Under review as a conference paper at ICLR 2025

UNDERSTANDING SIGNAL PROPAGATION IN GNNS
VIA OBSERVABLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) perform computations on graphs by routing the
signal information between regions of the graph using a graph shift operator or
a message passing scheme. Often, the propagation of the signal leads to a loss
of information, where the signal tends to diffuse across the graph instead of be-
ing deliberately routed between regions of interest. Two notions that depict this
phenomenon are oversmoothing and oversquashing. In this paper, we propose an
alternative approach for modeling signal propagation, inspired by quantum me-
chanics, using the notion of observables. Specifically, we model the place in the
graph where the signal lies, how much the signal is concentrated at this place,
and how much of the signal is propagated towards a location of interest when ap-
plying a GNN. Using these new concepts, we prove that standard spectral GNNs
have poor signal propagation capabilities. We then propose a new type of spectral
GNN, termed Schrodinger GNN, which we show has a superior capacity to route
the signal between graph regions.

1 INTRODUCTION

Graph Neural Networks (GNNs) (23;137) have emerged as powerful tools, enabling breakthrough
applications across diverse domains including molecular science, physics simulations, social net-
work analysis, and recommendation systems. A GNN is a layered architecture that takes a graph
with node features, often referred to as the signal, and returns some output, e.g., another signal on
the same graph. The hidden states of the signal across the layers can be interpreted as a gradual flow
or propagation of the node features, since the GNN computes the signal at the next layer using local
operations on the previous layer.

Often, to solve a problem on graphs, the GNN should be able to direct the propagation of the signal
from certain regions of the graph to others. For example, the function of an enzyme is often under-
stood through the notion of allosteric regulation: activation in one site of the enzyme (the receptor)
changes the dynamics of the molecule, leading to some change in another site, called the active site.
To be able to predict such a behavior using a GNN, the GNN should be able to propagate the signal
about the binding site, which captures structural properties of the receptor, to the distant active site.

However, one limitation of typical GNNs is that the signal gets diffused in all directions the more
layers are used in the network, rather than being propagated, or routed, in a coherent way between
regions in the graph. This limits the applicability of typical GNNs when a deliberate routing of the
signal is required to solve the task. Two standard notions that are commonly regarded as quantifying
this phenomenon are oversmoothing (9;129; 315 |34} 146) and oversquashing (152} 142))

However, the first notion, oversmoothing, which is often quantified via the Dirichlet energy (36;|39),
describes how quickly the signal varies, or oscillates, across the whole graph, not how much the
signal can be kept concentrated, or coherent, when propagating it from one region to another. The
second phenomenon, oversquashing, describes the phenomenon where long range information is
compressed through topological bottlenecks. Hence, analyses of oversquashing are typically based
on various definitions quantifying bottlenecks, e.g., curvature (42)), Cheeger number (7} [11), and
effective resistance (2). Hence, such an approach focuses on structural properties of the graph, and
do not typically explicitly study how coherent the signal stays when routing it between regions. For
further details on oversmoothing and oversquashing see Appendix
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Our contribution. We aim to directly study how coherent the signal stays when it is routed between
regions of the graph. For this, we propose in the paper an alternative way to model and probe
different aspects of the content of the signal and its flow. Specifically, we model (i) the location
in the graph where the signal lies, (ii) how much the content of the signal is concentrated about
this location, and, (iii) how much of the signal is propagated from one location of the graph to
another when applying a GNN. These three concepts are defined via the notion of observables and
their mean and variance, similarly to the approach in quantum mechanics. Measuring signal content
using observables was also done in the past in the context of signal processing (165 25H27). We
prove that standard spectral GNNs have poor signal propagation capabilities: they keep the location
of the content of the signal unchanged, and only increase the spread of the signal about this location.
Then, we propose a novel spectral GNN, called Schrodinger GNN, which has provably good signal
flow properties. Namely, with Schrodinger filters, we can direct the propagation of the signal in any
desired direction in the graph.

Schrodinger GNNss are based on two main components: a unitary graph shift operator (GSO), and
complex modulated signals. The unitary GSO is analogous to the Schrodinger operator in classi-
cal quantum mechanics, and specifically, in the free particle dynamics. It assures that the content
of the signal is transformed in a geometry preserving way, rather than being diffused. Moreover,
Schrodinger GNNs consider some of the input feature channels as encoding an abstract notion of
ambient location in the graph. We call these features formal locations. The rest of the feature chan-
nels are called the signal. The idea is to be able to shift the signal across the formal location, in
any desired direction. For illustration, in a social network, we might want to shift the income sig-
nal along the age direction, to allow comparing salaries of different age groups. To quantify the
propagation properties of signals, we consider an observable corresponding to each formal location
feature, namely, an operator that measures the formal location of signals. Moreover, to guarantee
that the formal location of signals shifts when applying GNNs, we form in the signal complex os-
cillations along the direction of each formal location. We show that this leads roughly to a constant
speed of the formal location of signals when applying linear Schrodinger filters.

We empirically validate our theory on graph classification and regression benchmarks, where
Schrodinger GNNs achieve comparable accuracy to state of the art GNN .

2 MEASURING SIGNAL LOCALIZATION AND PROPAGATION

General Notations. For N € N we denote [N] = {1...., N}. We use lowercase a, bold a, and
uppercase A for scalars, vectors, and matrices respectively. We also treat vectors £ = (f1,..., fn) €
C" as functions f : [N] — C, where f(n) = f,. The identity matrix is denoted by I. For a
matrix A, we denote by A,,. and A, , its n-th row and k-th column respectively. For complex
numbers, we denote complex conjugation by z, real part by Re(z), and imaginary part by Im(z).
A graph is G = (V, E) where the vertex setis V = [N] and E C [N]?. We denote by N (v) the
neighborhood of vertex v. We consider only undirected graphs, and denote the adjacency matrix by
A = (anm)nm € RN A graph-signal is a pair (G, f) where f = (f1,...,fx) : V — CK
is the signal. The signal can also be represented by a matrix X = (7, %)nr € CN*K where
ZTnk = fr(n). A graph shift operator (GSO), is any operator that encodes the graphs structure, e.g.,
the adjacency matrix or any graph Laplacian. We define the inner product of two single-channel

signals f,g € CN by (f,9) = >,y f(v)g(v), and define norm by || f||3 = (f, f). The operator
norm is || A[| = sup,,=1 [[Az[2. for a signal f, we denote by diag(f) the diagonal matrix with

diagonal elements diag(f),.n = fn. The commutator of two matrices is [X,Y] = XY — Y X.

Observables and The Signal Routing Measure. In a general Hilbert space H of signals, an
observable is a self-adjoint operator A in H, i.e. A* = A. By the spectral theorem, any self-
adjoint operator in a finite dimensional spaces can be written as A = 3 \; P; where {\; }; are real
eigenvalues and {P;}; are the orthogonal eigenprojections. This decomposition motivates treating
a self-adjoint operator as an observable of a physical quantity. Namely, we interpret the eigenvalues
as values that the physical quantity can attain, and P; as projections upon spaces of signals that have
A; as the value of their physical quantity. For example, the diagonal operator D : CV — C defined
by (Dg); = jg, can be thought of as a location observable on the line [1, N]. Here, the eigenvectors
ej =(0,...,0,1,0,...,0) (with 1 only at the j-th entry) are thought of as pure states/signals with
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location exactly A; = j. Any signal g € C¥ is a linear combination of the pure location states
{ej}j. e, g = 32, gje; with g; € C. When the state g is normalized to [|g[l2 = 1, we can
interpret |g;|?? as the weight, or probability, of g being at location j. While g does not have one
exact location, we can define its mean location as Ep(g) = 3_; |9; |24, and its location variance as

Vb(g) = 22,19 1?(j —€p (g))Q. Using operator notations, these two quantities can be written as
Ep(g) = (Dg, g) and Vp(g) = ||(D — Ep(9)I)g||5, where I is the identity operator in CV,

This discussion motivates the general construction of observables in quantum mechanics. For a self-
adjoint operator A and normalized state g € H, the expected value (or mean) of A with respect to
g is defined to be £4(g) := (Ag, g). Note that when H = CV, we have £4(g) = >, N\i(Pig, 9),
which is interpreted just like the above example of location observable. The variance of A with
respect to g is defined to be

Va(g) = (A= Ealg)D)gll; = (A — Ealg)])?g. 9) = Ea2(g) — Ealg)™.

In addition to the classical notions of mean and variance, we propose quantifying how well a signal
is transmitted towards a target value of the physical quantity. Consider a scenario where we have
an initial signal gg, and we would like to transmit this signal to be concentrated about some value r
with respect to some observable A. For that, suppose that we operate on gy, e.g., with a GNN, and
transform it to g;. The following definition quantifies how well g; achieves this goal.

Definition 2.1 (Signal Routing Measure). For an observable A, normalized initial signal gy and
final signal g;, and a target value r € R, the signal routing measure is defined to be

(A - IT)Qgt, gt)
Va(go) .

In the setting of Definition the observable A models some physical quantity. The term ((A —
Ir)%gy, g:) quantifies how much the values of the physical quantity of g; are concentrated about r,
and the denominator normalizes this with respect to how well the physical quantity of the initial
state gq is concentrated. It is easy to verify the identity

Valge) + (r —Ealgr))?
Va(g0)
Hence, to minimize the routing measure, one should construct an operation that transforms gy to

some g;, keeping the variance of g; small (relatively to the variance of gg), while making the ex-
pected value of g; as close as possible to r.

PA(g()vghr) = (1)

PA (g07 Gt T) = (2)

3 SIGNAL PROPAGATION IN SCHRODINGER GRAPH SIGNAL PROCESSING
Next, we introduce Schrodinger graph signal processing, and analyze signal propagation under it.

