UNDERSTANDING SIGNAL PROPAGATION IN GNNS VIA OBSERVABLES

Anonymous authors

Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) perform computations on graphs by routing the signal information between regions of the graph using a graph shift operator or a message passing scheme. Often, the propagation of the signal leads to a loss of information, where the signal tends to diffuse across the graph instead of being deliberately routed between regions of interest. Two notions that depict this phenomenon are oversmoothing and oversquashing. In this paper, we propose an alternative approach for modeling signal propagation, inspired by quantum mechanics, using the notion of observables. Specifically, we model the place in the graph where the signal lies, how much the signal is concentrated at this place, and how much of the signal is propagated towards a location of interest when applying a GNN. Using these new concepts, we prove that standard spectral GNNs have poor signal propagation capabilities. We then propose a new type of spectral GNN, termed Schrödinger GNN, which we show has a superior capacity to route the signal between graph regions.

1 Introduction

Graph Neural Networks (GNNs) (23; 37) have emerged as powerful tools, enabling breakthrough applications across diverse domains including molecular science, physics simulations, social network analysis, and recommendation systems. A GNN is a layered architecture that takes a graph with node features, often referred to as the signal, and returns some output, e.g., another signal on the same graph. The hidden states of the signal across the layers can be interpreted as a gradual flow or propagation of the node features, since the GNN computes the signal at the next layer using local operations on the previous layer.

Often, to solve a problem on graphs, the GNN should be able to direct the propagation of the signal from certain regions of the graph to others. For example, the function of an enzyme is often understood through the notion of allosteric regulation: activation in one site of the enzyme (the receptor) changes the dynamics of the molecule, leading to some change in another site, called the active site. To be able to predict such a behavior using a GNN, the GNN should be able to propagate the signal about the binding site, which captures structural properties of the receptor, to the distant active site.

However, one limitation of typical GNNs is that the signal gets diffused in all directions the more layers are used in the network, rather than being propagated, or routed, in a coherent way between regions in the graph. This limits the applicability of typical GNNs when a deliberate routing of the signal is required to solve the task. Two standard notions that are commonly regarded as quantifying this phenomenon are *oversmoothing* (9; 29; 31; 34; 46) and *oversquashing* (1; 2; 42)

However, the first notion, oversmoothing, which is often quantified via the Dirichlet energy (36; 39), describes how quickly the signal varies, or oscillates, across the whole graph, not how much the signal can be kept concentrated, or coherent, when propagating it from one region to another. The second phenomenon, oversquashing, describes the phenomenon where long range information is compressed through topological bottlenecks. Hence, analyses of oversquashing are typically based on various definitions quantifying bottlenecks, e.g., curvature (42), Cheeger number (7; 11), and effective resistance (2). Hence, such an approach focuses on structural properties of the graph, and do not typically explicitly study how coherent the signal stays when routing it between regions. For further details on oversmoothing and oversquashing see Appendix A.3.

Our contribution. We aim to directly study how coherent the signal stays when it is routed between regions of the graph. For this, we propose in the paper an alternative way to model and probe different aspects of the content of the signal and its flow. Specifically, we model (i) the location in the graph where the signal lies, (ii) how much the content of the signal is concentrated about this location, and, (iii) how much of the signal is propagated from one location of the graph to another when applying a GNN. These three concepts are defined via the notion of observables and their mean and variance, similarly to the approach in quantum mechanics. Measuring signal content using observables was also done in the past in the context of signal processing (16; 25–27). We prove that standard spectral GNNs have poor signal propagation capabilities: they keep the location of the content of the signal unchanged, and only increase the spread of the signal about this location. Then, we propose a novel spectral GNN, called *Schrödinger GNN*, which has provably good signal flow properties. Namely, with *Schrödinger filters*, we can direct the propagation of the signal in any desired direction in the graph.

Schrödinger GNNs are based on two main components: a unitary graph shift operator (GSO), and complex modulated signals. The unitary GSO is analogous to the Schrödinger operator in classical quantum mechanics, and specifically, in the free particle dynamics. It assures that the content of the signal is transformed in a geometry preserving way, rather than being diffused. Moreover, Schrödinger GNNs consider some of the input feature channels as encoding an abstract notion of ambient location in the graph. We call these features *formal locations*. The rest of the feature channels are called *the signal*. The idea is to be able to shift the signal across the formal location, in any desired direction. For illustration, in a social network, we might want to shift the *income* signal along the *age* direction, to allow comparing salaries of different age groups. To quantify the propagation properties of signals, we consider an observable corresponding to each formal location feature, namely, an operator that measures the formal location of signals. Moreover, to guarantee that the formal location of signals shifts when applying GNNs, we form in the signal complex oscillations along the direction of each formal location. We show that this leads roughly to a constant speed of the formal location of signals when applying linear Schrödinger filters.

We empirically validate our theory on graph classification and regression benchmarks, where Schrödinger GNNs achieve comparable accuracy to state of the art GNNs.

2 MEASURING SIGNAL LOCALIZATION AND PROPAGATION

General Notations. For $N \in \mathbb{N}$ we denote $[N] = \{1, \dots, N\}$. We use lowercase a, bold a, and uppercase A for scalars, vectors, and matrices respectively. We also treat vectors $\mathbf{f} = (f_1, \dots, f_n) \in \mathbb{C}^N$ as functions $f:[N] \to \mathbb{C}$, where $f(n) = f_n$. The identity matrix is denoted by I. For a matrix A, we denote by $A_{n,:}$ and $A_{:,k}$ its n-th row and k-th column respectively. For complex numbers, we denote complex conjugation by \overline{z} , real part by $\mathrm{Re}(z)$, and imaginary part by $\mathrm{Im}(z)$. A graph is $\mathcal{G} = (V, E)$ where the vertex set is V = [N] and $E \subset [N]^2$. We denote by $\mathcal{N}(v)$ the neighborhood of vertex v. We consider only undirected graphs, and denote the adjacency matrix by $A = (a_{n,m})_{n,m} \in \mathbb{R}^{N \times N}$. A graph-signal is a pair (\mathcal{G}, f) where $f = (f_1, \dots, f_K) : V \to \mathbb{C}^K$ is the signal. The signal can also be represented by a matrix $X = (x_{n,k})_{n,k} \in \mathbb{C}^{N \times K}$ where $x_{n,k} = f_k(n)$. A graph shift operator (GSO), is any operator that encodes the graphs structure, e.g., the adjacency matrix or any graph Laplacian. We define the inner product of two single-channel signals $f,g \in \mathbb{C}^N$ by $\langle f,g \rangle = \sum_{v \in V} f(v) \overline{g(v)}$, and define norm by $\|f\|_2^2 = \langle f,f \rangle$. The operator norm is $\|A\| = \sup_{\|x\|_2 = 1} \|Ax\|_2$ for a signal f, we denote by $\mathrm{diag}(f)$ the diagonal matrix with diagonal elements $\mathrm{diag}(f)_{n,n} = f_n$. The commutator of two matrices is [X,Y] = XY - YX.

Observables and The Signal Routing Measure. In a general Hilbert space $\mathcal H$ of signals, an observable is a self-adjoint operator A in $\mathcal H$, i.e. $A^*=A$. By the spectral theorem, any self-adjoint operator in a finite dimensional spaces can be written as $A=\sum_j \lambda_j P_j$ where $\{\lambda_j\}_j$ are real eigenvalues and $\{P_j\}_j$ are the orthogonal eigenprojections. This decomposition motivates treating a self-adjoint operator as an observable of a physical quantity. Namely, we interpret the eigenvalues as values that the physical quantity can attain, and P_j as projections upon spaces of signals that have λ_j as the value of their physical quantity. For example, the diagonal operator $D:\mathbb C^N\to\mathbb C^N$ defined by $(Dg)_j=jg_j$ can be thought of as a location observable on the line [1,N]. Here, the eigenvectors $e_j=(0,\dots,0,1,0,\dots,0)$ (with 1 only at the j-th entry) are thought of as pure states/signals with

 location exactly $\lambda_j = j$. Any signal $g \in \mathbb{C}^N$ is a linear combination of the *pure location states* $\{e_j\}_j$, i.e., $g = \sum_j g_j e_j$ with $g_j \in \mathbb{C}$. When the state g is normalized to $\|g\|_2 = 1$, we can interpret $|g_j|^2$? as the weight, or probability, of g being at location g. While g does not have one exact location, we can define its *mean location* as $\mathcal{E}_D(g) = \sum_j |g_j|^2 j$, and its location variance as $\mathcal{V}_D(g) = \sum_j |g_j|^2 (j - \mathcal{E}_D(g))^2$. Using operator notations, these two quantities can be written as $\mathcal{E}_D(g) = \langle Dg, g \rangle$ and $\mathcal{V}_D(g) = \|(D - \mathcal{E}_D(g)I)g\|_2^2$, where I is the identity operator in \mathbb{C}^N .

This discussion motivates the general construction of observables in quantum mechanics. For a self-adjoint operator A and normalized state $g \in \mathcal{H}$, the *expected value* (or *mean*) of A with respect to g is defined to be $\mathcal{E}_A(g) := \langle Ag, g \rangle$. Note that when $\mathcal{H} = \mathbb{C}^N$, we have $\mathcal{E}_A(g) = \sum_i \lambda_i \langle P_i g, g \rangle$, which is interpreted just like the above example of location observable. The *variance* of A with respect to g is defined to be

$$\mathcal{V}_A(g) := \left\| (A - \mathcal{E}_A(g)I)g \right\|_2^2 = \left\langle (A - \mathcal{E}_A(g)I)^2 g, g \right\rangle = \mathcal{E}_{A^2}(g) - \mathcal{E}_A(g)^2.$$

In addition to the classical notions of mean and variance, we propose quantifying how well a signal is transmitted towards a target value of the physical quantity. Consider a scenario where we have an initial signal g_0 , and we would like to transmit this signal to be concentrated about some value r with respect to some observable A. For that, suppose that we operate on g_0 , e.g., with a GNN, and transform it to g_t . The following definition quantifies how well g_t achieves this goal.

Definition 2.1 (Signal Routing Measure). For an observable A, normalized initial signal g_0 and final signal g_t , and a target value $r \in \mathbb{R}$, the signal routing measure is defined to be

$$\mathcal{P}_A(g_0, g_t, r) = \frac{\langle (A - Ir)^2 g_t, g_t \rangle}{\mathcal{V}_A(g_0)}.$$
 (1)

In the setting of Definition 2.1, the observable A models some physical quantity. The term $\langle (A-Ir)^2g_t,g_t\rangle$ quantifies how much the values of the physical quantity of g_t are concentrated about r, and the denominator normalizes this with respect to how well the physical quantity of the initial state g_0 is concentrated. It is easy to verify the identity

$$\mathcal{P}_{A}(g_{0}, g_{t}, r) = \frac{\mathcal{V}_{A}(g_{t}) + (r - \mathcal{E}_{A}(g_{t}))^{2}}{\mathcal{V}_{A}(g_{0})}.$$
(2)

Hence, to minimize the routing measure, one should construct an operation that transforms g_0 to some g_t , keeping the variance of g_t small (relatively to the variance of g_0), while making the expected value of g_t as close as possible to r.

3 SIGNAL PROPAGATION IN SCHRÖDINGER GRAPH SIGNAL PROCESSING

Next, we introduce Schrödinger graph signal processing, and analyze signal propagation under it.

Feature Location Observables. Consider a graph-signal (\mathcal{G},q) with $q=(q_1,\ldots,q_M):V\to\mathbb{C}^M$. We treat some of the feature channels of q as the signal and some as some abstract notion of locations. Namely, for some 1< J< M we call $g=(q_1,\ldots,q_J)$ the signal, and call $f=(q_{J+1},\ldots,q_M)$ the feature locations. Denote K=M-J and $f=(f_1,\ldots,f_K)$. As we show later, working with complex-valued signals is important for routing signals between graph regions. Hence, we consider $g:V\to\mathbb{C}^J$ with $\|g_j\|_2=1$, and consider real-valued feature locations $f:V\to\mathbb{R}^K$, which need not be normalized. Define the feature location observables $X_{f_k}=\operatorname{diag}(f_k)$, for $k\in [K]$. By the fact that f_k is real-valued, X_{f_k} is self-adjoint. Now, $\mathcal{E}_{X_{f_k}}(g_j)=\sum_{n\in [N]}f_k(n)|g_j(n)|^2$ is interpreted as the f_k -value about which the energy of g_j is centered, and $\mathcal{V}_{X_{f_k}}(g_j)$ is the spread of the energy of g_j about this center.

Partial Derivatives and The Second Order Feature Derivative GSO. Our construction of Schrödinger signal processing is based on a special constructions of a GSO based on derivatives.

