

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNDERSTANDING SIGNAL PROPAGATION IN GNNs VIA OBSERVABLES

Anonymous authors

Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) perform computations on graphs by routing the signal information between regions of the graph using a graph shift operator or a message passing scheme. Often, the propagation of the signal leads to a loss of information, where the signal tends to diffuse across the graph instead of being deliberately routed between regions of interest. Two notions that depict this phenomenon are oversmoothing and oversquashing. In this paper, we propose an alternative approach for modeling signal propagation, inspired by quantum mechanics, using the notion of observables. Specifically, we model the place in the graph where the signal lies, how much the signal is concentrated at this place, and how much of the signal is propagated towards a location of interest when applying a GNN. Using these new concepts, we prove that standard spectral GNNs have poor signal propagation capabilities. We then propose a new type of spectral GNN, termed Schrödinger GNN, which we show has a superior capacity to route the signal between graph regions.

1 INTRODUCTION

Graph Neural Networks (GNNs) (46; 25) have emerged as powerful tools, enabling breakthrough applications across diverse domains including molecular science, physics simulations, social network analysis, and recommendation systems. A GNN is a layered architecture that takes a graph with node features, often referred to as the signal, and returns some output, e.g., another signal on the same graph. The hidden states of the signal across the layers can be interpreted as a gradual flow or propagation of the node features, since the GNN computes the signal at the next layer using local operations on the previous layer.

Often, to solve a problem on graphs, the GNN should be able to direct the propagation of the signal from certain regions of the graph to others. For example, the function of an enzyme is often understood through the notion of allosteric regulation: activation in one site of the enzyme (the receptor) changes the dynamics of the molecule, leading to some change in another site, called the active site. To be able to predict such a behavior using a GNN, the GNN should be able to propagate the signal about the binding site, which captures structural properties of the receptor, to the distant active site.

However, one limitation of typical GNNs is that the signal gets diffused in all directions the more layers are used in the network, rather than being propagated, or routed, in a coherent way between regions in the graph. This limits the applicability of typical GNNs when a deliberate routing of the signal is required to solve the task. Two standard notions that are commonly regarded as quantifying this phenomenon are *oversmoothing* (33; 38; 58; 43; 9) and *oversquashing* (1; 51; 2).

However, the first notion, oversmoothing, which is often quantified via the Dirichlet energy (48; 45), describes how quickly the signal varies, or oscillates, across the whole graph, not how much the signal can be kept concentrated, or coherent, when propagating it from one region to another. The second phenomenon, oversquashing, describes the phenomenon where long range information is compressed through topological bottlenecks. Hence, analyses of oversquashing are typically based on various definitions quantifying bottlenecks, e.g., curvature (51), Cheeger number (7; 11), and effective resistance (2). Hence, such an approach focuses on structural properties of the graph, and do not typically explicitly study how coherent the signal stays when routing it between regions. For further details on oversmoothing and oversquashing see Appendix A.3.

054 **Our contribution.** We aim to directly study how coherent the signal stays when it is routed between
 055 regions of the graph. For this, we propose in the paper an alternative way to model and probe
 056 different aspects of the content of the signal and its flow. Specifically, we model (i) the location in
 057 the graph where the signal lies, (ii) how much the content of the signal is concentrated about this
 058 location, and, (iii) how much of the signal is propagated from one location of the graph to another
 059 when applying a GNN. Our Signal Routing Measure directly quantifies the ability to transport mass,
 060 addressing the core issue of oversquashing where information fails to propagate across bottlenecks.
 061 These three concepts are defined via the notion of observables and their mean and variance, similarly
 062 to the approach in quantum mechanics. Measuring signal content using observables was also done
 063 in the past in the context of signal processing (31; 29; 30; 18). We prove that standard spectral
 064 GNNs have poor signal propagation capabilities: they keep the location of the content of the signal
 065 unchanged, and only increase the spread of the signal about this location. Then, we propose a novel
 066 spectral GNN, called *Schrödinger GNN*, which has provably good signal flow properties. Namely,
 067 with *Schrödinger filters*, we can direct the propagation of the signal in any desired direction in the
 068 graph.

069 Schrödinger GNNs are based on two main components: a unitary graph shift operator (GSO), and
 070 complex modulated signals. The unitary GSO is analogous to the Schrödinger operator in classi-
 071 cal quantum mechanics, and specifically, in the free particle dynamics. It assures that the content
 072 of the signal is transformed in a geometry preserving way, rather than being diffused. Moreover,
 073 Schrödinger GNNs consider some of the input feature channels as encoding an abstract notion of
 074 ambient location in the graph. We call these features *formal locations*. The rest of the feature chan-
 075 nels are called *the signal*. The idea is to be able to shift the signal across the formal location, in
 076 any desired direction. For illustration, in a social network, we might want to shift the *income* sig-
 077 nal along the *age* direction, to allow comparing salaries of different age groups. To quantify the
 078 propagation properties of signals, we consider an observable corresponding to each formal location
 079 feature, namely, an operator that measures the formal location of signals. Moreover, to guarantee
 080 that the formal location of signals shifts when applying GNNs, we form in the signal complex os-
 081 cillations along the direction of each formal location. We show that this leads roughly to a constant
 082 speed of the formal location of signals when applying linear Schrödinger filters.

083 We empirically validate our theory on graph classification and regression benchmarks, where
 084 Schrödinger GNNs achieve comparable accuracy to state of the art GNNs.

085 2 MEASURING SIGNAL LOCALIZATION AND PROPAGATION

086 **General Notations.** For $N \in \mathbb{N}$ we denote $[N] = \{1, \dots, N\}$. We use lowercase a , bold \mathbf{a} , and
 087 uppercase \mathbf{A} for scalars, vectors, and matrices respectively. We also treat vectors $\mathbf{f} = (f_1, \dots, f_n) \in \mathbb{C}^N$
 088 as functions $f : [N] \rightarrow \mathbb{C}$, where $f(n) = f_n$. The identity matrix is denoted by \mathbf{I} . For a
 089 matrix \mathbf{A} , we denote by $\mathbf{A}_{n,:}$ and $\mathbf{A}_{:,k}$ its n -th row and k -th column respectively. For complex
 090 numbers, we denote complex conjugation by \bar{z} , real part by $\text{Re}(z)$, and imaginary part by $\text{Im}(z)$.
 091 A graph is $\mathcal{G} = (V, E)$ where the vertex set is $V = [N]$ and $E \subset [N]^2$. We denote by $\mathcal{N}(v)$ the
 092 neighborhood of vertex v . We consider only undirected graphs, and denote the adjacency matrix by
 093 $\mathbf{A} = (a_{n,m})_{n,m} \in \mathbb{R}^{N \times N}$. A graph-signal is a pair (\mathcal{G}, f) where $f = (f_1, \dots, f_K) : V \rightarrow \mathbb{C}^K$
 094 is the signal. The signal can also be represented by a matrix $\mathbf{X} = (x_{n,k})_{n,k} \in \mathbb{C}^{N \times K}$ where
 095 $x_{n,k} = f_k(n)$. A graph shift operator (GSO), is any operator that encodes the graphs structure, e.g.,
 096 the adjacency matrix or any graph Laplacian. We define the inner product of two single-channel
 097 signals $f, g \in \mathbb{C}^N$ by $\langle f, g \rangle = \sum_{v \in V} f(v)\overline{g(v)}$, and define norm by $\|f\|_2^2 = \langle f, f \rangle$. The operator
 098 norm is $\|\mathbf{A}\| = \sup_{\|x\|_2=1} \|\mathbf{A}x\|_2$. For a signal f , we denote by $\text{diag}(f)$ the diagonal matrix with
 099 diagonal elements $\text{diag}(f)_{n,n} = f_n$. The commutator of two matrices is $[\mathbf{X}, \mathbf{Y}] = \mathbf{XY} - \mathbf{YX}$.
 100