Feature Location Observables. Consider a graph-signal (G, q) with ¢ = (q1,...,qm) : V —
CM. We treat some of the feature channels of ¢ as the signal and some as some abstract notion
of locations. Namely, for some 1 < J < M we call g = (q1,...,qy) the signal, and call f =
(q7+1, - - -, qur) the feature locations. Denote K = M —J and f = (f1,..., fK). As we show later,
working with complex-valued signals is important for routing signals between graph regions. Hence,
we consider g : V' — C” with ||g;[|, = 1, and consider real-valued feature locations f : V — R¥,
which need not be normalized. Define the feature location observables Xy, = diag(fy), for k €

[K]. By the fact that f), is real-valued, X, is self-adjoint. Now, Ex, (9;) = >_,,c(n1 f(n) \gj(n)\Q
is interpreted as the fj-value about which the energy of g; is centered, and Vx e (g;) is the spread
of the energy of g; about this center.

Partial Derivatives and The Second Order Feature Derivative GSO. Our construction of
Schrodinger signal processing is based on a special constructions of a GSO based on derivatives.

Definition 3.1 ( f-partial derivative). Given a feature location fi, : V — R, we define the fi-partial
derivative Vy, € CN*N by: forn,m € V

(vfk)”,"l = an,m(fk(n) — fx(m))
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It is easy to see that Vs, is skew-symmetric (i.e. V}, = —V ), and hence V?k is self-adjoint.

Definition 3.2 (Schrodinger Laplacian). Given K feature locations [ = (f1,..., fk), the corre-
sponding Schrodinger Laplacian is defined to be

Ap=— Z V3,
ke[K]

The Schrodinger Laplacian is self-adjoint as a sum of bounded self-adjoint operators. This makes
the following operator unitary.

Definition 3.3 (Schrodinger Operator). Given feature locations f : V — RE and time t € R, the
corresponding Schrodinger Operator is defined to be S[t, f] = e~ 41,

As we define in Section [3] Schrodinger graph signal processing is based on filtering signals using
Schrodinger operators as GSOs. In this paper, we develop the theory for Schrodinger operators
based on Schrodinger Laplacians, as these special GSOs lead to theoretical guarantees. However,
the Schrodinger signal processing methodology works also with Schrodinger operators based on
general GSOs, like standard Graph Laplacians.

Let us draw an analogy to the classical theory. In the free particle Schrodinger equation, we consider
the space R? as the “graph,” consider the coordinates z,, z as the locations, and 0, 0Oy, 0 as the
partial derivatives. Here, A, , . = —02 — 97 — 97 is the classical Laplace operator. Given a
wave function go : R3 — C representing a particle at time 0, g; = S[t; x, v, 2]go is the particle at
time ¢. In our case, given a signal ¢(?) on the graph, thought of as the state at time 0, we denote
g = S|t, f]g, thought of as the signal at time ¢.

Analyzing Signal Propagation via Splitting. Note that typical signals are not localized about
one feature location. For example, the grayscale signal of an image is typically supported across
all x,y locations. Hence, the expected location and location variance are not meaningful local-
ization notions for such signals (see Figure [I] for illustration). Still, we can conceptually apply a
localization analysis with observables as follows. We decompose the signal g into a sum of chunks
g =g, ...,g", eg. by multiplying the signal by a window in the formal locations g' = w'(f)g,
where w', ..., w” : R — R form a partition of unity. Here we assume that each w; is well lo-
calized about one location value. Then, each chunk gl has a meaningful mean location, and we
can track how Schrodinger operators propagate this location. Moreover, by tracking how much the
Schrodinger operator increases the variance of the chunk, we interpret how much the content of the
signal in this chunk is diffused, scatters, or dispersed, when propagating it. Note that this analysis
makes sense by the linearity of the Schrédinger operator. Note as well that in our methodology, we
do not decompose g to chunks in practice, and this decomposition is just for conceptualizing the
signal propagation.

Figure 1: Decomposition of a signal g to ¢° + g'. Expected feature locations are marked by a dot,
and the variance is signified by a color band.

Dynamics of 1D Signals via Feature Momentum. In the classical theory, the partial derivatives
are called the momentum observables. The mean i€, (g) is interpreted as the expected momentum,
or speed, of the particle g. Analogously, we interpret the fi-partial derivative 1V s, as observables of
momentum or velocity along fj. This interpretation can be made precise by developing dynamical
equations of signals under Schrédinger operator, as we do next.

In the following discussion, we consider the case of single-channel signal ¢ = ¢; and a single
feature location f = f;. We first show that the expected momentum of a signal is constant under
Schrodinger dynamics.
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Theorem 3.4 (Constant Expected Momentuml)). Let g : V' — C be a normalized signal and f :
V' — R a feature location. Then, for everyt € R,

&'vf (9¢) = 5Nf (9)

We then show that the rate of change of the expected location is equal to some smoothed version of
the expected momentum. For that, we first define smoothing with respect to feature directions.

Definition 3.5 (f-smoothing operator). Let f be a feature location. The f-smoothing operator
Wy RY — RY is defined as follows. For every signal g € CN and vertexv € V

(Wig)(0) = > apulf(w) = f(0))g(w).

weN (v)

By definition, the f-smoothing operator mixes the values of the signal g only along edges where the
feature f changes. It is hence interpreted as smoothing along the f direction.

Theorem 3.6 (Expected Feature Location Derivative under Schrodinger dynamics). Let g : V — C
be a normalized signal and f : V' — R a feature location. Let g) = S[t, f]g for every t € R.
Then,

0 .
525X (9") = —2Re((iV g™, W;g")). 3)

The rlght hand-side of @ is interpreted as a smoothed version of the expected momentum
Eiv, (g = ZV ¥ g, )> Hence, Theorem [3.6| states that the rate of change of the expected
locatlon is equal toa smoothed expected momentum In Appendix [C.2} we show that for smooth
enough signals, the rate of change of the expected location is close to the exact expected momentum.
Since the expected momentum is constant, the theorem suggests that the rate of change of the ex-
pected location is roughly constant, as long as the signal stays smooth enough. This analysis hence
justifies calling ¢V ; the momentum, or velocity, observable.

We note that Theorem [3.6]is analogous to the classical case, where the rate of change of the expected
location of a free particle is equal to its expected momentum, which is constant. See Appendix
for more details.

Achieving Translations via Feature Modulation. We wish to be able to translate the expected
feature location of signals using Schrodinger operators. In typical graph data, all features are real.
However, as we show next, for real value signals, the expected momentum is always zero. Hence,
given a real-valued signal, to be able to route it between feature regions, we must first modify it to
be complex-valued. We do this via the feature modulation operator.

Definition 3.7 (Feature Modulation). Given a real-valued feature location h : V' — R and a phase
6 € R, the Feature Modulation Operator is defined to be D[0h] = diag(e?"), where %" is the

vector with entry (e’")(v) = ") for node v € V.

Next, we show that modulating a real-valued signal gives nonzero expected momentum in general.

Theorem 3.8 (Expected Momentum of Modulated Signal). Given a signal g : V. — R, feature
locations f,h : V — R, and a phase 0 € R, the expected momentum of D[0h]g satisfies

Ev, (DIOhlg) = =2 Y amag(m)g(n)(f(n) = f(m))sin(0(h(n) — h(m))). (4

(m,n)EE

Theorem can be interpreted as follows. Consider the edge signals eg 5, €7 : £ — R defined by
eg.n(v,w) = g(v)g(w)sin (O(h(w) — h(v))), ef(v,w) = f(v) = f(w).

The right-hand-side of (4) is the edge-space inner product (e, 1, es). Hence, as long as we choose a
modulating feature h such that e, 5, and e are not orthogonal, the expected momentum of D[0h]g
will be nonzero.



Under review as a conference paper at ICLR 2025

Dynamics of Multi-Channel Signals and Observables.

Theorem 3.9 (Expected multi-Feature Derivative). Given the Schrodinger Laplacian Ay =
- Zke[ K] V?k and a normalized signal g, we have
0
ot

€x,,(9"") = —2Re((iV 7,9, Wyg")) + ) <[iV?j X, g, g(t)> : (5)
ik

Ideally, we would like the rate of change of the expected X, location to be a smoothed version of
the expected Vs, momentum. However, we see that in (5) there are additional cross terms. This
leads to the following definition.

Definition 3.10 (e-Commuting Features). A sequence of feature locations { f1, fa, ..., fx } is said
to be e-commuting if for every pairi # j € [K], the matrix E; j = [Xy,, V] = Xy Vi =V Xy,
satisfies | E; j|lop < €.

For a sequence of e commuting features, the dynamics is

0 )
5:x5, (0") = 2Re((iV 59", Wyg ™))
Hence, here as well we have the interpretation that for smooth enough signals, the rate of change of

all expected locations are close to their corresponding expected momenta.

< (K —1)e.

Orthogonalizing The Feature Directions. The signal ¢ : V' — RM in the raw data is not e-
commuting in general. Hence, in Schrodinger GNNSs, as a first step, we transform the feature y to
a sequence of features f1,..., fx which are e-commuting. For example, one can plug each node
feature ¢(n) into a simple MLP or a linear transformation O, to obtain f(n) = O(q(n)). The
transformation © is optimized with respect to the following target.

Definition 3.11 (Position-Momentum Optimization). Given a signal ¢ € RN*M  q linear transfor-
mation T € RM*K “mapping q to f = (f1, fa, ..., fx) = ¢T € RN*E is optimized w.r.t

K
i 2
Te%zglxx ; 1V, Xl
i#]

K

gp + )‘Z IV slloo = 1)2 )
k=1

for some \ > 0.