Definition 3.1 (f_k -partial derivative). Given a feature location $f_k: V \to \mathbb{R}$, we define the f_k -partial derivative $\nabla_{f_k} \in \mathbb{C}^{N \times N}$ by: for $n, m \in V$

$$(\nabla_{f_k})_{n,m} = a_{n,m}(f_k(n) - f_k(m))$$

It is easy to see that ∇_{f_k} is skew-symmetric (i.e. $\nabla_{f_k}^* = -\nabla_{f_k}$), and hence $\nabla_{f_k}^2$ is self-adjoint.

Definition 3.2 (Schrödinger Laplacian). Given K feature locations $f = (f_1, \ldots, f_K)$, the corresponding Schrödinger Laplacian is defined to be

$$\Delta_f = -\sum_{k \in [K]} \nabla_{f_k}^2.$$

The Schrödinger Laplacian is self-adjoint as a sum of bounded self-adjoint operators. This makes the following operator unitary.

Definition 3.3 (Schrödinger Operator). Given feature locations $f: V \to \mathbb{R}^K$ and time $t \in \mathbb{R}$, the corresponding Schrödinger Operator is defined to be $S[t, f] = e^{-it\Delta_f}$.

As we define in Section 3, Schrödinger graph signal processing is based on filtering signals using Schrödinger operators as GSOs. In this paper, we develop the theory for Schrödinger operators based on Schrödinger Laplacians, as these special GSOs lead to theoretical guarantees. However, the Schrödinger signal processing methodology works also with Schrödinger operators based on general GSOs, like standard Graph Laplacians.

Let us draw an analogy to the classical theory. In the free particle Schrödinger equation, we consider the space \mathbb{R}^3 as the "graph," consider the coordinates x,y,z as the locations, and $\partial_x,\partial_y,\partial_z$ as the partial derivatives. Here, $\Delta_{x,y,z}=-\partial_x^2-\partial_y^2-\partial_z^2$ is the classical Laplace operator. Given a wave function $g_0:\mathbb{R}^3\to\mathbb{C}$ representing a particle at time $0,g_t=\mathcal{S}[t;x,y,z]g_0$ is the particle at time t. In our case, given a signal $g^{(0)}$ on the graph, thought of as the state at time 0, we denote $g^{(t)}=\mathcal{S}[t,f]g$, thought of as the signal at time t.

Analyzing Signal Propagation via Splitting. Note that typical signals are not localized about one feature location. For example, the grayscale signal of an image is typically supported across all x,y locations. Hence, the expected location and location variance are not meaningful localization notions for such signals (see Figure 1 for illustration). Still, we can conceptually apply a localization analysis with observables as follows. We decompose the signal g into a sum of chunks $g=g^1,\ldots,g^L$, e.g., by multiplying the signal by a window in the formal locations $g^l=w^l(f)g$, where $w^1,\ldots,w^L:\mathbb{R}\to\mathbb{R}$ form a partition of unity. Here we assume that each w_j is well localized about one location value. Then, each chunk g^l has a meaningful mean location, and we can track how Schrödinger operators propagate this location. Moreover, by tracking how much the Schrödinger operator increases the variance of the chunk, we interpret how much the content of the signal in this chunk is diffused, scatters, or dispersed, when propagating it. Note that this analysis makes sense by the linearity of the Schrödinger operator. Note as well that in our methodology, we do not decompose g to chunks in practice, and this decomposition is just for conceptualizing the signal propagation.

Figure 1: Decomposition of a signal g to $g^0 + g^1$. Expected feature locations are marked by a dot, and the variance is signified by a color band.

Dynamics of 1D Signals via Feature Momentum. In the classical theory, the partial derivatives are called the *momentum observables*. The mean $i\mathcal{E}_{\partial_x}(g)$ is interpreted as the expected momentum, or speed, of the particle g. Analogously, we interpret the f_k -partial derivative $i\nabla_{f_k}$ as observables of momentum or velocity along f_k . This interpretation can be made precise by developing dynamical equations of signals under Schrödinger operator, as we do next.

In the following discussion, we consider the case of single-channel signal $g=g_1$ and a single feature location $f=f_1$. We first show that the expected momentum of a signal is constant under Schrödinger dynamics.

Theorem 3.4 (Constant Expected Momentum). Let $g:V\to\mathbb{C}$ be a normalized signal and $f:V\to\mathbb{R}$ a feature location. Then, for every $t\in\mathbb{R}$,

$$\mathcal{E}_{i\nabla_f}(g_t) = \mathcal{E}_{i\nabla_f}(g)$$

We then show that the rate of change of the expected location is equal to some smoothed version of the expected momentum. For that, we first define smoothing with respect to feature directions.

Definition 3.5 (f-smoothing operator). Let f be a feature location. The f-smoothing operator $W_f: \mathbb{R}^N \to \mathbb{R}^N$ is defined as follows. For every signal $g \in \mathbb{C}^N$ and vertex $v \in V$

$$(W_f g)(v) = \sum_{w \in \mathcal{N}(v)} a_{v,w} (f(w) - f(v))^2 g(w).$$

By definition, the f-smoothing operator mixes the values of the signal g only along edges where the feature f changes. It is hence interpreted as smoothing along the f direction.

Theorem 3.6 (Expected Feature Location Derivative under Schrödinger dynamics). Let $g: V \to \mathbb{C}$ be a normalized signal and $f: V \to \mathbb{R}$ a feature location. Let $g^{(t)} = \mathcal{S}[t, f]g$ for every $t \in \mathbb{R}$. Then,

$$\frac{\partial}{\partial t} \mathcal{E}_{X_f}(g^{(t)}) = -2\text{Re}(\langle i\nabla_f g^{(t)}, W_f g^{(t)} \rangle). \tag{3}$$

The right-hand-side of (3) is interpreted as a smoothed version of the expected momentum $\mathcal{E}_{i\nabla_f}(g^{(t)}) = \langle i\nabla_f g^{(t)}, g^{(t)} \rangle$. Hence, Theorem 3.6 states that the rate of change of the expected location is equal to a smoothed expected momentum. In Appendix C.2, we show that for smooth enough signals, the rate of change of the expected location is close to the exact expected momentum. Since the expected momentum is constant, the theorem suggests that the rate of change of the expected location is roughly constant, as long as the signal stays smooth enough. This analysis hence justifies calling $i\nabla_f$ the momentum, or velocity, observable.

We note that Theorem 3.6 is analogous to the classical case, where the rate of change of the expected location of a free particle is equal to its expected momentum, which is constant. See Appendix B for more details.

Achieving Translations via Feature Modulation. We wish to be able to translate the expected feature location of signals using Schrödinger operators. In typical graph data, all features are real. However, as we show next, for real value signals, the expected momentum is always zero. Hence, given a real-valued signal, to be able to route it between feature regions, we must first modify it to be complex-valued. We do this via the feature modulation operator.

Definition 3.7 (Feature Modulation). Given a real-valued feature location $h: V \to \mathbb{R}$ and a phase $\theta \in \mathbb{R}$, the Feature Modulation Operator is defined to be $D[\theta h] = \operatorname{diag}(e^{i\theta h})$, where $e^{i\theta h}$ is the vector with entry $(e^{i\theta h})(v) = e^{i\theta h(v)}$ for node $v \in V$.

Next, we show that modulating a real-valued signal gives nonzero expected momentum in general.

Theorem 3.8 (Expected Momentum of Modulated Signal). Given a signal $g: V \to \mathbb{R}$, feature locations $f, h: V \to \mathbb{R}$, and a phase $\theta \in \mathbb{R}$, the expected momentum of $D[\theta h]g$ satisfies

$$\mathcal{E}_{i\nabla_f}(D[\theta h]g) = -2\sum_{(m,n)\in E} a_{m,n}g(m)g(n)(f(n) - f(m))\sin(\theta(h(n) - h(m))). \tag{4}$$

Theorem 3.8 can be interpreted as follows. Consider the edge signals $e_{g,h}, e_f : E \to \mathbb{R}$ defined by

$$e_{g,h}(v,w) = g(v)g(w)\sin(\theta(h(w) - h(v))), \quad e_f(v,w) = f(v) - f(w).$$

The right-hand-side of (4) is the edge-space inner product $\langle e_{g,h}, e_f \rangle$. Hence, as long as we choose a modulating feature h such that $e_{g,h}$ and e_f are not orthogonal, the expected momentum of $D[\theta h]g$ will be nonzero.

Dynamics of Multi-Channel Signals and Observables.

Theorem 3.9 (Expected multi-Feature Derivative). Given the Schrödinger Laplacian $\Delta_f = -\sum_{k \in [K]} \nabla_{f_k}^2$ and a normalized signal g, we have

$$\frac{\partial}{\partial t} \mathcal{E}_{X_{f_k}}(g^{(t)}) = -2\operatorname{Re}\left(\langle i\nabla_{f_k} g^{(t)}, W_{f_k} g^{(t)}\rangle\right) + \sum_{i \neq k} \left\langle [i\nabla_{f_i}^2, X_{f_k}]g^{(t)}, g^{(t)}\right\rangle. \tag{5}$$

Ideally, we would like the rate of change of the expected X_{f_k} location to be a smoothed version of the expected ∇_{f_k} momentum. However, we see that in (5) there are additional cross terms. This leads to the following definition.

Definition 3.10 (ϵ -Commuting Features). A sequence of feature locations $\{f_1, f_2, \dots, f_K\}$ is said to be ϵ -commuting if for every pair $i \neq j \in [K]$, the matrix $E_{i,j} = [X_{f_i}, \nabla_{f_j}] = X_{f_i} \nabla_{f_j} - \nabla_{f_j} X_{f_i}$ satisfies $||E_{i,j}||_{op} \leq \epsilon$.

For a sequence of ϵ commuting features, the dynamics is

$$\left\| \frac{\partial}{\partial t} \mathcal{E}_{X_{f_k}}(g^{(t)}) - 2\text{Re}\left(\langle i\nabla_f g^{(t)}, W_f g^{(t)}\rangle\right) \right\| \le (K - 1)\epsilon.$$

Hence, here as well we have the interpretation that for smooth enough signals, the rate of change of all expected locations are close to their corresponding expected momenta.

Orthogonalizing The Feature Directions. The signal $q:V\to\mathbb{R}^M$ in the raw data is not ϵ -commuting in general. Hence, in Schrödinger GNNs, as a first step, we transform the feature y to a sequence of features f_1,\ldots,f_K which are ϵ -commuting. For example, one can plug each node feature q(n) into a simple MLP or a linear transformation Θ , to obtain $f(n)=\Theta(q(n))$. The transformation Θ is optimized with respect to the following target.

Definition 3.11 (Position-Momentum Optimization). Given a signal $q \in \mathbb{R}^{N \times M}$, a linear transformation $T \in \mathbb{R}^{M \times K}$, mapping q to $f = (f_1, f_2, \dots, f_K) = qT \in \mathbb{R}^{N \times K}$, is optimized w.r.t

$$\min_{T \in \mathbb{R}^{M \times K}} \sum_{i \neq j}^{K} \| [\nabla_{f_j}^2, X_{f_i}] \|_{op}^2 + \lambda \sum_{k=1}^{K} (\| \nabla_{f_k} \|_{\infty} - 1)^2,$$

for some $\lambda > 0$.

Dynamics of the Variance. Next, we derive the dynamics of the variance.

Theorem 3.12 (Time Derivative of Variance). Let $g: V \to \mathbb{C}$ be a signal and $f: V \to \mathbb{R}$ a feature location, and $\Delta_f = -\nabla_f^2$. The first-order derivative of variance with respect to time $t \in \mathbb{R}$ is

$$\frac{\partial}{\partial t} \mathcal{V}_{X_f}(g^{(t)}) = \mathcal{E}_{i[\Delta_f, X_f^2]}(g^{(t)}) + 4\mathcal{E}_{X_f}(g^{(t)}) \operatorname{Re}(\langle i \nabla_f g^{(t)}, W_f g^{(t)} \rangle)$$

This mirrors the classical Schrödinger equation dynamics where variance evolution depends on both the commutator $[\Delta, X^2]$ and the coupling between position and momentum. See Appendix B for the classical correspondence.

Improving Signal Routing Through Modulation. Here, we show that in typical situations modulating real-valued signals improve their signal routing measure. Consider the following setting. We have a multilayer network where at each layer l we have a real-valued signal $g^{(l)}$ that we are allowed to modulate by choosing the free parameter $\theta_l \in \mathbb{R}$ in $D[\theta_l h]g^{(l)}$. We then propagate the signal via $S[dt,f]D[\theta_l h]g^{(l)}$ for some small time step dt, and lastly apply a modulus nonlinearity to define the signal at the next layer $g^{(l+1)} = \left| \mathcal{S}[dt,f]D[\theta_l h]g^{(l)} \right|$. Here, we can interpret $g^{(l)}$ as the signal at time ldt, and the input to the network $g^{(0)}$ as the signal at time 0.

