
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNDERSTANDING SIGNAL PROPAGATION IN GNNS
VIA OBSERVABLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) perform computations on graphs by routing the
signal information between regions of the graph using a graph shift operator or
a message passing scheme. Often, the propagation of the signal leads to a loss
of information, where the signal tends to diffuse across the graph instead of be-
ing deliberately routed between regions of interest. Two notions that depict this
phenomenon are oversmoothing and oversquashing. In this paper, we propose an
alternative approach for modeling signal propagation, inspired by quantum me-
chanics, using the notion of observables. Specifically, we model the place in the
graph where the signal lies, how much the signal is concentrated at this place,
and how much of the signal is propagated towards a location of interest when ap-
plying a GNN. Using these new concepts, we prove that standard spectral GNNs
have poor signal propagation capabilities. We then propose a new type of spectral
GNN, termed Schrödinger GNN, which we show has a superior capacity to route
the signal between graph regions.

1 INTRODUCTION

Graph Neural Networks (GNNs) (46; 25) have emerged as powerful tools, enabling breakthrough
applications across diverse domains including molecular science, physics simulations, social net-
work analysis, and recommendation systems. A GNN is a layered architecture that takes a graph
with node features, often referred to as the signal, and returns some output, e.g., another signal on
the same graph. The hidden states of the signal across the layers can be interpreted as a gradual flow
or propagation of the node features, since the GNN computes the signal at the next layer using local
operations on the previous layer.

Often, to solve a problem on graphs, the GNN should be able to direct the propagation of the signal
from certain regions of the graph to others. For example, the function of an enzyme is often under-
stood through the notion of allosteric regulation: activation in one site of the enzyme (the receptor)
changes the dynamics of the molecule, leading to some change in another site, called the active site.
To be able to predict such a behavior using a GNN, the GNN should be able to propagate the signal
about the binding site, which captures structural properties of the receptor, to the distant active site.

However, one limitation of typical GNNs is that the signal gets diffused in all directions the more
layers are used in the network, rather than being propagated, or routed, in a coherent way between
regions in the graph. This limits the applicability of typical GNNs when a deliberate routing of the
signal is required to solve the task. Two standard notions that are commonly regarded as quantifying
this phenomenon are oversmoothing (33; 38; 58; 43; 9) and oversquashing (1; 51; 2)

However, the first notion, oversmoothing, which is often quantified via the Dirichlet energy (48; 45),
describes how quickly the signal varies, or oscillates, across the whole graph, not how much the
signal can be kept concentrated, or coherent, when propagating it from one region to another. The
second phenomenon, oversquashing, describes the phenomenon where long range information is
compressed through topological bottlenecks. Hence, analyses of oversquashing are typically based
on various definitions quantifying bottlenecks, e.g., curvature (51), Cheeger number (7; 11), and
effective resistance (2). Hence, such an approach focuses on structural properties of the graph, and
do not typically explicitly study how coherent the signal stays when routing it between regions. For
further details on oversmoothing and oversquashing see Appendix A.3.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our contribution. We aim to directly study how coherent the signal stays when it is routed between
regions of the graph. For this, we propose in the paper an alternative way to model and probe
different aspects of the content of the signal and its flow. Specifically, we model (i) the location in
the graph where the signal lies, (ii) how much the content of the signal is concentrated about this
location, and, (iii) how much of the signal is propagated from one location of the graph to another
when applying a GNN. Our Signal Routing Measure directly quantifies the ability to transport mass,
addressing the core issue of oversquashing where information fails to propagate across bottlenecks.
These three concepts are defined via the notion of observables and their mean and variance, similarly
to the approach in quantum mechanics. Measuring signal content using observables was also done
in the past in the context of signal processing (31; 29; 30; 18). We prove that standard spectral
GNNs have poor signal propagation capabilities: they keep the location of the content of the signal
unchanged, and only increase the spread of the signal about this location. Then, we propose a novel
spectral GNN, called Schrödinger GNN, which has provably good signal flow properties. Namely,
with Schrödinger filters, we can direct the propagation of the signal in any desired direction in the
graph.

Schrödinger GNNs are based on two main components: a unitary graph shift operator (GSO), and
complex modulated signals. The unitary GSO is analogous to the Schrödinger operator in classi-
cal quantum mechanics, and specifically, in the free particle dynamics. It assures that the content
of the signal is transformed in a geometry preserving way, rather than being diffused. Moreover,
Schrödinger GNNs consider some of the input feature channels as encoding an abstract notion of
ambient location in the graph. We call these features formal locations. The rest of the feature chan-
nels are called the signal. The idea is to be able to shift the signal across the formal location, in
any desired direction. For illustration, in a social network, we might want to shift the income sig-
nal along the age direction, to allow comparing salaries of different age groups. To quantify the
propagation properties of signals, we consider an observable corresponding to each formal location
feature, namely, an operator that measures the formal location of signals. Moreover, to guarantee
that the formal location of signals shifts when applying GNNs, we form in the signal complex os-
cillations along the direction of each formal location. We show that this leads roughly to a constant
speed of the formal location of signals when applying linear Schrödinger filters.

We empirically validate our theory on graph classification and regression benchmarks, where
Schrödinger GNNs achieve comparable accuracy to state of the art GNNs.

2 MEASURING SIGNAL LOCALIZATION AND PROPAGATION

General Notations. For N ∈ N we denote [N ] = {1. . . . , N}. We use lowercase a, bold a, and
uppercase A for scalars, vectors, and matrices respectively. We also treat vectors f = (f1, . . . , fn) ∈
CN as functions f : [N ] → C, where f(n) = fn. The identity matrix is denoted by I . For a
matrix A, we denote by An,: and A:,k its n-th row and k-th column respectively. For complex
numbers, we denote complex conjugation by z, real part by Re(z), and imaginary part by Im(z).
A graph is G = (V,E) where the vertex set is V = [N ] and E ⊂ [N ]2. We denote by N (v) the
neighborhood of vertex v. We consider only undirected graphs, and denote the adjacency matrix by
A = (an,m)n,m ∈ RN×N . A graph-signal is a pair (G, f) where f = (f1, . . . , fK) : V → CK

is the signal. The signal can also be represented by a matrix X = (xn,k)n,k ∈ CN×K where
xn,k = fk(n). A graph shift operator (GSO), is any operator that encodes the graphs structure, e.g.,
the adjacency matrix or any graph Laplacian. We define the inner product of two single-channel
signals f, g ∈ CN by ⟨f, g⟩ =

∑
v∈V f(v)g(v), and define norm by ∥f∥22 = ⟨f, f⟩. The operator

norm is ∥A∥ = sup∥x∥2=1 ∥Ax∥2. For a signal f , we denote by diag(f) the diagonal matrix with
diagonal elements diag(f)n,n = fn. The commutator of two matrices is [X,Y ] = XY − Y X .

Observables and The Signal Routing Measure. In a general Hilbert space H of signals, an
observable is a self-adjoint operator A in H, i.e. A∗ = A. By the spectral theorem, any self-
adjoint operator in a finite dimensional spaces can be written as A =

∑
j λjPj where {λj}j are real

eigenvalues and {Pj}j are the orthogonal eigenprojections. This decomposition motivates treating
a self-adjoint operator as an observable of a physical quantity. Namely, we interpret the eigenvalues
as values that the physical quantity can attain, and Pj as projections upon spaces of signals that have
λj as the value of their physical quantity. For example, the diagonal operatorD : CN → CN defined

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

by (Dg)j = jgj can be thought of as a location observable on the line [1, N ]. Here, the eigenvectors
ej = (0, . . . , 0, 1, 0, . . . , 0) (with 1 only at the j-th entry) are thought of as pure states/signals with
location exactly λj = j. Any signal g ∈ CN is a linear combination of the pure location states
{ej}j , i.e., g =

∑
j gjej with gj ∈ C. When the state g is normalized to ∥g∥2 = 1, we can

interpret |gj |2 as the weight, or probability, of g being at location j. While g does not have one
exact location, we can define its mean location as ED(g) =

∑
j |gj |2j, and its location variance as

VD(g) =
∑

j |gj |2
(
j − ED(g)

)2
. Using operator notations, these two quantities can be written as

ED(g) = ⟨Dg, g⟩ and VD(g) = ∥(D − ED(g)I)g∥22, where I is the identity operator in CN .

This discussion motivates the general construction of observables in quantum mechanics. For a self-
adjoint operator A and normalized state g ∈ H, the expected value (or mean) of A with respect to
g is defined to be EA(g) := ⟨Ag, g⟩. Note that when H = CN , we have EA(g) =

∑
i λi⟨Pig, g⟩,

which is interpreted just like the above example of location observable. The variance of A with
respect to g is defined to be

VA(g) := ∥(A− EA(g)I)g∥22 =
〈
(A− EA(g)I)2g, g

〉
= EA2(g)− EA(g)2.

In addition to the classical notions of mean and variance, we propose quantifying how well a signal
is transmitted towards a target value of the physical quantity. Consider a scenario where we have
an initial signal g0, and we would like to transmit this signal to be concentrated about some value r
with respect to some observable A. For that, suppose that we operate on g0, e.g., with a GNN, and
transform it to gt. The following definition quantifies how well gt achieves this goal.
Definition 2.1 (Signal Routing Measure). For an observable A, normalized initial signal g0 and
final signal gt, and a target value r ∈ R, the signal routing measure is defined to be

PA(g0, gt, r) =
⟨(A− Ir)2gt, gt⟩

VA(g0)
. (1)

In the setting of Definition 2.1, the observable A models some physical quantity. The term ⟨(A −
Ir)2gt, gt⟩ quantifies how much the values of the physical quantity of gt are concentrated about r,
and the denominator normalizes this with respect to how well the physical quantity of the initial
state g0 is concentrated. It is easy to verify the identity

PA(g0, gt, r) =
VA(gt) + (r − EA(gt))2

VA(g0)
. (2)

Hence, to minimize the routing measure, one should construct an operation that transforms g0 to
some gt, keeping the variance of gt small (relatively to the variance of g0), while making the ex-
pected value of gt as close as possible to r.

3 SIGNAL PROPAGATION IN SCHRÖDINGER GRAPH SIGNAL PROCESSING

Next, we introduce Schrödinger graph signal processing, and analyze signal propagation under it.

Feature Location Observables. Consider a graph-signal (G, q) with q = (q1, . . . , qM ) : V →
CM . We treat some of the feature channels of q as the signal and some as some abstract notion
of locations. Namely, for some 1 < J < M we call g = (q1, . . . , qJ) the signal, and call f =
(qJ+1, . . . , qM ) the feature locations. DenoteK =M−J and f = (f1, . . . , fK). As we show later,
working with complex-valued signals is important for routing signals between graph regions. Hence,
we consider g : V → CJ with ∥gj∥2 = 1, and consider real-valued feature locations f : V → RK ,
which need not be normalized. Define the feature location observables Xfk = diag(fk), for k ∈
[K]. By the fact that fk is real-valued,Xfk is self-adjoint. Now, EXfk

(gj) =
∑

n∈[N ] fk(n) |gj(n)|
2

is interpreted as the fk-value about which the energy of gj is centered, and VXfk
(gj) is the spread

of the energy of gj about this center.

Partial Derivatives and The Second Order Feature Derivative GSO. Our construction of
Schrödinger signal processing is based on a special constructions of a GSO based on derivatives.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition 3.1 (fk-partial derivative). Given a feature location fk : V → R, we define the fk-partial
derivative∇fk ∈ CN×N by: for n,m ∈ V

(∇fk)n,m = an,m(fk(n)− fk(m))

It is easy to see that∇fk is skew-symmetric (i.e. ∇∗
fk

= −∇fk ), and hence ∇2
fk

is self-adjoint.

Definition 3.2 (Schrödinger Laplacian). Given K feature locations f = (f1, . . . , fK), the corre-
sponding Schrödinger Laplacian is defined to be

∆f = −
∑

k∈[K]

∇2
fk
.

The Schrödinger Laplacian is self-adjoint as a sum of bounded self-adjoint operators. This makes
the following operator unitary.
Definition 3.3 (Schrödinger Operator). Given feature locations f : V → RK and time t ∈ R, the
corresponding Schrödinger Operator is defined to be S[t, f ] = e−it∆f .

As we define in Section 3, Schrödinger graph signal processing is based on filtering signals using
Schrödinger operators as GSOs. In this paper, we develop the theory for Schrödinger operators
based on Schrödinger Laplacians, as these special GSOs lead to theoretical guarantees. However,
the Schrödinger signal processing methodology works also with Schrödinger operators based on
general GSOs, like standard Graph Laplacians.

Let us draw an analogy to the classical theory. In the free particle Schrödinger equation, we consider
the space R3 as the “graph,” consider the coordinates x, y, z as the locations, and ∂x, ∂y, ∂z as the
partial derivatives. Here, ∆x,y,z = −∂2x − ∂2y − ∂2z is the classical Laplace operator. Given a
wave function g0 : R3 → C representing a particle at time 0, gt = S[t;x, y, z]g0 is the particle at
time t. In our case, given a signal g(0) on the graph, thought of as the state at time 0, we denote
g(t) = S[t, f ]g, thought of as the signal at time t.

Analyzing Signal Propagation via Splitting. Note that typical signals are not localized about
one feature location. For example, the grayscale signal of an image is typically supported across
all x, y locations. Hence, the expected location and location variance are not meaningful local-
ization notions for such signals (see Figure 1 for illustration). Still, we can conceptually apply a
localization analysis with observables as follows. We decompose the signal g into a sum of chunks
g = g1, . . . , gL, e.g., by multiplying the signal by a window in the formal locations gl = wl(f)g,
where w1, . . . , wL : R → R form a partition of unity. Here we assume that each wj is well lo-
calized about one location value. Then, each chunk gl has a meaningful mean location, and we
can track how Schrödinger operators propagate this location. Moreover, by tracking how much the
Schrödinger operator increases the variance of the chunk, we interpret how much the content of the
signal in this chunk is diffused, scatters, or dispersed, when propagating it. Note that this analysis
makes sense by the linearity of the Schrödinger operator. Note as well that in our methodology, we
do not decompose g to chunks in practice, and this decomposition is just for conceptualizing the
signal propagation. In appendix F.4 we use the splitting scheme to diagnose the signal propagation
capabilities of Schrödeinger GNNs..