Dynamics of the Variance. Next, we derive the dynamics of the variance.

Theorem 3.12 (Time Derivative of Variance). Let g : V' — C be a signal and f : V — R a feature
location, and Ay = —pr. The first-order derivative of variance with respect to time t € R is

0

&VXJ« (g(t)) = gi[Af,Xj%](g(t)) + 4Ex, (Q(t))Re(<in9(t)7 ng(t)>)

This mirrors the classical Schrodinger equation dynamics where variance evolution depends on both
the commutator [A, X?] and the coupling between position and momentum. See Appendix [B| for
the classical correspondence.

Improving Signal Routing Through Modulation. Here, we show that in typical situations mod-
ulating real-valued signals improve their signal routing measure. Consider the following setting. We
have a multilayer network where at each layer [ we have a real-valued signal ¢(") that we are allowed
to modulate by choosing the free parameter 6; € R in D[6;h]g"). We then propagate the signal via
S[dt, f]D[6;h)g" for some small time step dt, and lastly apply a modulus nonlinearity to define the
signal at the next layer g1 = |S[dt, f]D[6,h]g""|. Here, we can interpret g(!) as the signal at
time Idt, and the input to the network ¢(*) as the signal at time 0.

Suppose that we would like to rout the signal to the feature location r, i.e., we would like
Px, (¢g®, D[6;h]g", ) to decrease in I by choosing appropriate 6;. In this setting, since dt is
small, we can linearize the propagation of g(") about ¢t = 0, and obtain

0
PXf (g(O)a g(l+1)7 ’f’) = 7DXf (9(0)7 D[alh}g(l)7 r)"'apr (g(O)?S[tv f]D[elh]g(l)7 T>|t:Odt+O(dt2)
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&x(S0.10) as a function of 8 Px (09,8010, 1) as a function of heta £x,(9): -0.98, Vx(g): 0.14 0: 0.7, &(S019): 0.95, Vx,(S0.19): 0.43
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Figure 2: Signal transport under modulation.

0
_PXf( 79() ) atPXf( O)as[tvf]D[Glh]g(l)arNt:Odt+O(dtQ)a

where the last equality is due to the fact that Px, (¢'”), D[6;h]g("),r) does not depend on 6;. We
would now like to know if modulating the signal at layer [ improves the routing measure at layer
[ + 1. For that, it is enough to show that the derivative of Px (g ), g(+1 ) with respect to 6; is
nonzero at §; = 0. Observe that

0 0 0
Dy = == © S|t 0,h O(dt*
69 PXf( 7g aT) (991 6t7DXf(g ) [7f} [ l ] )|t o+ ( )
Hence, our goal is to show that D := 601 2Px, (9, St, f1D[0h]g",)|¢,6,0 is nonzero in
general. As long as this is true, §; = 0 is not the minimizer of Px, (g ), g+ 1), so one can

always choose a better modulation than 6; = 0.
We now simplify the notations and give a formula for D := -2 2Px (g, S[t, f|D[0h]g, r)|i=o=0.
Claim 3.13 (Mixed Derivative of The Signal Routing Measure).

8 8 o <[Xha [A7X;]]D9hg;D9h9> +47”<[Xh7vaf}g7g>

‘We see that when h is constant, there is no modulation, D is zero.

In Figure 2{we give an example of a graph, initial signal g with £x, (g) = —0.98, modulating feature
h = f, and desired location value » = 1. We show that by choosing an appropriate modulation ¢ and
propagating the signal using the Schrédinger operator to time ¢ = 0.1 improves the signal routing
measure with respect to not modulating.

Schrodinger Signal Processing. 'We define Schrodinger filters by considering linear combinations
of the evolutions of the modulated signal with different modulations and times. Let f : V — RX be
location features and D € N be the output feature dimension. To use linear algebra notations, let us
now treat signals and location features and vectors in CV*“ and RV *¥ respectively. A Schrodinger
filter ¥ is parameterized by (¢,, € R, 6,, € R,W™) ¢ C/*P T(™) ¢ RKXl)mE[M], and maps
signals g € CV*7 to

U(g)F(g) = Y Sltm, f]D[0nf - T ]g - W,

Schrodinger GNNs. A Schrodinger GNNGs first optimizes the input features via Definition [3.11]
and then applies a Schrodinger filter followed by a nonlinearity at each layer

4 EXPERIMENTS

Synthetic Experiment - Signal Propagation on a Cycle. Here, we showcase the capability of
Schrodinger GNN to direct the propagation of the signal with a toy regression experiment. Consider
a cycle graph discretizing the unit circle, and the locations feature = = cos(#), where 6 is the angle.
Each signal in the dataset is a Gaussian with random mean p and variance o2, and with additive
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white noise. The target for each signal is the same gaussian mean shifted by a predetermine value d.
The task is to learn a GNN that maps the input signal to the output signal. This experiment shows
that only Schrodinger GNN, with modulated input signal, can solve this task. A summary of dataset
statistics is available in Appendix [F3]

Input Target GCN

Signal Signal Attention Schrédinger

Figure 3: Cycle graph (ring) signal transport. Each panel is a cycle graph in which node color
intensity encodes the signal magnitude. All panels share the same color scale.

Table 1: Test Losses for Ring Signal Transport

Model Test Loss
GCN 0.488
Graph Attention 0.589
Schrodinger real-valued 0.781
Schrodinger 3.78e-04

Peptides Peptide-Func and Peptide-struct, two datasets taken from Long Range Graph Benchmark
(LRGB) (13) comprise datasets that specifically test the ability of graph neural networks to capture
long-distance dependencies between nodes. For this paper, we focus on the molecular property
prediction datasets Peptides-func and Peptides-struct. Peptides-func is a graph-level classification
task that determines functional characteristics of peptide molecules represented as graphs, while
Peptides-struct is a graph-level regression task that predicts structural properties of these molecules,
for more details

5 SUMMARY

We presented a new approach for defining and analyzing signal propagation across graphs. The
approach directly models where the information of the signal is, how well concentrated it is, and
how well it is routed between regions in the graph. We presented Scrodinger GNN, a graph neural
network that is able to route the information of the signal along any direction in the graph. We
showed that standard GNNs do not have this capability. One limitation of Scrodinger filters with
respect to simple polynomial filters is that applying the Scrédinger operator on a signal involves
approximating the exponential of the GSO, which involves applying the GSO several times.

6 ETHICS STATEMENT

This work presents theoretical and empirical contributions to graph neural networks using quantum-
inspired methods. All experiments use synthetic data or publicly available benchmarks (LRGB
Peptides, node classification datasets) with no privacy concerns or potential harm to subjects. The
research involves only technical graph data and raises no ethical concerns.

7 REPRODUCIBILITY STATEMENT

We provide detailed proofs for all theorems, with additional analysis in the appendices. Imple-
mentation details including matrix exponential computation (Appendix [E-T)), hyperparameters (Ap-
pendix [E3), and synthetic experiment setups (Appendices are fully documented. The
Position-Momentum Optimization is specified in Definition Source code will be released
on GitHub upon publication.
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Table 2: Performance on Peptides-Func and Peptides-Struct. Bold values indicate the best perform-
ing models for each metric: the highest AP for Peptides-Func and the lowest MAE for Peptides-
Struct. The results for the models other than ours were taken from (17)).

MoODEL TYPE MODEL PEPTIDES-FUNC (AP 1) PEPTIDES-STRUCT (MAE |)
SAN+LapPE 63.84 +1.21 0.2683 £ 0.0043
TIGT 66.79 = 0.74 0.2485 £ 0.0015
Speformer 66.86 £ 0.64 0.2550 £ 0.0014
Transformer  Exphormer 65.27 £ 0.43 0.2481 £ 0.0007
G.MLPMixer 69.21 +0.54 0.2475 £ 0.0015
Graph ViT 69.42 +0.75 0.2449 £+ 0.0016
GRIT 69.88 +0.82 0.2460 £ 0.0012
LASER 64.40 £ 0.10 0.3043 £+ 0.0019
Rewiring DRew-GCN 69.96 + 0.76 0.2781 £ 0.0028
+PE 71.50 £ 0.44 0.2536 £ 0.0015
State Space Graph Mamba 67.39 + 0.87 0.2478 £ 0.0016
GMN 70.71+0.83 0.2473 £ 0.0025
ChebNet 69.61 £ 0.33 0.2627 £+ 0.0033
ChebNetll 68.19 + 0.27 0.2618 £ 0.0058
GCN 68.60 = 0.50 0.2460 £ 0.0007
GRAND 57.89 + 0.62 0.3418 £ 0.0015
GraphCON 60.22 + 0.68 0.2778 £ 0.0018
GNN A-DGN 59.75 +0.44 0.2874 £ 0.0021
SWAN 67.51 +0.39 0.2485 + 0.0009
PathNN 68.16 + 0.26 0.2545 £ 0.0032
CIN++ 65.69 + 1.17 0.2523 £ 0.0013
S2GCN 72.75 + 0.66 0.2467 £+ 0.0019
+PE 73.11 + 0.66 0.2447 + 0.0032
Stable-ChebNet 70.32 £ 0.26 0.2542 £ 0.0030
Basic 71.41 +1.539 0.2447 +£0.00176
Schrodinger  Non Modulated 71.29 £ 0.527 0.2467 £ 0.0011
REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical im-
plications. In International Conference on Learning Representations (ICLR), 2021. URL
https://arxiv.org/abs/2006.05205.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquash-
ing in GNNs through the lens of effective resistance. In Proceedings of the 40th International
Conference on Machine Learning (ICML), volume 202 of Proceedings of Machine Learning
Research, pp. 2528-2547, 2023. URL https://proceedings.mlr.press/v202/
black23a.htmll

Xavier Bresson and Thomas Laurent. Residual gated graph convnets, 2018. URL https:
//arxiv.org/abs/1711.07553.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs, 2014. URL https://arxiv.org/abs/1312.6203|

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks, 2020. URL
https://arxiv.org/abs/2006.13318.