101 **Observables and The Signal Routing Measure.** In a general Hilbert space \mathcal{H} of signals, an
 102 *observable* is a self-adjoint operator A in \mathcal{H} , i.e. $A^* = A$. By the spectral theorem, any self-
 103 adjoint operator in a finite dimensional spaces can be written as $A = \sum_j \lambda_j P_j$ where $\{\lambda_j\}_j$ are real
 104 eigenvalues and $\{P_j\}_j$ are the orthogonal eigenprojections. This decomposition motivates treating
 105 a self-adjoint operator as an *observable of a physical quantity*. Namely, we interpret the eigenvalues
 106 as values that the physical quantity can attain, and P_j as projections upon spaces of signals that have
 107 λ_j as the value of their physical quantity. For example, the diagonal operator $D : \mathbb{C}^N \rightarrow \mathbb{C}^N$ defined

108 by $(Dg)_j = jg_j$ can be thought of as a *location observable* on the line $[1, N]$. Here, the eigenvectors
 109 $e_j = (0, \dots, 0, 1, 0, \dots, 0)$ (with 1 only at the j -th entry) are thought of as pure states/signals with
 110 location exactly $\lambda_j = j$. Any signal $g \in \mathbb{C}^N$ is a linear combination of the *pure location states*
 111 $\{e_j\}_j$, i.e., $g = \sum_j g_j e_j$ with $g_j \in \mathbb{C}$. When the state g is normalized to $\|g\|_2 = 1$, we can
 112 interpret $|g_j|^2$ as the weight, or probability, of g being at location j . While g does not have one
 113 exact location, we can define its *mean location* as $\mathcal{E}_D(g) = \sum_j |g_j|^2 j$, and its location variance as
 114 $\mathcal{V}_D(g) = \sum_j |g_j|^2 (j - \mathcal{E}_D(g))^2$. Using operator notations, these two quantities can be written as
 115 $\mathcal{E}_D(g) = \langle Dg, g \rangle$ and $\mathcal{V}_D(g) = \|(D - \mathcal{E}_D(g)I)g\|_2^2$, where I is the identity operator in \mathbb{C}^N .

117 This discussion motivates the general construction of observables in quantum mechanics. For a self-
 118 adjoint operator A and normalized state $g \in \mathcal{H}$, the *expected value* (or *mean*) of A with respect to
 119 g is defined to be $\mathcal{E}_A(g) := \langle Ag, g \rangle$. Note that when $\mathcal{H} = \mathbb{C}^N$, we have $\mathcal{E}_A(g) = \sum_i \lambda_i \langle \hat{P}_i g, g \rangle$,
 120 which is interpreted just like the above example of location observable. The *variance* of A with
 121 respect to g is defined to be

$$122 \quad \mathcal{V}_A(g) := \|(A - \mathcal{E}_A(g)I)g\|_2^2 = \langle (A - \mathcal{E}_A(g)I)^2 g, g \rangle = \mathcal{E}_{A^2}(g) - \mathcal{E}_A(g)^2.$$

124 In addition to the classical notions of mean and variance, we propose quantifying how well a signal
 125 is transmitted towards a target value of the physical quantity. Consider a scenario where we have
 126 an initial signal g_0 , and we would like to transmit this signal to be concentrated about some value r
 127 with respect to some observable A . For that, suppose that we operate on g_0 , e.g., with a GNN, and
 128 transform it to g_t . The following definition quantifies how well g_t achieves this goal.

129 **Definition 2.1** (Signal Routing Measure). *For an observable A , normalized initial signal g_0 and
 130 final signal g_t , and a target value $r \in \mathbb{R}$, the signal routing measure is defined to be*

$$132 \quad \mathcal{P}_A(g_0, g_t, r) = \frac{\langle (A - Ir)^2 g_t, g_t \rangle}{\mathcal{V}_A(g_0)}. \quad (1)$$

135 In the setting of Definition 2.1, the observable A models some physical quantity. The term $\langle (A -$
 136 $Ir)^2 g_t, g_t \rangle$ quantifies how much the values of the physical quantity of g_t are concentrated about r ,
 137 and the denominator normalizes this with respect to how well the physical quantity of the initial
 138 state g_0 is concentrated. It is easy to verify the identity

$$139 \quad \mathcal{P}_A(g_0, g_t, r) = \frac{\mathcal{V}_A(g_t) + (r - \mathcal{E}_A(g_t))^2}{\mathcal{V}_A(g_0)}. \quad (2)$$

142 Hence, to minimize the routing measure, one should construct an operation that transforms g_0 to
 143 some g_t , keeping the variance of g_t small (relatively to the variance of g_0), while making the ex-
 144 pected value of g_t as close as possible to r .

146 3 SIGNAL PROPAGATION IN SCHRÖDINGER GRAPH SIGNAL PROCESSING

148 Next, we introduce Schrödinger graph signal processing, and analyze signal propagation under it.

150 **Feature Location Observables.** Consider a graph-signal (\mathcal{G}, q) with $q = (q_1, \dots, q_M) : V \rightarrow$
 151 \mathbb{C}^M . We treat some of the feature channels of q as the signal and some as some abstract notion
 152 of locations. Namely, for some $1 < J < M$ we call $g = (q_1, \dots, q_J)$ the *signal*, and call $f =$
 153 (q_{J+1}, \dots, q_M) the *feature locations*. Denote $K = M - J$ and $f = (f_1, \dots, f_K)$. As we show later,
 154 working with complex-valued signals is important for routing signals between graph regions. Hence,
 155 we consider $g : V \rightarrow \mathbb{C}^J$ with $\|g_j\|_2 = 1$, and consider real-valued feature locations $f : V \rightarrow \mathbb{R}^K$,
 156 which need not be normalized. Define the *feature location observables* $X_{f_k} = \text{diag}(f_k)$, for $k \in$
 157 $[K]$. By the fact that f_k is real-valued, X_{f_k} is self-adjoint. Now, $\mathcal{E}_{X_{f_k}}(g_j) = \sum_{n \in [N]} f_k(n) |g_j(n)|^2$
 158 is interpreted as the f_k -value about which the energy of g_j is centered, and $\mathcal{V}_{X_{f_k}}(g_j)$ is the spread
 159 of the energy of g_j about this center.

160 **Partial Derivatives and The Second Order Feature Derivative GSO.** Our construction of
 161 Schrödinger signal processing is based on a special constructions of a GSO based on derivatives.

162 **Definition 3.1** (f_k -partial derivative). Given a feature location $f_k : V \rightarrow \mathbb{R}$, we define the f_k -partial
 163 derivative $\nabla_{f_k} \in \mathbb{C}^{N \times N}$ by: for $n, m \in V$

$$165 \quad (\nabla_{f_k})_{n,m} = a_{n,m}(f_k(n) - f_k(m))$$

166 It is easy to see that ∇_{f_k} is skew-symmetric (i.e. $\nabla_{f_k}^* = -\nabla_{f_k}$), and hence $\nabla_{f_k}^2$ is self-adjoint.

167 **Definition 3.2** (Schrödinger Laplacian). Given K feature locations $f = (f_1, \dots, f_K)$, the corre-
 168 sponding Schrödinger Laplacian is defined to be

$$171 \quad \Delta_f = - \sum_{k \in [K]} \nabla_{f_k}^2.$$

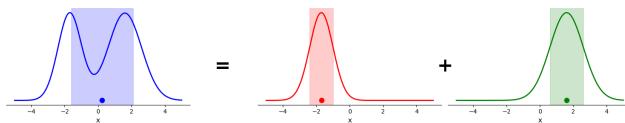
174 The Schrödinger Laplacian is self-adjoint as a sum of bounded self-adjoint operators. This makes
 175 the following operator unitary.

176 **Definition 3.3** (Schrödinger Operator). Given feature locations $f : V \rightarrow \mathbb{R}^K$ and time $t \in \mathbb{R}$, the
 177 corresponding Schrödinger Operator is defined to be $\mathcal{S}[t, f] = e^{-it\Delta_f}$.