Figure 1: Decomposition of a signal g to g0 + g1. Expected feature locations are marked by a dot,
and the variance is signified by a color band.

Dynamics of 1D Signals via Feature Momentum. In the classical theory, the partial derivatives
are called the momentum observables. The mean iE∂x(g) is interpreted as the expected momentum,
or speed, of the particle g. Analogously, we interpret the fk-partial derivative i∇fk as observables of

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

momentum or velocity along fk. This interpretation can be made precise by developing dynamical
equations of signals under Schrödinger operator, as we do next.

In the following discussion, we consider the case of single-channel signal g = g1 and a single
feature location f = f1. We first show that the expected momentum of a signal is constant under
Schrödinger dynamics.
Theorem 3.4 (Constant Expected Momentum). Let g : V → C be a normalized signal and f :
V → R a feature location. Then, for every t ∈ R,

Ei∇f
(gt) = Ei∇f

(g)

We then show that the rate of change of the expected location is equal to some smoothed version of
the expected momentum. For that, we first define smoothing with respect to feature directions.
Definition 3.5 (f -smoothing operator). Let f be a feature location. The f -smoothing operator
Wf : RN → RN is defined as follows. For every signal g ∈ CN and vertex v ∈ V

(Wfg)(v) =
∑

w∈N (v)

av,w(f(w)− f(v))2g(w).

By definition, the f -smoothing operator mixes the values of the signal g only along edges where the
feature f changes. It is hence interpreted as smoothing along the f direction.
Theorem 3.6 (Expected Feature Location Derivative under Schrödinger dynamics). Let g : V → C
be a normalized signal and f : V → R a feature location. Let g(t) = S[t, f ]g for every t ∈ R.
Then,

∂

∂t
EXf

(g(t)) = −2Re
(
⟨i∇fg

(t),Wfg
(t)⟩
)
. (3)

The right-hand-side of (3) is interpreted as a smoothed version of the expected momentum
Ei∇f

(g(t)) =
〈
i∇fg

(t), g(t)
〉
. Hence, Theorem 3.6 states that the rate of change of the expected

location is equal to a smoothed expected momentum. In Appendix C.2, we show that for smooth
enough signals, the rate of change of the expected location is close to the exact expected momentum.
Since the expected momentum is constant, the theorem suggests that the rate of change of the ex-
pected location is roughly constant, as long as the signal stays smooth enough. This analysis hence
justifies calling i∇f the momentum, or velocity, observable.

We note that Theorem 3.6 is analogous to the classical case, where the rate of change of the expected
location of a free particle is equal to its expected momentum, which is constant. See Appendix B
for more details.

Achieving Translations via Feature Modulation. We wish to be able to translate the expected
feature location of signals using Schrödinger operators. In typical graph data, all features are real.
However, as we show next, for real value signals, the expected momentum is always zero. Hence,
given a real-valued signal, to be able to route it between feature regions, we must first modify it to
be complex-valued. We do this via the feature modulation operator.
Definition 3.7 (Feature Modulation). Given a real-valued feature location h : V → R and a phase
θ ∈ R, the Feature Modulation Operator is defined to be D[θh] = diag(eiθh), where eiθh is the
vector with entry (eiθh)(v) = eiθh(v) for node v ∈ V .

Next, we show that modulating a real-valued signal gives nonzero expected momentum in general.
Theorem 3.8 (Expected Momentum of Modulated Signal). Given a signal g : V → R, feature
locations f, h : V → R, and a phase θ ∈ R, the expected momentum of D[θh]g satisfies

Ei∇f
(D[θh]g) = −2

∑
(m,n)∈E

am,ng(m)g(n)(f(n)− f(m)) sin(θ(h(n)− h(m))). (4)

Theorem 3.8 can be interpreted as follows. Consider the edge signals eg,h, ef : E → R defined by

eg,h(v, w) = g(v)g(w) sin
(
θ(h(w)− h(v))

)
, ef (v, w) = f(v)− f(w).

The right-hand-side of (4) is the edge-space inner product ⟨eg,h, ef ⟩. Hence, as long as we choose a
modulating feature h such that eg,h and ef are not orthogonal, the expected momentum of D[θh]g
will be nonzero.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Dynamics of Multi-Channel Signals and Observables.
Theorem 3.9 (Expected multi-Feature Derivative). Given the Schrödinger Laplacian ∆f =
−
∑

k∈[K]∇2
fk

and a normalized signal g, we have

∂

∂t
EXfk

(g(t)) = −2Re
(
⟨i∇fkg

(t),Wfkg
(t)⟩
)
+
∑
j ̸=k

〈
[i∇2

fj , Xfk ]g
(t), g(t)

〉
. (5)

Ideally, we would like the rate of change of the expected Xfk location to be a smoothed version of
the expected ∇fk momentum. However, we see that in (5) there are additional cross terms. This
leads to the following definition.
Definition 3.10 (ϵ-Commuting Features). A sequence of feature locations {f1, f2, . . . , fK} is said
to be ϵ-commuting if for every pair i ̸= j ∈ [K], the matrixEi,j = [Xfi ,∇fj ] = Xfi∇fj −∇fjXfi
satisfies ∥Ei,j∥op ≤ ϵ.

For a sequence of ϵ commuting features, the dynamics is∥∥∥∥ ∂∂tEXfk
(g(t))− 2Re

(
⟨i∇fg

(t),Wfg
(t)⟩
)∥∥∥∥ ≤ (K − 1)ϵ.

Hence, here as well we have the interpretation that for smooth enough signals, the rate of change of
all expected locations are close to their corresponding expected momenta.

Orthogonalizing The Feature Directions. The signal q : V → RM in the raw data is not ϵ-
commuting in general. Hence, in Schrödinger GNNs, as a first step, we transform the feature y to
a sequence of features f1, . . . , fK which are ϵ-commuting. For example, one can plug each node
feature q(n) into a simple MLP or a linear transformation Θ, to obtain f(n) = Θ(q(n)). The
transformation Θ is optimized with respect to the following target.
Definition 3.11 (Position-Momentum Optimization (PMO)). Given a signal q ∈ RN×M , a linear
transformation T ∈ RM×K , mapping q to f = (f1, f2, . . . , fK) = qT ∈ RN×K , is optimized w.r.t

min
T∈RM×K

K∑
i ̸=j

∥[∇2
fj , Xfi ]∥2op + λ

K∑
k=1

(∥∇fk∥∞ − 1)
2
,

for some λ > 0.

Dynamics of the Variance. Next, we derive the dynamics of the variance.
Theorem 3.12 (Time Derivative of Variance). Let g : V → C be a signal and f : V → R a feature
location, and ∆f = −∇2

f . The first-order derivative of variance with respect to time t ∈ R is

∂

∂t
VXf

(g(t)) = Ei[∆f ,X2
f ]
(g(t)) + 4EXf

(g(t))Re
(
⟨i∇fg

(t),Wfg
(t)⟩
)

This mirrors the classical Schrödinger equation dynamics where variance evolution depends on both
the commutator [∆, X2] and the coupling between position and momentum. See Appendix B for
the classical correspondence.

Improving Signal Routing Through Modulation. Here, we show that in typical situations mod-
ulating real-valued signals improve their signal routing measure. Consider the following setting. We
have a multilayer network where at each layer l we have a real-valued signal g(l) that we are allowed
to modulate by choosing the free parameter θl ∈ R in D[θlh]g

(l). We then propagate the signal via
S[dt, f ]D[θlh]g

(l) for some small time step dt, and lastly apply a modulus nonlinearity to define the
signal at the next layer g(l+1) =

∣∣S[dt, f ]D[θlh]g
(l)
∣∣. Here, we can interpret g(l) as the signal at

time ldt, and the input to the network g(0) as the signal at time 0.

Suppose that we would like to rout the signal to the feature location r, i.e., we would like
PXf

(g(0), D[θlh]g
(l), r) to decrease in l by choosing appropriate θl. In this setting, since dt is

small, we can linearize the propagation of g(l) about t = 0, and obtain

PXf
(g(0), g(l+1), r) = PXf

(g(0), D[θlh]g
(l), r)+

∂

∂t
PXf

(g(0),S[t, f ]D[θlh]g
(l), r)|t=0dt+O(dt2)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Signal transport under modulation.

= PXf
(g(0), g(l), r) +

∂

∂t
PXf

(g(0),S[t, f ]D[θlh]g
(l), r)|t=0dt+O(dt2),

where the last equality is due to the fact that PXf
(g(0), D[θlh]g

(l), r) does not depend on θl. We
would now like to know if modulating the signal at layer l improves the routing measure at layer
l + 1. For that, it is enough to show that the derivative of PXf

(g(0), g(l+1), r) with respect to θl is
nonzero at θl = 0. Observe that

∂

∂θl
PXf

(g(0), g(l+1), r) =
∂

∂θl

∂

∂t
PXf

(g(0),S[t, f ]D[θlh]g
(l), r)|t=0 +O(dt2).

Hence, our goal is to show that D := ∂
∂θl

∂
∂tPXf

(g(0),S[t, f ]D[θlh]g
(l), r)|t,θl=0 is nonzero in

general. As long as this is true, θl = 0 is not the minimizer of PXf
(g(0), g(l+1), r), so one can

always choose a better modulation than θl = 0.

We now simplify the notations and give a formula for D := ∂
∂θ

∂
∂tPXf

(g,S[t, f ]D[θh]g, r)|t=θ=0.
Claim 3.13 (Mixed Derivative of The Signal Routing Measure).

∂

∂θ

∂

∂t
PXf

(g,S[t, f ]D[θh]g, r)
∣∣∣
t=θ=0

=
⟨[Xh, [∆, X

2
f ]]g, g⟩ + 4rRe ⟨[Xh,Wf∇f ]g, g⟩

VXf
(g)

We see that when h is constant, i.e. there is no modulation, there is no modulation, D is zero.

In Figure 2 we give an example of a graph, initial signal g with EXf
(g) = −0.98, modulating feature

h = f , and desired location value r = 1. We show that by choosing an appropriate modulation θ and
propagating the signal using the Schrödinger operator to time t = 0.1 improves the signal routing
measure with respect to not modulating.

Schrödinger Signal Processing. We define Schrödinger filters by considering linear combinations
of the evolutions of the modulated signal with different modulations and times. Let f : V → RK be
location features and D ∈ N be the output feature dimension. To use linear algebra notations, let us
now treat signals and location features and vectors in CN×J and RN×K respectively. A Schrödinger
filter Ψ is parameterized by (tm ∈ R, θm ∈ R,W(m) ∈ CJ×D,T(m) ∈ RK×1)m∈[M ], and maps
signals g ∈ CN×J to

Ψ(g)F(g) =
M∑

m=1

S[tm, f ]D[θmf ·T(m)]g ·W(m).

Schrödinger GNNs. The application of a Schrödinger GNN is a two-step procedure. First, the
input features are optimized via Position-Momentum Optimization (PMO) (Definition 3.11) to ob-
tain the location features f . Second, the Schrödinger GNN is trained using these fixed features.
For nonlinearities within the network, we apply standard activations (e.g., ReLU) separately to the
real and imaginary parts: σ(z) = ReLU(Re(z)) + i · ReLU(Im(z)) or we used the absulute value
σ(z) = |z|. See Appendix E.3 for full implementation details and Appendix E.3 for computational
complexity analysis.

Uniform Time initialization. Schrödinger layers include a per channel real scaling parameter
t ∈ RCout . At initialization we draw each channel independently tj ∼ Uniform(0, 1.5). Larger t

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

increases the contribution of higher order propagation steps (capturing longer range interactions),
whereas smaller t biases updates toward local mixing. When learning is disabled we use a non-
trainable scalar 1.0. We coined the name Adaptive Unitary for the layer with only the Unitary
Schrödinger operator with different learnable tj without modulation layer, In depth explanation in
the Appendix E.3.

4 EXPERIMENTS

Table 1: Test Losses for Ring Signal
Transport

Model Test Loss

GCN (25) 0.6644± 0.0720
GAT(53) 0.6050± 0.0052
Schrödinger real 0.9334± 0.0514
Schrödinger 3e-04± 2e-04

Synthetic Experiment - Signal Propagation on a Cycle.
Here, we showcase the capability of Schrödinger GNN to
direct the propagation of the signal with a toy regression
experiment. Consider a cycle graph discretizing the unit
circle, and the locations feature x = cos(θ), where θ is
the angle. Each signal in the dataset is a Gaussian with
random mean µ and variance σ2, and with additive white
noise. The target for each signal is the same gaussian
mean shifted by a predetermine value d. The task is to
learn a GNN that maps the input signal to the output sig-
nal. This experiment shows that only Schrödinger GNN, with modulated input signal, can solve this
task. A summary of dataset statistics is available in Appendix F.3.

Figure 3: Cycle graph (ring) signal transport. Each panel is a cycle graph in which node color
intensity encodes the signal magnitude. All panels share the same color scale.

Table 2: MNIST classification results (Test
Accuracy). Results averaged over 5 runs.

MODEL ACCURACY

GCN (25) 92.09± 0.28
ChebConv (12) 95.72± 0.74
GAT (53) 95.94± 0.71
GIN (56) 98.33± 0.11
MPNN (16) 98.95± 0.06
CNN (27) 99.07± 0.07

Schrödinger 99.13± 0.04

MNIST Classification We conduct an experiment
on the classical MNIST dataset (28) to evaluate our
model’s performance on a standard image classifica-
tion task formulated as a graph problem. Each image
is converted into a graph where each pixel is a node.
Node features include the pixel’s intensity and its (x,
y) coordinates. Edges connect each pixel to its eight
closest neighbors. We ran each model five times for
200 epochs. As shown in Table 2, our Schrödinger
model achieves competitive performance. Further
details are provided in Appendix F.4.