Benjamin Paul Chamberlain, James Rowbottom, Maria Gorinova, Stefan Webb, Emanuele
Rossi, and Michael M. Bronstein. Grand: Graph neural diffusion, 2021. URL https://
arxiv.org/abs/2106.10934.


https://arxiv.org/abs/2006.05205
https://proceedings.mlr.press/v202/black23a.html
https://proceedings.mlr.press/v202/black23a.html
https://arxiv.org/abs/1711.07553
https://arxiv.org/abs/1711.07553
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/2006.13318
https://arxiv.org/abs/2106.10934
https://arxiv.org/abs/2106.10934

Under review as a conference paper at ICLR 2025

(7]

(8]

(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian,
2015. URL https://nyuscholars.nyu.edu/en/publications/
a-lower-bound-for-the-smallest-eigenvalue-of-the-laplacian.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction, 2018. URL https://arxiv.org/abs/1710.10568.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks, 2020. URL https://arxiv.org/abs/2007.02133,

Yun Young Choi, Sun Woo Park, Minho Lee, and Youngho Woo. Topology-informed graph
transformer, 2025. URL https://arxiv.org/abs/2402.02005.

Fan Chung. Laplacians and the cheeger inequality for directed graphs, 04 2005.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering, 2017. URL https://arxiv.org/abs/
1606.09375l

Vijay Prakash Dwivedi, Ladislav Rampasek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark, 2023. URL https://arxiv.
org/abs/2206.08164.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric,
2019. URL https://arxiv.org/abs/1903.02428.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry, 2017. URL https://arxiv.org/abs/
1704.01212.

Simon Halvdansson, Jan-Fredrik Olsen, Nir Sochen, and Ron Levie. Existence of uncer-
tainty minimizers for the continuous wavelet transform. Mathematische Nachrichten, 296
(3):1156-1172, January 2023. ISSN 1522-2616. doi: 10.1002/mana.202100466. URL
http://dx.doi.org/10.1002/mana.202100466.

Ali Hariri, Alvaro Arroyo, Alessio Gravina, Moshe Eliasof, Carola-Bibiane Schonlieb, Da-
vide Bacciu, Kamyar Azizzadenesheli, Xiaowen Dong, and Pierre Vandergheynst. Return of
chebnet: Understanding and improving an overlooked gnn on long range tasks, 2025. URL
https://arxiv.org/abs/2506.07624.

Hongwei He, Wenhan Wei, and Zhiguo Wen. Convolutional neural networks on graphs with
chebyshev interpolation. In Advances in Neural Information Processing Systems, volume 35,
pp- 25010-25022, 2022.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of vit/mlp-mixer to graphs, 2023. URL https://arxiv.org/abs/2212.
13350.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks, 2020. URL https://arxiv.
org/abs/1905.12265.

Bobak T. Kiani, Lukas Fesser, and Melanie Weber. Unitary convolutions for learning on graphs
and groups, 2024. URL https://arxiv.org/abs/2410.05499.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks, 2017. URL https://arxiv.org/abs/1609.02907.

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Pruden-
cio Tossou. Rethinking graph transformers with spectral attention, 2021. URL https:
//arxiv.org/abs/2106.03893.

10


https://nyuscholars.nyu.edu/en/publications/a-lower-bound-for-the-smallest-eigenvalue-of-the-laplacian
https://nyuscholars.nyu.edu/en/publications/a-lower-bound-for-the-smallest-eigenvalue-of-the-laplacian
https://arxiv.org/abs/1710.10568
https://arxiv.org/abs/2007.02133
https://arxiv.org/abs/2402.02005
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/2206.08164
https://arxiv.org/abs/2206.08164
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1704.01212
http://dx.doi.org/10.1002/mana.202100466
https://arxiv.org/abs/2506.07624
https://arxiv.org/abs/2212.13350
https://arxiv.org/abs/2212.13350
https://arxiv.org/abs/1905.12265
https://arxiv.org/abs/1905.12265
https://arxiv.org/abs/2410.05499
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2106.03893
https://arxiv.org/abs/2106.03893

Under review as a conference paper at ICLR 2025

[25] Ron Levie and Nir Sochen. Uncertainty principles and optimally sparse wavelet transforms,
2018. URL https://arxiv.org/abs/1707.04863.

[26] Ron Levie and Nir Sochen. A wavelet plancherel theory with application to multipliers and
sparse approximations, 2021. URL https://arxiv.org/abs/1712.02770.

[27] Ron Levie, H-G Stark, Florian Lieb, and Nir Sochen. Adjoint translation, adjoint observable
and uncertainty principles. Advances in computational mathematics, 40(3):609-627, 2014.

[28] Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein. Cayleynets: Graph
convolutional neural networks with complex rational spectral filters. IEEE Transactions on
Signal Processing, 67(1):97-109, 2019. doi: 10.1109/TSP.2018.2879624.

[29] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional net-
works for semi-supervised learning, 2018. URL https://arxiv.org/abs/1801.
07606.

[30] Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates,
Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message pass-
ing, 2023. URL https://arxiv.org/abs/2305.17589.

[31] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification, 2021. URL https://arxiv.org/abs/1905.10947.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library, 2019. URL https://arxiv.org/abs/1912.
01703

[33] Haiquan Qiu, Yatao Bian, and Quanming Yao. Graph unitary message passing, 2024. URL
https://arxiv.org/abs/2403.11199

[34] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification, 2020. URL https://arxiv.org/abs/
1907.10903.

[35] T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A survey on oversmooth-
ing in graph neural networks, 2023. URL https://arxiv.org/abs/2303.10993|

[36] Aliaksei Sandryhaila and Jose M. F. Moura. Discrete signal processing on graphs: Frequency
analysis, 2013. URL https://arxiv.org/abs/1307.0468.

[37] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfar-
dini. The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61-80,
2009. URL https://ieeexplore.ieee.orqg/document/4700287.

[38] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs, 2023. URL https://arxiv.org/
abs/2303.06147.

[39] D.I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field
of signal processing on graphs: Extending high-dimensional data analysis to networks and
other irregular domains. [EEE Signal Processing Magazine, 30(3):83-98, May 2013. ISSN
1053-5888. doi: 10.1109/msp.2012.2235192. URL http://dx.doi.org/10.1109/
MSP.2012.2235192.

[40] Yang Sun, Wei Hu, Fang Liu, Min Jiang, FeiHu Huang, and Dian Xu. Speformer: An efficient
hardware-software cooperative solution for sparse spectral transformer, 2022.

[41] Tlya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic,
and Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision, 2021. URL https:
//arxiv.org/abs/2105.01601.

11


https://arxiv.org/abs/1707.04863
https://arxiv.org/abs/1712.02770
https://arxiv.org/abs/1801.07606
https://arxiv.org/abs/1801.07606
https://arxiv.org/abs/2305.17589
https://arxiv.org/abs/1905.10947
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2403.11199
https://arxiv.org/abs/1907.10903
https://arxiv.org/abs/1907.10903
https://arxiv.org/abs/2303.10993
https://arxiv.org/abs/1307.0468
https://ieeexplore.ieee.org/document/4700287
https://arxiv.org/abs/2303.06147
https://arxiv.org/abs/2303.06147
http://dx.doi.org/10.1109/MSP.2012.2235192
http://dx.doi.org/10.1109/MSP.2012.2235192
https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2105.01601

Under review as a conference paper at ICLR 2025

[42] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curva-
ture, 2022. URL https://arxiv.org/abs/2111.14522|

[43] Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
sequence modeling with selective state spaces, 2024. URL https://arxiv.org/abs/
2402.00789.

[44] Junjie Xu, Enyan Dai, Xiang Zhang, and Suhang Wang. Hp-gmn: Graph memory networks
for heterophilous graphs, 2022. URL https://arxiv.org/abs/2210.08195,

[45] Jiaxuan You, Rex Ying, and Jure Leskovec. Design space for graph neural networks, 2021.
URL https://arxiv.org/abs/2011.08843.

[46] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns, 2020. URL
https://arxiv.org/abs/1909.12223.

[47] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang. Build-
ing efficient deep neural networks with unitary group convolutions, 2019. URL https:
//arxiv.org/abs/1811.07755.

A BACKGROUND AND RELATED WORK

A.1 SPECTRAL GNNSs

Spectral GNNSs define graph convolutions via the spectral domain. Let A be a self-adjoint GSO with
{v; }§V:1 and {\;}?V which are the eigenvectors and eigenvalues so that A = Zf\il A viv . Given

a signal X € RV*? and a function Q : R — R %%, the spectral filter Q(A) : RN*4 — RN jg
defined by

N
Q)X =) viv) XQ\)". 6)
=1

A spectral GNN layer then applies X' = ¢(Q(A) X*) with trainable Q; and nonlinearity o.
For more examples (4 [12; 28).