Suppose that we would like to rout the signal to the feature location r, i.e., we would like $\mathcal{P}_{X_f}(g^{(0)}, D[\theta_l h]g^{(l)}, r)$ to decrease in l by choosing appropriate θ_l . In this setting, since dt is small, we can linearize the propagation of $g^{(l)}$ about t = 0, and obtain

$$\mathcal{P}_{X_f}(g^{(0)}, g^{(l+1)}, r) = \mathcal{P}_{X_f}(g^{(0)}, D[\theta_l h] g^{(l)}, r) + \frac{\partial}{\partial t} \mathcal{P}_{X_f}(g^{(0)}, \mathcal{S}[t, f] D[\theta_l h] g^{(l)}, r)|_{t=0} dt + O(dt^2)$$

Figure 2: Signal transport under modulation.

$$= \mathcal{P}_{X_f}(g^{(0)}, g^{(l)}, r) + \frac{\partial}{\partial t} \mathcal{P}_{X_f}(g^{(0)}, \mathcal{S}[t, f]D[\theta_l h]g^{(l)}, r)|_{t=0} dt + O(dt^2),$$

where the last equality is due to the fact that $\mathcal{P}_{X_f}(g^{(0)},D[\theta_l h]g^{(l)},r)$ does not depend on θ_l . We would now like to know if modulating the signal at layer l improves the routing measure at layer l+1. For that, it is enough to show that the derivative of $\mathcal{P}_{X_f}(g^{(0)},g^{(l+1)},r)$ with respect to θ_l is nonzero at $\theta_l=0$. Observe that

$$\frac{\partial}{\partial \theta_l} \mathcal{P}_{X_f}(g^{(0)}, g^{(l+1)}, r) = \frac{\partial}{\partial \theta_l} \frac{\partial}{\partial t} \mathcal{P}_{X_f}(g^{(0)}, \mathcal{S}[t, f] D[\theta_l h] g^{(l)}, r)|_{t=0} + O(dt^2).$$

Hence, our goal is to show that $\mathcal{D}:=\frac{\partial}{\partial \theta_l}\frac{\partial}{\partial t}\mathcal{P}_{X_f}(g^{(0)},\mathcal{S}[t,f]D[\theta_lh]g^{(l)},r)|_{t,\theta_l=0}$ is nonzero in general. As long as this is true, $\theta_l=0$ is not the minimizer of $\mathcal{P}_{X_f}(g^{(0)},g^{(l+1)},r)$, so one can always choose a better modulation than $\theta_l=0$.

We now simplify the notations and give a formula for $\mathcal{D} := \frac{\partial}{\partial \theta} \frac{\partial}{\partial t} \mathcal{P}_{X_f}(g, \mathcal{S}[t, f]D[\theta h]g, r)|_{t=\theta=0}$. Claim 3.13 (Mixed Derivative of The Signal Routing Measure).

$$\frac{\partial}{\partial \theta} \frac{\partial}{\partial t} \mathcal{P}_{X_f}(g, \mathcal{S}[t, f] D[\theta h] g, r) \Big|_{t=\theta=0} = \frac{\langle [X_h, [\Delta, X_f^2]] D_{\theta h} g, D_{\theta h} g \rangle + 4r \langle [X_h, W_f \nabla_f] g, g \rangle}{\mathcal{V}_{X_f}(D_{\theta h} g)}$$

We see that when h is constant, there is no modulation, \mathcal{D} is zero.

In Figure 2 we give an example of a graph, initial signal g with $\mathcal{E}_{X_f}(g)=-0.98$, modulating feature h=f, and desired location value r=1. We show that by choosing an appropriate modulation θ and propagating the signal using the Schrödinger operator to time t=0.1 improves the signal routing measure with respect to not modulating.

Schrödinger Signal Processing. We define Schrödinger filters by considering linear combinations of the evolutions of the modulated signal with different modulations and times. Let $f: V \to \mathbb{R}^K$ be location features and $D \in \mathbb{N}$ be the output feature dimension. To use linear algebra notations, let us now treat signals and location features and vectors in $\mathbb{C}^{N \times J}$ and $\mathbb{R}^{N \times K}$ respectively. A Schrödinger filter Ψ is parameterized by $(t_m \in \mathbb{R}, \theta_m \in \mathbb{R}, \mathbf{W}^{(m)} \in \mathbb{C}^{J \times D}, \mathbf{T}^{(m)} \in \mathbb{R}^{K \times 1})_{m \in [M]}$, and maps signals $\mathbf{g} \in \mathbb{C}^{N \times J}$ to

$$\Psi(\mathbf{g})\mathcal{F}(\mathbf{g}) = \sum_{m=1}^{M} \mathcal{S}[t_m, \mathbf{f}] D[\theta_m \mathbf{f} \cdot \mathbf{T}^{(m)}] \mathbf{g} \cdot \mathbf{W}^{(m)}.$$

Schrödinger GNNs. A Schrödinger GNNs first optimizes the input features via Definition 3.11, and then applies a Schrödinger filter followed by a nonlinearity at each layer

4 EXPERIMENTS

Synthetic Experiment - Signal Propagation on a Cycle. Here, we showcase the capability of Schrödinger GNN to direct the propagation of the signal with a toy regression experiment. Consider a cycle graph discretizing the unit circle, and the locations feature $x = \cos(\theta)$, where θ is the angle. Each signal in the dataset is a Gaussian with random mean μ and variance σ^2 , and with additive

white noise. The target for each signal is the same gaussian mean shifted by a predetermine value d. The task is to learn a GNN that maps the input signal to the output signal. This experiment shows that only Schrödinger GNN, with modulated input signal, can solve this task. A summary of dataset statistics is available in Appendix F.3.

Figure 3: Cycle graph (ring) signal transport. Each panel is a cycle graph in which node color intensity encodes the signal magnitude. All panels share the same color scale.

Table 1: Test Losses for Ring Signal Transport

Model	Test Loss
GCN	0.488
Graph Attention	0.589
Schrödinger real-valued	0.781
Schrödinger	3.78e-04

Peptides Peptide-Func and Peptide-struct, two datasets taken from Long Range Graph Benchmark (LRGB) (13) comprise datasets that specifically test the ability of graph neural networks to capture long-distance dependencies between nodes. For this paper, we focus on the molecular property prediction datasets Peptides-func and Peptides-struct. Peptides-func is a graph-level classification task that determines functional characteristics of peptide molecules represented as graphs, while Peptides-struct is a graph-level regression task that predicts structural properties of these molecules, for more details F.5.

5 SUMMARY

We presented a new approach for defining and analyzing signal propagation across graphs. The approach directly models where the information of the signal is, how well concentrated it is, and how well it is routed between regions in the graph. We presented Scrödinger GNN, a graph neural network that is able to route the information of the signal along any direction in the graph. We showed that standard GNNs do not have this capability. One limitation of Scrödinger filters with respect to simple polynomial filters is that applying the Scrödinger operator on a signal involves approximating the exponential of the GSO, which involves applying the GSO several times.

6 ETHICS STATEMENT

This work presents theoretical and empirical contributions to graph neural networks using quantum-inspired methods. All experiments use synthetic data or publicly available benchmarks (LRGB Peptides, node classification datasets) with no privacy concerns or potential harm to subjects. The research involves only technical graph data and raises no ethical concerns.

7 REPRODUCIBILITY STATEMENT

We provide detailed proofs for all theorems, with additional analysis in the appendices. Implementation details including matrix exponential computation (Appendix E.1), hyperparameters (Appendix F.5), and synthetic experiment setups (Appendices F.3, F.1) are fully documented. The Position-Momentum Optimization is specified in Definition 3.11. Source code will be released on GitHub upon publication.

Table 2: Performance on Peptides-Func and Peptides-Struct. **Bold** values indicate the best performing models for each metric: the highest AP for Peptides-Func and the lowest MAE for Peptides-Struct. The results for the models other than ours were taken from (17).

MODEL TYPE	Model	PEPTIDES-FUNC (AP \uparrow)	Peptides-Struct (MAE \downarrow)	
Transformer	SAN+LapPE	63.84 ± 1.21	0.2683 ± 0.0043	
	TIGT	66.79 ± 0.74	0.2485 ± 0.0015	
	Speformer	66.86 ± 0.64	0.2550 ± 0.0014	
	Exphormer	65.27 ± 0.43	0.2481 ± 0.0007	
	G.MLPMixer	69.21 ± 0.54	0.2475 ± 0.0015	
	Graph ViT	69.42 ± 0.75	0.2449 ± 0.0016	
	GRIT	69.88 ± 0.82	0.2460 ± 0.0012	
	LASER	64.40 ± 0.10	0.3043 ± 0.0019	
Rewiring	DRew-GCN	69.96 ± 0.76	0.2781 ± 0.0028	
	+PE	71.50 ± 0.44	0.2536 ± 0.0015	
State Space	Graph Mamba	67.39 ± 0.87	0.2478 ± 0.0016	
	GMN	70.71 ± 0.83	0.2473 ± 0.0025	
	ChebNet	69.61 ± 0.33	0.2627 ± 0.0033	
	ChebNetII	68.19 ± 0.27	0.2618 ± 0.0058	
	GCN	68.60 ± 0.50	0.2460 ± 0.0007	
	GRAND	57.89 ± 0.62	0.3418 ± 0.0015	
	GraphCON	60.22 ± 0.68	0.2778 ± 0.0018	
GNN	A-DGN	59.75 ± 0.44	0.2874 ± 0.0021	
GININ	SWAN	67.51 ± 0.39	0.2485 ± 0.0009	
	PathNN	68.16 ± 0.26	0.2545 ± 0.0032	
	CIN++	65.69 ± 1.17	0.2523 ± 0.0013	
	S2GCN	72.75 ± 0.66	0.2467 ± 0.0019	
	+PE	$\textbf{73.11} \pm \textbf{0.66}$	$\bf 0.2447 \pm 0.0032$	
	Stable-ChebNet	70.32 ± 0.26	0.2542 ± 0.0030	
	Basic	71.41 ± 1.539	0.2447 ± 0.00176	
Schrödinger	Non Modulated	71.29 ± 0.527	0.2467 ± 0.0011	

REFERENCES

- [1] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. In *International Conference on Learning Representations (ICLR)*, 2021. URL https://arxiv.org/abs/2006.05205.
- [2] Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in GNNs through the lens of effective resistance. In *Proceedings of the 40th International Conference on Machine Learning (ICML)*, volume 202 of *Proceedings of Machine Learning Research*, pp. 2528–2547, 2023. URL https://proceedings.mlr.press/v202/black23a.html.
- [3] Xavier Bresson and Thomas Laurent. Residual gated graph convnets, 2018. URL https://arxiv.org/abs/1711.07553.
- [4] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected networks on graphs, 2014. URL https://arxiv.org/abs/1312.6203.
- [5] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks, 2020. URL https://arxiv.org/abs/2006.13318.
- [6] Benjamin Paul Chamberlain, James Rowbottom, Maria Gorinova, Stefan Webb, Emanuele Rossi, and Michael M. Bronstein. Grand: Graph neural diffusion, 2021. URL https://arxiv.org/abs/2106.10934.

- 486
 487
 488
 [7] Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian,
 489 URL https://nyuscholars.nyu.edu/en/publications/
 480 a-lower-bound-for-the-smallest-eigenvalue-of-the-laplacian.
 - [8] Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with variance reduction, 2018. URL https://arxiv.org/abs/1710.10568.
 - [9] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph convolutional networks, 2020. URL https://arxiv.org/abs/2007.02133.
 - [10] Yun Young Choi, Sun Woo Park, Minho Lee, and Youngho Woo. Topology-informed graph transformer, 2025. URL https://arxiv.org/abs/2402.02005.
 - [11] Fan Chung. Laplacians and the cheeger inequality for directed graphs, 04 2005.
 - [12] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with fast localized spectral filtering, 2017. URL https://arxiv.org/abs/1606.09375.
 - [13] Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu, and Dominique Beaini. Long range graph benchmark, 2023. URL https://arxiv.org/abs/2206.08164.
 - [14] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric, 2019. URL https://arxiv.org/abs/1903.02428.
 - [15] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural message passing for quantum chemistry, 2017. URL https://arxiv.org/abs/1704.01212.
 - [16] Simon Halvdansson, Jan-Fredrik Olsen, Nir Sochen, and Ron Levie. Existence of uncertainty minimizers for the continuous wavelet transform. *Mathematische Nachrichten*, 296 (3):1156–1172, January 2023. ISSN 1522-2616. doi: 10.1002/mana.202100466. URL http://dx.doi.org/10.1002/mana.202100466.
 - [17] Ali Hariri, Álvaro Arroyo, Alessio Gravina, Moshe Eliasof, Carola-Bibiane Schönlieb, Davide Bacciu, Kamyar Azizzadenesheli, Xiaowen Dong, and Pierre Vandergheynst. Return of chebnet: Understanding and improving an overlooked gnn on long range tasks, 2025. URL https://arxiv.org/abs/2506.07624.
 - [18] Hongwei He, Wenhan Wei, and Zhiguo Wen. Convolutional neural networks on graphs with chebyshev interpolation. In *Advances in Neural Information Processing Systems*, volume 35, pp. 25010–25022, 2022.
 - [19] Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A generalization of vit/mlp-mixer to graphs, 2023. URL https://arxiv.org/abs/2212. 13350.
 - [20] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. Strategies for pre-training graph neural networks, 2020. URL https://arxiv.org/abs/1905.12265.
 - [21] Bobak T. Kiani, Lukas Fesser, and Melanie Weber. Unitary convolutions for learning on graphs and groups, 2024. URL https://arxiv.org/abs/2410.05499.
- 533 [22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL https://arxiv.org/abs/1412.6980.
- 535 [23] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks, 2017. URL https://arxiv.org/abs/1609.02907.
 - [24] Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio Tossou. Rethinking graph transformers with spectral attention, 2021. URL https://arxiv.org/abs/2106.03893.