178 As we define in Section 3, Schrödinger graph signal processing is based on filtering signals using
 179 Schrödinger operators as GSOs. In this paper, we develop the theory for Schrödinger operators
 180 based on Schrödinger Laplacians, as these special GSOs lead to theoretical guarantees. However,
 181 the Schrödinger signal processing methodology works also with Schrödinger operators based on
 182 general GSOs, like standard Graph Laplacians.

183 Let us draw an analogy to the classical theory. In the free particle Schrödinger equation, we consider
 184 the space \mathbb{R}^3 as the “graph,” consider the coordinates x, y, z as the locations, and $\partial_x, \partial_y, \partial_z$ as the
 185 partial derivatives. Here, $\Delta_{x,y,z} = -\partial_x^2 - \partial_y^2 - \partial_z^2$ is the classical Laplace operator. Given a
 186 wave function $g_0 : \mathbb{R}^3 \rightarrow \mathbb{C}$ representing a particle at time 0, $g_t = \mathcal{S}[t; x, y, z]g_0$ is the particle at
 187 time t . In our case, given a signal $g^{(0)}$ on the graph, thought of as the state at time 0, we denote
 188 $g^{(t)} = \mathcal{S}[t, f]g$, thought of as the signal at time t .

189 **Analyzing Signal Propagation via Splitting.** Note that typical signals are not localized about
 190 one feature location. For example, the grayscale signal of an image is typically supported across
 191 all x, y locations. Hence, the expected location and location variance are not meaningful local-
 192 ization notions for such signals (see Figure 1 for illustration). Still, we can conceptually apply a
 193 localization analysis with observables as follows. We decompose the signal g into a sum of chunks
 194 $g = g^1, \dots, g^L$, e.g., by multiplying the signal by a window in the formal locations $g^l = w^l(f)g$,
 195 where $w^1, \dots, w^L : \mathbb{R} \rightarrow \mathbb{R}$ form a partition of unity. Here we assume that each w_j is well lo-
 196 calized about one location value. Then, each chunk g^l has a meaningful mean location, and we
 197 can track how Schrödinger operators propagate this location. Moreover, by tracking how much the
 198 Schrödinger operator increases the variance of the chunk, we interpret how much the content of the
 199 signal in this chunk is diffused, scatters, or dispersed, when propagating it. Note that this analysis
 200 makes sense by the linearity of the Schrödinger operator. Note as well that in our methodology, we
 201 do not decompose g to chunks in practice, and this decomposition is just for conceptualizing the
 202 signal propagation. [In appendix F.4 we use the splitting scheme to diagnose the signal propagation
 203 capabilities of Schrödeinger GNNs.](#)



210 Figure 1: Decomposition of a signal g to $g^0 + g^1$. Expected feature locations are marked by a dot,
 211 and the variance is signified by a color band.

212 **Dynamics of 1D Signals via Feature Momentum.** In the classical theory, the partial derivatives
 213 are called the *momentum observables*. The mean $i\mathcal{E}_{\partial_x}(g)$ is interpreted as the expected momentum,
 214 or speed, of the particle g . Analogously, we interpret the f_k -partial derivative $i\nabla_{f_k}$ as observables of

216 momentum or velocity along f_k . This interpretation can be made precise by developing dynamical
 217 equations of signals under Schrödinger operator, as we do next.
 218

219 In the following discussion, we consider the case of single-channel signal $g = g_1$ and a single
 220 feature location $f = f_1$. We first show that the expected momentum of a signal is constant under
 221 Schrödinger dynamics.

222 **Theorem 3.4** (Constant Expected Momentum). *Let $g : V \rightarrow \mathbb{C}$ be a normalized signal and $f : V \rightarrow \mathbb{R}$ a feature location. Then, for every $t \in \mathbb{R}$,*

$$224 \quad \mathcal{E}_{i\nabla_f}(g_t) = \mathcal{E}_{i\nabla_f}(g)$$

225 We then show that the rate of change of the expected location is equal to some smoothed version of
 226 the expected momentum. For that, we first define smoothing with respect to feature directions.
 227

228 **Definition 3.5** (f -smoothing operator). *Let f be a feature location. The f -smoothing operator
 229 $W_f : \mathbb{R}^N \rightarrow \mathbb{R}^N$ is defined as follows. For every signal $g \in \mathbb{C}^N$ and vertex $v \in V$*

$$230 \quad (W_f g)(v) = \sum_{w \in \mathcal{N}(v)} a_{v,w} (f(w) - f(v))^2 g(w).$$

232 By definition, the f -smoothing operator mixes the values of the signal g only along edges where the
 233 feature f changes. It is hence interpreted as smoothing along the f direction.
 234

235 **Theorem 3.6** (Expected Feature Location Derivative under Schrödinger dynamics). *Let $g : V \rightarrow \mathbb{C}$
 236 be a normalized signal and $f : V \rightarrow \mathbb{R}$ a feature location. Let $g^{(t)} = \mathcal{S}[t, f]g$ for every $t \in \mathbb{R}$.
 237 Then,*

$$238 \quad \frac{\partial}{\partial t} \mathcal{E}_{X_f}(g^{(t)}) = -2 \operatorname{Re}(\langle i\nabla_f g^{(t)}, W_f g^{(t)} \rangle). \quad (3)$$

240 The right-hand-side of (3) is interpreted as a smoothed version of the expected momentum
 241 $\mathcal{E}_{i\nabla_f}(g^{(t)}) = \langle i\nabla_f g^{(t)}, g^{(t)} \rangle$. Hence, Theorem 3.6 states that the rate of change of the expected
 242 location is equal to a smoothed expected momentum. In Appendix C.2, we show that for smooth
 243 enough signals, the rate of change of the expected location is close to the exact expected momentum.
 244 Since the expected momentum is constant, the theorem suggests that the rate of change of the ex-
 245 pected location is roughly constant, as long as the signal stays smooth enough. This analysis hence
 246 justifies calling $i\nabla_f$ the momentum, or velocity, observable.
 247

248 We note that Theorem 3.6 is analogous to the classical case, where the rate of change of the expected
 249 location of a free particle is equal to its expected momentum, which is constant. See Appendix B
 for more details.
 250

251 **Achieving Translations via Feature Modulation.** We wish to be able to translate the expected
 252 feature location of signals using Schrödinger operators. In typical graph data, all features are real.
 253 However, as we show next, for real value signals, the expected momentum is always zero. Hence,
 254 given a real-valued signal, to be able to route it between feature regions, we must first modify it to
 255 be complex-valued. We do this via the feature modulation operator.
 256

257 **Definition 3.7** (Feature Modulation). *Given a real-valued feature location $h : V \rightarrow \mathbb{R}$ and a phase
 258 $\theta \in \mathbb{R}$, the Feature Modulation Operator is defined to be $D[\theta h] = \operatorname{diag}(e^{i\theta h})$, where $e^{i\theta h}$ is the
 259 vector with entry $(e^{i\theta h})(v) = e^{i\theta h(v)}$ for node $v \in V$.*

260 Next, we show that modulating a real-valued signal gives nonzero expected momentum in general.
 261

262 **Theorem 3.8** (Expected Momentum of Modulated Signal). *Given a signal $g : V \rightarrow \mathbb{R}$, feature
 263 locations $f, h : V \rightarrow \mathbb{R}$, and a phase $\theta \in \mathbb{R}$, the expected momentum of $D[\theta h]g$ satisfies*

$$264 \quad \mathcal{E}_{i\nabla_f}(D[\theta h]g) = -2 \sum_{(m,n) \in E} a_{m,n} g(m) g(n) (f(n) - f(m)) \sin(\theta(h(n) - h(m))). \quad (4)$$

265 Theorem 3.8 can be interpreted as follows. Consider the edge signals $e_{g,h}, e_f : E \rightarrow \mathbb{R}$ defined by
 266

$$267 \quad e_{g,h}(v, w) = g(v)g(w) \sin(\theta(h(w) - h(v))), \quad e_f(v, w) = f(v) - f(w).$$

268 The right-hand-side of (4) is the edge-space inner product $\langle e_{g,h}, e_f \rangle$. Hence, as long as we choose a
 269 modulating feature h such that $e_{g,h}$ and e_f are not orthogonal, the expected momentum of $D[\theta h]g$
 will be nonzero.
 270