A.2 UNITARY GNNS

Unitary GNNSs are a class of graph neural networks designed to address fundamental challenges
in deep graph learning, particularly over-smoothing and over-squashing, through the use of uni-
tary transformations that preserve signal norms and maintain feature distinctiveness across layers.
Known methods are Graph Unitary Message Passing (GUMP) (33) that transform the adjacency
matrix to be unitary, unitary group convolutions (UGConvs) (47) a unitary transform on groups and
Separable unitary convolution (UniConv) (21)) that uses a unitary graph convolution. Unitary op-
erators are proven to mitigating over-smoothing, but some require complex weights matrices and
substantial parameter overhead. When stripped down to real weights, they lose much of their di-
rectional signal propagation capabilities. This motivated as to find the underline phenomena while
restricting the parameter overhead, thus, leading us to the Schrodinger GNN approach.

A.3 OVERSMOOTHING AND OVERSQUASHING

Most works addressing the over-smoothing and over-squashing problems begin by considering the
basic architecture of graph neural networks, the Message Passing Neural Network (MPNN) (15).

Definition A.1 (Message Passing Neural Network). Given a graph G = (V, E) with node features
X € RV*X4 an MPNN updates node representations through:

WD =g | B, > wu(h), hD)
weN (v)

where hE,O) = X, @y is the update function, and 1)y is the message function.
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Over-smoothing in GNNs refers to the tendency of node representations to become indistinguish-
able as network depth increases (35). The Dirichlet energy provides a standard measure for this
phenomenon

Definition A.2 (Dirichlet Energy). For a signal f : V — R and normalized Laplacian A, the

Dirichlet energy is ,
A 1 f@)  fG)
2 22, Vi~ Vi

where w;; are edge weights and d; is the degree of vertex i.

While Dirichlet energy has emerged as the dominant measure for analyzing over-smoothing in
GNNs (35), it provides only a partial view of signal propagation dynamics. Dirichlet energy was
first introduced to the GNN literature as a measure of signal smoothness across graph structures (3).
It has since become the standard tool for analyzing over-smoothing phenomena. In the context of
quantum mechanical observables, Dirichlet energy can be interpreted as the expected value of the
observable Laplacian operator. However, this observable fundamentally measures the rate of change
between neighboring nodes, essentially capturing local gradient information in the spatial domain,
which corresponds to momentum space properties (see Theorem [G.I). This perspective reveals
critical limitations of Dirichlet energy: its local focus only captures immediate neighborhood re-
lationships, missing long-range dependencies crucial for understanding over-squashing phenomena
and signals whose mass is concentrated in specific graph neighborhoods. For GNN analysis, it is
beneficial to have the ability to quantify signal “transport” or understand relative signal localization.

Figure 4: signal transport

Beyond the well known over-smoothing effect, MPNNs also suffer from over-squashing, where
long-range information is compressed through topological bottlenecks and becomes effectively in-
visible to distant nodes. (1) showed first heuristics of over squashing and claim that the cause of
bottlenecks is due the exponential growth of the node receptive field (8)

Definition A.3 (Node Receptive Field Set). Given graph G = (V, E), r € N and node v € V the
Receptive Field is
B, (v) :={w eV :dg(v,w) <r},

where dq is the shortest path length on the graph
(1)) argued that oversquashing occurs when exponentially many messages are compressed into fixed-

size vectors. (42) formalized this via sensitivity analysis:

Definition A.4 (Oversquashing via Sensitivity). Oversquashing occurs when the representation hgé)
at node v fails to be sufficiently affected by input features x., of distant nodes w. This is measured

by the Jacobian ||8h§;£)/8:rw Il

Lemma A.5 (r- distance Sensitivity Bound (42)). Let S, (v) :=
MPNN with bounded gradients ||V ¢¢|| < o and |Ve|| < B, if

where A is the adjacency matrix and (A", counts paths of length r + 1 from w to v.

{w eV :dg(v,w) =r}. Foran
w € Syy1(v), then

ahg)r-&-l)
0%y

< (aB) Ay (7)
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This bound reveals oversquashing, when (A"),,,, decays exponentially with distance (e.g., in trees),
distant nodes have vanishing influence, creating information bottlenecks. (42) also connects to the

Cheeger constant,
2

h
2hG > M > =
which is a result from the Cheeger constant (7 [11))

05|
min{vol(S), vol(V '\ S)}

hG := min hS hs =
scv 7’

and to the Cheeger inequality,
2

h
2hG2)\127G

which bounds the spectral gap. Here, \; is the first non-zero eigenvalue of the normalized Laplacian;
08 = {(i,j) :i € S, j € V\S} and vol(S) = >, g d;. The spectral gap can be interpreted as
how well two partitions of a graph are connected. They use the spectral gap to support their graph
curvature method and argue that negative edge curvature indicates its potential role in contributing
to the oversquashing issue.

R =4 T d T  ads d Y
D = G T adday)

where # 4 (4, j) counts triangles containing edge (4, j). Negative curvature indicates potential over-
squashing bottlenecks. Later work argued that not only edges are an indicator of oversquashing, but
the relation between every two nodes on the graph. (2) base their method also on the spectral gap,
and showcase their form of measure between two nodes, the effective resistance

Definition A.6 (Effective Resistance). For two nodes u,v € V their effective resistance is

Ru,v = (lu - 11})TAT(11) - lu)

where AT is the pseudoinverse of the graph Laplacian.

(2) generalized the sensitivity analysis to arbitrary node pairs using effective resistance:

Lemma A.7 (Effective Resistance Sensitivity Bound). For an MPNN with bounded gradients
(IVe|| < o and ||Vipel| < B, the sensitivity between nodes w, v at layer r satisfies:

ony
Oz,

<(af)" -exp(—c-1-Ryy)

where R, , is the effective resistance and c > 0 is a constant depending on the graph.

This bound shows that sensitivity decays exponentially with both distance and effective resistance,
providing a more refined measure than path counting alone.

While these methods analyze oversquashing from graph topology, we propose that the choice of
graph shift operator (GSO) also critically affects susceptibility to oversquashing. Different GSOs
encode distinct notions of signal propagation, making some inherently more prone to information
bottlenecks than others.

B SCHRODINGER IN CLASSICAL QUANTUM MECHANICS

Our graph based Schrédinger framework extends classical quantum mechanics. Understanding the
classical case provides intuition for why real-valued graph signals require modulation to achieve
directional transport, and establishes the theoretical foundations for our propagation measures. In
this section, we establish the classical quantum mechanical foundations using our graph notation for
consistency. Here, g represents a continuous wavefunction g : R — C, the feature location f(x) = z
is the spatial coordinate, and X is the position operator acting as (X¢g)(x) = z - g(x). This can
be understood both mathematically and intuitively: a real wave function represents a standing wave
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with equal probability of movement in opposite directions, resulting in no net momentum. More
formally, for a real-valued wave function g(z), we have

&, (9) = (9:1719) = =i [ g(e) 5 g(e)ds =0

This property presents a challenge when we want to model directional information flow in graph
neural networks, as real-valued node features would similarly lack directional momentum. We wish
to understand how the wave function evolves in the classical case, so we need to understand the
expected location derivative, also known as the Heisenberg motion equation.

Theorem B.1 (Heisenberg Equation of Motion for Expected Values). Let g; = Sig where S; =
e~ A s the Schridinger evolution operator with Hamiltonian A. For any observable A, the deriva-
tive of its expected value with respect to t is

0

&5,4(91&) = i([A, Algt, gt)

Proof. We prove this using the limit definition and the expansion of the Schrddinger operator

9 v €algirn) — Ealgr)
gialor) = fimy h

Since g1+, = Spg: and Sy, = e~ A

Ea(gt+n) = (AGiths gevn) = (ASngt, Sngr) = (S—nASngr, 91)
Expanding Sy, = e~ ""A = [ —ihA + O(h?) and S_j, = I + ihA + O(h?):
S_nAS), = (I +ihA)A(I —ihA) 4+ O(h?)
= A+ ihAA —ihAA + O(h?)
= A+ih[A, Al + O(h?)
Taking the limit

((A+ih[A, A])gt, gr) — (Age, gt)
h

0 . .
EEA(gt) = }Ll_r% = i([A, Algt, 9¢)

O
Theorem B.2 (Expected Position Evolution in Classical Case). Let g; = S;g with S; = e~ "4

where A = 78671' Then the expected position evolves linearly with t

Ex,(g1) = Ex,(g0) — 2t&iv,(90)

Proof. From Theorem we have

0 .
ang (9t) = Z<[A»Xf}gt7gt>
Computing the commutator [A, X ] = [788722, X]: for any function h,
0? 0? 0%h oh oh
———,Xslh=——=(zh — =—-2—=2i(i—) =2i(iVh
[ Ox?’ /] Ox? (2 )+x8x2 ox Z(Zax) i(ivih)

Therefore [A, X ;] = 2i(iV ) and

0 e
Eé’xf (9:) = i(2i(iV ) gt, 9¢) = —2Eiv ; (91)

Next, we show that momentum is conserved:

0

5:5iv5(90) = i([A, 7V ¢]ge, gr)
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Since [A,iV] = [-25,i2] =0

o2 tor 5
E&‘V,f (gt) =0

Thus Eiv, (g9¢) = Eiv, (go) for all ¢. Integrating the position equation

Ex, (90) = Ex, (90) + / (—26:9, (90))ds = Ex, (g0) — 2Er, (90)

O

For real-valued signals, the expected location remains constant under Schrodinger evolution, which
motivates the need for modulation to achieve directional transport.