Graph Classification - Architecture Matched
Comparison To ensure a fair comparison across
different GNN architectures, we conduct an additional evaluation on ENZYMES, IMDB, MU-
TAG, and PROTEINS using a standardized architecture: three inner convolution layers followed
by a final linear layer. For fairness, we match the parameter count across all methods by first com-
puting the parameter count of a GCN model with hidden dimension 128, then adjusting the hidden
dimensions of all other methods GAT, Unitary, Adaptive Unitary, Schrödinger, Schrödinger PMO
(Position-Momentum Optimization before training) to match this parameter count within 0.6% tol-
erance. This ensures that performance differences reflect architectural choices rather than model
capacity. Each model-dataset combination was run 100 times with different random seeds, and the
reported results show the mean and standard deviation across these runs. Results are reported in
Table 3, for more details F.4.

Peptides Peptide-Func and Peptide-struct, two datasets taken from Long Range Graph Benchmark
(LRGB) (14) comprise datasets that specifically test the ability of graph neural networks to capture
long-distance dependencies between nodes. For this paper, we focus on the molecular property

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Architecture-matched comparison results (Test AP ↑). All models use 3 convolu-
tion layers + 1 linear layer with matched parameter counts. Top-1/2/3 entries are highlighted
green/orange/yellow, respectively.

Model ENZYMES IMDB MUTAG PROTEINS

GIN (56) 31.93± 3.16 69.22± 3.14 78.19± 5.57 71.88± 3.08
GCN (25) 31.66± 5.35 50.6± 4.1 73.24± 6.27 71.41± 3.04
GAT (53) 31.13± 34.88 49.54± 2.54 75.21± 6.41 72.31± 3.28
Unitary (UniGCN) (23) 40.3± 6.63 65.42± 2.8 75.74± 6.67 69.19± 3.01
Adaptive Unitary 41.6± 5.18 65.46± 2.48 75.53± 5.95 71.79± 3.33
Adaptive Unitary PMO 41.83± 4.44 66.27± 3.01 75.62± 6.24 7.177± 2.84
Schrödinger 43.5± 4.89 65.86± 2.83 75.42± 6.11 71.57± 2.56
Schrödinger PMO 43.7± 3.37 69.6± 2.85 79.25± 6.19 72.68± 3.05

prediction datasets Peptides-func and Peptides-struct. Peptides-func is a graph-level classification
task that determines functional characteristics of peptide molecules represented as graphs, while
Peptides-struct is a graph-level regression task that predicts structural properties of these molecules,
for more details F.8.

Table 4: Performance on Peptides-Func and Peptides-Struct. Bold values indicate the best perform-
ing models for each metric: the highest AP for Peptides-Func and the lowest MAE for Peptides-
Struct. Top-1/2/3 entries are highlighted green/orange/yellow, respectively. The results for the mod-
els other than ours were taken from (20).

MODEL TYPE MODEL PEPTIDES-FUNC (AP ↑) PEPTIDES-STRUCT (MAE ↓)

MP

GCN† (25) 68.60± 0.50 0.2460± 0.0007
GINE† (56) 66.21± 0.67 0.2473± 0.0017
GatedGCN† (3) 67.65± 0.47 0.2477± 0.0009
GUMP‡ (41) 68.43± 0.37 0.2564± 0.0023

Others

GPS† (42) 65.34± 0.91 0.2509± 0.0014
DRew‡ (17) 71.50± 0.44 0.2536± 0.0015
Exphormer‡ (47) 65.27± 0.43 0.2481± 0.0007
GRIT‡ (35) 69.88± 0.82 0.2460± 0.0012
Graph ViT‡ (22) 69.42± 0.75 0.2449± 0.0016
CRAWL‡ (34) 70.74± 0.32 0.2506± 0.0022
UniGCN‡ (23) 70.72± 0.0035 0.2425± 0.0009
Lie UniGCN‡ (23) 71.73± 0.0061 0.2460± 0.0011

Ours Schrödinger 72.07± 0.0099 0.2439± 0.00122
Adaptive Unitary 71.29± 0.527 0.2467± 0.0011

†Reported performance taken from (52). ‡Reported performance taken from (23).

5 SUMMARY

We presented a new approach for defining and analyzing signal propagation across graphs. The
approach directly models where the information of the signal is, how well concentrated it is, and
how well it is routed between regions in the graph. We presented Scrödinger GNN, a graph neural
network that is able to route the information of the signal along any direction in the graph. We
showed that standard GNNs do not have this capability. One limitation of Scrödinger filters with
respect to simple polynomial filters is that applying the Scrödinger operator on a signal involves
approximating the exponential of the GSO, which involves applying the GSO several times.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

This work presents theoretical and empirical contributions to graph neural networks using quantum-
inspired methods. All experiments use synthetic data or publicly available benchmarks (LRGB
Peptides, node classification datasets) with no privacy concerns or potential harm to subjects. The
research involves only technical graph data and raises no ethical concerns.

7 REPRODUCIBILITY STATEMENT

We provide detailed proofs for all theorems, with additional analysis in the appendices. Imple-
mentation details including matrix exponential computation (Appendix E.1), hyperparameters (Ap-
pendix F.8), and synthetic experiment setups (Appendices F.3, F.1) are fully documented. The
Position-Momentum Optimization is specified in Definition 3.11. Source code will be released
on GitHub upon publication.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

[1] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical im-
plications. In International Conference on Learning Representations (ICLR), 2021. URL
https://arxiv.org/abs/2006.05205.

[2] Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquash-
ing in GNNs through the lens of effective resistance. In Proceedings of the 40th International
Conference on Machine Learning (ICML), volume 202 of Proceedings of Machine Learning
Research, pp. 2528–2547, 2023. URL https://proceedings.mlr.press/v202/
black23a.html.

[3] Xavier Bresson and Thomas Laurent. Residual gated graph convnets, 2018. URL https:
//arxiv.org/abs/1711.07553.

[4] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs, 2014. URL https://arxiv.org/abs/1312.6203.

[5] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks, 2020. URL
https://arxiv.org/abs/2006.13318.

[6] Benjamin Paul Chamberlain, James Rowbottom, Maria Gorinova, Stefan Webb, Emanuele
Rossi, and Michael M. Bronstein. Grand: Graph neural diffusion, 2021. URL https://
arxiv.org/abs/2106.10934.

[7] Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian,
2015. URL https://nyuscholars.nyu.edu/en/publications/
a-lower-bound-for-the-smallest-eigenvalue-of-the-laplacian.

[8] Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction, 2018. URL https://arxiv.org/abs/1710.10568.

[9] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks, 2020. URL https://arxiv.org/abs/2007.02133.

[10] Yun Young Choi, Sun Woo Park, Minho Lee, and Youngho Woo. Topology-informed graph
transformer, 2025. URL https://arxiv.org/abs/2402.02005.

[11] Fan Chung. Laplacians and the cheeger inequality for directed graphs, 04 2005.

[12] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering, 2017. URL https://arxiv.org/abs/
1606.09375.

[13] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to
graphs. In AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.
URL https://arxiv.org/abs/2012.09699.

[14] Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark, 2023. URL https://arxiv.
org/abs/2206.08164.

[15] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric,
2019. URL https://arxiv.org/abs/1903.02428.

[16] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry, 2017. URL https://arxiv.org/abs/
1704.01212.

[17] Francesco Di Giovanni, T. Konstantin Rusch, and Michael M. Bronstein. Drew: Dynami-
cally rewired message passing with delay, 2024. URL https://arxiv.org/abs/2402.
02944.

11

https://arxiv.org/abs/2006.05205
https://proceedings.mlr.press/v202/black23a.html
https://proceedings.mlr.press/v202/black23a.html
https://arxiv.org/abs/1711.07553
https://arxiv.org/abs/1711.07553
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/2006.13318
https://arxiv.org/abs/2106.10934
https://arxiv.org/abs/2106.10934
https://nyuscholars.nyu.edu/en/publications/a-lower-bound-for-the-smallest-eigenvalue-of-the-laplacian
https://nyuscholars.nyu.edu/en/publications/a-lower-bound-for-the-smallest-eigenvalue-of-the-laplacian
https://arxiv.org/abs/1710.10568
https://arxiv.org/abs/2007.02133
https://arxiv.org/abs/2402.02005
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/2012.09699
https://arxiv.org/abs/2206.08164
https://arxiv.org/abs/2206.08164
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/2402.02944
https://arxiv.org/abs/2402.02944


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[18] Simon Halvdansson, Jan-Fredrik Olsen, Nir Sochen, and Ron Levie. Existence of uncer-
tainty minimizers for the continuous wavelet transform. Mathematische Nachrichten, 296
(3):1156–1172, January 2023. ISSN 1522-2616. doi: 10.1002/mana.202100466. URL
http://dx.doi.org/10.1002/mana.202100466.

[19] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Advances in Neural Information Processing Systems, volume 30, 2017. URL
https://arxiv.org/abs/1706.02216.

[20] Ali Hariri, Álvaro Arroyo, Alessio Gravina, Moshe Eliasof, Carola-Bibiane Schönlieb, Da-
vide Bacciu, Kamyar Azizzadenesheli, Xiaowen Dong, and Pierre Vandergheynst. Return of
chebnet: Understanding and improving an overlooked gnn on long range tasks, 2025. URL
https://arxiv.org/abs/2506.07624.

[21] Hongwei He, Wenhan Wei, and Zhiguo Wen. Convolutional neural networks on graphs with
chebyshev interpolation. In Advances in Neural Information Processing Systems, volume 35,
pp. 25010–25022, 2022.

[22] Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of vit/mlp-mixer to graphs, 2023. URL https://arxiv.org/abs/2212.
13350.

[23] Bobak T. Kiani, Lukas Fesser, and Melanie Weber. Unitary convolutions for learning on graphs
and groups, 2024. URL https://arxiv.org/abs/2410.05499.

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

[25] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks, 2017. URL https://arxiv.org/abs/1609.02907.

[26] Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Pruden-
cio Tossou. Rethinking graph transformers with spectral attention, 2021. URL https:
//arxiv.org/abs/2106.03893.

[27] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[28] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The MNIST database of handwrit-
ten digits, 1998. URL http://yann.lecun.com/exdb/mnist/.

[29] Ron Levie and Nir Sochen. Uncertainty principles and optimally sparse wavelet transforms,
2018. URL https://arxiv.org/abs/1707.04863.

[30] Ron Levie and Nir Sochen. A wavelet plancherel theory with application to multipliers and
sparse approximations, 2021. URL https://arxiv.org/abs/1712.02770.

[31] Ron Levie, H-G Stark, Florian Lieb, and Nir Sochen. Adjoint translation, adjoint observable
and uncertainty principles. Advances in computational mathematics, 40(3):609–627, 2014.

[32] Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein. Cayleynets: Graph
convolutional neural networks with complex rational spectral filters. IEEE Transactions on
Signal Processing, 67(1):97–109, 2019. doi: 10.1109/TSP.2018.2879624.

[33] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional net-
works for semi-supervised learning, 2018. URL https://arxiv.org/abs/1801.
07606.

[34] Zhen Liu, Yuxuan Liang, Yao Ma, Xin Wang, Yunkai Zhang, and Jiliang Tang. Crawl: Efficient
and scalable graph neural network training with cached random walks, 2024. URL https:
//arxiv.org/abs/2402.08741.

[35] Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates,
Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message pass-
ing, 2023. URL https://arxiv.org/abs/2305.17589.

12

http://dx.doi.org/10.1002/mana.202100466
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/2506.07624
https://arxiv.org/abs/2212.13350
https://arxiv.org/abs/2212.13350
https://arxiv.org/abs/2410.05499
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2106.03893
https://arxiv.org/abs/2106.03893
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1707.04863
https://arxiv.org/abs/1712.02770
https://arxiv.org/abs/1801.07606
https://arxiv.org/abs/1801.07606
https://arxiv.org/abs/2402.08741
https://arxiv.org/abs/2402.08741
https://arxiv.org/abs/2305.17589


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

[36] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Mar-
ion Neumann. Tudataset: A collection of benchmark datasets for learning with graphs, 2020.
URL https://arxiv.org/abs/2007.08663.

[37] Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. Inter-
national Conference on Machine Learning, 2023. URL https://proceedings.mlr.
press/v202/nguyen23c.html.

[38] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification, 2021. URL https://arxiv.org/abs/1905.10947.

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library, 2019. URL https://arxiv.org/abs/1912.
01703.

[40] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of GNNs under heterophily: Are we re-
ally making progress? In International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=tJbbQfw-5wv.

[41] Haiquan Qiu, Yatao Bian, and Quanming Yao. Graph unitary message passing, 2024. URL
https://arxiv.org/abs/2403.11199.

[42] Ladislav Rampášek, Dominique Beaini, Cristian Gaboardi, Oscar Gargiulo, Mohammad
Galkin, Ruben Wiersma, Guy Wolf, and Anh Tuan Luu. Gps++: An optimised hybrid
mpnn/transformer, 2023. URL https://arxiv.org/abs/2405.18428.

[43] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification, 2020. URL https://arxiv.org/abs/
1907.10903.

[44] T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A survey on oversmooth-
ing in graph neural networks, 2023. URL https://arxiv.org/abs/2303.10993.

[45] Aliaksei Sandryhaila and Jose M. F. Moura. Discrete signal processing on graphs: Frequency
analysis, 2013. URL https://arxiv.org/abs/1307.0468.

[46] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfar-
dini. The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80,
2009. URL https://ieeexplore.ieee.org/document/4700287.

[47] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs, 2023. URL https://arxiv.org/
abs/2303.06147.

[48] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field
of signal processing on graphs: Extending high-dimensional data analysis to networks and
other irregular domains. IEEE Signal Processing Magazine, 30(3):83–98, May 2013. ISSN
1053-5888. doi: 10.1109/msp.2012.2235192. URL http://dx.doi.org/10.1109/
MSP.2012.2235192.

[49] Yang Sun, Wei Hu, Fang Liu, Min Jiang, FeiHu Huang, and Dian Xu. Speformer: An efficient
hardware-software cooperative solution for sparse spectral transformer, 2022.

[50] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic,
and Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision, 2021. URL https:
//arxiv.org/abs/2105.01601.