270 **Dynamics of Multi-Channel Signals and Observables.**271 **Theorem 3.9** (Expected multi-Feature Derivative). *Given the Schrödinger Laplacian $\Delta_f =$
272 $-\sum_{k \in [K]} \nabla_{f_k}^2$ and a normalized signal g , we have*

273
$$\frac{\partial}{\partial t} \mathcal{E}_{X_{f_k}}(g^{(t)}) = -2\text{Re}(\langle i\nabla_{f_k} g^{(t)}, W_{f_k} g^{(t)} \rangle) + \sum_{j \neq k} \langle [i\nabla_{f_j}^2, X_{f_k}] g^{(t)}, g^{(t)} \rangle. \quad (5)$$

274 Ideally, we would like the rate of change of the expected X_{f_k} location to be a smoothed version of
275 the expected ∇_{f_k} momentum. However, we see that in (5) there are additional cross terms. This
276 leads to the following definition.277 **Definition 3.10** (ϵ -Commuting Features). *A sequence of feature locations $\{f_1, f_2, \dots, f_K\}$ is said
278 to be ϵ -commuting if for every pair $i \neq j \in [K]$, the matrix $E_{i,j} = [X_{f_i}, \nabla_{f_j}] = X_{f_i} \nabla_{f_j} - \nabla_{f_j} X_{f_i}$
279 satisfies $\|E_{i,j}\|_{op} \leq \epsilon$.*280 For a sequence of ϵ commuting features, the dynamics is

281
$$\left\| \frac{\partial}{\partial t} \mathcal{E}_{X_{f_k}}(g^{(t)}) - 2\text{Re}(\langle i\nabla_{f_k} g^{(t)}, W_{f_k} g^{(t)} \rangle) \right\| \leq (K-1)\epsilon.$$

282 Hence, here as well we have the interpretation that for smooth enough signals, the rate of change of
283 all expected locations are close to their corresponding expected momenta.284 **Orthogonalizing The Feature Directions.** The signal $q : V \rightarrow \mathbb{R}^M$ in the raw data is not ϵ -
285 commuting in general. Hence, in Schrödinger GNNs, as a first step, we transform the feature y to
286 a sequence of features f_1, \dots, f_K which are ϵ -commuting. For example, one can plug each node
287 feature $q(n)$ into a simple MLP or a linear transformation Θ , to obtain $f(n) = \Theta(q(n))$. The
288 transformation Θ is optimized with respect to the following target.289 **Definition 3.11** (Position-Momentum Optimization (PMO)). *Given a signal $q \in \mathbb{R}^{N \times M}$, a linear
290 transformation $T \in \mathbb{R}^{M \times K}$, mapping q to $f = (f_1, f_2, \dots, f_K) = qT \in \mathbb{R}^{N \times K}$, is optimized w.r.t*

291
$$\min_{T \in \mathbb{R}^{M \times K}} \sum_{i \neq j}^K \|[\nabla_{f_j}^2, X_{f_i}]\|_{op}^2 + \lambda \sum_{k=1}^K (\|\nabla_{f_k}\|_\infty - 1)^2,$$

292 for some $\lambda > 0$.302 **Dynamics of the Variance.** Next, we derive the dynamics of the variance.303 **Theorem 3.12** (Time Derivative of Variance). *Let $g : V \rightarrow \mathbb{C}$ be a signal and $f : V \rightarrow \mathbb{R}$ a feature
304 location, and $\Delta_f = -\nabla_f^2$. The first-order derivative of variance with respect to time $t \in \mathbb{R}$ is*

305
$$\frac{\partial}{\partial t} \mathcal{V}_{X_f}(g^{(t)}) = \mathcal{E}_{i[\Delta_f, X_f^2]}(g^{(t)}) + 4\mathcal{E}_{X_f}(g^{(t)})\text{Re}(\langle i\nabla_f g^{(t)}, W_f g^{(t)} \rangle)$$

306 This mirrors the classical Schrödinger equation dynamics where variance evolution depends on both
307 the commutator $[\Delta, X^2]$ and the coupling between position and momentum. See Appendix B for
308 the classical correspondence.309 **Improving Signal Routing Through Modulation.** Here, we show that in typical situations mod-
310 ulating real-valued signals improve their signal routing measure. Consider the following setting. We
311 have a multilayer network where at each layer l we have a real-valued signal $g^{(l)}$ that we are allowed
312 to modulate by choosing the free parameter $\theta_l \in \mathbb{R}$ in $D[\theta_l h]g^{(l)}$. We then propagate the signal via
313 $\mathcal{S}[dt, f]D[\theta_l h]g^{(l)}$ for some small time step dt , and lastly apply a modulus nonlinearity to define the
314 signal at the next layer $g^{(l+1)} = |\mathcal{S}[dt, f]D[\theta_l h]g^{(l)}|$. Here, we can interpret $g^{(l)}$ as the signal at
315 time $l dt$, and the input to the network $g^{(0)}$ as the signal at time 0.316 Suppose that we would like to rout the signal to the feature location r , i.e., we would like
317 $\mathcal{P}_{X_f}(g^{(0)}, D[\theta_l h]g^{(l)}, r)$ to decrease in l by choosing appropriate θ_l . In this setting, since dt is
318 small, we can linearize the propagation of $g^{(l)}$ about $t = 0$, and obtain

319
$$\mathcal{P}_{X_f}(g^{(0)}, g^{(l+1)}, r) = \mathcal{P}_{X_f}(g^{(0)}, D[\theta_l h]g^{(l)}, r) + \frac{\partial}{\partial t} \mathcal{P}_{X_f}(g^{(0)}, \mathcal{S}[t, f]D[\theta_l h]g^{(l)}, r)|_{t=0} dt + O(dt^2)$$

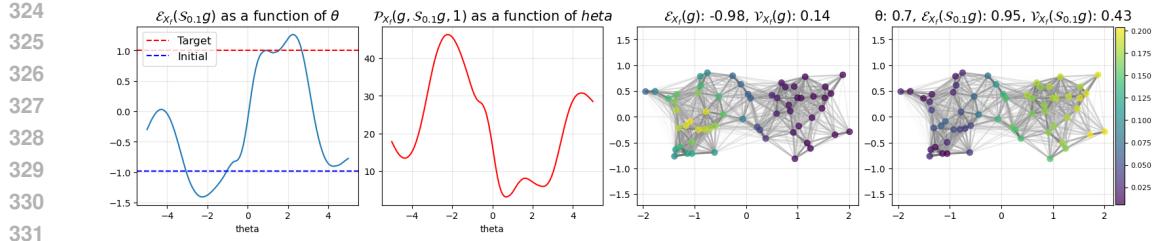


Figure 2: Signal transport under modulation.

$$= \mathcal{P}_{X_f}(g^{(0)}, g^{(l)}, r) + \frac{\partial}{\partial t} \mathcal{P}_{X_f}(g^{(0)}, \mathcal{S}[t, f] D[\theta_l h] g^{(l)}, r) |_{t=0} dt + O(dt^2),$$

where the last equality is due to the fact that $\mathcal{P}_{X_f}(g^{(0)}, D[\theta_l h] g^{(l)}, r)$ does not depend on θ_l . We would now like to know if modulating the signal at layer l improves the routing measure at layer $l + 1$. For that, it is enough to show that the derivative of $\mathcal{P}_{X_f}(g^{(0)}, g^{(l+1)}, r)$ with respect to θ_l is nonzero at $\theta_l = 0$. Observe that

$$\frac{\partial}{\partial \theta_l} \mathcal{P}_{X_f}(g^{(0)}, g^{(l+1)}, r) = \frac{\partial}{\partial \theta_l} \frac{\partial}{\partial t} \mathcal{P}_{X_f}(g^{(0)}, \mathcal{S}[t, f] D[\theta_l h] g^{(l)}, r) |_{t=0} + O(dt^2).$$

Hence, our goal is to show that $\mathcal{D} := \frac{\partial}{\partial \theta_l} \frac{\partial}{\partial t} \mathcal{P}_{X_f}(g^{(0)}, \mathcal{S}[t, f] D[\theta_l h] g^{(l)}, r) |_{t, \theta_l=0}$ is nonzero in general. As long as this is true, $\theta_l = 0$ is not the minimizer of $\mathcal{P}_{X_f}(g^{(0)}, g^{(l+1)}, r)$, so one can always choose a better modulation than $\theta_l = 0$.