Theorem B.3 (Linear Evolution of Expected Feature in the Classical Case). Given two real valued
signals g, h such that g is modulated by h at the initial state go = Digng, the evolution of the
expected feature is

Ex, (1) = Ex,(9) ~ 19 [ W(@)lg(o)Pdo

Proof. Using the basic evolution from Theorem [B:2]and that expected location is invariant to mod-
ulation:

ng (gt) = ng (QO) + tgivf (90) = 6Xf (g) + tgin (90)
Isolating the expected momentum:

terw, (g0) = ti [ G L (gla)e ™) =i [ Gle M ! (2)e M) 0l () ) ™)

=t&v,(g9) — t@/h’(m)\g(x)ﬁdx
Substituting back into the equation:
Ex,(90) = Ex,(9) ~ 10 [ W ()lg(a) P

O

Theorem B.4 (Real Signals Have Constant Expected Position). For any real-valued signal g : R —
R, the expected position remains constant under Schrodinger evolution:

Ex,(gt) = Ex,;(g) forallt

Proof. From Theorem|B.2} £x,(g:) = £x,(g) — 2t&v,(g). For real-valued g, we have £;v,(g) =
0 since (g,1Vg) = —i [ g(x)g'(x)dx = 0. Therefore £x, (g:) = Ex,(9)- O

Theorem B.5 (Time Derivative of Position Variance in the Free Schrodinger Case). Let g € L?(R)
be a normalized wavefunction, and let g = e~ "> g denote the free Schrédinger evolution with
A= —V?. Then the time derivative of the variance of position is:

0

ot

Vx,(9¢) = gi[A,XJE](gt) +4(Ex,(9) = 2tEiv,(9)) Eiv, (9)

Proof of Theorem|B.3] The variance of X at time ¢ is:
Vx, (90) = Exz(gt) — Ex,(92)*.

Differentiating with respect to ¢ and using the free particle result £x, (g:) = Ex,(g) — 2t Eiv,(9)
and that the time derivative of the expected position equals the expected momentum (with our con-
ventions 2Ex,(g:) = —2&v,(9)):

0

0 0 0
EVXJ‘ (9¢) = agxﬁ (9t) —2&x,(g¢) - agxf (9t) = ang% (9t) +4Ex,(9¢) Eiv, (9)-
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Under unitary Schrédinger evolution, for any observable A:

0
agA(gt) = gz‘[A,A] (9t)-

Thus, substituting A = X]% and Ex,(g¢) = Ex,(g) — 2t Eiv, (g) yields

0
o VX (90) = Eiia,x2)(90) + 4 (Ex, (9) — 2t Eiv, (9)) Eiv, (9)-

C SCHRODINGER DYNAMICS

Theorem C.1 (Expected Momentum Conservation). For the Schridinger evolution g; = S:g, the
expected momentum is conserved.

Eiv,(9t) = Eiv,(g) forallt

Proof of Theorem[3.4] We showed previously that the Schrodinger operator is unitary and that it
commutes with V ¢ because it is represented by a sum of identity matrices and powers of V  itself,
thus we can say:

Eiv,;(Stg) = (iV§Sig9,Sig) = (iS-:VSig,9) = (iVg,9)
O

Definition C.2 (¢ — f Regular Signal). Let G = (V, E) be a graph, f : V — R be a signal, and
Wy be the f-smoothing operator, a signal g : V- — C is called e — f regular if there exists a signal
eg such that

Wig=g+ey, ||eg||2 <e

Lemma C.3 (Smoothing Operator as Commutator).

Wi =—ilVy, Xf] = —i(Vy Xy — X;Vy)

Proof. For any signal g and vertex v:
(V5 Xslg)(v) = (Vi Xfg)(v) = (X V9)(v)
=iy avu(f(w) = f) fw)g(w) = fv) 1Y au(f(w) = f(v)g(w)

weV weV

=i avu(f(w) = f(v)’g(w) = i(Wyg)(v)

Therefore W; = —i[V ¢, X¢]. O

Lemma C.4 (Commutator Expansion for Schrodinger Laplacian). For the Schrodinger Laplacian
A= —V? and feature operator Xy, we have:

i[A, Xf] = =iV Wy —iW;Vy
where Wy = [V ¢, X is the f-smoothing operator.

Proof. Using the product rule for commutators [AB, C] = A[B, C] + [A, C]B, we have:

i[A, Xg] = i[-VF, Xy] = —i[V}, Xs] = —i[V;Vy, X/]
= —iVy[Vy, Xp] =iV, XV
= —iV W —iW;V;

17
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Proof of Theorem[3.6] We start from the limit definition of the time derivative:

o o Exy(geen) — Ex,(ge)
aSXf (gt) - %L}IIlO h .

Because g;yn = Shg: and S; is unitary, we may write
Ex; (ge+n) = (XfSnge, Snge) = (S—nXSngt, ge)-
Using the Hadamard lemma S_, XS, = X + hi[A, Xf] + o(h) we obtain
Ex,(gern) — Ex,(g9¢) = (hi[A, X¢lgt, gi) + o(h)
= h (A, X7lge, ge) + o(h).
Dividing by & and taking h — 0 gives

0 .
agxf (9¢) = (i[A, X¢]gt, 9t)-

Substituting A = —V7 and using Lemmayields

0 . )
ang (9t) = —(<vangt7gt> + <szvfgt’9t>)

1V is hermitian
—((Wrg,iV £gt) + (iV g1, War))

—(<ivf9t7 ngt> + <ivfgta ngt>) =-2 Re((ivfgt, ngt>)

where we used the fact that W7 is self-adjoint, the properties of inner products, and the identities
Re(z) = #££ and Im(2) = 5% = —iRe(iz). O

2%

Proof of Theorem3.8] For the modulated signal Dpg(v) = g(v)e"(¥):

(VDong(m) =iy amng(n)e™ ™ (f(n) - f(m))

nev

The expected momentum is:
&iv;(Dong) = (iV t Dong, Dong)
D g(m)e? i iy "y ng(n)e ™M (f(n) — f(m))

meV neV

P33 g (m)g(n)e O (£ () — f(am))

meV neV

Using the symmetry of undirected graphs and Euler’s formula ¢ = cos(6) + i sin(6):

Ev (Dong) =i Y amng(m)g(n)[e? "I (f(n) — f(m)) + P (f(m) — f(n))]

(m,n)EE

=i 3 amagm)g(n) (F(n) — fm)) PR mi0h=hm)

(m,n)EE

=i Y amug(m)g(n)(f(n) = f(m)) - 2isin(0(h(n) — h(m)))

(m,n)eE

=-2 Y amag(m)g(n)(f(n) = f(m))sin(8(h(n) — h(m)))

(m,n)eEE

18
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Theorem C.5 (Deviation Bounds for expected feature Dynamics). For the Schridinger operator
S = e A with A = —Vi and signal g - V — C, if its evolved form g, = S:g is e-f regular, the
deviation between the time derivative of expected feature and the expected momentum is bounded:

0
ngf (9t) — Eiv,(9)

< 2€[[V¢llopllgll2

Proof of Theorem|C3] recall from[3.6]that

0

&gxf (9) = —2Re<<ivfgt, Wth))-

By the e—f regularity assumption there exists e4, with [leg, ||2 < € such that Wyrg, = g+ + eg,.
Substituting this identity gives

= %2 Re((ivfgt,ng) ’

<2[[iVigill2 lleg, |2 < 2¢[[VllF llgella = 2¢ [Vl 7 llgll2

0
ang (gt) +2 gin (gt)

O

Proof of Expected multi-Feature Derivative Theorem To prove the theorem, we start by consid-
ering the limit definition of the time derivative of the expected feature:

0 o AX g g, 9en) — (Xpo 96, 9e)
Engk (gt) - }ILIE)% h

Since giyn = Shgrand S, = e is unitary, we have:

—ihA
(Xt Gt+hs gen) = (X £, Sngt, Sngt)
= (S, X1, Sngt, 9t)
= (S-n X1, Sngt: gt)
Using the expansion S, = I — ihA + o(h?) and S_j, = I + ihA + o(h?), we compute:
S 1 X7, Sh = (I +ihA+o(h*) Xy, (I —ihA + o(h?))
= Xy, +ihAXy, —ihXp A+ o(h?)
= Xp +ih[A, Xp,] +o(h?)
Therefore:

(S—n X5, Sngt, 9t) — (X5, 9¢, 9¢) _ (Xp, +ih[A, X5 ]+ 0(h?)ge, 9¢) — (Xf,9¢, 9¢)
h h
= 7’<[Aa ka]gt7gt> + O(h)

Taking the limit as h — 0:

0 . .
7‘9ka (g¢) = }lli% i([A, X ]ge, ) + o(h) = (i[A, Xy, ], gt)

ot
S Z <[iV3cj,ka]gt7gt>
J

J#k
This completes the proof. O

Theorem C.6 (Multi Channel Deviation Bounds for expected feature Dynamics). For the
Schridinger operator Sy = e~ "2, the deviation between the time derivative of expected feature
and the expected momentum is bounded as follows: For signals {f1, ..., fn} forming a §-Position-

Momentum Commuting set, and g; = S;g being €- fi, regular for each k, with A = — ij:l VQH:

7]
565, (90) = 26w, (9)] < 2eIV pllopllgllz + 0D 20V 5 lop g3

ot
J#k
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Proof of Theorem|C.6] Using Theorem 3.9

) _ Y
515%, (9¢) = (A, Xy ]ge, g) = *;Q[Vfcna?{f;@]gt,gﬁ

We split the sum into the n = k term and the cross terms n # k:

0 . .
agxfk (9t) = —<Z[V?k’ka]gt,9t> - Z<Z[V?H7ka]gtvgt>
n#k

For the main term (n = k), by the single-feature deviation bound (Theorem@):

(V3 X 1] 90) — 260, (9)] < 2619 el

Note that in the multi-feature case, v, (g¢) may not be exactly constant, but we compare to the
initial value &, (9).