- [25] Ron Levie and Nir Sochen. Uncertainty principles and optimally sparse wavelet transforms, 2018. URL https://arxiv.org/abs/1707.04863.
- [26] Ron Levie and Nir Sochen. A wavelet plancherel theory with application to multipliers and sparse approximations, 2021. URL https://arxiv.org/abs/1712.02770.
 - [27] Ron Levie, H-G Stark, Florian Lieb, and Nir Sochen. Adjoint translation, adjoint observable and uncertainty principles. *Advances in computational mathematics*, 40(3):609–627, 2014.
 - [28] Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein. Cayleynets: Graph convolutional neural networks with complex rational spectral filters. *IEEE Transactions on Signal Processing*, 67(1):97–109, 2019. doi: 10.1109/TSP.2018.2879624.
 - [29] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-supervised learning, 2018. URL https://arxiv.org/abs/1801.07606.
 - [30] Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates, Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing, 2023. URL https://arxiv.org/abs/2305.17589.
 - [31] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node classification, 2021. URL https://arxiv.org/abs/1905.10947.
 - [32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library, 2019. URL https://arxiv.org/abs/1912.01703.
 - [33] Haiquan Qiu, Yatao Bian, and Quanming Yao. Graph unitary message passing, 2024. URL https://arxiv.org/abs/2403.11199.
 - [34] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convolutional networks on node classification, 2020. URL https://arxiv.org/abs/1907.10903.
 - [35] T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A survey on oversmoothing in graph neural networks, 2023. URL https://arxiv.org/abs/2303.10993.
 - [36] Aliaksei Sandryhaila and Jose M. F. Moura. Discrete signal processing on graphs: Frequency analysis, 2013. URL https://arxiv.org/abs/1307.0468.
 - [37] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural network model. *IEEE Transactions on Neural Networks*, 20(1):61–80, 2009. URL https://ieeexplore.ieee.org/document/4700287.
 - [38] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, and Ali Kemal Sinop. Exphormer: Sparse transformers for graphs, 2023. URL https://arxiv.org/abs/2303.06147.
 - [39] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. *IEEE Signal Processing Magazine*, 30(3):83–98, May 2013. ISSN 1053-5888. doi: 10.1109/msp.2012.2235192. URL http://dx.doi.org/10.1109/MSP.2012.2235192.
 - [40] Yang Sun, Wei Hu, Fang Liu, Min Jiang, FeiHu Huang, and Dian Xu. Speformer: An efficient hardware-software cooperative solution for sparse spectral transformer, 2022.
 - [41] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision, 2021. URL https://arxiv.org/abs/2105.01601.

- [42] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature, 2022. URL https://arxiv.org/abs/2111.14522.
- [43] Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph sequence modeling with selective state spaces, 2024. URL https://arxiv.org/abs/2402.00789.
- [44] Junjie Xu, Enyan Dai, Xiang Zhang, and Suhang Wang. Hp-gmn: Graph memory networks for heterophilous graphs, 2022. URL https://arxiv.org/abs/2210.08195.
- [45] Jiaxuan You, Rex Ying, and Jure Leskovec. Design space for graph neural networks, 2021. URL https://arxiv.org/abs/2011.08843.
- [46] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns, 2020. URL https://arxiv.org/abs/1909.12223.
- [47] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang. Building efficient deep neural networks with unitary group convolutions, 2019. URL https://arxiv.org/abs/1811.07755.

A BACKGROUND AND RELATED WORK

A.1 SPECTRAL GNNS

 Spectral GNNs define graph convolutions via the spectral domain. Let Δ be a self-adjoint GSO with $\{v_j\}_{j=1}^N$ and $\{\lambda_j\}^N$ which are the eigenvectors and eigenvalues so that $\Delta = \sum_{i=1}^N \lambda_i \, \mathbf{v}_i \mathbf{v}_i^{\mathsf{T}}$. Given a signal $\boldsymbol{X} \in \mathbb{R}^{N \times d}$ and a function $\boldsymbol{Q} : \mathbb{R} \to \mathbb{R}^{d' \times d}$, the spectral filter $\boldsymbol{Q}(\Delta) : \mathbb{R}^{N \times d} \to \mathbb{R}^{N \times d'}$ is defined by

$$\mathbf{Q}(\Delta) \mathbf{X} := \sum_{i=1}^{N} \mathbf{v}_{i} \mathbf{v}_{i}^{\top} \mathbf{X} \mathbf{Q}(\lambda_{i})^{\top}.$$
 (6)

A spectral GNN layer then applies $X^{\ell+1} = \sigma(Q_{\ell}(\Delta) X^{\ell})$ with trainable Q_{ℓ} and nonlinearity σ . For more examples (4; 12; 28).

A.2 UNITARY GNNS

Unitary GNNs are a class of graph neural networks designed to address fundamental challenges in deep graph learning, particularly over-smoothing and over-squashing, through the use of unitary transformations that preserve signal norms and maintain feature distinctiveness across layers. Known methods are Graph Unitary Message Passing (GUMP) (33) that transform the adjacency matrix to be unitary, unitary group convolutions (UGConvs) (47) a unitary transform on groups and Separable unitary convolution (UniConv) (21) that uses a unitary graph convolution. Unitary operators are proven to mitigating over-smoothing, but some require complex weights matrices and substantial parameter overhead. When stripped down to real weights, they lose much of their directional signal propagation capabilities. This motivated as to find the underline phenomena while restricting the parameter overhead, thus, leading us to the Schrödinger GNN approach.

A.3 Oversmoothing and oversquashing

Most works addressing the over-smoothing and over-squashing problems begin by considering the basic architecture of graph neural networks, the Message Passing Neural Network (MPNN) (15).

Definition A.1 (Message Passing Neural Network). Given a graph G = (V, E) with node features $X \in \mathbb{R}^{N \times d}$, an MPNN updates node representations through:

$$h_v^{(\ell+1)} = \phi_{\ell} \left(h_v^{(\ell)}, \sum_{w \in \mathcal{N}(v)} \psi_{\ell}(h_v^{(\ell)}, h_w^{(\ell)}) \right)$$

where $h_v^{(0)} = x_v$, ϕ_ℓ is the update function, and ψ_ℓ is the message function.

 Over-smoothing in GNNs refers to the tendency of node representations to become indistinguishable as network depth increases (35). The Dirichlet energy provides a standard measure for this phenomenon

Definition A.2 (Dirichlet Energy). For a signal $f:V\to\mathbb{R}$ and normalized Laplacian $\tilde{\Delta}$, the Dirichlet energy is

$$\langle f, \tilde{\Delta}f \rangle = \frac{1}{2} \sum_{(i,j) \in E} w_{ij} \left(\frac{f(i)}{\sqrt{d_i}} - \frac{f(j)}{\sqrt{d_j}} \right)^2$$

where w_{ij} are edge weights and d_i is the degree of vertex i.

While Dirichlet energy has emerged as the dominant measure for analyzing over-smoothing in GNNs (35), it provides only a partial view of signal propagation dynamics. Dirichlet energy was first introduced to the GNN literature as a measure of signal smoothness across graph structures (5). It has since become the standard tool for analyzing over-smoothing phenomena. In the context of quantum mechanical observables, Dirichlet energy can be interpreted as the expected value of the observable Laplacian operator. However, this observable fundamentally measures the rate of change between neighboring nodes, essentially capturing local gradient information in the spatial domain, which corresponds to momentum space properties (see Theorem G.1). This perspective reveals critical limitations of Dirichlet energy: its local focus only captures immediate neighborhood relationships, missing long-range dependencies crucial for understanding over-squashing phenomena and signals whose mass is concentrated in specific graph neighborhoods. For GNN analysis, it is beneficial to have the ability to quantify signal "transport" or understand relative signal localization.

Figure 4: signal transport

Beyond the well known *over-smoothing* effect, MPNNs also suffer from *over-squashing*, where long-range information is compressed through topological bottlenecks and becomes effectively invisible to distant nodes. (1) showed first heuristics of over squashing and claim that the cause of bottlenecks is due the exponential growth of the node receptive field (8)

Definition A.3 (Node Receptive Field Set). Given graph $\mathcal{G}=(V,E)$, $r\in\mathbb{N}$ and node $v\in V$ the Receptive Field is

$$B_r(v) := \{ w \in V : d_G(v, w) \le r \},\$$

where d_G is the shortest path length on the graph

(1) argued that oversquashing occurs when exponentially many messages are compressed into fixed-size vectors. (42) formalized this via sensitivity analysis:

Definition A.4 (Oversquashing via Sensitivity). Oversquashing occurs when the representation $h_v^{(\ell)}$ at node v fails to be sufficiently affected by input features x_w of distant nodes w. This is measured by the Jacobian $\|\partial h_v^{(\ell)}/\partial x_w\|$.

Lemma A.5 (r- distance Sensitivity Bound (42)). Let $S_r(v) := \{w \in V : d_G(v, w) = r\}$. For an MPNN with bounded gradients $\|\nabla \phi_\ell\| \le \alpha$ and $\|\nabla \psi_\ell\| \le \beta$, if $w \in S_{r+1}(v)$, then

$$\left\| \frac{\partial h_v^{(r+1)}}{\partial x_w} \right\| \le (\alpha \beta)^{r+1} (A^{r+1})_{vw} \tag{7}$$

where A is the adjacency matrix and $(A^{r+1})_{vw}$ counts paths of length r+1 from w to v.

This bound reveals oversquashing, when $(A^r)_{vw}$ decays exponentially with distance (e.g., in trees), distant nodes have vanishing influence, creating information bottlenecks. (42) also connects to the Cheeger constant,

$$2h_G \ge \lambda_1 \ge \frac{h_G^2}{2}$$

which is a result from the Cheeger constant (7; 11)

$$h_G := \min_{S \subset V} h_S, \quad h_S := \frac{|\partial S|}{\min\{\text{vol}(S), \text{vol}(V \setminus S)\}}$$

and to the Cheeger inequality,

$$2h_G \ge \lambda_1 \ge \frac{h_G^2}{2}$$

which bounds the spectral gap. Here, λ_1 is the first non-zero eigenvalue of the normalized Laplacian; $\partial S = \{(i,j): i \in S, j \in V \setminus S\}$; and $\operatorname{vol}(S) = \sum_{i \in S} d_i$. The spectral gap can be interpreted as how well two partitions of a graph are connected. They use the spectral gap to support their graph curvature method and argue that negative edge curvature indicates its potential role in contributing to the oversquashing issue.

$$\mathrm{Ric}(i,j) = \frac{2}{d_i} + \frac{2}{d_j} - 2 + 2\frac{|\#_{\triangle}(i,j)|}{\max\{d_i,d_j\}}$$

where $\#_{\triangle}(i,j)$ counts triangles containing edge (i,j). Negative curvature indicates potential oversquashing bottlenecks. Later work argued that not only edges are an indicator of oversquashing, but the relation between every two nodes on the graph. (2) base their method also on the spectral gap, and showcase their form of measure between two nodes, the effective resistance

Definition A.6 (Effective Resistance). For two nodes $u, v \in V$ their effective resistance is

$$R_{u,v} = (1_u - 1_v)^{\top} \Delta^{\dagger} (1_v - 1_u)$$

where Δ^{\dagger} is the pseudoinverse of the graph Laplacian.

(2) generalized the sensitivity analysis to arbitrary node pairs using effective resistance:

Lemma A.7 (Effective Resistance Sensitivity Bound). For an MPNN with bounded gradients $\|\nabla \phi_{\ell}\| \leq \alpha$ and $\|\nabla \psi_{\ell}\| \leq \beta$, the sensitivity between nodes u, v at layer r satisfies:

$$\left\| \frac{\partial h_v^{(r)}}{\partial x_u} \right\| \le (\alpha \beta)^r \cdot \exp\left(-c \cdot r \cdot R_{u,v} \right)$$

where $R_{u,v}$ is the effective resistance and c > 0 is a constant depending on the graph.