We now simplify the notations and give a formula for $\mathcal{D} := \frac{\partial}{\partial \theta} \frac{\partial}{\partial t} \mathcal{P}_{X_f}(g, \mathcal{S}[t, f] D[\theta h] g, r) |_{t=\theta=0}$.

Claim 3.13 (Mixed Derivative of The Signal Routing Measure).

$$\frac{\partial}{\partial \theta} \frac{\partial}{\partial t} \mathcal{P}_{X_f}(g, \mathcal{S}[t, f] D[\theta h] g, r) \Big|_{t=\theta=0} = \frac{\langle [X_h, [\Delta, X_f^2]]g, g \rangle + 4r \operatorname{Re} \langle [X_h, W_f \nabla_f]g, g \rangle}{V_{X_f}(g)}$$

We see that when h is constant, i.e. there is no modulation, there is no modulation, \mathcal{D} is zero.

In Figure 2 we give an example of a graph, initial signal g with $E_{X_f}(g) = -0.98$, modulating feature $h = f$, and desired location value $r = 1$. We show that by choosing an appropriate modulation θ and propagating the signal using the Schrödinger operator to time $t = 0.1$ improves the signal routing measure with respect to not modulating.

Schrödinger Signal Processing. We define Schrödinger filters by considering linear combinations of the evolutions of the modulated signal with different modulations and times. Let $f : V \rightarrow \mathbb{R}^K$ be location features and $D \in \mathbb{N}$ be the output feature dimension. To use linear algebra notations, let us now treat signals and location features and vectors in $\mathbb{C}^{N \times J}$ and $\mathbb{R}^{N \times K}$ respectively. A Schrödinger filter Ψ is parameterized by $(t_m \in \mathbb{R}, \theta_m \in \mathbb{R}, \mathbf{W}^{(m)} \in \mathbb{C}^{J \times D}, \mathbf{T}^{(m)} \in \mathbb{R}^{K \times 1})_{m \in [M]}$, and maps signals $\mathbf{g} \in \mathbb{C}^{N \times J}$ to

$$\Psi(\mathbf{g}) \mathcal{F}(\mathbf{g}) = \sum_{m=1}^M \mathcal{S}[t_m, f] D[\theta_m f \cdot \mathbf{T}^{(m)}] \mathbf{g} \cdot \mathbf{W}^{(m)}.$$

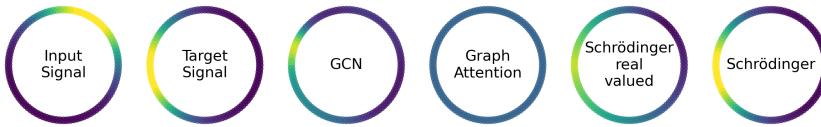
Schrödinger GNNs. The application of a Schrödinger GNN is a two-step procedure. First, the input features are optimized via Position-Momentum Optimization (PMO) (Definition 3.11) to obtain the location features f . Second, the Schrödinger GNN is trained using these fixed features. For nonlinearities within the network, we apply standard activations (e.g., ReLU) separately to the real and imaginary parts: $\sigma(z) = \operatorname{ReLU}(\operatorname{Re}(z)) + i \cdot \operatorname{ReLU}(\operatorname{Im}(z))$ or we used the absolute value $\sigma(z) = |z|$. See Appendix E.3 for full implementation details and Appendix E.3 for computational complexity analysis.

Uniform Time initialization. Schrödinger layers include a per channel real scaling parameter $t \in \mathbb{R}^{C_{\text{out}}}$. At initialization we draw each channel independently $t_j \sim \text{Uniform}(0, 1.5)$. Larger t

378 increases the contribution of higher order propagation steps (capturing longer range interactions),
 379 whereas smaller t biases updates toward local mixing. When learning is disabled we use a non-
 380 trainable scalar 1.0. We coined the name Adaptive Unitary for the layer with only the Unitary
 381 Schrödinger operator with different learnable t_j without modulation layer, In depth explanation in
 382 the Appendix E.3.

384 4 EXPERIMENTS

386 **Synthetic Experiment - Signal Propagation on a Cycle.**
 387 Here, we showcase the capability of Schrödinger GNN to
 388 direct the propagation of the signal with a toy regression
 389 experiment. Consider a cycle graph discretizing the unit
 390 circle, and the locations feature $x = \cos(\theta)$, where θ is
 391 the angle. Each signal in the dataset is a Gaussian with
 392 random mean μ and variance σ^2 , and with additive white
 393 noise. The target for each signal is the same gaussian
 394 mean shifted by a predetermine value d . The task is to
 395 learn a GNN that maps the input signal to the output sig-
 396 nal. This experiment shows that only Schrödinger GNN, with modulated input signal, can solve this
 397 task. A summary of dataset statistics is available in Appendix F.3.



403 Figure 3: Cycle graph (ring) signal transport. Each panel is a cycle graph in which node color
 404 intensity encodes the signal magnitude. All panels share the same color scale.

406 **MNIST Classification** We conduct an experiment
 407 on the classical MNIST dataset (28) to evaluate our
 408 model’s performance on a standard image classifi-
 409 cation task formulated as a graph problem. Each image
 410 is converted into a graph where each pixel is a node.
 411 Node features include the pixel’s intensity and its (x,
 412 y) coordinates. Edges connect each pixel to its eight
 413 closest neighbors. We ran each model five times for
 414 200 epochs. As shown in Table 2, our Schrödinger
 415 model achieves competitive performance. Further
 416 details are provided in Appendix F.4.

418 **Graph Classification - Architecture Matched**

419 **Comparison** To ensure a fair comparison across
 420 different GNN architectures, we conduct an additional evaluation on ENZYMES, IMDB, MU-
 421 TAG, and PROTEINS using a standardized architecture: three inner convolution layers followed
 422 by a final linear layer. For fairness, we match the parameter count across all methods by first
 423 computing the parameter count of a GCN model with hidden dimension 128, then adjusting the hidden
 424 dimensions of all other methods GAT, Unitary, Adaptive Unitary, Schrödinger, Schrödinger PMO
 425 (Position-Momentum Optimization before training) to match this parameter count within 0.6% tol-
 426 erance. This ensures that performance differences reflect architectural choices rather than model
 427 capacity. Each model-dataset combination was run 100 times with different random seeds, and the
 428 reported results show the mean and standard deviation across these runs. Results are reported in
 429 Table 3, for more details F.4.

430 **Peptides** Peptide-Func and Peptide-struct, two datasets taken from Long Range Graph Benchmark
 431 (LRGB) (14) comprise datasets that specifically test the ability of graph neural networks to capture
 long-distance dependencies between nodes. For this paper, we focus on the molecular property

Table 1: Test Losses for Ring Signal Transport

Model	Test Loss
GCN (25)	0.6644 ± 0.0720
GAT(53)	0.6050 ± 0.0052
Schrödinger real	0.9334 ± 0.0514
Schrödinger	$3e-04 \pm 2e-04$

Table 2: MNIST classification results (Test Accuracy). Results averaged over 5 runs.

MODEL	ACCURACY
GCN (25)	92.09 ± 0.28
ChebConv (12)	95.72 ± 0.74
GAT (53)	95.94 ± 0.71
GIN (56)	98.33 ± 0.11
MPNN (16)	98.95 ± 0.06
CNN (27)	99.07 ± 0.07
Schrödinger	99.13 ± 0.04

432 Table 3: Architecture-matched comparison results (Test AP \uparrow). All models use 3 convolution
 433 layers + 1 linear layer with matched parameter counts. Top-1/2/3 entries are highlighted
 434 green/orange/yellow, respectively.