13

https://arxiv.org/abs/2007.08663
https://proceedings.mlr.press/v202/nguyen23c.html
https://proceedings.mlr.press/v202/nguyen23c.html
https://arxiv.org/abs/1905.10947
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://openreview.net/forum?id=tJbbQfw-5wv
https://arxiv.org/abs/2403.11199
https://arxiv.org/abs/2405.18428
https://arxiv.org/abs/1907.10903
https://arxiv.org/abs/1907.10903
https://arxiv.org/abs/2303.10993
https://arxiv.org/abs/1307.0468
https://ieeexplore.ieee.org/document/4700287
https://arxiv.org/abs/2303.06147
https://arxiv.org/abs/2303.06147
http://dx.doi.org/10.1109/MSP.2012.2235192
http://dx.doi.org/10.1109/MSP.2012.2235192
https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2105.01601


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

[51] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curva-
ture, 2022. URL https://arxiv.org/abs/2111.14522.

[52] Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go?
reassessing the long-range graph benchmark, 2023. URL https://arxiv.org/abs/
2309.00367.

[53] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks, 2018. URL https://arxiv.org/abs/
1710.10903.

[54] Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
sequence modeling with selective state spaces, 2024. URL https://arxiv.org/abs/
2402.00789.

[55] Junjie Xu, Enyan Dai, Xiang Zhang, and Suhang Wang. Hp-gmn: Graph memory networks
for heterophilous graphs, 2022. URL https://arxiv.org/abs/2210.08195.

[56] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks?, 2019. URL https://arxiv.org/abs/1810.00826.

[57] Jiaxuan You, Rex Ying, and Jure Leskovec. Design space for graph neural networks, 2021.
URL https://arxiv.org/abs/2011.08843.

[58] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns, 2020. URL
https://arxiv.org/abs/1909.12223.

[59] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang. Build-
ing efficient deep neural networks with unitary group convolutions, 2019. URL https:
//arxiv.org/abs/1811.07755.

A BACKGROUND AND RELATED WORK

A.1 SPECTRAL GNNS

Spectral GNNs define graph convolutions via the spectral domain. Let ∆ be a self-adjoint GSO with
{vj}Nj=1 and {λj}N which are the eigenvectors and eigenvalues so that ∆ =

∑N
i=1 λi viv

⊤
i . Given

a signal X ∈ RN×d and a function Q : R → Rd′×d, the spectral filter Q(∆) : RN×d → RN×d′
is

defined by

Q(∆)X :=

N∑
i=1

viv
⊤
i XQ(λi)

⊤. (6)

A spectral GNN layer then applies Xℓ+1 = σ
(
Qℓ(∆)Xℓ

)
with trainable Qℓ and nonlinearity σ.

For more examples (4; 12; 32).

A.2 UNITARY GNNS

Unitary GNNs are a class of graph neural networks designed to address fundamental challenges in
deep graph learning, particularly oversmoothing and oversquashing, through the use of unitary trans-
formations that preserve signal norms and maintain feature distinctiveness across layers. Known
methods include Graph Unitary Message Passing (GUMP) (41) which transforms the adjacency
matrix to be unitary, Unitary Group Convolutions (UGConvs) (59) which apply unitary transforms
on groups, and Separable Unitary Convolution (UniConv/UniGCN) (23) which employs a unitary
graph convolution. While UniConv utilizes a parameterization of unitary matrices (often based on
Cayley transforms or Lie algebra generators) to maintain norm preservation, it fundamentally acts as
a mixing operation within the spectral domain. In contrast, our Schrödinger GNN leverages the uni-
tary operator specifically as a time evolution operator generated by a feature dependent Hamiltonian.
This allows for directional signal routing steered by the underlying potential (the features), rather

14

https://arxiv.org/abs/2111.14522
https://arxiv.org/abs/2309.00367
https://arxiv.org/abs/2309.00367
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/2402.00789
https://arxiv.org/abs/2402.00789
https://arxiv.org/abs/2210.08195
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/2011.08843
https://arxiv.org/abs/1909.12223
https://arxiv.org/abs/1811.07755
https://arxiv.org/abs/1811.07755


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

than just mixing. Furthermore, Schrödinger GNN separates the ”location” and ”signal” aspects,
optimizing the location features to maximize transport capability, a mechanism absent in standard
unitary GNNs.

A.3 OVERSMOOTHING AND OVERSQUASHING

Most works addressing the over-smoothing and over-squashing problems begin by considering the
basic architecture of graph neural networks, the Message Passing Neural Network (MPNN) (16).
Definition A.1 (Message Passing Neural Network). Given a graph G = (V,E) with node features
X ∈ RN×d, an MPNN updates node representations through:

h(ℓ+1)
v = ϕℓ

h(ℓ)v ,
∑

w∈N (v)

ψℓ(h
(ℓ)
v , h(ℓ)w )


where h(0)v = xv , ϕℓ is the update function, and ψℓ is the message function.

Over-smoothing in GNNs refers to the tendency of node representations to become indistinguish-
able as network depth increases (44). The Dirichlet energy provides a standard measure for this
phenomenon

Definition A.2 (Dirichlet Energy). For a signal f : V → R and normalized Laplacian ∆̃, the
Dirichlet energy is

⟨f, ∆̃f⟩ = 1

2

∑
(i,j)∈E

wij

(
f(i)√
di
− f(j)√

dj

)2

where wij are edge weights and di is the degree of vertex i.

Figure 4: Evolution of a Gaussian signal on a ring graph under a unitary operator. The left plot
shows the signal at different iterations (L), demonstrating that the signal’s structure is preserved and
does not smooth out. The right plot shows that the Dirichlet energy remains constant throughout
the evolution. While unitary operators preserve Dirichlet energy, this example illustrates that it is
more accurately described as a measure of oscillation rather than a measure of oversmoothing, as
the signal maintains its local structure.

While Dirichlet energy has emerged as the dominant measure for analyzing over-smoothing in
GNNs (44), it provides only a partial view of signal propagation dynamics. Dirichlet energy was
first introduced to the GNN literature as a measure of signal smoothness across graph structures (5).
It has since become the standard tool for analyzing over-smoothing phenomena. In the context of
quantum mechanical observables, Dirichlet energy can be interpreted as the expected value of the
observable Laplacian operator. However, this observable fundamentally measures the rate of change
between neighboring nodes, essentially capturing local gradient information in the spatial domain,
which corresponds to momentum space properties (see Theorem G.1). This perspective reveals
critical limitations of Dirichlet energy: its local focus only captures immediate neighborhood re-
lationships, missing long-range dependencies crucial for understanding over-squashing phenomena
and signals whose mass is concentrated in specific graph neighborhoods. For GNN analysis, it is

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

beneficial to have the ability to quantify signal ”transport” or understand relative signal localization.

Figure 5: signal transport

Beyond the well known over-smoothing effect, MPNNs also suffer from over-squashing, where
long-range information is compressed through topological bottlenecks and becomes effectively in-
visible to distant nodes. (1) showed first heuristics of over squashing and claim that the cause of
bottlenecks is due the exponential growth of the node receptive field (8)
Definition A.3 (Node Receptive Field Set). Given graph G = (V,E), r ∈ N and node v ∈ V the
Receptive Field is

Br(v) := {w ∈ V : dG(v, w) ≤ r},
where dG is the shortest path length on the graph

(1) argued that oversquashing occurs when exponentially many messages are compressed into fixed-
size vectors. (51) formalized this via sensitivity analysis:

Definition A.4 (Oversquashing via Sensitivity). Oversquashing occurs when the representation h(ℓ)v

at node v fails to be sufficiently affected by input features xw of distant nodes w. This is measured
by the Jacobian ∥∂h(ℓ)v /∂xw∥.
Lemma A.5 (r- distance Sensitivity Bound (51)). Let Sr(v) := {w ∈ V : dG(v, w) = r}. For an
MPNN with bounded gradients ∥∇ϕℓ∥ ≤ α and ∥∇ψℓ∥ ≤ β, if w ∈ Sr+1(v), then∥∥∥∥∥∂h(r+1)

v

∂xw

∥∥∥∥∥ ≤ (αβ)r+1(Ar+1)vw (7)

where A is the adjacency matrix and (Ar+1)vw counts paths of length r + 1 from w to v.

This bound reveals oversquashing, when (Ar)vw decays exponentially with distance (e.g., in trees),
distant nodes have vanishing influence, creating information bottlenecks. (51) also connects to the
Cheeger constant,

2hG ≥ λ1 ≥
h2G
2

which is a result from the Cheeger constant (7; 11)

hG := min
S⊂V

hS , hS :=
|∂S|

min{vol(S), vol(V \ S)}

and to the Cheeger inequality,

2hG ≥ λ1 ≥
h2G
2

which bounds the spectral gap. Here, λ1 is the first non-zero eigenvalue of the normalized Laplacian;
∂S = {(i, j) : i ∈ S, j ∈ V \ S}; and vol(S) =

∑
i∈S di. The spectral gap can be interpreted as

how well two partitions of a graph are connected. They use the spectral gap to support their graph
curvature method and argue that negative edge curvature indicates its potential role in contributing
to the oversquashing issue.

Ric(i, j) =
2

di
+

2

dj
− 2 + 2

|#△(i, j)|
max{di, dj}

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where #△(i, j) counts triangles containing edge (i, j). Negative curvature indicates potential over-
squashing bottlenecks. Later work argued that not only edges are an indicator of oversquashing, but
the relation between every two nodes on the graph. (2) base their method also on the spectral gap,
and showcase their form of measure between two nodes, the effective resistance
Definition A.6 (Effective Resistance). For two nodes u, v ∈ V their effective resistance is

Ru,v = (1u − 1v)
⊤∆†(1v − 1u)

where ∆† is the pseudoinverse of the graph Laplacian.

(2) generalized the sensitivity analysis to arbitrary node pairs using effective resistance:
Lemma A.7 (Effective Resistance Sensitivity Bound). For an MPNN with bounded gradients
∥∇ϕℓ∥ ≤ α and ∥∇ψℓ∥ ≤ β, the sensitivity between nodes u, v at layer r satisfies:∥∥∥∥∥∂h(r)v

∂xu

∥∥∥∥∥ ≤ (αβ)r · exp (−c · r ·Ru,v)

where Ru,v is the effective resistance and c > 0 is a constant depending on the graph.

This bound shows that sensitivity decays exponentially with both distance and effective resistance,
providing a more refined measure than path counting alone.

While these methods analyze oversquashing from graph topology, we propose that the choice of
graph shift operator (GSO) also critically affects susceptibility to oversquashing. Different GSOs
encode distinct notions of signal propagation, making some inherently more prone to information
bottlenecks than others.

B SCHRÖDINGER IN CLASSICAL QUANTUM MECHANICS

Our graph based Schrödinger framework extends classical quantum mechanics. Understanding the
classical case provides intuition for why real-valued graph signals require modulation to achieve
directional transport, and establishes the theoretical foundations for our propagation measures. In
this section, we establish the classical quantum mechanical foundations using our graph notation for
consistency. Here, g represents a continuous wavefunction g : R→ C, the feature location f(x) = x
is the spatial coordinate, and Xf is the position operator acting as (Xfg)(x) = x · g(x). This can
be understood both mathematically and intuitively: a real wave function represents a standing wave
with equal probability of movement in opposite directions, resulting in no net momentum. More
formally, for a real-valued wave function g(x), we have

Ei∇f
(g) = ⟨g, i∇fg⟩ = −iℏ

∫
g(x)

∂

∂x
g(x)dx = 0

This property presents a challenge when we want to model directional information flow in graph
neural networks, as real-valued node features would similarly lack directional momentum. We wish
to understand how the wave function evolves in the classical case, so we need to understand the
expected location derivative, also known as the Heisenberg motion equation.
Theorem B.1 (Heisenberg Equation of Motion for Expected Values). Let gt = Stg where St =
e−it∆ is the Schrödinger evolution operator with Hamiltonian ∆. For any observableA, the deriva-
tive of its expected value with respect to t is

∂

∂t
EA(gt) = i⟨[∆, A]gt, gt⟩

Proof. We prove this using the limit definition and the expansion of the Schrödinger operator

∂

∂t
EA(gt) = lim

h→0

EA(gt+h)− EA(gt)
h

Since gt+h = Shgt and Sh = e−ih∆:

EA(gt+h) = ⟨Agt+h, gt+h⟩ = ⟨AShgt,Shgt⟩ = ⟨S−hAShgt, gt⟩

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Expanding Sh = e−ih∆ = I − ih∆+O(h2) and S−h = I + ih∆+O(h2):

S−hASh = (I + ih∆)A(I − ih∆) +O(h2)

= A+ ih∆A− ihA∆+O(h2)

= A+ ih[∆, A] +O(h2)

Taking the limit

∂

∂t
EA(gt) = lim

h→0

⟨(A+ ih[∆, A])gt, gt⟩ − ⟨Agt, gt⟩
h

= i⟨[∆, A]gt, gt⟩

Theorem B.2 (Expected Position Evolution in Classical Case). Let gt = Stg with St = e−it∆

where ∆ = − ∂2

∂x2 . Then the expected position evolves linearly with t

EXf
(gt) = EXf

(g0)− 2tEi∇f
(g0)

Proof. From Theorem B.1, we have

∂

∂t
EXf

(gt) = i⟨[∆, Xf ]gt, gt⟩

Computing the commutator [∆, Xf ] = [− ∂2

∂x2 , Xf ]: for any function h,

[− ∂2

∂x2
, Xf ]h = − ∂2

∂x2
(xh) + x

∂2h

∂x2
= −2∂h

∂x
= 2i(i

∂h

∂x
) = 2i(i∇fh)

Therefore [∆, Xf ] = 2i(i∇f ) and

∂

∂t
EXf

(gt) = i⟨2i(i∇f )gt, gt⟩ = −2Ei∇f
(gt)

Next, we show that momentum is conserved:

∂

∂t
Ei∇f

(gt) = i⟨[∆, i∇f ]gt, gt⟩

Since [∆, i∇f ] = [− ∂2

∂x2 , i
∂
∂x ] = 0

∂

∂t
Ei∇f

(gt) = 0

Thus Ei∇f
(gt) = Ei∇f

(g0) for all t. Integrating the position equation

EXf
(gt) = EXf

(g0) +

∫ t

0

(−2Ei∇f
(g0))ds = EXf

(g0)− 2tEi∇f
(g0)

For real-valued signals, the expected location remains constant under Schrödinger evolution, which
motivates the need for modulation to achieve directional transport.