This bound shows that sensitivity decays exponentially with both distance and effective resistance, providing a more refined measure than path counting alone.

While these methods analyze oversquashing from graph topology, we propose that the choice of graph shift operator (GSO) also critically affects susceptibility to oversquashing. Different GSOs encode distinct notions of signal propagation, making some inherently more prone to information bottlenecks than others.

B Schrödinger in Classical Quantum Mechanics

Our graph based Schrödinger framework extends classical quantum mechanics. Understanding the classical case provides intuition for why real-valued graph signals require modulation to achieve directional transport, and establishes the theoretical foundations for our propagation measures. In this section, we establish the classical quantum mechanical foundations using our graph notation for consistency. Here, g represents a continuous wavefunction $g: \mathbb{R} \to \mathbb{C}$, the feature location f(x) = x is the spatial coordinate, and X_f is the position operator acting as $(X_f g)(x) = x \cdot g(x)$. This can be understood both mathematically and intuitively: a real wave function represents a standing wave

with equal probability of movement in opposite directions, resulting in no net momentum. More formally, for a real-valued wave function g(x), we have

$$\mathcal{E}_{i\nabla_f}(g) = \langle g, i\nabla_f g \rangle = -i\hbar \int g(x) \frac{\partial}{\partial x} g(x) dx = 0$$

This property presents a challenge when we want to model directional information flow in graph neural networks, as real-valued node features would similarly lack directional momentum. We wish to understand how the wave function evolves in the classical case, so we need to understand the expected location derivative, also known as the Heisenberg motion equation.

Theorem B.1 (Heisenberg Equation of Motion for Expected Values). Let $g_t = S_t g$ where $S_t = e^{-it\Delta}$ is the Schrödinger evolution operator with Hamiltonian Δ . For any observable A, the derivative of its expected value with respect to t is

$$\frac{\partial}{\partial t} \mathcal{E}_A(g_t) = i \langle [\Delta, A] g_t, g_t \rangle$$

Proof. We prove this using the limit definition and the expansion of the Schrödinger operator

$$\frac{\partial}{\partial t} \mathcal{E}_A(g_t) = \lim_{h \to 0} \frac{\mathcal{E}_A(g_{t+h}) - \mathcal{E}_A(g_t)}{h}$$

Since $g_{t+h} = S_h g_t$ and $S_h = e^{-ih\Delta}$:

$$\mathcal{E}_A(g_{t+h}) = \langle Ag_{t+h}, g_{t+h} \rangle = \langle A\mathcal{S}_h g_t, \mathcal{S}_h g_t \rangle = \langle \mathcal{S}_{-h} A\mathcal{S}_h g_t, g_t \rangle$$

Expanding $S_h = e^{-ih\Delta} = I - ih\Delta + O(h^2)$ and $S_{-h} = I + ih\Delta + O(h^2)$:

$$S_{-h}AS_h = (I + ih\Delta)A(I - ih\Delta) + O(h^2)$$
$$= A + ih\Delta A - ihA\Delta + O(h^2)$$
$$= A + ih[\Delta, A] + O(h^2)$$

Taking the limit

$$\frac{\partial}{\partial t} \mathcal{E}_A(g_t) = \lim_{h \to 0} \frac{\langle (A + ih[\Delta, A])g_t, g_t \rangle - \langle Ag_t, g_t \rangle}{h} = i\langle [\Delta, A]g_t, g_t \rangle$$

Theorem B.2 (Expected Position Evolution in Classical Case). Let $g_t = S_t g$ with $S_t = e^{-it\Delta}$ where $\Delta = -\frac{\partial^2}{\partial x^2}$. Then the expected position evolves linearly with t

$$\mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g_0) - 2t\mathcal{E}_{i\nabla_f}(g_0)$$

Proof. From Theorem B.1, we have

$$\frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t) = i \langle [\Delta, X_f] g_t, g_t \rangle$$

Computing the commutator $[\Delta, X_f] = [-\frac{\partial^2}{\partial x^2}, X_f]$: for any function h,

$$[-\frac{\partial^2}{\partial x^2}, X_f]h = -\frac{\partial^2}{\partial x^2}(xh) + x\frac{\partial^2 h}{\partial x^2} = -2\frac{\partial h}{\partial x} = 2i(i\frac{\partial h}{\partial x}) = 2i(i\nabla_f h)$$

Therefore $[\Delta, X_f] = 2i(i\nabla_f)$ and

$$\frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t) = i \langle 2i(i\nabla_f)g_t, g_t \rangle = -2\mathcal{E}_{i\nabla_f}(g_t)$$

Next, we show that momentum is conserved:

$$\frac{\partial}{\partial t} \mathcal{E}_{i\nabla_f}(g_t) = i\langle [\Delta, i\nabla_f] g_t, g_t \rangle$$

Since
$$[\Delta, i\nabla_f] = [-\frac{\partial^2}{\partial x^2}, i\frac{\partial}{\partial x}] = 0$$

$$\frac{\partial}{\partial t} \mathcal{E}_{i\nabla_f}(g_t) = 0$$

Thus $\mathcal{E}_{i\nabla_f}(g_t) = \mathcal{E}_{i\nabla_f}(g_0)$ for all t. Integrating the position equation

$$\mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g_0) + \int_0^t (-2\mathcal{E}_{i\nabla_f}(g_0))ds = \mathcal{E}_{X_f}(g_0) - 2t\mathcal{E}_{i\nabla_f}(g_0)$$

П

For real-valued signals, the expected location remains constant under Schrödinger evolution, which motivates the need for modulation to achieve directional transport.

Theorem B.3 (Linear Evolution of Expected Feature in the Classical Case). Given two real valued signals g, h such that g is modulated by h at the initial state $g_0 = D_{i\theta h}g$, the evolution of the expected feature is

$$\mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g) - t\theta \int h'(x)|g(x)|^2 dx$$

Proof. Using the basic evolution from Theorem B.2 and that expected location is invariant to modulation:

$$\mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g_0) + t\mathcal{E}_{i\nabla_f}(g_0) = \mathcal{E}_{X_f}(g) + t\mathcal{E}_{i\nabla_f}(g_0)$$

Isolating the expected momentum:

$$t\mathcal{E}_{i\nabla_{f}}(g_{0}) = ti \int \overline{g(x)e^{i\theta h(x)}} \frac{d}{dx} (g(x)e^{i\theta h(x)}) dx = ti \int \overline{g(x)}e^{-i\theta h(x)} (g'(x)e^{i\theta h(x)} + i\theta h'(x)g(x)e^{i\theta h(x)}) dx$$
$$= t\mathcal{E}_{i\nabla_{f}}(g) - t\theta \int h'(x)|g(x)|^{2} dx$$

Substituting back into the equation:

$$\mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g) - t\theta \int h'(x)|g(x)|^2 dx$$

Theorem B.4 (Real Signals Have Constant Expected Position). *For any real-valued signal* $g : \mathbb{R} \to \mathbb{R}$, *the expected position remains constant under Schrödinger evolution:*

$$\mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g)$$
 for all t

Proof. From Theorem B.2, $\mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g) - 2t\mathcal{E}_{i\nabla_f}(g)$. For real-valued g, we have $\mathcal{E}_{i\nabla_f}(g) = 0$ since $\langle g, i\nabla_f g \rangle = -i\int g(x)g'(x)dx = 0$. Therefore $\mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g)$.

Theorem B.5 (Time Derivative of Position Variance in the Free Schrödinger Case). Let $g \in L^2(\mathbb{R})$ be a normalized wavefunction, and let $g_t = e^{-it\Delta}g$ denote the free Schrödinger evolution with $\Delta = -\nabla_f^2$. Then the time derivative of the variance of position is:

$$\frac{\partial}{\partial t} \mathcal{V}_{X_f}(g_t) = \mathcal{E}_{i[\Delta, X_f^2]}(g_t) + 4 \left(\mathcal{E}_{X_f}(g) - 2t \, \mathcal{E}_{i\nabla_f}(g) \right) \mathcal{E}_{i\nabla_f}(g)$$

Proof of Theorem B.5. The variance of X_f at time t is:

$$\mathcal{V}_{X_f}(g_t) = \mathcal{E}_{X_f^2}(g_t) - \mathcal{E}_{X_f}(g_t)^2.$$

Differentiating with respect to t and using the free particle result $\mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g) - 2t \, \mathcal{E}_{i\nabla_f}(g)$ and that the time derivative of the expected position equals the expected momentum (with our conventions $\frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t) = -2 \, \mathcal{E}_{i\nabla_f}(g)$):

$$\frac{\partial}{\partial t} \mathcal{V}_{X_f}(g_t) = \frac{\partial}{\partial t} \mathcal{E}_{X_f^2}(g_t) - 2 \mathcal{E}_{X_f}(g_t) \cdot \frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t) = \frac{\partial}{\partial t} \mathcal{E}_{X_f^2}(g_t) + 4 \mathcal{E}_{X_f}(g_t) \mathcal{E}_{i\nabla_f}(g_t).$$

Under unitary Schrödinger evolution, for any observable A:

$$\frac{\partial}{\partial t} \mathcal{E}_A(g_t) = \mathcal{E}_{i[\Delta,A]}(g_t).$$

Thus, substituting $A=X_f^2$ and $\mathcal{E}_{X_f}(g_t)=\mathcal{E}_{X_f}(g)-2t\,\mathcal{E}_{i\nabla_f}(g)$ yields

$$\frac{\partial}{\partial t} \mathcal{V}_{X_f}(g_t) = \mathcal{E}_{i[\Delta, X_f^2]}(g_t) + 4 \left(\mathcal{E}_{X_f}(g) - 2t \, \mathcal{E}_{i\nabla_f}(g) \right) \mathcal{E}_{i\nabla_f}(g).$$

C Schrödinger Dynamics

Theorem C.1 (Expected Momentum Conservation). For the Schrödinger evolution $g_t = S_t g$, the expected momentum is conserved:

$$\mathcal{E}_{i\nabla_f}(g_t) = \mathcal{E}_{i\nabla_f}(g)$$
 for all t

Proof of Theorem 3.4. We showed previously that the Schrödinger operator is unitary and that it commutes with ∇_f because it is represented by a sum of identity matrices and powers of ∇_f itself, thus we can say:

$$\mathcal{E}_{i\nabla_f}(\mathcal{S}_t g) = \langle i\nabla_f \mathcal{S}_t g, \mathcal{S}_t g \rangle = \langle i\mathcal{S}_{-t}\nabla_f \mathcal{S}_t g, g \rangle = \langle i\nabla_f g, g \rangle$$

Definition C.2 ($\epsilon - f$ Regular Signal). Let G = (V, E) be a graph, $f : V \to \mathbb{R}$ be a signal, and W_f be the f-smoothing operator, a signal $g : V \to \mathbb{C}$ is called $\epsilon - f$ regular if there exists a signal e_g such that

$$W_f g = g + e_q, \quad ||e_q||_2 \le \epsilon$$

Lemma C.3 (Smoothing Operator as Commutator).

$$W_f = -i[\nabla_f, X_f] = -i(\nabla_f X_f - X_f \nabla_f)$$

Proof. For any signal g and vertex v:

$$\begin{aligned} ([\nabla_f, X_f]g)(v) &= (\nabla_f X_f g)(v) - (X_f \nabla_f g)(v) \\ &= i \sum_{w \in V} a_{v,w} (f(w) - f(v)) f(w) g(w) - f(v) \cdot i \sum_{w \in V} a_{v,w} (f(w) - f(v)) g(w) \\ &= i \sum_{w \in V} a_{v,w} (f(w) - f(v))^2 g(w) = i (W_f g)(v) \end{aligned}$$

Therefore $W_f = -i[\nabla_f, X_f]$.

Lemma C.4 (Commutator Expansion for Schrödinger Laplacian). For the Schrödinger Laplacian $\Delta = -\nabla_f^2$ and feature operator X_f , we have:

$$i[\Delta, X_f] = -i\nabla_f W_f - iW_f \nabla_f$$

where $W_f = [\nabla_f, X_f]$ is the f-smoothing operator.