436	Model	ENZYMEs	IMDB	MUTAG	PROTEINS
437	GIN (56)	31.93 ± 3.16	69.22 ± 3.14	78.19 ± 5.57	71.88 ± 3.08
438	GCN (25)	31.66 ± 5.35	50.6 ± 4.1	73.24 ± 6.27	71.41 ± 3.04
439	GAT (53)	31.13 ± 34.88	49.54 ± 2.54	75.21 ± 6.41	72.31 ± 3.28
440	Unitary (UniGCN) (23)	40.3 ± 6.63	65.42 ± 2.8	75.74 ± 6.67	69.19 ± 3.01
441	Adaptive Unitary	41.6 ± 5.18	65.46 ± 2.48	75.53 ± 5.95	71.79 ± 3.33
442	Adaptive Unitary PMO	41.83 ± 4.44	66.27 ± 3.01	75.62 ± 6.24	71.77 ± 2.84
443	Schrödinger	43.5 ± 4.89	65.86 ± 2.83	75.42 ± 6.11	71.57 ± 2.56
444	Schrödinger PMO	43.7 ± 3.37	69.6 ± 2.85	79.25 ± 6.19	72.68 ± 3.05

445
 446
 447 prediction datasets Peptides-func and Peptides-struct. Peptides-func is a graph-level classification
 448 task that determines functional characteristics of peptide molecules represented as graphs, while
 449 Peptides-struct is a graph-level regression task that predicts structural properties of these molecules,
 450 for more details F.8.

451
 452 Table 4: Performance on Peptides-Func and Peptides-Struct. **Bold** values indicate the best performing
 453 models for each metric: the highest AP for Peptides-Func and the lowest MAE for Peptides-
 454 Struct. Top-1/2/3 entries are highlighted green/orange/yellow, respectively. The results for the mod-
 455 els other than ours were taken from (20).

456	MODEL TYPE	MODEL	PEPTIDES-FUNC (AP \uparrow)	PEPTIDES-STRUCT (MAE \downarrow)
457	MP	GCN [†] (25)	68.60 ± 0.50	0.2460 ± 0.0007
458		GINE [†] (56)	66.21 ± 0.67	0.2473 ± 0.0017
459		GatedGCN [†] (3)	67.65 ± 0.47	0.2477 ± 0.0009
460		GUMP [‡] (41)	68.43 ± 0.37	0.2564 ± 0.0023
461	Others	GPS [†] (42)	65.34 ± 0.91	0.2509 ± 0.0014
462		DRew [‡] (17)	71.50 ± 0.44	0.2536 ± 0.0015
463		Exphormer [‡] (47)	65.27 ± 0.43	0.2481 ± 0.0007
464		GRIT [‡] (35)	69.88 ± 0.82	0.2460 ± 0.0012
465		Graph ViT [‡] (22)	69.42 ± 0.75	0.2449 ± 0.0016
466		CRAWL [‡] (34)	70.74 ± 0.32	0.2506 ± 0.0022
467		UniGCN [‡] (23)	70.72 ± 0.0035	0.2425 ± 0.0009
468		Lie UniGCN [‡] (23)	71.73 ± 0.0061	0.2460 ± 0.0011
469	Ours	Schrödinger	72.07 ± 0.0099	0.2439 ± 0.00122
470		Adaptive Unitary	71.29 ± 0.527	0.2467 ± 0.0011

471 [†]Reported performance taken from (52). [‡]Reported performance taken from (23).

478 5 SUMMARY

480 We presented a new approach for defining and analyzing signal propagation across graphs. The
 481 approach directly models where the information of the signal is, how well concentrated it is, and
 482 how well it is routed between regions in the graph. We presented Scrödinger GNN, a graph neural
 483 network that is able to route the information of the signal along any direction in the graph. We
 484 showed that standard GNNs do not have this capability. One limitation of Scrödinger filters with
 485 respect to simple polynomial filters is that applying the Scrödinger operator on a signal involves
 486 approximating the exponential of the GSO, which involves applying the GSO several times.

486 6 ETHICS STATEMENT
487
488
489
490
491
492
493
494
495
496
497
498499 This work presents theoretical and empirical contributions to graph neural networks using quantum-
500 inspired methods. All experiments use synthetic data or publicly available benchmarks (LRGB
501 Peptides, node classification datasets) with no privacy concerns or potential harm to subjects. The
502 research involves only technical graph data and raises no ethical concerns.
503504 7 REPRODUCIBILITY STATEMENT
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522523 We provide detailed proofs for all theorems, with additional analysis in the appendices. Imple-
524 mentation details including matrix exponential computation (Appendix E.1), hyperparameters (Ap-
525 pendix F.8), and synthetic experiment setups (Appendices F.3, F.1) are fully documented. The
526 Position-Momentum Optimization is specified in Definition 3.11. Source code will be released
527 on GitHub upon publication.
528
529
530
531
532
533
534
535

540 REFERENCES
541

542 [1] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical im-
543 plications. In *International Conference on Learning Representations (ICLR)*, 2021. URL
544 <https://arxiv.org/abs/2006.05205>.

545 [2] Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquash-
546 ing in GNNs through the lens of effective resistance. In *Proceedings of the 40th International*
547 *Conference on Machine Learning (ICML)*, volume 202 of *Proceedings of Machine Learning*
548 *Research*, pp. 2528–2547, 2023. URL <https://proceedings.mlr.press/v202/black23a.html>.

549 [3] Xavier Bresson and Thomas Laurent. Residual gated graph convnets, 2018. URL <https://arxiv.org/abs/1711.07553>.

550 [4] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
551 connected networks on graphs, 2014. URL <https://arxiv.org/abs/1312.6203>.

552 [5] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks, 2020. URL
553 <https://arxiv.org/abs/2006.13318>.

554 [6] Benjamin Paul Chamberlain, James Rowbottom, Maria Gorinova, Stefan Webb, Emanuele
555 Rossi, and Michael M. Bronstein. Grand: Graph neural diffusion, 2021. URL <https://arxiv.org/abs/2106.10934>.

556 [7] Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian, 2015. URL
557 <https://nyuscholars.nyu.edu/en/publications/a-lower-bound-for-the-smallest-eigenvalue-of-the-laplacian>.

558 [8] Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
559 variance reduction, 2018. URL <https://arxiv.org/abs/1710.10568>.

560 [9] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep
561 graph convolutional networks, 2020. URL <https://arxiv.org/abs/2007.02133>.

562 [10] Yun Young Choi, Sun Woo Park, Minho Lee, and Youngho Woo. Topology-informed graph
563 transformer, 2025. URL <https://arxiv.org/abs/2402.02005>.

564 [11] Fan Chung. Laplacians and the cheeger inequality for directed graphs, 04 2005.

565 [12] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
566 on graphs with fast localized spectral filtering, 2017. URL <https://arxiv.org/abs/1606.09375>.

567 [13] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to
568 graphs. In *AAAI Workshop on Deep Learning on Graphs: Methods and Applications*, 2021.
569 URL <https://arxiv.org/abs/2012.09699>.

570 [14] Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan
571 Luu, and Dominique Beaini. Long range graph benchmark, 2023. URL <https://arxiv.org/abs/2206.08164>.

572 [15] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric,
573 2019. URL <https://arxiv.org/abs/1903.02428>.

574 [16] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
575 Neural message passing for quantum chemistry, 2017. URL <https://arxiv.org/abs/1704.01212>.

576 [17] Francesco Di Giovanni, T. Konstantin Rusch, and Michael M. Bronstein. Drew: Dynamical-
577 ly rewired message passing with delay, 2024. URL <https://arxiv.org/abs/2402.02944>.

[18] Simon Halvdansson, Jan-Fredrik Olsen, Nir Sochen, and Ron Levie. Existence of uncertainty minimizers for the continuous wavelet transform. *Mathematische Nachrichten*, 296(3):1156–1172, January 2023. ISSN 1522-2616. doi: 10.1002/mana.202100466. URL <http://dx.doi.org/10.1002/mana.202100466>.