For each cross term n # k, using the J-commuting property [ Xy, ,Vy, | = Ej ,, with || B n]lop < 0,
we expand:

V7 X5l =V Ve Xp ]+ Ve, XV, = =(Vi, Ben + EenVy,)
Thus,
[(i[VF,, X596 90| = (i(=V 1, Ern — Ern Vi) 96900 < 26|V, opllgells = 26/V ¢, lopllglls

Summing over n # k:

> (iVE X1dge,90| <8 2V, llopllgll3
n#k n#k

Combining both parts:

0
5:5%5. (9) = 260w, (9)] < 26V llopllgll2 + 621V llopllgll3

ik

Proof of the Variance Dynamics Theorem[3.12} Starting from the definition of variance:

Vx,;(91) = Ex2(91) — Ex; (9:)?

Taking the derivative with respect to ¢:

0

0 0
aVXf (9t) = agxﬁ () — 25Xf(gt)a5Xf(gt)

From the time evolution of expected feature for every observable, we know that:
0
ang% (9¢) = 5i[A,X§}(9t)

Substituting this into our expression:

0
avxf (9t) = 5¢[A,X;](9t) —2Ex, (gt)gi[A,Xf](gt)

using theorem [3.6]
= Eiaxn(9) + 4Exe(90Re ((1V 790, Wrgs) )
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Proof of the Mixed Derivative of The Signal Routing Measure Claim[3.13).

o ( omo = d Vx,(ge) + (r— 5xf(gt))2|
dt xs\9,9t,7)|t=0 = dt VXf (9) t=0
B Eila,x2)(90) +4€x; (90)Re((iV £g0, Wrgo)) — 2(r — Ex,(90)) £ Ex, (9¢) =0
Vx,(9)]i=0
using the[3.6]
 Eiax)(90) + 4Ex, (90)Re((iV pgo, Wrgo)) + 4(r — Ex,(90))Re((iV £ g0, Wrg0))
VXf (90)
~ Eija,xz)(90) + 4rRe((iV £ g0, Wy g0))

VXf (90)

Treating the measure derivative at ¢ = 0 as a function of 6 we get
Eifa,x2(Dong) + 4rRe((iV§Dgng, Wy Dong))
VXf (Dehg)

Taking the derivative with respect to 6 to show that for nontrivial signals when 6 = 0 the value of
the derivative is nonzero, thus the use of modulation can minimize the measure value

d 52-[A$X?](D9hg) + 4TR€(<inD(;hg, WfDehg>)

d@ VXf (Dghg)
d€itn,x21(Dong) + 4r 5Re((iV s Dong, Wy Dong))
VXf (g>

We can interpret Dppg = €% g = (I + 10X}, + 0(6?))g

d  &iax2|(Dgtong) — Eia, x2)(Dong)
@&[A,Xﬁ](Dth) = llj% ! !

€
(i(I —ieXp + o(0?)[A, X]%](I +i€Xy, + 0(0?) Dong, Dong) — 5¢[A,X;](Deh9)
e—0 €

= —([[A, X3, X1] Dong, Dong)

d
@&[A,X;](Dehgﬂezo = —([[A, X7], Xilg, 9)

For the second term, we use the fact that for F/() = (iV ;eiXn g, Wpe?Xng):

d d
@Re(F(G)) =Re (dGF(O)>

Computing the derivative:

@ <vaeu9th7 erzaxng> = <lvf(th)e“9th7 erzGth> + <vaeu9X;Lg’ Wf (ZXh)elGth>
= _<vah€i0th7 eriGth> _ i<in€i0Xh'g, Wthe'LPth>

At0 =0: p
5 FO] ==V Xng, Wyg) +(V g, Wy Xpg)
0=0
99 p (9.5 IDNg. )| =
96 o' X\ P izom0 ~

([Xn, [A, XF]|Dong, Dong) + 4r{[Xn, W;Vylg, g)
Vx; (Dong)

21



Under review as a conference paper at ICLR 2025

D PROPERTIES OF UNITARY OPERATORS ON GRAPHS

In a general Hilbert space H of graph signals, a unitary operator U : Hg — H¢ satisfies
U*U = UU* = I. Unitary operators generated by self-adjoint operators, such as the Schrodinger
operator S; = e~ 2 where A is self-adjoint, possess several fundamental properties that make them
particularly suitable for graph neural network applications. We establish these properties formally
below.

Theorem D.1 (Inner Product Preservation). A unitary operator U preserves the inner product struc-
ture of the Hilbert space. For any two signals f,g: V — C

{Uf,Ug) =(f.9)

The inner product preservation ensures norm preservation: ||U f|| = || f]| for any signal f, which
guarantees numerical stability during the evolution process, preventing signal amplification or atten-
uation that could lead to vanishing or exploding gradients in deep network architectures.

Theorem D.2 (Equivariance). Let P be a permutation matrix corresponding to a graph automor-
phism. A unitary operator U commutes with P if it is generated by a self-adjoint operator that
commutes with P. In particular, for the Schrodinger operator Sy = e~ "> where A commutes with
P, we have for any signal f : V — C:

Si(Pf) = P(S.f)

Proof of Theorem|[D.2] Since P is a graph automorphism, then the Laplacian commutes with P (i.e.,
PA = AP), we have:

sipp) =ea(ppy =3 A py o S W gy

PZ E" Ang = p(s,f)

O

Theorem D.3 (Observable Conservation)). Let A be a self-adjoint operator on He and U, = 4
be the unitary operator generated by A. For any signal f and any polynomial p, the expected value

of A is invariant under evolution by any unitary operator of the form e**?(4

Ea (N ) = €alf)

itA

In particular, for the Schrodinger operator S; = e~"'2, the Dirichlet energy Ea(f) is conserved.

These properties establish unitary operators, and in particular the Schrédinger operator, as natu-
ral choices for information propagation on graphs while maintaining both stability and structural
consistency.

Proof of Theorem[D3} Let U, = ¢'*(4). We prove that E4 (U, f) = Ea(f):
Ea(Upf) = (AU f, U, f)
= (UyAU,f, f)  (using unitarity of Uy,)
= (AUZULf, f)  (since [A,U,] = 0 as U, = /(%)
= (Af, f) (since UyU, =1T)
=& (f )

The key insight is that A commutes with any function of A, including U,, = ettp(A) O
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E IMPLEMENTATION

E.1 MATRIX EXPONENTIAL IMPLEMENTATION
For practical implementation of the Schrodinger operator S; = e~ "2, we need to compute the
exponential of a matrix. For an operator A, its exponential e is defined through its Taylor series
expansion:

oo

Ak A2 A3
A_ 4 i E
e = k!7[+A+2!+3!+

k=0
where A denotes the operator A applied k times, and A° = I is the identity operator. In practice,
this infinite series is truncated at a finite order 7" for computational feasibility:

T
Ak
A o
€ NZ k!
k=0

For the Schrodinger operator with a small time step, this approximation provides sufficient accu-
racy while maintaining computational efficiency. The choice of truncation order 7" depends on the
spectral properties of the Laplacian and the desired accuracy of the evolution.

E.2 SHIFT OPERATOR

Let A € RIVIXIVI be the (symmetric) adjacency matrix with entries Gn.m and let f : V. — R be
a real node feature. Denote by X ; := diag(f) the feature-location operator. We define the graph
derivative along f by the Hermitian commutator

Vf = [Xf,A] = (XfA — A)(f7 (Vf)n,m = an,m(f(n) - f(m))

This operator mixes values only across edges and measures signed change of the signal in the di-
rection where f varies. It satisfies: (i) Locality: (V¢), ., = 0 whenever (n,m) ¢ E. (ii) Gauge-
invariance: if f is constant then V; = 0. (iii) Structure: for real f and symmetric A, [Xy, A]
is skew-symmetric, hence V¢ is Hermitian and generates unitary dynamics. We use the feature-
weighted Laplacian

Aj:=-V}i=—(X;A—-AXy)?,

and the unitary shift S, = e "4/,

F EXPERIMENTS

F.1 Toy EXPERIMENT - GRID ORTHOGONALITY

To assess the effectiveness of our optimization, we conduct a simple grid experiment. We consider a
grid graph whose node features are the Cartesian coordinates x and y. We then replace the features
by x and z + y, apply the Position—-Momentum Orthogonalization optimization described earlier,
and expect the learned transformation to recover two orthogonal directions. We visualize the input
features and the optimized, orthogonalized features below @

F.2 OPTIMIZING SIGNAL TRANSPORT VIA MODULATION

We constructed an experiment to show that the use of modulation can benefit signal transport on
graphs. We generate N = 60 nodes from two 2D Gaussians, 30 around (—1, 0) and 30 around (1, 0)
with standard deviation 0.5 per axis. An undirected, unweighted edge is added when Euclidean
distance is < 1.5. We define a scalar node feature f; as the x-coordinate, which serves as the
modulation feature. We also define the g graph signal as the Euclidean distance of each node’s
x,y coordinates from (—1,0). Our target value to move the signal to is 7 = 1. We calculated the
expected feature location, variance and routing measure as follows:

1. expected feature location: Ex,(g) = Zjvzl filg;|?

2. variance: Vx,(9) = Ex2(9) — Ex; (9)?
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Figure 5: Grid orthogonality toy experiment. first two from left: original coordinate features x
and z + y. two to the right: features after applying the Position-Momentum Orthogonalization
optimization; the recovered directions are orthogonal.

v —-£ 2
3. routing measure: Px, (go, g¢,7) = i (m\)};—irf (g;{)f (90))

We used our Schrodinger method Sy 1, and iterated it 3 times over multiple 6 values on the interval
of [—5, 5]. Theoretically the norm should remain 1, but due to numerical instability we normalized
each Schrédinger output by ||g||2 = 1 and its absolute value was taken. The results of the expected
feature location, variance, and routing measure can be found in the ﬁgurem

F.3 GAUSSIAN TRANSLATE TOY EXPERIMENT

We study a controlled equivariant task on a ring graph that isolates translation behavior. Given a
real signal sampled on a cycle graph, the model must learn the circular shift operator S; such that
the target is y = Syx. This task stresses whether a graph model can implement phase consistent
transport on a simple topology.