Proof. Using the product rule for commutators [AB, C] = A[B, C] + [A, C]B, we have:

$$\begin{split} i[\Delta, X_f] &= i[-\nabla_f^2, X_f] = -i[\nabla_f^2, X_f] = -i[\nabla_f \nabla_f, X_f] \\ &= -i\nabla_f [\nabla_f, X_f] - i[\nabla_f, X_f] \nabla_f \\ &= -i\nabla_f W_f - iW_f \nabla_f \end{split}$$

Proof of Theorem 3.6. We start from the limit definition of the time derivative:

$$\frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t) = \lim_{h \to 0} \frac{\mathcal{E}_{X_f}(g_{t+h}) - \mathcal{E}_{X_f}(g_t)}{h}.$$

Because $g_{t+h} = S_h g_t$ and S_t is unitary, we may write

$$\mathcal{E}_{X_f}(g_{t+h}) = \langle X_f \mathcal{S}_h g_t, \mathcal{S}_h g_t \rangle = \langle \mathcal{S}_{-h} X_f \mathcal{S}_h g_t, g_t \rangle.$$

Using the Hadamard lemma $S_{-h}X_fS_h = X_f + hi[\Delta, X_f] + o(h)$ we obtain

$$\mathcal{E}_{X_f}(g_{t+h}) - \mathcal{E}_{X_f}(g_t) = \langle h \, i[\Delta, X_f] g_t, g_t \rangle + o(h)$$
$$= h \, \langle i[\Delta, X_f] g_t, g_t \rangle + o(h).$$

Dividing by h and taking $h \to 0$ gives

$$\frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t) = \langle i[\Delta, X_f]g_t, g_t \rangle.$$

Substituting $\Delta = -\nabla_f^2$ and using Lemma C.4 yields

$$\frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t) = -\left(\langle i \nabla_f W_f g_t, g_t \rangle + \langle W_f i \nabla_f g_t, g_t \rangle \right)$$

 $i\nabla_f$ is hermitian

$$= -\left(\langle W_f g_t, i \nabla_f g_t \rangle + \langle i \nabla_f g_t, W_f g_t \rangle\right)$$
$$= -\left(\overline{\langle i \nabla_f g_t, W_f g_t \rangle} + \langle i \nabla_f g_t, W_f g_t \rangle\right) = -2 \operatorname{Re}\left(\langle i \nabla_f g_t, W_f g_t \rangle\right)$$

where we used the fact that W_f is self-adjoint, the properties of inner products, and the identities $\operatorname{Re}(z) = \frac{z+\overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z-\overline{z}}{2i} = -i\operatorname{Re}(iz)$.

Proof of Theorem 3.8. For the modulated signal $D_{\theta h}g(v) = g(v)e^{i\theta h(v)}$:

$$(\nabla_f D_{\theta h} g(m) = i \sum_{n \in V} a_{m,n} g(n) e^{i\theta h(n)} (f(n) - f(m))$$

The expected momentum is:

$$\mathcal{E}_{i\nabla_{f}}(D_{\theta h}g) = \langle i\nabla_{f}D_{\theta h}g, D_{\theta h}g \rangle$$

$$= \sum_{m \in V} \overline{g(m)e^{i\theta h(m)}} \cdot i \sum_{n \in V} a_{m,n}g(n)e^{i\theta h(n)}(f(n) - f(m))$$

$$= i \sum_{m \in V} \sum_{n \in V} a_{m,n}g(n)g(n)e^{i\theta(h(n) - h(m))}(f(n) - f(m))$$

Using the symmetry of undirected graphs and Euler's formula $e^{i\theta} = \cos(\theta) + i\sin(\theta)$:

$$\begin{split} \mathcal{E}_{i\nabla_{f}}(D_{\theta h}g) &= i \sum_{(m,n) \in E} a_{m,n} g(m) g(n) [e^{i\theta(h(n) - h(m))} (f(n) - f(m)) + e^{i\theta(h(m) - h(n))} (f(m) - f(n))] \\ &= i \sum_{(m,n) \in E} a_{m,n} g(m) g(n) (f(n) - f(m)) [e^{i\theta(h(n) - h(m))} - e^{-i\theta(h(n) - h(m))}] \\ &= i \sum_{(m,n) \in E} a_{m,n} g(m) g(n) (f(n) - f(m)) \cdot 2i \sin(\theta(h(n) - h(m))) \\ &= -2 \sum_{(m,n) \in E} a_{m,n} g(m) g(n) (f(n) - f(m)) \sin(\theta(h(n) - h(m))) \end{split}$$

Theorem C.5 (Deviation Bounds for expected feature Dynamics). For the Schrödinger operator $S_t = e^{-it\Delta}$ with $\Delta = -\nabla_f^2$ and signal $g: V \to \mathbb{C}$, if its evolved form $g_t = S_t g$ is ϵ -f regular, the deviation between the time derivative of expected feature and the expected momentum is bounded:

$$\left| \frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t) - \mathcal{E}_{i\nabla_f}(g) \right| \le 2\epsilon \|\nabla_f\|_{op} \|g\|_2$$

Proof of Theorem C.5. recall from 3.6 that

$$\frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t) = -2 \text{Re} \Big(\langle i \nabla_f g_t, W_f g_t \rangle \Big).$$

By the ϵ -f regularity assumption there exists e_{g_t} with $\|e_{g_t}\|_2 \le \epsilon$ such that $W_f g_t = g_t + e_{g_t}$. Substituting this identity gives

$$\left| \frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t) + 2 \,\mathcal{E}_{i\nabla_f}(g_t) \right| = \left| -2 \operatorname{Re} \left(\langle i\nabla_f g_t, e_{g_t} \rangle \right) \right|$$

$$\leq 2 \, \|i\nabla_f g_t\|_2 \, \|e_{g_t}\|_2 \leq 2\epsilon \, \|\nabla_f\|_F \, \|g_t\|_2 = 2\epsilon \, \|\nabla_f\|_F \, \|g\|_2$$

Proof of Expected multi-Feature Derivative Theorem 3.9. To prove the theorem, we start by considering the limit definition of the time derivative of the expected feature:

$$\frac{\partial}{\partial t} \mathcal{E}_{X_{f_k}}(g_t) = \lim_{h \to 0} \frac{\langle X_{f_k} g_{t+h}, g_{t+h} \rangle - \langle X_{f_k} g_t, g_t \rangle}{h}$$

Since $g_{t+h} = S_h g_t$ and $S_h = e^{-ih\Delta}$ is unitary, we have:

$$\langle X_{f_k} g_{t+h}, g_{t+h} \rangle = \langle X_{f_k} \mathcal{S}_h g_t, \mathcal{S}_h g_t \rangle$$
$$= \langle \mathcal{S}_h^* X_{f_k} \mathcal{S}_h g_t, g_t \rangle$$
$$= \langle \mathcal{S}_{-h} X_{f_k} \mathcal{S}_h g_t, g_t \rangle$$

Using the expansion $S_h = I - ih\Delta + o(h^2)$ and $S_{-h} = I + ih\Delta + o(h^2)$, we compute:

$$S_{-h}X_{f_k}S_h = (I + ih\Delta + o(h^2))X_{f_k}(I - ih\Delta + o(h^2))$$
$$= X_{f_k} + ih\Delta X_{f_k} - ihX_{f_k}\Delta + o(h^2)$$
$$= X_{f_k} + ih[\Delta, X_{f_k}] + o(h^2)$$

Therefore:

$$\frac{\langle \mathcal{S}_{-h} X_{f_k} \mathcal{S}_h g_t, g_t \rangle - \langle X_{f_k} g_t, g_t \rangle}{h} = \frac{\langle (X_{f_k} + ih[\Delta, X_{f_k}] + o(h^2))g_t, g_t \rangle - \langle X_{f_k} g_t, g_t \rangle}{h}$$
$$= i\langle [\Delta, X_{f_k}]g_t, g_t \rangle + o(h)$$

Taking the limit as $h \to 0$:

$$\begin{split} \frac{\partial}{\partial t} \mathcal{E}_{X_{f_k}}(g_t) &= \lim_{h \to 0} i \langle [\Delta, X_{f_k}] g_t, g_t \rangle + o(h) = \langle i [\Delta, X_{f_k}] g_t, g_t \rangle \\ &= -\sum_j \left\langle [i \nabla_{f_j}^2, X_{f_k}] g_t, g_t \right\rangle \\ &= -2 \mathrm{Im} \left\langle i \nabla_{f_k} g_t, W_{f_k} g_t \right\rangle + \sum_{i \neq k} \left\langle [i \nabla_{f_j}^2, X_{f_k}] g_t, g_t \right\rangle. \end{split}$$

This completes the proof.

Theorem C.6 (Multi Channel Deviation Bounds for expected feature Dynamics). For the Schrödinger operator $S_t = e^{-it\Delta}$, the deviation between the time derivative of expected feature and the expected momentum is bounded as follows: For signals $\{f_1, \ldots, f_N\}$ forming a δ -Position-Momentum Commuting set, and $g_t = S_t g$ being ϵ - f_k regular for each k, with $\Delta = -\sum_{n=1}^{N} \nabla_{f_n}^2$:

$$\left| \frac{\partial}{\partial t} \mathcal{E}_{X_{f_k}}(g_t) - 2\mathcal{E}_{i\nabla_{f_k}}(g) \right| \le 2\epsilon \|\nabla_{f_k}\|_{op} \|g\|_2 + \delta \sum_{i \ne k} 2\|\nabla_{f_j}\|_{op} \|g\|_2^2$$

Proof of Theorem C.6. Using Theorem 3.9,

$$\frac{\partial}{\partial t} \mathcal{E}_{X_{f_k}}(g_t) = \langle i[\Delta, X_{f_k}]g_t, g_t \rangle = -\sum_{n=1}^N \langle i[\nabla_{f_n}^2, X_{f_k}]g_t, g_t \rangle$$

We split the sum into the n = k term and the cross terms $n \neq k$:

$$\frac{\partial}{\partial t} \mathcal{E}_{X_{f_k}}(g_t) = -\langle i[\nabla_{f_k}^2, X_{f_k}]g_t, g_t \rangle - \sum_{n \neq k} \langle i[\nabla_{f_n}^2, X_{f_k}]g_t, g_t \rangle$$

For the main term (n = k), by the single-feature deviation bound (Theorem C.5):

$$\left| -\langle i[\nabla_{f_k}^2, X_{f_k}]g_t, g_t \rangle - 2\mathcal{E}_{i\nabla_{f_k}}(g) \right| \le 2\epsilon \|\nabla_{f_k}\|_{op} \|g\|_2$$

Note that in the multi-feature case, $\mathcal{E}_{i\nabla_{f_k}}(g_t)$ may not be exactly constant, but we compare to the initial value $\mathcal{E}_{i\nabla_{f_k}}(g)$.

For each cross term $n \neq k$, using the δ -commuting property $[X_{f_k}, \nabla_{f_n}] = E_{k,n}$ with $||E_{k,n}||_{op} \leq \delta$, we expand:

$$[\nabla_{f_n}^2, X_{f_k}] = \nabla_{f_n} [\nabla_{f_n}, X_{f_k}] + [\nabla_{f_n}, X_{f_k}] \nabla_{f_n} = -(\nabla_{f_n} E_{k,n} + E_{k,n} \nabla_{f_n})$$

Thus,

$$|\langle i[\nabla_{f_n}^2, X_{f_k}]g_t, g_t \rangle| = |\langle i(-\nabla_{f_n} E_{k,n} - E_{k,n} \nabla_{f_n})g_t, g_t \rangle| \le 2\delta \|\nabla_{f_n}\|_{op} \|g_t\|_2^2 = 2\delta \|\nabla_{f_n}\|_{op} \|g\|_2^2$$

Summing over $n \neq k$:

$$\left| \sum_{n \neq k} \langle i[\nabla_{f_n}^2, X_{f_k}] g_t, g_t \rangle \right| \leq \delta \sum_{n \neq k} 2 \|\nabla_{f_n}\|_{op} \|g\|_2^2$$

Combining both parts:

$$\left| \frac{\partial}{\partial t} \mathcal{E}_{X_{f_k}}(g_t) - 2\mathcal{E}_{i\nabla_{f_k}}(g) \right| \le 2\epsilon \|\nabla_{f_k}\|_{op} \|g\|_2 + \delta \sum_{j \ne k} 2\|\nabla_{f_j}\|_{op} \|g\|_2^2$$

Proof of the Variance Dynamics Theorem 3.12. Starting from the definition of variance:

$$\mathcal{V}_{X_f}(g_t) = \mathcal{E}_{X_f^2}(g_t) - \mathcal{E}_{X_f}(g_t)^2$$

Taking the derivative with respect to t:

$$\frac{\partial}{\partial t} \mathcal{V}_{X_f}(g_t) = \frac{\partial}{\partial t} \mathcal{E}_{X_f^2}(g_t) - 2\mathcal{E}_{X_f}(g_t) \frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t)$$

From the time evolution of expected feature for every observable, we know that:

$$\frac{\partial}{\partial t} \mathcal{E}_{X_f^2}(g_t) = \mathcal{E}_{i[\Delta, X_f^2]}(g_t)$$