Theorem B.3 (Linear Evolution of Expected Feature in the Classical Case). Given two real valued
signals g, h such that g is modulated by h at the initial state g0 = Diθhg, the evolution of the
expected feature is

EXf
(gt) = EXf

(g)− tθ
∫
h′(x)|g(x)|2dx

Proof. Using the basic evolution from Theorem B.2 and that expected location is invariant to mod-
ulation:

EXf
(gt) = EXf

(g0) + tEi∇f
(g0) = EXf

(g) + tEi∇f
(g0)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Isolating the expected momentum:

tEi∇f
(g0) = ti

∫
g(x)eiθh(x)

d

dx
(g(x)eiθh(x))dx = ti

∫
g(x)e−iθh(x)(g′(x)eiθh(x)+iθh′(x)g(x)eiθh(x))dx

= tEi∇f
(g)− tθ

∫
h′(x)|g(x)|2dx

Substituting back into the equation:

EXf
(gt) = EXf

(g)− tθ
∫
h′(x)|g(x)|2dx

Theorem B.4 (Real Signals Have Constant Expected Position). For any real-valued signal g : R→
R, the expected position remains constant under Schrödinger evolution:

EXf
(gt) = EXf

(g) for all t

Proof. From Theorem B.2, EXf
(gt) = EXf

(g)− 2tEi∇f
(g). For real-valued g, we have Ei∇f

(g) =

0 since ⟨g, i∇fg⟩ = −i
∫
g(x)g′(x)dx = 0. Therefore EXf

(gt) = EXf
(g).

Theorem B.5 (Time Derivative of Position Variance in the Free Schrödinger Case). Let g ∈ L2(R)
be a normalized wavefunction, and let gt = e−it∆ g denote the free Schrödinger evolution with
∆ = −∇2

f . Then the time derivative of the variance of position is:

∂

∂t
VXf

(gt) = Ei[∆,X2
f ]
(gt) + 4

(
EXf

(g)− 2t Ei∇f
(g)
)
Ei∇f

(g)

Proof of Theorem B.5. The variance of Xf at time t is:

VXf
(gt) = EX2

f
(gt)− EXf

(gt)
2.

Differentiating with respect to t and using the free particle result EXf
(gt) = EXf

(g) − 2t Ei∇f
(g)

and that the time derivative of the expected position equals the expected momentum (with our con-
ventions ∂

∂tEXf
(gt) = −2 Ei∇f

(g)):

∂

∂t
VXf

(gt) =
∂

∂t
EX2

f
(gt)− 2 EXf

(gt) ·
∂

∂t
EXf

(gt) =
∂

∂t
EX2

f
(gt) + 4 EXf

(gt) Ei∇f
(g).

Under unitary Schrödinger evolution, for any observable A:

∂

∂t
EA(gt) = Ei[∆,A](gt).

Thus, substituting A = X2
f and EXf

(gt) = EXf
(g)− 2t Ei∇f

(g) yields

∂

∂t
VXf

(gt) = Ei[∆,X2
f ]
(gt) + 4

(
EXf

(g)− 2t Ei∇f
(g)
)
Ei∇f

(g).

C SCHRÖDINGER DYNAMICS

Theorem C.1 (Expected Momentum Conservation). For the Schrödinger evolution gt = Stg, the
expected momentum is conserved:

Ei∇f
(gt) = Ei∇f

(g) for all t

Proof of Theorem 3.4. We showed previously that the Schrödinger operator is unitary and that it
commutes with ∇f because it is represented by a sum of identity matrices and powers of ∇f itself,
thus we can say:

Ei∇f
(Stg) = ⟨i∇fStg,Stg⟩ = ⟨iS−t∇fStg, g⟩ = ⟨i∇fg, g⟩

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Definition C.2 (ϵ − f Regular Signal). Let G = (V,E) be a graph, f : V → R be a signal, and
Wf be the f -smoothing operator, a signal g : V → C is called ϵ− f regular if there exists a signal
eg such that

Wfg = g + eg, ∥eg∥2 ≤ ϵ
Lemma C.3 (Smoothing Operator as Commutator).

Wf = −i[∇f , Xf ] = −i(∇fXf −Xf∇f )

Proof. For any signal g and vertex v:

([∇f , Xf ]g)(v) = (∇fXfg)(v)− (Xf∇fg)(v)

= i
∑
w∈V

av,w(f(w)− f(v))f(w)g(w)− f(v) · i
∑
w∈V

av,w(f(w)− f(v))g(w)

= i
∑
w∈V

av,w(f(w)− f(v))2g(w) = i(Wfg)(v)

Therefore Wf = −i[∇f , Xf ].

Lemma C.4 (Commutator Expansion for Schrödinger Laplacian). For the Schrödinger Laplacian
∆ = −∇2

f and feature operator Xf , we have:

i[∆, Xf ] = −i∇fWf − iWf∇f

where Wf = [∇f , Xf ] is the f -smoothing operator.

Proof. Using the product rule for commutators [AB,C] = A[B,C] + [A,C]B, we have:

i[∆, Xf ] = i[−∇2
f , Xf ] = −i[∇2

f , Xf ] = −i[∇f∇f , Xf ]

= −i∇f [∇f , Xf ]− i[∇f , Xf ]∇f

= −i∇fWf − iWf∇f

Proof of Theorem 3.6. We start from the limit definition of the time derivative:

∂

∂t
EXf

(gt) = lim
h→0

EXf
(gt+h)− EXf

(gt)

h
.

Because gt+h = Shgt and St is unitary, we may write

EXf
(gt+h) = ⟨XfShgt,Shgt⟩ = ⟨S−hXfShgt, gt⟩.

Using the Hadamard lemma S−hXfSh = Xf + h i[∆, Xf ] + o(h) we obtain

EXf
(gt+h)− EXf

(gt) = ⟨h i[∆, Xf ]gt, gt⟩+ o(h)

= h ⟨i[∆, Xf ]gt, gt⟩+ o(h).

Dividing by h and taking h→ 0 gives

∂

∂t
EXf

(gt) = ⟨i[∆, Xf ]gt, gt⟩.

Substituting ∆ = −∇2
f and using Lemma C.4 yields

∂

∂t
EXf

(gt) = −
(
⟨i∇fWfgt, gt⟩+ ⟨Wf i∇fgt, gt⟩

)
i∇f is hermitian

= −
(
⟨Wfgt, i∇fgt⟩+ ⟨i∇fgt,Wfgt⟩

)
= −

(
⟨i∇fgt,Wfgt⟩+ ⟨i∇fgt,Wfgt⟩

)
= −2Re

(
⟨i∇fgt,Wfgt⟩

)
where we used the fact that Wf is self-adjoint, the properties of inner products, and the identities
Re(z) = z+z

2 and Im(z) = z−z
2i = −iRe(iz).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Proof of Theorem 3.8. For the modulated signal Dθhg(v) = g(v)eiθh(v):

(∇fDθhg(m) = i
∑
n∈V

am,ng(n)e
iθh(n)(f(n)− f(m))

The expected momentum is:

Ei∇f
(Dθhg) = ⟨i∇fDθhg,Dθhg⟩

=
∑
m∈V

g(m)eiθh(m) · i
∑
n∈V

am,ng(n)e
iθh(n)(f(n)− f(m))

= i
∑
m∈V

∑
n∈V

am,ng(m)g(n)eiθ(h(n)−h(m))(f(n)− f(m))

Using the symmetry of undirected graphs and Euler’s formula eiθ = cos(θ) + i sin(θ):

Ei∇f
(Dθhg) = i

∑
(m,n)∈E

am,ng(m)g(n)[eiθ(h(n)−h(m))(f(n)− f(m)) + eiθ(h(m)−h(n))(f(m)− f(n))]

= i
∑

(m,n)∈E

am,ng(m)g(n)(f(n)− f(m))[eiθ(h(n)−h(m)) − e−iθ(h(n)−h(m))]

= i
∑

(m,n)∈E

am,ng(m)g(n)(f(n)− f(m)) · 2i sin(θ(h(n)− h(m)))

= −2
∑

(m,n)∈E

am,ng(m)g(n)(f(n)− f(m)) sin(θ(h(n)− h(m)))

Theorem C.5 (Deviation Bounds for expected feature Dynamics). For the Schrödinger operator
St = e−it∆ with ∆ = −∇2

f and signal g : V → C, if its evolved form gt = Stg is ϵ-f regular, the
deviation between the time derivative of expected feature and the expected momentum is bounded:∣∣∣∣ ∂∂tEXf

(gt)− Ei∇f
(g)

∣∣∣∣ ≤ 2ϵ∥∇f∥op∥g∥2

Proof of Theorem C.5. recall from 3.6 that

∂

∂t
EXf

(gt) = −2Re
(
⟨i∇fgt,Wfgt⟩

)
.

By the ϵ–f regularity assumption there exists egt with ∥egt∥2 ≤ ϵ such that Wfgt = gt + egt .
Substituting this identity gives∣∣∣∣ ∂∂tEXf

(gt) + 2 Ei∇f
(gt)

∣∣∣∣ = ∣∣∣−2Re(⟨i∇fgt, egt⟩
)∣∣∣

≤ 2 ∥i∇fgt∥2 ∥egt∥2 ≤ 2ϵ ∥∇f∥F ∥gt∥2 = 2ϵ ∥∇f∥F ∥g∥2

Proof of Expected multi-Feature Derivative Theorem 3.9. To prove the theorem, we start by consid-
ering the limit definition of the time derivative of the expected feature:

∂

∂t
EXfk

(gt) = lim
h→0

⟨Xfkgt+h, gt+h⟩ − ⟨Xfkgt, gt⟩
h

Since gt+h = Shgt and Sh = e−ih∆ is unitary, we have:

⟨Xfkgt+h, gt+h⟩ = ⟨XfkShgt,Shgt⟩
= ⟨S∗hXfkShgt, gt⟩
= ⟨S−hXfkShgt, gt⟩

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Using the expansion Sh = I − ih∆+ o(h2) and S−h = I + ih∆+ o(h2), we compute:

S−hXfkSh = (I + ih∆+ o(h2))Xfk(I − ih∆+ o(h2))

= Xfk + ih∆Xfk − ihXfk∆+ o(h2)

= Xfk + ih[∆, Xfk ] + o(h2)

Therefore:

⟨S−hXfkShgt, gt⟩ − ⟨Xfkgt, gt⟩
h

=
⟨(Xfk + ih[∆, Xfk ] + o(h2))gt, gt⟩ − ⟨Xfkgt, gt⟩

h
= i⟨[∆, Xfk ]gt, gt⟩+ o(h)

Taking the limit as h→ 0:

∂

∂t
EXfk

(gt) = lim
h→0

i⟨[∆, Xfk ]gt, gt⟩+ o(h) = ⟨i[∆, Xfk ]gt, gt⟩

= −
∑
j

〈
[i∇2

fj , Xfk ]gt, gt

〉
= −2Im ⟨i∇fkgt,Wfkgt⟩+

∑
j ̸=k

〈
[i∇2

fj , Xfk ]gt, gt

〉
.

This completes the proof.

Theorem C.6 (Multi Channel Deviation Bounds for expected feature Dynamics). For the
Schrödinger operator St = e−it∆, the deviation between the time derivative of expected feature
and the expected momentum is bounded as follows: For signals {f1, . . . , fN} forming a δ-Position-
Momentum Commuting set, and gt = Stg being ϵ-fk regular for each k, with ∆ = −

∑N
n=1∇2

fn
:∣∣∣∣ ∂∂tEXfk

(gt)− 2Ei∇fk
(g)

∣∣∣∣ ≤ 2ϵ∥∇fk∥op∥g∥2 + δ
∑
j ̸=k

2∥∇fj∥op∥g∥22

Proof of Theorem C.6. Using Theorem 3.9,

∂

∂t
EXfk

(gt) = ⟨i[∆, Xfk ]gt, gt⟩ = −
N∑

n=1

⟨i[∇2
fn , Xfk ]gt, gt⟩

We split the sum into the n = k term and the cross terms n ̸= k:

∂

∂t
EXfk

(gt) = −⟨i[∇2
fk
, Xfk ]gt, gt⟩ −

∑
n ̸=k

⟨i[∇2
fn , Xfk ]gt, gt⟩

For the main term (n = k), by the single-feature deviation bound (Theorem C.5):∣∣∣−⟨i[∇2
fk
, Xfk ]gt, gt⟩ − 2Ei∇fk

(g)
∣∣∣ ≤ 2ϵ∥∇fk∥op∥g∥2

Note that in the multi-feature case, Ei∇fk
(gt) may not be exactly constant, but we compare to the

initial value Ei∇fk
(g).