[19] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In *Advances in Neural Information Processing Systems*, volume 30, 2017. URL <https://arxiv.org/abs/1706.02216>.

[20] Ali Hariri, Álvaro Arroyo, Alessio Gravina, Moshe Eliasof, Carola-Bibiane Schönlieb, Davide Bacciu, Kamyar Azizzadenesheli, Xiaowen Dong, and Pierre Vandergheynst. Return of chebnet: Understanding and improving an overlooked gnn on long range tasks, 2025. URL <https://arxiv.org/abs/2506.07624>.

[21] Hongwei He, Wenhan Wei, and Zhiguo Wen. Convolutional neural networks on graphs with chebyshev interpolation. In *Advances in Neural Information Processing Systems*, volume 35, pp. 25010–25022, 2022.

[22] Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A generalization of vit/mlp-mixer to graphs, 2023. URL <https://arxiv.org/abs/2212.13350>.

[23] Bobak T. Kiani, Lukas Fesser, and Melanie Weber. Unitary convolutions for learning on graphs and groups, 2024. URL <https://arxiv.org/abs/2410.05499>.

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL <https://arxiv.org/abs/1412.6980>.

[25] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks, 2017. URL <https://arxiv.org/abs/1609.02907>.

[26] Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio Tossou. Rethinking graph transformers with spectral attention, 2021. URL <https://arxiv.org/abs/2106.03893>.

[27] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

[28] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The MNIST database of handwritten digits, 1998. URL <http://yann.lecun.com/exdb/mnist/>.

[29] Ron Levie and Nir Sochen. Uncertainty principles and optimally sparse wavelet transforms, 2018. URL <https://arxiv.org/abs/1707.04863>.

[30] Ron Levie and Nir Sochen. A wavelet plancherel theory with application to multipliers and sparse approximations, 2021. URL <https://arxiv.org/abs/1712.02770>.

[31] Ron Levie, H-G Stark, Florian Lieb, and Nir Sochen. Adjoint translation, adjoint observable and uncertainty principles. *Advances in computational mathematics*, 40(3):609–627, 2014.

[32] Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein. Cayleynets: Graph convolutional neural networks with complex rational spectral filters. *IEEE Transactions on Signal Processing*, 67(1):97–109, 2019. doi: 10.1109/TSP.2018.2879624.

[33] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-supervised learning, 2018. URL <https://arxiv.org/abs/1801.07606>.

[34] Zhen Liu, Yuxuan Liang, Yao Ma, Xin Wang, Yunkai Zhang, and Jiliang Tang. Crawl: Efficient and scalable graph neural network training with cached random walks, 2024. URL <https://arxiv.org/abs/2402.08741>.

[35] Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates, Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing, 2023. URL <https://arxiv.org/abs/2305.17589>.

648 [36] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann. Tudataset: A collection of benchmark datasets for learning with graphs, 2020.
 649 URL <https://arxiv.org/abs/2007.08663>.

650

651 [37] Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
 652 Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. *International
 653 Conference on Machine Learning*, 2023. URL [https://proceedings.mlr.
 654 press/v202/nguyen23c.html](https://proceedings.mlr.press/v202/nguyen23c.html).

655 [38] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
 656 node classification, 2021. URL <https://arxiv.org/abs/1905.10947>.

657

658 [39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
 659 Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
 660 Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
 661 Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
 662 high-performance deep learning library, 2019. URL [https://arxiv.org/abs/1912.
 663 01703](https://arxiv.org/abs/1912.01703).

664

665 [40] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
 666 Prokhorenkova. A critical look at the evaluation of GNNs under heterophily: Are we re-
 667 ally making progress? In *International Conference on Learning Representations*, 2023. URL
 668 <https://openreview.net/forum?id=tJbbQfw-5wv>.

669

670 [41] Haiquan Qiu, Yatao Bian, and Quanming Yao. Graph unitary message passing, 2024. URL
 671 <https://arxiv.org/abs/2403.11199>.

672

673 [42] Ladislav Rampášek, Dominique Beaini, Cristian Gaboardi, Oscar Gargiulo, Mohammad
 674 Galkin, Ruben Wiersma, Guy Wolf, and Anh Tuan Luu. Gps++: An optimised hybrid
 675 mpnn/transformer, 2023. URL <https://arxiv.org/abs/2405.18428>.

676

677 [43] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
 678 convolutional networks on node classification, 2020. URL [https://arxiv.org/abs/
 679 1907.10903](https://arxiv.org/abs/1907.10903).

680

681 [44] T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A survey on oversmooth-
 682 ing in graph neural networks, 2023. URL <https://arxiv.org/abs/2303.10993>.

683

684 [45] Aliaksei Sandryhaila and Jose M. F. Moura. Discrete signal processing on graphs: Frequency
 685 analysis, 2013. URL <https://arxiv.org/abs/1307.0468>.

686

687 [46] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfar-
 688 dini. The graph neural network model. *IEEE Transactions on Neural Networks*, 20(1):61–80,
 689 2009. URL <https://ieeexplore.ieee.org/document/4700287>.

690

691 [47] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, and Ali Kemal
 692 Sinop. Exphormer: Sparse transformers for graphs, 2023. URL [https://arxiv.org/
 693 abs/2303.06147](https://arxiv.org/abs/2303.06147).

694

695 [48] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field
 696 of signal processing on graphs: Extending high-dimensional data analysis to networks and
 697 other irregular domains. *IEEE Signal Processing Magazine*, 30(3):83–98, May 2013. ISSN
 698 1053-5888. doi: 10.1109/msp.2012.2235192. URL [http://dx.doi.org/10.1109/
 699 MSP.2012.2235192](http://dx.doi.org/10.1109/MSP.2012.2235192).

700

701 [49] Yang Sun, Wei Hu, Fang Liu, Min Jiang, FeiHu Huang, and Dian Xu. Speformer: An efficient
 702 hardware-software cooperative solution for sparse spectral transformer, 2022.

703

704 [50] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
 705 Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic,
 706 and Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision, 2021. URL <https://arxiv.org/abs/2105.01601>.

[51] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature, 2022. URL <https://arxiv.org/abs/2111.14522>.

[52] Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassessing the long-range graph benchmark, 2023. URL <https://arxiv.org/abs/2309.00367>.

[53] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks, 2018. URL <https://arxiv.org/abs/1710.10903>.

[54] Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph sequence modeling with selective state spaces, 2024. URL <https://arxiv.org/abs/2402.00789>.

[55] Junjie Xu, Enyan Dai, Xiang Zhang, and Suhang Wang. Hp-gmn: Graph memory networks for heterophilous graphs, 2022. URL <https://arxiv.org/abs/2210.08195>.

[56] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?, 2019. URL <https://arxiv.org/abs/1810.00826>.

[57] Jiaxuan You, Rex Ying, and Jure Leskovec. Design space for graph neural networks, 2021. URL <https://arxiv.org/abs/2011.08843>.

[58] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns, 2020. URL <https://arxiv.org/abs/1909.12223>.

[59] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang. Building efficient deep neural networks with unitary group convolutions, 2019. URL <https://arxiv.org/abs/1811.07755>.

A BACKGROUND AND RELATED WORK

A.1 SPECTRAL GNNs

Spectral GNNs define graph convolutions via the spectral domain. Let Δ be a self-adjoint GSO with $\{\mathbf{v}_j\}_{j=1}^N$ and $\{\lambda_j\}^N$ which are the eigenvectors and eigenvalues so that $\Delta = \sum_{i=1}^N \lambda_i \mathbf{v}_i \mathbf{v}_i^\top$. Given a signal $\mathbf{X} \in \mathbb{R}^{N \times d}$ and a function $\mathbf{Q} : \mathbb{R} \rightarrow \mathbb{R}^{d' \times d}$, the spectral filter $\mathbf{Q}(\Delta) : \mathbb{R}^{N \times d} \rightarrow \mathbb{R}^{N \times d'}$ is defined by

$$\mathbf{Q}(\Delta) \mathbf{X} := \sum_{i=1}^N \mathbf{v}_i \mathbf{v}_i^\top \mathbf{X} \mathbf{Q}(\lambda_i)^\top. \quad (6)$$

A spectral GNN layer then applies $\mathbf{X}^{\ell+1} = \sigma(\mathbf{Q}_\ell(\Delta) \mathbf{X}^\ell)$ with trainable \mathbf{Q}_ℓ and nonlinearity σ . For more examples (4; 12; 32).