Substituting this into our expression:

$$\frac{\partial}{\partial t} \mathcal{V}_{X_f}(g_t) = \mathcal{E}_{i[\Delta, X_f^2]}(g_t) - 2\mathcal{E}_{X_f}(g_t)\mathcal{E}_{i[\Delta, X_f]}(g_t)$$

using theorem 3.6

$$= \mathcal{E}_{i[\Delta, X_f^2]}(g_t) + 4\mathcal{E}_{X_f}(g_t) \operatorname{Re}\left(\langle i \nabla_f g_t, W_f g_t \rangle\right)$$

Proof of the Mixed Derivative of The Signal Routing Measure Claim 3.13.

$$\frac{d}{dt} \mathcal{P}_{X_f}(g, g_t, r)|_{t=0} = \frac{d}{dt} \frac{\mathcal{V}_{X_f}(g_t) + (r - \mathcal{E}_{X_f}(g_t))^2}{\mathcal{V}_{X_f}(g)}|_{t=0}$$

$$= \frac{\mathcal{E}_{i[\Delta, X_f^2]}(g_0) + 4\mathcal{E}_{X_f}(g_0) \operatorname{Re}\left(\langle i\nabla_f g_0, W_f g_0 \rangle\right) - 2(r - \mathcal{E}_{X_f}(g_0)) \frac{d}{dt} \mathcal{E}_{X_f}(g_t)|_{t=0}}{\mathcal{V}_{X_f}(g)|_{t=0}}$$

using the 3.6

$$= \frac{\mathcal{E}_{i[\Delta, X_f^2]}(g_0) + 4\mathcal{E}_{X_f}(g_0)\operatorname{Re}(\langle i\nabla_f g_0, W_f g_0\rangle) + 4(r - \mathcal{E}_{X_f}(g_0))\operatorname{Re}(\langle i\nabla_f g_0, W_f g_0\rangle)}{\mathcal{V}_{X_f}(g_0)}$$

$$= \frac{\mathcal{E}_{i[\Delta, X_f^2]}(g_0) + 4r\operatorname{Re}(\langle i\nabla_f g_0, W_f g_0\rangle)}{\mathcal{V}_{X_f}(g_0)}$$

Treating the measure derivative at t=0 as a function of θ we get

$$\frac{\mathcal{E}_{i[\Delta,X_f^2]}(D_{\theta h}g) + 4r \text{Re}\left(\langle i\nabla_f D_{\theta h}g, W_f D_{\theta h}g\rangle\right)}{\mathcal{V}_{X_f}(D_{\theta h}g)}$$

Taking the derivative with respect to θ to show that for nontrivial signals when $\theta = 0$ the value of the derivative is nonzero, thus the use of modulation can minimize the measure value

$$\frac{d}{d\theta} \frac{\mathcal{E}_{i[\Delta, X_f^2]}(D_{\theta h}g) + 4r \operatorname{Re}\left(\langle i\nabla_f D_{\theta h}g, W_f D_{\theta h}g\rangle\right)}{\mathcal{V}_{X_f}(D_{\theta h}g)} = \frac{\frac{d}{d\theta} \mathcal{E}_{i[\Delta, X_f^2]}(D_{\theta h}g) + 4r \frac{d}{d\theta} \operatorname{Re}\left(\langle i\nabla_f D_{\theta h}g, W_f D_{\theta h}g\rangle\right)}{\mathcal{V}_{X_f}(g)}$$

We can interpret $D_{\theta h}g = e^{i\theta X_h}g = (I + i\theta X_h + o(\theta^2))g$

$$\frac{\frac{d}{d\theta}\mathcal{E}_{i[\Delta,X_f^2]}(D_{\theta h}g) = \lim_{\epsilon \to 0} \frac{\mathcal{E}_{i[\Delta,X_f^2]}(D_{(\theta+\epsilon)h}g) - \mathcal{E}_{i[\Delta,X_f^2]}(D_{\theta h}g)}{\epsilon}}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{\langle i(I - i\epsilon X_h + o(\theta^2)[\Delta,X_f^2](I + i\epsilon X_h + o(\theta^2)D_{\theta h}g,D_{\theta h}g) - \mathcal{E}_{i[\Delta,X_f^2]}(D_{\theta h}g)}{\epsilon}$$

$$= -\langle [[\Delta,X_f^2],X_h]D_{\theta h}g,D_{\theta h}g\rangle$$

At $\theta = 0$:

$$\frac{d}{d\theta}\mathcal{E}_{i[\Delta,X_f^2]}(D_{\theta h}g)|_{\theta=0} = -\langle [[\Delta,X_f^2],X_h]g,g\rangle$$

For the second term, we use the fact that for $F(\theta) = \langle i \nabla_f e^{i\theta X_h} g, W_f e^{i\theta X_h} g \rangle$:

$$\frac{d}{d\theta} \operatorname{Re}(F(\theta)) = \operatorname{Re}\left(\frac{d}{d\theta} F(\theta)\right)$$

Computing the derivative:

$$\begin{split} \frac{d}{d\theta} \langle i \nabla_f e^{i\theta X_h} g, W_f e^{i\theta X_h} g \rangle &= \langle i \nabla_f (iX_h) e^{i\theta X_h} g, W_f e^{i\theta X_h} g \rangle + \langle i \nabla_f e^{i\theta X_h} g, W_f (iX_h) e^{i\theta X_h} g \rangle \\ &= -\langle \nabla_f X_h e^{i\theta X_h} g, W_f e^{i\theta X_h} g \rangle - i \langle i \nabla_f e^{i\theta X_h} g, W_f X_h e^{i\theta X_h} g \rangle \\ \text{At } \theta &= 0 \text{:} \\ \frac{d}{d\theta} F(\theta) \bigg|_{\theta = 0} &= -\langle \nabla_f X_h g, W_f g \rangle + \langle \nabla_f g, W_f X_h g \rangle \\ &\qquad \qquad \frac{\partial}{\partial \theta} \frac{\partial}{\partial t} \mathcal{P}_{X_f} (g, \mathcal{S}[t, f] D[\theta h] g, r) \bigg|_{t = \theta = 0} = \\ &\qquad \qquad \frac{\langle [X_h, [\Delta, X_f^2]] D_{\theta h} g, D_{\theta h} g \rangle + 4r \langle [X_h, W_f \nabla_f] g, g \rangle}{\mathcal{V}_{X_f} (D_{\theta h} g)} \end{split}$$

D PROPERTIES OF UNITARY OPERATORS ON GRAPHS

In a general Hilbert space \mathcal{H}_G of graph signals, a **unitary operator** $U:\mathcal{H}_G\to\mathcal{H}_G$ satisfies $U^*U=UU^*=I$. Unitary operators generated by self-adjoint operators, such as the Schrödinger operator $\mathcal{S}_t=e^{-it\Delta}$ where Δ is self-adjoint, possess several fundamental properties that make them particularly suitable for graph neural network applications. We establish these properties formally below.

Theorem D.1 (Inner Product Preservation). A unitary operator U preserves the inner product structure of the Hilbert space. For any two signals $f, g: V \to \mathbb{C}$

$$\langle Uf, Ug \rangle = \langle f, g \rangle$$

The inner product preservation ensures norm preservation: ||Uf|| = ||f|| for any signal f, which guarantees numerical stability during the evolution process, preventing signal amplification or attenuation that could lead to vanishing or exploding gradients in deep network architectures.

Theorem D.2 (Equivariance). Let P be a permutation matrix corresponding to a graph automorphism. A unitary operator U commutes with P if it is generated by a self-adjoint operator that commutes with P. In particular, for the Schrödinger operator $S_t = e^{-it\Delta}$ where Δ commutes with P, we have for any signal $f: V \to \mathbb{C}$:

$$S_t(Pf) = P(S_tf)$$

Proof of Theorem D.2. Since P is a graph automorphism, then the Laplacian commutes with P (i.e., $P\Delta = \Delta P$), we have:

$$S_t(Pf) = e^{-it\Delta}(Pf) = \sum_{n=0}^{\infty} \frac{(-it\Delta)^n}{n!} Pf = \sum_{n=0}^{\infty} \frac{(-it)^n}{n!} \Delta^n Pf =$$
$$= P \sum_{n=0}^{\infty} \frac{(-it)^n}{n!} \Delta^n f = P(S_t f)$$

Theorem D.3 (Observable Conservation). Let A be a self-adjoint operator on \mathcal{H}_G and $U_t = e^{itA}$ be the unitary operator generated by A. For any signal f and any polynomial p, the expected value of A is invariant under evolution by any unitary operator of the form $e^{itp(A)}$:

$$\mathcal{E}_A\left(e^{itp(A)}f\right) = \mathcal{E}_A(f)$$

In particular, for the Schrödinger operator $S_t = e^{-it\Delta}$, the Dirichlet energy $\mathcal{E}_{\Delta}(f)$ is conserved.

These properties establish unitary operators, and in particular the Schrödinger operator, as natural choices for information propagation on graphs while maintaining both stability and structural consistency.

Proof of Theorem D.3. Let $U_p = e^{itp(A)}$. We prove that $\mathcal{E}_A(U_p f) = \mathcal{E}_A(f)$:

$$\begin{split} \mathcal{E}_A\left(U_pf\right) &= \left\langle AU_pf, U_pf \right\rangle \\ &= \left\langle U_p^*AU_pf, f \right\rangle \quad \text{(using unitarity of } U_p \text{)} \\ &= \left\langle AU_p^*U_pf, f \right\rangle \quad \text{(since } [A, U_p] = 0 \text{ as } U_p = e^{itp(A)} \text{)} \\ &= \left\langle Af, f \right\rangle \quad \text{(since } U_p^*U_p = I \text{)} \\ &= \mathcal{E}_A(f) \end{split}$$

The key insight is that A commutes with any function of A, including $U_p = e^{itp(A)}$.

E IMPLEMENTATION

E.1 MATRIX EXPONENTIAL IMPLEMENTATION

For practical implementation of the Schrödinger operator $S_t = e^{-it\Delta}$, we need to compute the exponential of a matrix. For an operator A, its exponential e^A is defined through its Taylor series expansion:

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots$$

where A^k denotes the operator A applied k times, and $A^0 = I$ is the identity operator. In practice, this infinite series is truncated at a finite order T for computational feasibility:

$$e^A \approx \sum_{k=0}^T \frac{A^k}{k!}$$

For the Schrödinger operator with a small time step, this approximation provides sufficient accuracy while maintaining computational efficiency. The choice of truncation order T depends on the spectral properties of the Laplacian and the desired accuracy of the evolution.

E.2 SHIFT OPERATOR

Let $A \in \mathbb{R}^{|V| \times |V|}$ be the (symmetric) adjacency matrix with entries $a_{n,m}$ and let $f: V \to \mathbb{R}$ be a real node feature. Denote by $X_f := \operatorname{diag}(f)$ the feature-location operator. We define the graph derivative along f by the Hermitian commutator

$$\nabla_f := [X_f, A] = (X_f A - AX_f, \quad (\nabla_f)_{n,m} = a_{n,m} (f(n) - f(m)).$$

This operator mixes values only across edges and measures signed change of the signal in the direction where f varies. It satisfies: (i) Locality: $(\nabla_f)_{n,m}=0$ whenever $(n,m)\notin E$. (ii) Gauge-invariance: if f is constant then $\nabla_f=0$. (iii) Structure: for real f and symmetric A, $[X_f,A]$ is skew-symmetric, hence ∇_f is Hermitian and generates unitary dynamics. We use the feature-weighted Laplacian

$$\Delta_f := -\nabla_f^2 = -(X_f A - AX_f)^2,$$

and the unitary shift $S_t = e^{-it\Delta_f}$.

F EXPERIMENTS

F.1 TOY EXPERIMENT - GRID ORTHOGONALITY

To assess the effectiveness of our optimization, we conduct a simple grid experiment. We consider a grid graph whose node features are the Cartesian coordinates x and y. We then replace the features by x and x + y, apply the Position–Momentum Orthogonalization optimization described earlier, and expect the learned transformation to recover two orthogonal directions. We visualize the input features and the optimized, orthogonalized features below $\ref{eq:condition}$?

F.2 OPTIMIZING SIGNAL TRANSPORT VIA MODULATION

We constructed an experiment to show that the use of modulation can benefit signal transport on graphs. We generate N=60 nodes from two 2D Gaussians, 30 around (-1,0) and 30 around (1,0) with standard deviation 0.5 per axis. An undirected, unweighted edge is added when Euclidean distance is <1.5. We define a scalar node feature f_i as the x-coordinate, which serves as the modulation feature. We also define the g graph signal as the Euclidean distance of each node's x,y coordinates from (-1,0). Our target value to move the signal to is r=1. We calculated the expected feature location, variance and routing measure as follows:

- 1. expected feature location: $\mathcal{E}_{X_f}(g) = \sum_{j=1}^N f_j |g_j|^2$
- 2. variance: $\mathcal{V}_{X_f}(g) = \mathcal{E}_{X_f^2}(g) \mathcal{E}_{X_f}(g)^2$

Figure 5: Grid orthogonality toy experiment. first two from left: original coordinate features x and x+y two to the right: features after applying the Position–Momentum Orthogonalization optimization; the recovered directions are orthogonal.