For each cross term n ̸= k, using the δ-commuting property [Xfk ,∇fn ] = Ek,n with ∥Ek,n∥op ≤ δ,
we expand:

[∇2
fn , Xfk ] = ∇fn [∇fn , Xfk ] + [∇fn , Xfk ]∇fn = −(∇fnEk,n + Ek,n∇fn)

Thus,

|⟨i[∇2
fn , Xfk ]gt, gt⟩| = |⟨i(−∇fnEk,n − Ek,n∇fn)gt, gt⟩| ≤ 2δ∥∇fn∥op∥gt∥22 = 2δ∥∇fn∥op∥g∥22

Summing over n ̸= k: ∣∣∣∣∣∣
∑
n ̸=k

⟨i[∇2
fn , Xfk ]gt, gt⟩

∣∣∣∣∣∣ ≤ δ
∑
n ̸=k

2∥∇fn∥op∥g∥22

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Combining both parts:∣∣∣∣ ∂∂tEXfk
(gt)− 2Ei∇fk

(g)

∣∣∣∣ ≤ 2ϵ∥∇fk∥op∥g∥2 + δ
∑
j ̸=k

2∥∇fj∥op∥g∥22

Proof of the Variance Dynamics Theorem 3.12. Starting from the definition of variance:

VXf
(gt) = EX2

f
(gt)− EXf

(gt)
2

Taking the derivative with respect to t:

∂

∂t
VXf

(gt) =
∂

∂t
EX2

f
(gt)− 2EXf

(gt)
∂

∂t
EXf

(gt)

From the time evolution of expected feature for every observable, we know that:

∂

∂t
EX2

f
(gt) = Ei[∆,X2

f ]
(gt)

Substituting this into our expression:

∂

∂t
VXf

(gt) = Ei[∆,X2
f ]
(gt)− 2EXf

(gt)Ei[∆,Xf ](gt)

using theorem 3.6
= Ei[∆,X2

f ]
(gt) + 4EXf

(gt)Re
(
⟨i∇fgt,Wfgt⟩

)

Proof of the Mixed Derivative of The Signal Routing Measure Claim 3.13 .

d

dt
PXf

(g, gt, r)|t=0 =
d

dt

VXf
(gt) + (r − EXf

(gt))
2

VXf
(g)

|t=0

=
Ei[∆,X2

f ]
(g0) + 4EXf

(g0)Re
(
⟨i∇fg0,Wfg0⟩

)
− 2(r − EXf

(g0))
d
dtEXf

(gt)|t=0

VXf
(g)|t=0

using the 3.6

=
Ei[∆,X2

f ]
(g0) + 4EXf

(g0)Re
(
⟨i∇fg0,Wfg0⟩

)
+ 4(r − EXf

(g0))Re
(
⟨i∇fg0,Wfg0⟩

)
VXf

(g0)

=
Ei[∆,X2

f ]
(g0) + 4rRe

(
⟨i∇fg0,Wfg0⟩

)
VXf

(g0)

Treating the measure derivative at t = 0 as a function of θ we get

Ei[∆,X2
f ]
(Dθhg) + 4rRe

(
⟨i∇fDθhg,WfDθhg⟩

)
VXf

(Dθhg)

Taking the derivative with respect to θ to show that for nontrivial signals when θ = 0 the value of
the derivative is nonzero, thus the use of modulation can minimize the measure value

d

dθ

Ei[∆,X2
f ]
(Dθhg) + 4rRe

(
⟨i∇fDθhg,WfDθhg⟩

)
VXf

(Dθhg)
=

=

d
dθEi[∆,X2

f ]
(Dθhg) + 4r d

dθRe
(
⟨i∇fDθhg,WfDθhg⟩

)
VXf

(g)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

We can interpret Dθhg = eiθXhg = (I + iθXh + o(θ2))g

d

dθ
Ei[∆,X2

f ]
(Dθhg) = lim

ϵ→0

Ei[∆,X2
f ]
(D(θ+ϵ)hg)− Ei[∆,X2

f ]
(Dθhg)

ϵ

= lim
ϵ→0

⟨i(I − iϵXh + o(θ2)[∆, X2
f ](I + iϵXh + o(θ2)Dθhg,Dθhg⟩ − Ei[∆,X2

f ]
(Dθhg)

ϵ

= −⟨[[∆, X2
f ], Xh]Dθhg,Dθhg⟩

At θ = 0:

d

dθ
Ei[∆,X2

f ]
(Dθhg)|θ=0 = −⟨[[∆, X2

f ], Xh]g, g⟩

For the second term, we use the fact that for F (θ) = ⟨i∇fe
iθXhg,Wfe

iθXhg⟩:

d

dθ
Re(F (θ)) = Re

(
d

dθ
F (θ)

)
Computing the derivative:

d

dθ
⟨i∇fe

iθXhg,Wfe
iθXhg⟩ = ⟨i∇f (iXh)e

iθXhg,Wfe
iθXhg⟩+ ⟨i∇fe

iθXhg,Wf (iXh)e
iθXhg⟩

= −⟨∇fXhe
iθXhg,Wfe

iθXhg⟩ − i⟨i∇fe
iθXhg,WfXhe

iθXhg⟩
At θ = 0:

d

dθ
F (θ)

∣∣∣∣
θ=0

= −⟨∇fXhg,Wfg⟩+ ⟨∇fg,WfXhg⟩

∂

∂θ

∂

∂t
PXf

(g,S[t, f ]D[θh]g, r)
∣∣∣
t=θ=0

=
⟨[Xh, [∆, X

2
f ]]g, g⟩ + 4rRe ⟨[Xh,Wf∇f ]g, g⟩

VXf
(g)

.

This completes the proof.

D PROPERTIES OF UNITARY OPERATORS ON GRAPHS

In a general Hilbert space HG of graph signals, a unitary operator U : HG → HG satisfies
U∗U = UU∗ = I . Unitary operators generated by self-adjoint operators, such as the Schrödinger
operator St = e−it∆ where ∆ is self-adjoint, possess several fundamental properties that make them
particularly suitable for graph neural network applications. We establish these properties formally
below.

Theorem D.1 (Inner Product Preservation). A unitary operator U preserves the inner product struc-
ture of the Hilbert space. For any two signals f, g : V → C

⟨Uf,Ug⟩ = ⟨f, g⟩

The inner product preservation ensures norm preservation: ∥Uf∥ = ∥f∥ for any signal f , which
guarantees numerical stability during the evolution process, preventing signal amplification or atten-
uation that could lead to vanishing or exploding gradients in deep network architectures.

Theorem D.2 (Equivariance). Let P be a permutation matrix corresponding to a graph automor-
phism. A unitary operator U commutes with P if it is generated by a self-adjoint operator that
commutes with P . In particular, for the Schrödinger operator St = e−it∆ where ∆ commutes with
P , we have for any signal f : V → C:

St(Pf) = P (Stf)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Proof of Theorem D.2. Since P is a graph automorphism, then the Laplacian commutes with P (i.e.,
P∆ = ∆P ), we have:

St(Pf) = e−it∆(Pf) =

∞∑
n=0

(−it∆)n

n!
Pf =

∞∑
n=0

(−it)n

n!
∆nPf =

= P

∞∑
n=0

(−it)n

n!
∆nf = P (Stf)

Theorem D.3 (Observable Conservation). Let A be a self-adjoint operator on HG and Ut = eitA

be the unitary operator generated by A. For any signal f and any polynomial p, the expected value
of A is invariant under evolution by any unitary operator of the form eitp(A):

EA
(
eitp(A)f

)
= EA(f)

In particular, for the Schrödinger operator St = e−it∆, the Dirichlet energy E∆(f) is conserved.

These properties establish unitary operators, and in particular the Schrödinger operator, as natu-
ral choices for information propagation on graphs while maintaining both stability and structural
consistency.

Proof of Theorem D.3. Let Up = eitp(A). We prove that EA(Upf) = EA(f):

EA (Upf) = ⟨AUpf, Upf⟩
=
〈
U∗
pAUpf, f

〉
(using unitarity of Up)

=
〈
AU∗

pUpf, f
〉

(since [A,Up] = 0 as Up = eitp(A))

= ⟨Af, f⟩ (since U∗
pUp = I)

= EA(f)

The key insight is that A commutes with any function of A, including Up = eitp(A).

E IMPLEMENTATION

E.1 MATRIX EXPONENTIAL IMPLEMENTATION

For practical implementation of the Schrödinger operator St = e−it∆, we need to compute the
exponential of a matrix. We consider two common approaches:

Taylor Series Approximation. For an operator A, its exponential eA is defined through its Taylor
series expansion:

eA =

∞∑
k=0

Ak

k!
= I +A+

A2

2!
+
A3

3!
+ · · ·

where Ak denotes the operator A applied k times, and A0 = I is the identity operator. In practice,
this infinite series is truncated at a finite order T for computational feasibility:

eA ≈
T∑

k=0

Ak

k!

For the Schrödinger operator with a small time step, this approximation provides sufficient accu-
racy while maintaining computational efficiency. The choice of truncation order T depends on the
spectral properties of the Laplacian and the desired accuracy of the evolution.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E.2 SHIFT OPERATOR

Let A ∈ R|V |×|V | be the (symmetric) adjacency matrix with entries an,m and let f : V → R be
a real node feature. Denote by Xf := diag(f) the feature-location operator. We define the graph
derivative along f by the Hermitian commutator

∇f := [Xf , A] = XfA−AXf , (∇f )n,m = an,m(f(n)− f(m)).

This operator mixes values only across edges and measures signed change of the signal in the di-
rection where f varies. It satisfies: (i) Locality: (∇f )n,m = 0 whenever (n,m) /∈ E. (ii) Gauge-
invariance: if f is constant then ∇f = 0. (iii) Structure: for real f and symmetric A, [Xf , A]
is skew-symmetric, hence ∇f is Hermitian and generates unitary dynamics. We use the feature-
weighted Laplacian

∆f := −∇ 2
f = −(XfA−AXf )

2,

and the unitary shift St = e−it∆f .

E.3 SCHRÖDINGER GNN ARCHITECTURE DETAILS

Let f ∈ RN×K denote the learned feature-location channels (after Position–Momentum Optimiza-
tion), and let X ∈ CN×J be the current layer’s signal. A Schr”odinger filter with M terms applies

Y =

M∑
m=1

S[tm, f ] D[θm f T (m)] X W (m),

where tm, θm ∈ R, T (m) ∈ RK×1 selects a modulation direction in feature space, W (m) ∈ CJ×D

mixes channels, and S[t, f ] = e−it∆f with ∆f = −
∑

k∇2
fk

. A typical layer stacks a nonlinearity
(e.g., absolute value) and normalization after this filter, and layers are composed depth-wise. Shapes:
X ∈ CN×J , Y ∈ CN×D.

Implementation realization. The code instantiates this design with (i) a single input modulation
and (ii) a stacked unitary propagation realized via a truncated Taylor approximation. Input feature
modulation (FeatureModulationLayer) given real features X ∈ RN×din , two linear maps B,P ∈
Rdin×d produce

X̃ = XB ⊙ exp
(
iXP

)
∈ CN×d,

with orthogonal initialization of B,P . Unitary propagation each layer approximates a unitary flow
eδH by a truncated series

ΦT (H, δ) z =

T∑
k=0

(δH)k

k!
z,

where the generator H is implemented by a complex GCN operator that applies an i-weighted ag-
gregation. The step size δ is learned per output channel, and each layer uses a complex activation
and dropout. Layers may include residual and bias.

Position-Momentum Optimization (PMO) Implementation. In experiments where PMO is
used, we run it as a preprocessing step before training the main Schrödinger GNN. The PMO objec-
tive (Definition 3.11) is optimized via gradient descent over the training set graphs. Specifically, we
initialize the linear transformation T ∈ RM×K randomly and minimize the PMO loss by iterating
over batches of training graphs. For each graph, we compute the commutator norms ∥[∇2

fj
, Xfi ]∥op

and the regularization term, then backpropagate to update T . We use the Adam optimizer with a
learning rate of 10−3 and run for a fixed number of iterations (typically 50–100) until convergence.
Once optimized, the transformation T is fixed, and the resulting orthogonalized features f = qT
are used as input to the Schrödinger GNN during training and inference. This two-stage approach
decouples feature orthogonalization from the main task objective, ensuring that the position and
momentum operators approximately commute before learning begins.

Complex Features. As noted, the Schrödinger GNN operates on complex-valued features. The
input features are first projected to the complex domain via the feature modulation layer described
above.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Complex Dropout and Nonlinearity. For dropout in complex-valued layers, we apply standard
dropout only to the real part of the features while keeping the imaginary part unchanged. This
preserves the phase information encoded in the imaginary component while still providing regular-
ization. For all nonlinearities throughout the network, we apply ReLU separately to the real and
imaginary parts: σ(z) = ReLU(Re(z)) + i · ReLU(Im(z)), another option is using the absolute
value as nonlinearity σ(z) = |z|. This component-wise approach maintains the complex structure
while introducing the necessary nonlinearity for expressive power. The magnitude |z| is only used
at the final layer to produce real-valued outputs for downstream tasks.

Computational Complexity. The primary computational cost of the Schrödinger GNN lies in the
approximation of the matrix exponential e−it∆f using the truncated Taylor series. For a truncation
order K, this involves K applications of the sparse operator ∆f (or H). Since ∆f has the same
sparsity pattern as the graph adjacency matrix (proportional to |E| edges), each application costs
O(|E|C) where C is the feature dimension. Thus, the total complexity per layer is O(K|E|C).
This is linear in the number of edges and comparable to a standard Message Passing Neural Network
(MPNN) withK message passing steps or a ChebNet with polynomial orderK. In our experiments,
we found K ≈ 10− 15 to be sufficient, making the overhead manageable compared to deep GCNs.
The memory complexity is O((|V | + |E|)C), similar to standard GNNs, as we do not explicitly
construct the dense matrix exponential.

Uniform Time Initialization We initialize the per-channel scaling parameters that modulate the
Taylor steps with an independent uniform distribution. Let C denote the number of output channels
of a layer. We create a complex parameter t ∈ CC and set

tj ∼ Uniform(0, 1.5), j = 1, . . . , C.

The parameter tj effectively controls the propagation distance (or time) for the j-th channel. By
initializing these values uniformly, we enable the network to learn a diverse set of filters where some
channels aggregate local information (small t) while others capture long-range interactions (large
t). This design resembles a convolution operation that samples features from both close and distant
nodes across different channels. When learning is disabled, a non-trainable scalar buffer with value
1.0 is used instead.

F EXPERIMENTS

F.1 TOY EXPERIMENT - GRID ORTHOGONALITY

To assess the effectiveness of our optimization, we conduct a simple grid experiment. We consider a
grid graph whose node features are the Cartesian coordinates x and y. We then replace the features
by x and x + y, apply the Position–Momentum Orthogonalization optimization described earlier,
and expect the learned transformation to recover two orthogonal directions. We visualize the input
features and the optimized, orthogonalized features below 6.

Figure 6: Grid orthogonality toy experiment. first two from left: original coordinate features x
and x + y. two to the right: features after applying the Position–Momentum Orthogonalization
optimization; the recovered directions are orthogonal.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

F.2 OPTIMIZING SIGNAL TRANSPORT VIA MODULATION

We constructed an experiment to show that the use of modulation can benefit signal transport on
graphs. We generateN = 60 nodes from two 2D Gaussians, 30 around (−1, 0) and 30 around (1, 0)
with standard deviation 0.5 per axis. An undirected, unweighted edge is added when Euclidean
distance is < 1.5. We define a scalar node feature fi as the x-coordinate, which serves as the
modulation feature. We also define the g graph signal as the Euclidean distance of each node’s
x, y coordinates from (−1, 0). Our target value to move the signal to is r = 1. We calculated the
expected feature location, variance and routing measure as follows:

1. expected feature location: EXf
(g) =

∑N
j=1 fj |gj |2

2. variance: VXf
(g) = EX2

f
(g)− EXf

(g)2

3. routing measure: PXf
(g0, gt, r) =

VXf
(gt)+(r−EXf

(gt))
2

VGXf
(g0)

We used our Schrödinger method S0.1, and iterated it 3 times over multiple θ values on the interval
of [−5, 5]. Theoretically the norm should remain 1, but due to numerical instability we normalized
each Schrödinger output by ∥g∥2 = 1 and its absolute value was taken. The results of the expected
feature location, variance, and routing measure can be found in the figure 2.