Data. We generate a cycle graph with N = 100 nodes and undirected edges to immediate neigh-
bors. Angles are 6,, = —m + 2mn/N. For each sample we draw variance o2 ~ U[0.5, 1.5] (effec-
tively bounded by “variance_random_bound=1" around the center used in code), add Gaussian noise
with standard deviation 103, roll by a random shift, normalize to unit /5 norm, and set the label
y = Sqx with d = 35. Datasets use an 80/10/10 split and batch size 32.

Models. We compare standard real-valued GNNs with Schrodinger models that implement unitary
graph propagation via a truncated exponential. Let A denote the aggregation operator on the cycle
and define the complex generator # = i .A. Each Schrodinger layer applies a learnable linear map

W and a Taylor approximation of the unitary flow e®7t: z < Zg:o (5;:?)6 Wz with T = 15. We use
depth L = 35, feature normalization after every layer, and a magnitude nonlinearity. The modulated
variants inject positional phase through a learned linear modulation direction m = Linear( [z, §])

and multiply features by e’ €™ with e = 25. The step size ¢ is learnable.

Training. Loss is the Lo distance between the model prediction f(x;) = g; for some sample x;
and the target y;, ||; — vi||2- We train with Adam for 250 epochs, using two parameter groups
(modulation parameters at 10x the base learning rate), base learning rate 0.1, ReduceLROnPlateau
with factor 0.7 and patience 10. The evaluation plots show smoothed test losses per epoch with a
dashed reference line corresponding to a naive baseline .

Baselines. Vanilla GCN and GAT are trained with the same depth 35 and comparable width, using
the same magnitude readout and normalization.

F.4 GRAPH NODE CLASSIFICATION HYPERPARAMETERS

For the node classification experiments on standard benchmarks (Chameleon, Squirrel, Texas, Cor-
nell, Actor, Cora, Citeseer, and Pubmed), we performed a comprehensive grid search to optimize
the Schrodinger GNN architecture. Due to computational constraints and the exploratory nature of
this work, we focused our efforts on datasets where initial experiments showed promise.
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Model Params
vanilla GCN 2,136
graph_attention (GAT) 6,193
Schrédinger non modulated 4,273
Schrodinger 4,275

Table 3: Gaussian-Translate on a ring with N = 100 and shift d = 35. The modulated Schrodinger
family dominates; our complex modulated model attains strong performance with substantially
lower error than standard GNNs.

— GCN
Graph_Attention
—— schrodinger_real_valued
— schrodinger
rodbmde AUl _—~ Tivial Performance

Figure 6: Gaussian-Translate learning curves. Lower is better. Our complex modulated Schrédinger
model converges rapidly to the best error, outperforming real-valued and non-modulated variants, as
well as standard GNN baselines. The dashed line denotes the trivial predictor.

Grid Search Details We conducted a grid search over the following hyperparameter ranges:

* Learning rate: {0.1,0.01,0.001}

* Dropout: {0.0,0.1,0.2,0.3,0.4,0.5}

* L2 regularization (weight decay): {0.01,0.001,0.0001,0.00001,0.000001}
* Modulation dimensions: {1,2,3,4,5,6,7,8,9}

Each configuration was evaluated using 10-fold cross-validation with early stopping based on vali-
dation accuracy. The reported results in Table ?? represent the mean and standard deviation across
these folds.

Implementation Notes For datasets where results show 0.00 accuracy (Chameleon, Squirrel,
Texas, Cornell, Actor, Pubmed), preliminary experiments indicated that the current Schrédinger
GNN formulation requires further architectural adaptations for heterophilic graphs or specific dataset
characteristics. Future work will explore dataset-specific feature engineering and architectural mod-
ifications to address these limitations.

F.5 PEPTIDES

Experimental Setup and Implementation Details Our evaluation framework leverages the
GraphGym platform (45)) for systematic assessment on Peptide datasets datasets. Tables[??|presents
comprehensive benchmark results compiled from various state-of-the-art architectures, including
(65 105 1125 [185 195 1245 1305 385 140; 1415 143} 144), with all reported metrics collected from published lit-
erature as of September 2025. The experimental infrastructure utilizes PyTorch (32) as the primary
deep learning framework, supplemented by PyTorch Geometric (14) for specialized graph neural
network operations.

Edge Feature Handling A notable limitation of our unitary graph convolution implementation is
the absence of native edge feature support. To address this constraint in edge-attributed datasets, we
employ a preprocessing strategy incorporating either GINE (20) or Gated GCN (3) architectures as
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Table 4: Hyperparameters for Schrodinger GNN on Node Classification Tasks

Hyperparameter Cora Citeseer Pubmed Squirrel
Learning rate 0.01 0.01 0.01 0.1
Dropout 0.6 0.3 0.1 0.2

# Conv. Layers 2 2 2 2
Hidden dimension 64 64 64 64
Modulation dimension 6 4 1 2
Weight decay 0.01 0.001 0.01 0.00001
Optimizer Adam  Adam Adam Adam

Table 5: Hyperparameters for Schrodinger models on Peptides-Func

Schrodinger Schrodinger (non-modulated)

Ir 0.001 0.001
dropout 0.1 0.1

# Conv. Layers 4 4
hidden dim. 80 195
modulation dim. 8 0
node type RSWE RSWE
batch size 200 200
# epochs 4000 4000
edge aggregator GINE GINE
# Parameters 448K 492K

initial layers. These components serve as edge feature aggregators, effectively transforming edge
attributes into node representations. When such preprocessing is utilized, we explicitly document
this configuration through an “edge aggregator” hyperparameter specification in our experimental
tables.

Computational Resources and Performance All experimental runs were conducted on individ-
ual GPUs, specifically utilizing an NVIDIA NVIDIA L40S hardware. Training duration exhibited
convergence with less than 15 seconds epochs. Dataset storage requirements was 1GB. The smaller
datasets typically completed training epochs within seconds.

Parameter Count LRGB datasets require a parameter limit of 500k, thus each complex parameter
is count as 2.

Hyperparameters We employ the Adam optimizer (22) with an initial learning rate of 0.001,
utilizing a cosine learning rate scheduler and run a hyperparameter sweep for the basic model with
the following hyperparameters:

* Number of layers: {2,4, 6,8}

* Dropout: {0.1,0.15,0.2}

* Hidden dimensions: maximized according to the SOOK parameter count limit and consid-
ering complex as 2 parameters.

* Modulation dimensions: {2,4, 6,8}

G PROOFS

Theorem G.1 (]Dirichlet Energy is a Laplacian Observableb. For a signal f and f its Fourier trans-
form, the Dirichlet energy is equivalent to the expected squared momentum in momentum space.

&) =5 [ PIwPa = 5em ()
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Table 6: Hyperparameters for Schrodinger models on Peptides-Struct

Schrodinger  Schrodinger (non-modulated)

Ir 0.001 0.001
dropout 0.15 0.1

# Conv. Layers 8 6
hidden dim. 150 64
modulation dim. 2 0
node type LapPE LapPE
batch size 200 200
# epochs 500 500
edge aggregator GINE GINE
# Parameters 499K 499K

where f (p) is the Fourier transform of [ and p represents momentum.

Proof of Theorem|G.1] The proof follows from the spectral decomposition of the Laplacian opera-
tor:

/ IVi@lds = 5 [ 1F)Pdp = 5Er (7

where we used Parseval’s theorem and the fact that the Fourier transform of the gradient operator
corresponds to multiplication by ¢p in momentum space. O

Proof of Routing MeasureEquation (2).
Valge) + (r — Ealge))?

’PA(g()vgth.) = VA(QO)

We will focus on the numerator of the energy flow measure, we have:
(Xp—r)’Ug,Ug) = (X}-2rXs+r’1-Ex,(Ug)*I+Ex, (Ug)* 1+2Ex, (U g) X —2Ex, (Ug) X4)U g, Ug)

Rearranging terms to complete the square:
= ((X}-2x, (Ug) X +Ex,(Ug)*1)Ug, Ug) +((r* ~Ex, (Ug)*)1Ug, Ug)+(2(Ex, (Ug)—r) X ;Ug,Ug)
The first term is the variance:
(Xf = Ex,(Ug)1)*Ug,Ug) = Vx,(Ug)
The second term simplifies using norm preservation (||U g||2 lgl|? = 1 for normalized signals):
((r* = Ex,(Ug)*)1Ug,Ug) = (r* — Ex,(Ug)?)

The third term uses the definition of expected feature:
(2(x,(Ug) —r)X;Ug,Ug) = 2(Ex,(Ug) — r)Ex,(Ug)

Combining all terms:

(X —rD)?Ug,Ug) = Vx,(Ug) + (r* = Ex,(Ug)?) + 2(Ex, (Ug) — r)Ex,(Ug)
=Vx,(Ug) + r? — Ex,(Ug)? + 2Ex,(Ug)? — 2rEx, (Ug)
=Vx,(Ug) +1° + Ex,(Ug)? — 2r€x,(Ug)
= Vx,(Ug) + (r — £x,(Ug))?

Therefore, the energy flow measure becomes:
(Xj —rD)*Ug,Ug) _ Vx,(Ug) + (r — £x,(Ug))?
VXf (g) VXf (g)
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