → p labeled as blue with the same probability. There is no other possible edges. In
total, the dataset contains 45 graphs. Several synthetic graph samples are shown in Figure 8. We apply the
k-means algorithm in order to perform graph clustering, considering the FNGW barycenter as the centroid
of each cluster and the FNGW distance as the cluster assignment metric. Cluster centroids are randomly
initialized with 20 nodes; their evolution as found by k-means is presented in Figure 9. We can observe that
the resulting centroids recover not only the node features but also the characteristic of the edge labels of the
different groups in the synthetic dataset.

Figure 8: Samples of graphs for clustering with 20 nodes

 ------------------> Iteration

Figure 9: Evolution of centroids of each cluster found by k-means algorithm.
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D.5 Representation Learning through Dictionary Learning

We structure this toy problem around 3 graph templates, that we generate following the Stochastic Block
Model (SBM) with 1, 2 and 3 blocks. Each template consists of 20 nodes. For each, node features are
scalars representing the block they belong to. Within a block, all nodes are connected with black edges.
Pairs of nodes from adjacent blocks are connected with probability 0.3 by edges that are colored in blue
when ascending, green when descending. The Templates are shown in Figure 10a. We repeat the following
procedure to create a synthetic dataset for dictionary learning: given a vector v ∈ R3 which components are
sampled from N (0, 1), we compute a simplex w = softmax(v) and generate a new graph by computing the
barycenter of the templates defined above with Algorithm 2. The number of nodes is set to be 20 for all
barycenters. To control the quality of the generated barycenters, we set a maximum barycenter loss value of
0.3. The goal of the experiment is to retrieve graphs presenting the same characteristics with the 3 original
templates through dictionary learning, even with a varying number of nodes. Setting the numbers of nodes
of the atoms to 5, 10 and 15 respectively, we perform dictionary learning on the dataset. The learned atoms
are shown in Figure 10b, and clearly recover the properties of the synthetic templates.

(a) Synthetic templates (b) Learned atoms

Figure 10: Dictionary learning on synthetic dataset.

D.6 More Prediction Examples on Fin2Mol Dataset.

Figure 11 shows more predictions of the different methods on Fin2Mol dataset.
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Figure 11: More predicted molecules on the Fin2Mol dataset.
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