F.3 GAUSSIAN TRANSLATE TOY EXPERIMENT

We study a controlled equivariant task on a ring graph that isolates translation behavior. Given a
real signal sampled on a cycle graph, the model must learn the circular shift operator Sd such that
the target is y = Sdx. This task stresses whether a graph model can implement phase consistent
transport on a simple topology.

Data. We generate a cycle graph with N = 100 nodes and undirected edges to immediate neigh-
bors. Angles are θn = −π + 2πn/N . For each sample we draw variance σ2 ∼ U [0.5, 1.5] (effec-
tively bounded by “variance random bound=1” around the center used in code), add Gaussian noise
with standard deviation 10−3, roll by a random shift, normalize to unit ℓ2 norm, and set the label
y = Sdx with d = 35. Datasets use an 80/10/10 split and batch size 32.

Models. We compare standard real-valued GNNs with Schrödinger models that implement unitary
graph propagation via a truncated exponential. Let A denote the aggregation operator on the cycle
and define the complex generator H = iA. Each Schrödinger layer applies a learnable linear map
W and a Taylor approximation of the unitary flow eδH: z ←

∑T
k=0

(δH)k

k! Wz with T = 15. We use
depth L = 35, feature normalization after every layer, and a magnitude nonlinearity. The modulated
variants inject positional phase through a learned linear modulation direction m = Linear( [x, θ] )
and multiply features by ei ϵm with ϵ = 25. The step size δ is learnable.

Training. Loss is the L2 distance between the model prediction f(xi) = ŷi for some sample xi
and the target yi, ∥ŷi − yi∥2. We train with Adam (24) for 250 epochs, using two parameter groups
(modulation parameters at 10× the base learning rate), base learning rate 0.1, ReduceLROnPlateau
with factor 0.7 and patience 10. The evaluation plots show smoothed test losses per epoch with a
dashed reference line corresponding to a naive baseline.

Baselines. Vanilla GCN and GAT are trained with the same depth 35 and comparable width, using
the same magnitude readout and normalization.

F.4 MNIST EXPERIMENT DETAILS

Dataset Construction The MNIST Graph dataset converts standard 28 × 28 pixel images into
graph structures.

• Nodes: Each pixel is treated as a node (N = 784 nodes per graph).

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Model Params

vanilla GCN 2,136
graph attention (GAT) 6,193
Schrödinger non modulated 4,273
Schrödinger 4,275

Table 5: Gaussian-Translate on a ring with N = 100 and shift d = 35. The modulated Schrödinger
family dominates; our complex modulated model attains strong performance with substantially
lower error than standard GNNs.

Figure 7: Gaussian-Translate learning curves. Lower is better. Our complex modulated Schrödinger
model converges rapidly to the best error, outperforming real-valued and non-modulated variants, as
well as standard GNN baselines. The dashed line denotes the trivial predictor.

• Edges: We construct an undirected graph using an 8-neighbor grid connectivity (Cheby-
shev radius r = 1), representing the local spatial structure of the image.

• Node Features: Each node vi is assigned a 3-dimensional feature vector xi =
[xnorm, ynorm, I], where xnorm, ynorm ∈ [0, 1] are the normalized spatial coordinates and
I ∈ [0, 1] is the pixel intensity.

• Splits: We use the standard MNIST partition with 60,000 graphs for training and 10,000
for testing(28).

We trained each model across 5 random seeds (0-4) to report mean accuracy and standard deviation.

Hyperparameters

• Hidden Dimension: 64

• Layers: 3

• Epochs: 200

• Batch Size: 16

• Optimizer: Adam with learning rate α = 3× 10−4

• Dropout: 0.1

• Aggregation: Global Mean Pooling

The CNN baseline is a classical 2D convolutional neural network (27) operating directly on raw
28 × 28 images (not graphs). It uses the same hyperparameters (hidden dimension, number of
layers, dropout, learning rate) as the GNN models, with Conv2d layers followed by adaptive average
pooling and a linear classifier. This provides a non-graph reference point for comparison.

Baselines We evaluated five standard GNN architectures to provide a comprehensive performance
benchmark:

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

• GCN (Graph Convolutional Network): Uses standard spectral graph convolution layers
(25).

• GAT (Graph Attention Network): Utilizes attention mechanisms to learn adaptive edge
weights for neighbor aggregation (53).

• GIN (Graph Isomorphism Network): A theoretically expressive model that uses Multi-
Layer Perceptrons (MLPs) within the aggregation step to distinguish non-isomorphic
graphs (56).

• MPNN (Message Passing Neural Network): A general framework employing explicit
MLPs for both the message calculation and node update steps (16).

• ChebConv: A spectral graph convolution based on Chebyshev polynomials (K = 2),
capable of approximating higher-order graph Laplacian filters to capture local geometric
patterns (12).

All models use Global Mean Pooling to aggregate node embeddings into a graph-level representation
for classification.

F.5 TU EXPERIMENT - GRAPH CLASSIFICATION

This section provides a thorough explanation of the constraints and hyperparameter search process
for the architecture-matched comparison presented on the datasets ENZYMES, IMDB-BINARY,
MUTAG, and PROTEINS tasks from TU Dataset (36), the results can be found in table 3.

Table 6: Statistics of graph classification datasets (TU Datasets).

ENZYMES IMDB MUTAG PROTEINS

#Graphs 600 1000 188 1113
#Nodes (range) 2 - 126 12 - 136 10 - 28 4 - 620
#Edges (range) 2 - 298 52 - 2498 20 - 66 10 - 2098
Avg #Nodes 32.63 19.77 17.93 39.06
Avg #Edges 124.27 193.062 39.58 145.63
#Classes 6 2 2 2
Directed False False False False
ORC Mean 0.13 0.58 -0.27 0.17
ORC Std 0.15 0.19 0.05 0.20

Architectural Constraints To ensure a fair and controlled comparison, all models were imple-
mented with a standardized architecture consisting of six graph convolution layers followed by a
single linear layer for classification. The core constraint was matching the total number of trainable
parameters across all models. We first established a baseline parameter count using the Unitary
(UniGCN) (23) architecture with a hidden dimension of 128. Subsequently, for all other models
(GAT, GCN, GIN, Adaptive Unitary, Schrödinger, and Schrödinger PMO), we adjusted their respec-
tive hidden dimensions until their total parameter count matched the GCN baseline within a strict
0.6% tolerance. This methodology isolates the architectural differences as the primary variable,
ensuring that performance variations are attributable to the intrinsic properties of the convolution
operators rather than model capacity. For complex-valued models like the Schrödinger variants,
each complex parameter was counted as two real-valued parameters.

Hyperparameter Search We performed a grid search to identify the optimal hyperparameters for
each model-dataset combination. The search space was adapted from (23) and (37) as follows:

• Learning Rate: {0.0005,0.001,0.005,0.01}
• Dropout Rate: {0,0.25,0.5}

The best-performing combination of hyperparameters was selected based on the mean validation
accuracy over 100 runs fo each combination. The specific values chosen for each model are detailed
in Table 7.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 7: Hyperparameters for the Architecture-Matched Comparison.

MODEL HYPERPARAMETER ENZYMES IMDB MUTAG PROTEINS

GCN

Learning Rate 0.005 0.005 0.005 0.001
Dropout 0 0 0 0
Hidden Dimension 190 190 190 190

GAT

Learning Rate 0.001 0.001 0.0005 0.005
Dropout 0 0.5 0 0.5
Hidden Dimension 189 189 189 189

Schrödinger

Learning Rate 0.005 0.0005 0.005 0.005
Dropout 0.25 0 0.25 0
Hidden Dimension 117 170 170 170

Schrödinger PMO

Learning Rate 0.005 0.001 0.01 0.005
Dropout 0 0 0 0
Hidden Dimension 117 117 117 117

Unitary

Learning Rate 0.001 0.001 0.001 0.0005
Dropout 0 0 0 0
Hidden Dimension 128 128 128 128

Adaptive Unitary

Learning Rate 0.005 0.0005 0.005 0.001
Dropout 0 0 0 0
Hidden Dimension 127 127 127 127

Adaptive Unitary PMO

Learning Rate 0.001 0.01 0.001 0.001
Dropout 0.25 0 0 0
Hidden Dimension 127 127 127 127

GIN

Learning Rate 0.001 0.005 0.01 0.0005
Dropout 0 0 0 0
Hidden Dimension 190 190 190 190

Runtime Comparison Table 8 reports the mean and standard deviation of the training time per
epoch for each model on the TU datasets.

Table 8: Runtime comparison on TU datasets (seconds per run, mean ± std).

Model ENZYMES IMDB MUTAG PROTEINS

GCN 33.4± 7.85s 27.5± 5.66s 19.0± 4.30s 33.9± 2.02s
GAT 61.5± 15.51s 42.6± 0.52s 14.3± 2.83s 65.7± 8.13s
GIN 39.8± 5.41s 32.9± 9.12s 9.1± 1.52s 43.2± 10.40s
Unitary 216.7± 6.25s 261.9± 72.57s 60.4± 14.47s 189.3± 6.79s
Adaptive Unitary 200.1± 27.03s 285.5± 48.41s 47.5± 12.85s 202.2± 36.36s
Adaptive Unitary PMO 84.3± 15.91s 142.9± 7.83s 45.0± 0.67s 158.0± 0.82s
Schrödinger 172.8± 12.89s 255.9± 55.36s 44.4± 13.06s 247.6± 47.71s
Schrödinger PMO 173.5± 25.11s 279.1± 67.42s 68.6± 8.54s 258.5± 30.49s

F.5.1 DIAGNOSTIC VISUALIZATION AND MODEL VARIANTS

For empirical diagnostics, we use a variant of our Schrödinger GNN that applies phase modulation at
each layer, where each layer derives its phase from a learned linear projection of the current layer’s
input features and an absolute value activation.

Diagnostic Methodology: Expected Location and Distance. To quantify how signal content
shifts through the network, we use the expected feature location EXf

(g) as defined in Section 3,
which measures where the signal’s energy is concentrated in phase space. We then define the nor-

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

malized expected distance for layer l and channel k as:

Dl,k =
|Eϕ(gin)− Eϕ(gout)|

ϕmax − ϕmin
, (8)

where gin is the broadcast (amplitude) before convolution, gout is the output after convolution, ϕ
is the phase of the signal (the part in the exponent of the modulation operator), ϕmax and ϕmin

are the maximum and minimum phase values in the signal. This metric captures how much the
“center of mass” shifts relative to the total phase range, enabling comparison of signal transport
across different layers and channels. We compare two scenarios: (i) Conv-only: applying only
the unitary convolution without phase modulation, and (ii) Modulation + Conv: applying phase
modulation before convolution. The diagnostic reveals that modulation systematically shifts the
expected location, while conv-only operations preserve it.

Windowed Analysis via Soft Phase Windows. Since typical signals span the entire graph, their
global expected location may not be meaningful. Following the conceptual decomposition discussed
in Section 3, we partition signals into localized “chunks” using soft Gaussian windows in phase
space. For channel k with phase values ϕk(n), we construct L windows as follows:

1. Window centers: Divide the phase range [ϕmin, ϕmax] into L equal regions with centers
cl = ϕmin + 2l+1

2L (ϕmax − ϕmin) for l = 0, . . . , L− 1.

2. Gaussian distances: For each node n and window l, compute dl(n) = − (ϕk(n)−cl)
2

2σ2 where
σ = ϕmax−ϕmin

2L .

3. Soft partition via softmax: Apply wl(n) =
edl(n)∑
l′ e

d
l′ (n) , ensuring

∑
l wl(n) = 1.

The windowed signal gl = wl⊙ g represents the portion of signal concentrated around phase center
cl. By tracking how each window’s expected location shifts after convolution, we can visualize
directional signal flow: windows in different phase regions exhibit different propagation behaviors
depending on the modulation.

F.6 HETEROPHILOUS NODE CLASSIFICATION

We evaluate our model on heterophilous node classification benchmarks from (40), which specifi-
cally test the ability of GNNs to learn on graphs where connected nodes tend to have different labels.
We follow the experimental protocol from (23), using the same data splits and evaluation metrics.
Results are reported in Table 9

Table 9: Performance on heterophilous node classification benchmarks. Top performing are in bold.

TYPE METHOD ROMAN-E. AMAZON-R. MINESWEEPER TOLOKERS QUESTIONS
Test AP ↑ Test AP ↑ ROC AUC ↑ ROC AUC ↑ ROC AUC ↑

MP

GCN† (25) 73.69± 0.74 48.70± 0.63 89.75± 0.52 83.64± 0.67 76.09± 1.27
SAGE† (19) 85.74± 0.67 53.63± 0.39 93.51± 0.57 82.43± 0.44 76.44± 0.62
GAT† (53) 80.87± 0.30 49.09± 0.63 92.01± 0.68 83.70± 0.47 77.43± 1.20
GT† (13) 86.51± 0.73 51.17± 0.66 91.85± 0.76 83.23± 0.64 77.95± 0.68

Unitary Unitary GCN‡ (23) 87.21± 0.76 55.34± 0.74 94.27± 0.58 84.83± 0.68 79.21± 0.79
Lie Unitary GCN‡ (23) 85.50± 0.22 52.35± 0.26 96.11± 0.10 85.18± 0.43 80.01± 0.43

Ours Schrödinger 88.56± 0.71 49.55± 0.71 96.31± 0.49 84.3± 0.31 70.66± 2.55
†Reported performance taken from (40). ‡Reported performance taken from (23).

Dataset Statistics Table 10 summarizes the statistics of the heterophilous node classification
datasets.

Experimental Setup We follow the experimental protocol from (23). All baseline results for MP
methods (GCN, SAGE, GAT, GT) are taken from (40), and Unitary GCN and Lie Unitary GCN
results are taken from (23).