3. routing measure:
$$\mathcal{P}_{X_f}(g_0, g_t, r) = \frac{\mathcal{V}_{X_f}(g_t) + (r - \mathcal{E}_{X_f}(g_t))^2}{\mathcal{V}\mathcal{G}_{X_f}(g_0)}$$

We used our Schrödinger method $S_{0.1}$, and iterated it 3 times over multiple θ values on the interval of [-5,5]. Theoretically the norm should remain 1, but due to numerical instability we normalized each Schrödinger output by $||g||_2 = 1$ and its absolute value was taken. The results of the expected feature location, variance, and routing measure can be found in the figure 2.

F.3 GAUSSIAN TRANSLATE TOY EXPERIMENT

We study a controlled equivariant task on a ring graph that isolates translation behavior. Given a real signal sampled on a cycle graph, the model must learn the circular shift operator S_d such that the target is $y = S_d x$. This task stresses whether a graph model can implement phase consistent transport on a simple topology.

Data. We generate a cycle graph with N=100 nodes and undirected edges to immediate neighbors. Angles are $\theta_n=-\pi+2\pi n/N$. For each sample we draw variance $\sigma^2\sim\mathcal{U}[0.5,1.5]$ (effectively bounded by "variance_random_bound=1" around the center used in code), add Gaussian noise with standard deviation 10^{-3} , roll by a random shift, normalize to unit ℓ_2 norm, and set the label $y=S_dx$ with d=35. Datasets use an 80/10/10 split and batch size 32.

Models. We compare standard real-valued GNNs with Schrödinger models that implement unitary graph propagation via a truncated exponential. Let \mathcal{A} denote the aggregation operator on the cycle and define the complex generator $\mathcal{H}=i\,\mathcal{A}$. Each Schrödinger layer applies a learnable linear map W and a Taylor approximation of the unitary flow $e^{\delta\mathcal{H}}$: $z\leftarrow\sum_{k=0}^T\frac{(\delta\mathcal{H})^k}{k!}\,Wz$ with T=15. We use depth L=35, feature normalization after every layer, and a magnitude nonlinearity. The *modulated* variants inject positional phase through a learned linear modulation direction $m=\mathrm{Linear}([x,\theta])$ and multiply features by $e^{i\,\epsilon m}$ with $\epsilon=25$. The step size δ is learnable.

Training. Loss is the L_2 distance between the model prediction $f(x_i) = \hat{y_i}$ for some sample x_i and the target y_i , $\|\hat{y_i} - y_i\|_2$. We train with Adam for 250 epochs, using two parameter groups (modulation parameters at $10\times$ the base learning rate), base learning rate 0.1, ReduceLROnPlateau with factor 0.7 and patience 10. The evaluation plots show smoothed test losses per epoch with a dashed reference line corresponding to a naive baseline.

Baselines. Vanilla GCN and GAT are trained with the same depth 35 and comparable width, using the same magnitude readout and normalization.

F.4 Graph Node Classification Hyperparameters

For the node classification experiments on standard benchmarks (Chameleon, Squirrel, Texas, Cornell, Actor, Cora, Citeseer, and Pubmed), we performed a comprehensive grid search to optimize the Schrödinger GNN architecture. Due to computational constraints and the exploratory nature of this work, we focused our efforts on datasets where initial experiments showed promise.

Model	Params
vanilla GCN	2,136
graph_attention (GAT)	6,193
Schrödinger non modulated	4,273
Schrödinger	4,275

Table 3: Gaussian-Translate on a ring with N=100 and shift d=35. The modulated Schrödinger family dominates; our complex modulated model attains strong performance with substantially lower error than standard GNNs.

Figure 6: Gaussian-Translate learning curves. Lower is better. Our complex modulated Schrödinger model converges rapidly to the best error, outperforming real-valued and non-modulated variants, as well as standard GNN baselines. The dashed line denotes the trivial predictor.

Grid Search Details We conducted a grid search over the following hyperparameter ranges:

• Learning rate: $\{0.1, 0.01, 0.001\}$

• **Dropout**: {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}

• L2 regularization (weight decay): {0.01, 0.001, 0.0001, 0.00001, 0.000001}

• Modulation dimensions: $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Each configuration was evaluated using 10-fold cross-validation with early stopping based on validation accuracy. The reported results in Table ?? represent the mean and standard deviation across these folds.

Implementation Notes For datasets where results show 0.00 accuracy (Chameleon, Squirrel, Texas, Cornell, Actor, Pubmed), preliminary experiments indicated that the current Schrödinger GNN formulation requires further architectural adaptations for heterophilic graphs or specific dataset characteristics. Future work will explore dataset-specific feature engineering and architectural modifications to address these limitations.

F.5 PEPTIDES

Experimental Setup and Implementation Details Our evaluation framework leverages the GraphGym platform (45) for systematic assessment on Peptide datasets datasets. Tables ?? presents comprehensive benchmark results compiled from various state-of-the-art architectures, including (6; 10; 12; 18; 19; 24; 30; 38; 40; 41; 43; 44), with all reported metrics collected from published literature as of September 2025. The experimental infrastructure utilizes PyTorch (32) as the primary deep learning framework, supplemented by PyTorch Geometric (14) for specialized graph neural network operations.

Edge Feature Handling A notable limitation of our unitary graph convolution implementation is the absence of native edge feature support. To address this constraint in edge-attributed datasets, we employ a preprocessing strategy incorporating either GINE (20) or Gated GCN (3) architectures as

Table 4: Hyperparameters for Schrödinger GNN on Node Classification Tasks

Hyperparameter	Cora	Citeseer	Pubmed	Squirrel
Learning rate	0.01	0.01	0.01	0.1
Dropout	0.6	0.3	0.1	0.2
# Conv. Layers	2	2	2	2
Hidden dimension	64	64	64	64
Modulation dimension	6	4	1	2
Weight decay	0.01	0.001	0.01	0.00001
Optimizer	Adam	Adam	Adam	Adam

Table 5: Hyperparameters for Schrödinger models on Peptides-Func

	Schrödinger	Schrödinger (non-modulated)
lr	0.001	0.001
dropout	0.1	0.1
# Conv. Layers	4	4
hidden dim.	80	195
modulation dim.	8	0
node type	RSWE	RSWE
batch size	200	200
# epochs	4000	4000
edge aggregator	GINE	GINE
# Parameters	448K	492K

initial layers. These components serve as edge feature aggregators, effectively transforming edge attributes into node representations. When such preprocessing is utilized, we explicitly document this configuration through an "edge aggregator" hyperparameter specification in our experimental tables.

Computational Resources and Performance All experimental runs were conducted on individual GPUs, specifically utilizing an NVIDIA NVIDIA L40S hardware. Training duration exhibited convergence with less than 15 seconds epochs. Dataset storage requirements was 1GB. The smaller datasets typically completed training epochs within seconds.

Parameter Count LRGB datasets require a parameter limit of 500k, thus each complex parameter is count as 2.

Hyperparameters We employ the Adam optimizer (22) with an initial learning rate of 0.001, utilizing a cosine learning rate scheduler and run a hyperparameter sweep for the basic model with the following hyperparameters:

- Number of layers: $\{2, 4, 6, 8\}$
- **Dropout**: {0.1, 0.15, 0.2}
- Hidden dimensions: maximized according to the 500K parameter count limit and considering complex as 2 parameters.
- Modulation dimensions: $\{2, 4, 6, 8\}$

G PROOFS

Theorem G.1 (Dirichlet Energy is a Laplacian Observable). For a signal f and \tilde{f} its Fourier transform, the Dirichlet energy is equivalent to the expected squared momentum in momentum space:

$$\mathcal{E}_{\tilde{\Delta}}(f) = \frac{1}{2} \int p^2 |\tilde{f}(p)|^2 dp = \frac{1}{2} \mathcal{E}_{P^2}(\tilde{f})$$

Table 6: Hyperparameters for Schrödinger models on Peptides-Struct

	Schrödinger	Schrödinger (non-modulated)
- lr	0.001	0.001
dropout	0.15	0.1
# Conv. Layers	8	6
hidden dim.	150	64
modulation dim.	2	0
node type	LapPE	LapPE
batch size	200	200
# epochs	500	500
edge aggregator	GINE	GINE
# Parameters	499K	499K

where $\tilde{f}(p)$ is the Fourier transform of f and p represents momentum.

Proof of Theorem G.1. The proof follows from the spectral decomposition of the Laplacian operator:

$$\begin{split} \mathcal{E}_{\tilde{\Delta}}(f) &= \langle \tilde{\Delta}f, f \rangle = \langle -\nabla \cdot \nabla f, f \rangle \\ &= \frac{1}{2} \int \|\nabla f(x)\|_2^2 dx = \frac{1}{2} \int p^2 |\tilde{f}(p)|^2 dp = \frac{1}{2} \mathcal{E}_{P^2}(\tilde{f}) \end{split}$$

where we used Parseval's theorem and the fact that the Fourier transform of the gradient operator corresponds to multiplication by ip in momentum space.

Proof of Routing MeasureEquation (2).

$$\mathcal{P}_A(g_0, g_t, r) = \frac{\mathcal{V}_A(g_t) + (r - \mathcal{E}_A(g_t))^2}{\mathcal{V}_A(g_0)}.$$

We will focus on the numerator of the energy flow measure, we have:

$$\langle (X_f - rI)^2 Ug, Ug \rangle = \langle (X_f^2 - 2rX_f + r^2I - \mathcal{E}_{\mathbf{X_f}}(Ug)^2I + \mathcal{E}_{\mathbf{X_f}}(Ug)^2I + 2\mathcal{E}_{\mathbf{X_f}}(Ug)X_f - 2\mathcal{E}_{\mathbf{X_f}}(Ug)X_f)Ug, Ug \rangle$$

Rearranging terms to complete the square:

$$= \langle (X_f^2 - 2\mathcal{E}_{\boldsymbol{X_f}}(Ug)X_f + \mathcal{E}_{\boldsymbol{X_f}}(Ug)^2I)Ug, Ug \rangle + \langle (r^2 - \mathcal{E}_{\boldsymbol{X_f}}(Ug)^2)IUg, Ug \rangle + \langle 2(\mathcal{E}_{\boldsymbol{X_f}}(Ug) - r)X_fUg, Ug \rangle$$

The first term is the variance:

$$\langle (X_f - \mathcal{E}_{X_f}(Ug)I)^2 Ug, Ug \rangle = \mathcal{V}_{X_f}(Ug)$$

The second term simplifies using norm preservation ($\|Ug\|^2 = \|g\|^2 = 1$ for normalized signals):

$$\langle (r^2 - \mathcal{E}_{\boldsymbol{X_f}}(Ug)^2) IUg, Ug \rangle = (r^2 - \mathcal{E}_{\boldsymbol{X_f}}(Ug)^2)$$

The third term uses the definition of expected feature:

$$\langle 2(\mathcal{E}_{X_f}(Ug) - r)X_fUg, Ug \rangle = 2(\mathcal{E}_{X_f}(Ug) - r)\mathcal{E}_{X_f}(Ug)$$

Combining all terms:

$$\begin{split} \langle (X_f - rI)^2 Ug, Ug \rangle &= \mathcal{V}_{X_f}(Ug) + (r^2 - \mathcal{E}_{\boldsymbol{X_f}}(Ug)^2) + 2(\mathcal{E}_{\boldsymbol{X_f}}(Ug) - r)\mathcal{E}_{\boldsymbol{X_f}}(Ug) \\ &= \mathcal{V}_{X_f}(Ug) + r^2 - \mathcal{E}_{\boldsymbol{X_f}}(Ug)^2 + 2\mathcal{E}_{\boldsymbol{X_f}}(Ug)^2 - 2r\mathcal{E}_{\boldsymbol{X_f}}(Ug) \\ &= \mathcal{V}_{X_f}(Ug) + r^2 + \mathcal{E}_{\boldsymbol{X_f}}(Ug)^2 - 2r\mathcal{E}_{\boldsymbol{X_f}}(Ug) \\ &= \mathcal{V}_{X_f}(Ug) + (r - \mathcal{E}_{\boldsymbol{X_f}}(Ug))^2 \end{split}$$

Therefore, the energy flow measure becomes:

$$\frac{\langle (X_f - rI)^2 Ug, Ug \rangle}{\mathcal{V}_{X_f}(g)} = \frac{\mathcal{V}_{X_f}(Ug) + (r - \mathcal{E}_{\mathbf{X_f}}(Ug))^2}{\mathcal{V}_{X_f}(g)}$$