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 8: Distribution of expected distance Dl,k across layers and channels. Blue curves show
Conv-only, red curves show Modulation + Conv. The shift in the red distribution demonstrates that
phase modulation enables directional signal transport.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 10: Statistics of heterophilous node classification datasets (40).

ROMAN-EMPIRE AMAZON-RATINGS MINESWEEPER TOLOKERS QUESTIONS

#Nodes 22,662 24,492 10,000 11,758 48,921
#Edges 32,927 93,050 39,402 519,000 153,540
#Classes 18 5 2 2 2
Homophily 0.05 0.38 0.68 0.59 0.84
Metric AP AP ROC AUC ROC AUC ROC AUC

Architecture For our Schrödinger model, we use the following architecture:

• Preprocessing: Position-Momentum Optimization (PMO) run for 50 epochs with a learn-
ing rate of 0.001 on input features to obtain orthogonalized feature locations

• Convolution layers: the first layer is Schrödinger layers with feature modulation and the
rest are Schrödinger layer without a modulation layer

• Readout: Linear layer for node classification

Hyperparameters Table 11 shows the hyperparameter configuration for our Schrödinger model
on the heterophilous benchmarks.

Table 11: Hyperparameters for Schrödinger on heterophilous node classification.

ROMAN-EMPIRE AMAZON-RATINGS MINESWEEPER TOLOKERS QUESTIONS

Learning Rate 0.001 0.001 0.001 0.0001 0.0001
Dropout 0.5 0.5 0.5 0.5 0.5
# Conv. Layers 8 4 8 4 4

F.7 ABLATION STUDY ON ENZYMES

We conducted an ablation study on the ENZYMES dataset to investigate the contribution of each
component in our Schrödinger GNN framework. We utilized a fixed architecture across all models: 3
graph convolution layers followed by a final linear layer, with a hidden dimension of 128, a dropout
rate of 0, and a learning rate of 0.005. All models were trained for 300 epochs, and results are
averaged over 100 independent trials. The ablation progression is as follows:

• Unitary (UniGCN): The baseline unitary graph convolution network (23).

• Adaptive Unitary: Extends UniGCN by learning the time parameter t in the unitary oper-
ator.

• Schrödinger: Further extends Adaptive Unitary by introducing feature modulation, effec-
tively creating the full Schrödinger filter.

• Schrödinger PMO: The complete model which includes Position-Momentum Optimiza-
tion (PMO) on the input features before applying the Schrödinger filter.

Table 12: Ablation study results on ENZYMES (Test Accuracy ± Std). All models share the same
backbone architecture and hyperparameters.

Model Test Accuracy

Unitary (UniGCN) 37.33± 8.25
Adaptive Unitary 41.56± 5.67
Schrödinger 43.61± 4.58
Schrödinger PMO 44.83± 4.03

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 13: Statistics of Peptides datasets (LRGB). Both datasets share the same underlying graphs
but differ in their prediction tasks.

Statistic Value

#Graphs 15,535
Avg #Nodes 150.94
Avg #Edges 307.30

TASKS

PEPTIDES-FUNC 10 (Graph Classification)
PEPTIDES-STRUCT 11 (Graph Regression)

Table 14: Hyperparameters for Schrödinger models on Peptides-Func

SCHRÖDINGER SCHRÖDINGER (NON-MODULATED)

lr 0.001 0.001
dropout 0.2 0.1
attn dropout 0.1 0.1
delta init log stratified log stratified
# Conv. Layers 4 4
hidden dim. 195 195
node type RSWE (42) RSWE (42)
batch size 200 200
# epochs 4000 4000
edge aggregator GINE GINE
# Parameters 493K 492K

F.8 PEPTIDES

Experimental Setup and Implementation Details Our evaluation framework leverages the
GraphGym platform (57) for systematic assessment on Peptide datasets datasets. Tables 4 presents
comprehensive benchmark results compiled from various state-of-the-art architectures, including
(26; 10; 49; 47; 50; 22; 35; 54; 55; 12; 21; 6), with all reported metrics collected from published lit-
erature as of September 2025. The experimental infrastructure utilizes PyTorch (39) as the primary
deep learning framework, supplemented by PyTorch Geometric (15) for specialized graph neural
network operations.

Edge Feature Handling A notable limitation of our unitary graph convolution implementation is
the absence of native edge feature support. To address this constraint in edge-attributed datasets, we
employ a preprocessing strategy incorporating either GINE (56) or Gated GCN (3) architectures as
initial layers. These components serve as edge feature aggregators, effectively transforming edge
attributes into node representations. When such preprocessing is utilized, we explicitly document
this configuration through an ”edge aggregator” hyperparameter specification in our experimental
tables.

Computational Resources and Performance All experimental runs were conducted on individ-
ual GPUs, specifically utilizing an NVIDIA NVIDIA L40S hardware. Training duration exhibited
convergence with less than 15 seconds epochs. Dataset storage requirements was 1GB. The smaller
datasets typically completed training epochs within seconds.

Parameter Count LRGB datasets require a parameter limit of 500k, thus each complex parameter
is count as 2.

Hyperparameters We employ the Adam optimizer (24) with an initial learning rate of 0.001,
utilizing a cosine learning rate scheduler and run a hyperparameter sweep for the basic model with
the following hyperparameters:

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 15: Hyperparameters for Schrödinger models on Peptides-Struct

SCHRÖDINGER SCHRÖDINGER (NON-MODULATED)

lr 0.001 0.001
dropout 0.15 0.1
# Conv. Layers 4 6
hidden dim. 150 64
node type LapPE (42) LapPE (42)
batch size 200 200
# epochs 500 500
edge aggregator GINE GINE
# Parameters 496K 499K

• Number of layers: {2, 4, 6, 8}
• Dropout: {0.1, 0.15, 0.2}
• Hidden dimensions: maximized according to the 500K parameter count limit and consid-

ering complex as 2 parameters.

G PROOFS

Theorem G.1 (Dirichlet Energy is a Laplacian Observable). For a signal f and f̃ its Fourier trans-
form, the Dirichlet energy is equivalent to the expected squared momentum in momentum space:

E∆̃(f) =
1

2

∫
p2|f̃(p)|2dp = 1

2
EP 2(f̃)

where f̃(p) is the Fourier transform of f and p represents momentum.

Proof of Theorem G.1. The proof follows from the spectral decomposition of the Laplacian opera-
tor:

E∆̃(f) = ⟨∆̃f, f⟩ = ⟨−∇ · ∇f, f⟩

=
1

2

∫
∥∇f(x)∥22dx =

1

2

∫
p2|f̃(p)|2dp = 1

2
EP 2(f̃)

where we used Parseval’s theorem and the fact that the Fourier transform of the gradient operator
corresponds to multiplication by ip in momentum space.

G.1 COMMUTATOR IDENTITIES USED IN SECTION 3

We collect concise commutator expansions used in Section 3. Throughout, Xf := diag(f), ∇f

is as in Definition 3.1, ∆f = −∇2
f , and Wf := −i[∇f , Xf ] (Lemma: Smoothing Operator as

Commutator).
Lemma G.2 (Product-rule commutator). For any features f, h,

[Xh, Wf∇f ] = [Xh,Wf ]∇f + Wf [Xh,∇f ].

Proof. Use [A,BC] = [A,B]C +B[A,C] with A = Xh, B =Wf , C = ∇f .

Lemma G.3 (Expansion of i[∆f , X
2
f ). and i[[∆f , X

2
f ], Xh]] Let Sf := XfWf +WfXf . Then

i[∆f , X
2
f ] = ∇fSf + Sf∇f .

Moreover, for any feature h,

i[[∆f , X
2
f ], Xh] = ∇f [Sf , Xh] + [∇f , Xh]Sf + Sf [∇f , Xh] + [Sf , Xh]∇f .

Since [∇f , Xh] = iWh and [Sf , Xh] = Xf [Wf , Xh]+ [Wf , Xh]Xf (as [Xf , Xh] = 0 for diagonal
real features), both identities reduce to products of Wf ,Wh, and diagonal multipliers.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Proof. By [AB,C] = A[B,C] + [A,C]B and [∇f , X
2
f ] = [∇f , Xf ]Xf + Xf [∇f , Xf ] =

i(WfXf +XfWf ) = iSf . Then

i[∆f , X
2
f ] = −i[∇2

f , X
2
f ] = −i

(
∇f [∇f , X

2
f ] + [∇f , X

2
f ]∇f

)
= ∇fSf + Sf∇f .

The double commutator follows by another application of [AB + BA,Xh] and collecting terms,
using [∇f , Xh] = iWh and [Xf , Xh] = 0.

Proof of Routing MeasureEquation (2).

PA(g0, gt, r) =
VA(gt) + (r − EA(gt))2

VA(g0)
.

We will focus on the numerator of the energy flow measure, we have:

⟨(Xf−rI)2Ug, Ug⟩ = ⟨(X2
f−2rXf+r

2I−EXf
(Ug)2I+EXf

(Ug)2I+2EXf
(Ug)Xf−2EXf

(Ug)Xf )Ug,Ug⟩

Rearranging terms to complete the square:

= ⟨(X2
f−2EXf

(Ug)Xf+EXf
(Ug)2I)Ug,Ug⟩+⟨(r2−EXf

(Ug)2)IUg, Ug⟩+⟨2(EXf
(Ug)−r)XfUg, Ug⟩

The first term is the variance:

⟨(Xf − EXf
(Ug)I)2Ug, Ug⟩ = VXf

(Ug)

The second term simplifies using norm preservation (∥Ug∥2 = ∥g∥2 = 1 for normalized signals):

⟨(r2 − EXf
(Ug)2)IUg, Ug⟩ = (r2 − EXf

(Ug)2)

The third term uses the definition of expected feature:

⟨2(EXf
(Ug)− r)XfUg, Ug⟩ = 2(EXf

(Ug)− r)EXf
(Ug)

Combining all terms:

⟨(Xf − rI)2Ug, Ug⟩ = VXf
(Ug) + (r2 − EXf

(Ug)2) + 2(EXf
(Ug)− r)EXf

(Ug)

= VXf
(Ug) + r2 − EXf

(Ug)2 + 2EXf
(Ug)2 − 2rEXf

(Ug)

= VXf
(Ug) + r2 + EXf

(Ug)2 − 2rEXf
(Ug)

= VXf
(Ug) + (r − EXf

(Ug))2

Therefore, the energy flow measure becomes:

⟨(Xf − rI)2Ug,Ug⟩
VXf

(g)
=
VXf

(Ug) + (r − EXf
(Ug))2

VXf
(g)

Theorem G.4 (Dirichlet Energy of Feature–Modulated Signals). Let g : V → R be a real graph
signal and let h : V → R be a real-valued feature. For any θ ∈ R define the modulated signal
gθ = D[θh]g with D[θh] = diag(eiθh). Denote the (unnormalised) graph Laplacian by ∆ and its
Dirichlet energy by E∆(f) = ⟨∆f, f⟩. Then

E∆(gθ) = E∆(g) +
∑

(m,n)∈E

am,n g(m)g(n)
(
1− cos

(
θ
(
h(n)− h(m)

)))
.

In particular E∆(gθ) ≥ E∆(g) with equality iff either θ = 0 or h(n) = h(m) for every edge
(m,n) ∈ E.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Proof of Theorem G.4. Recall the edge form of the Dirichlet energy E∆(f) =
1
2

∑
(m,n)∈E am,n |f(n)− f(m)|2. For gθ(v) = g(v)eiθh(v) we compute

|gθ(n)−gθ(m)|2 = |g(n)−g(m)eiθ(h(m)−h(n))|2 = g(n)2+g(m)2−2g(n)g(m) cos
(
θ(h(n)−h(m))

)
.

Substituting into the edge sum gives

E∆(gθ) =
1

2

∑
(m,n)∈E

am,n

(
g(n)2 + g(m)2 − 2g(n)g(m) cos(θ∆h)

)
= E∆(g) +

∑
(m,n)∈E

am,ng(n)g(m)
(
1− cos(θ∆h)

)
,

where ∆h := h(n) − h(m). The cosine term satisfies 1 − cos(·) ≥ 0, proving the non–decreasing
property and the condition for equality.

H LICENSES

We list below the licenses of code and datasets that we use in our experiments.

Table 16: Licenses for Code and Datasets

MODEL/DATASET LICENSE NOTES

LRGB (14) Custom License
MNIST (28) CC BY-SA 3.0 Open Source
TUDataset (36) Open Open Source
Heterophilous Benchmarks (40) MIT License
PyTorch Geometric (15) MIT License
GraphGym (57) MIT License
GraphGPS (42) MIT License
PyTorch (39) 3-clause BSD License

38

https://github.com/vijaydwivedi75/lrgb/blob/main/LICENSE
http://yann.lecun.com/exdb/mnist/
https://chrsmrrs.github.io/datasets/docs/datasets/
https://github.com/yandex-research/heterophilous-graphs
https://github.com/pyg-team/pytorch_geometric/blob/master/LICENSE
https://github.com/snap-stanford/GraphGym/blob/master/LICENSE
https://github.com/rampasek/GraphGPS/blob/main/LICENSE
https://github.com/pytorch/pytorch/blob/main/LICENSE

	Introduction
	Measuring Signal Localization and Propagation
	Signal Propagation in Schrödinger Graph Signal Processing
	Experiments
	Summary
	Ethics Statement
	Reproducibility Statement
	Background and Related Work
	Spectral GNNs
	Unitary GNNs
	Oversmoothing and oversquashing

	Schrödinger in Classical Quantum Mechanics
	Schrödinger Dynamics
	Properties of Unitary Operators on Graphs
	Implementation
	Matrix Exponential Implementation
	Shift Operator
	Schrödinger GNN Architecture Details

	Experiments
	Toy Experiment - Grid Orthogonality
	Optimizing Signal Transport via Modulation
	Gaussian Translate Toy Experiment
	blueMNIST Experiment Details
	TU experiment - Graph classification
	Diagnostic Visualization and Model Variants

	Heterophilous Node Classification
	Ablation Study on ENZYMES
	Peptides

	proofs
	Commutator identities used in sec:Schrodingergsp

	Licenses