A.2 UNITARY GNNs

Unitary GNNs are a class of graph neural networks designed to address fundamental challenges in deep graph learning, particularly oversmoothing and oversquashing, through the use of unitary transformations that preserve signal norms and maintain feature distinctiveness across layers. Known methods include Graph Unitary Message Passing (GUMP) (41) which transforms the adjacency matrix to be unitary, Unitary Group Convolutions (UGConvs) (59) which apply unitary transforms on groups, and Separable Unitary Convolution (UniConv/UniGCN) (23) which employs a unitary graph convolution. While UniConv utilizes a parameterization of unitary matrices (often based on Cayley transforms or Lie algebra generators) to maintain norm preservation, it fundamentally acts as a mixing operation within the spectral domain. In contrast, our Schrödinger GNN leverages the unitary operator specifically as a time evolution operator generated by a feature dependent Hamiltonian. This allows for directional signal routing steered by the underlying potential (the features), rather

than just mixing. Furthermore, Schrödinger GNN separates the "location" and "signal" aspects, optimizing the location features to maximize transport capability, a mechanism absent in standard unitary GNNs.

A.3 OVERSMOOTHING AND OVERSQUASHING

Most works addressing the over-smoothing and over-squashing problems begin by considering the basic architecture of graph neural networks, the Message Passing Neural Network (MPNN) (16).

Definition A.1 (Message Passing Neural Network). *Given a graph $G = (V, E)$ with node features $X \in \mathbb{R}^{N \times d}$, an MPNN updates node representations through:*

$$h_v^{(\ell+1)} = \phi_\ell \left(h_v^{(\ell)}, \sum_{w \in \mathcal{N}(v)} \psi_\ell(h_v^{(\ell)}, h_w^{(\ell)}) \right)$$

where $h_v^{(0)} = x_v$, ϕ_ℓ is the update function, and ψ_ℓ is the message function.

Over-smoothing in GNNs refers to the tendency of node representations to become indistinguishable as network depth increases (44). The Dirichlet energy provides a standard measure for this phenomenon

Definition A.2 (Dirichlet Energy). *For a signal $f : V \rightarrow \mathbb{R}$ and normalized Laplacian $\tilde{\Delta}$, the Dirichlet energy is*

$$\langle f, \tilde{\Delta} f \rangle = \frac{1}{2} \sum_{(i,j) \in E} w_{ij} \left(\frac{f(i)}{\sqrt{d_i}} - \frac{f(j)}{\sqrt{d_j}} \right)^2$$

where w_{ij} are edge weights and d_i is the degree of vertex i .

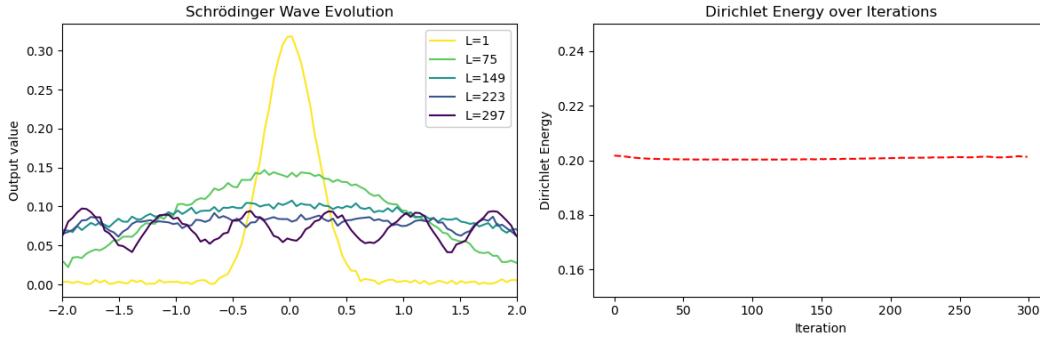


Figure 4: Evolution of a Gaussian signal on a ring graph under a unitary operator. The left plot shows the signal at different iterations (L), demonstrating that the signal's structure is preserved and does not smooth out. The right plot shows that the Dirichlet energy remains constant throughout the evolution. While unitary operators preserve Dirichlet energy, this example illustrates that it is more accurately described as a measure of oscillation rather than a measure of oversmoothing, as the signal maintains its local structure.

While Dirichlet energy has emerged as the dominant measure for analyzing over-smoothing in GNNs (44), it provides only a partial view of signal propagation dynamics. Dirichlet energy was first introduced to the GNN literature as a measure of signal smoothness across graph structures (5). It has since become the standard tool for analyzing over-smoothing phenomena. In the context of quantum mechanical observables, Dirichlet energy can be interpreted as the expected value of the observable Laplacian operator. However, this observable fundamentally measures the rate of change between neighboring nodes, essentially capturing local gradient information in the spatial domain, which corresponds to momentum space properties (see Theorem G.1). This perspective reveals critical limitations of Dirichlet energy: its local focus only captures immediate neighborhood relationships, missing long-range dependencies crucial for understanding over-squashing phenomena and signals whose mass is concentrated in specific graph neighborhoods. For GNN analysis, it is

810 beneficial to have the ability to quantify signal "transport" or understand relative signal localization.
 811

820 Figure 5: signal transport
 821

823 Beyond the well known *over-smoothing* effect, MPNNs also suffer from *over-squashing*, where
 824 long-range information is compressed through topological bottlenecks and becomes effectively in-
 825 visible to distant nodes. (1) showed first heuristics of over squashing and claim that the cause of
 826 bottlenecks is due the exponential growth of the node receptive field (8)

827 **Definition A.3** (Node Receptive Field Set). *Given graph $\mathcal{G} = (V, E)$, $r \in \mathbb{N}$ and node $v \in V$ the
 828 Receptive Field is*

$$829 B_r(v) := \{w \in V : d_G(v, w) \leq r\},$$

830 where d_G is the shortest path length on the graph
 831

832 (1) argued that oversquashing occurs when exponentially many messages are compressed into fixed-
 833 size vectors. (51) formalized this via sensitivity analysis:

834 **Definition A.4** (Oversquashing via Sensitivity). *Oversquashing occurs when the representation $h_v^{(\ell)}$
 835 at node v fails to be sufficiently affected by input features x_w of distant nodes w . This is measured
 836 by the Jacobian $\|\partial h_v^{(\ell)} / \partial x_w\|$.*
 837

838 **Lemma A.5** (r - distance Sensitivity Bound (51)). *Let $S_r(v) := \{w \in V : d_G(v, w) = r\}$. For an
 839 MPNN with bounded gradients $\|\nabla \phi_\ell\| \leq \alpha$ and $\|\nabla \psi_\ell\| \leq \beta$, if $w \in S_{r+1}(v)$, then*

$$840 \left\| \frac{\partial h_v^{(r+1)}}{\partial x_w} \right\| \leq (\alpha \beta)^{r+1} (A^{r+1})_{vw} \quad (7)$$

843 where A is the adjacency matrix and $(A^{r+1})_{vw}$ counts paths of length $r+1$ from w to v .
 844

845 This bound reveals oversquashing, when $(A^r)_{vw}$ decays exponentially with distance (e.g., in trees),
 846 distant nodes have vanishing influence, creating information bottlenecks. (51) also connects to the
 847 Cheeger constant,

$$848 2h_G \geq \lambda_1 \geq \frac{h_G^2}{2}$$

849 which is a result from the Cheeger constant (7; 11)

$$850 h_G := \min_{S \subset V} h_S, \quad h_S := \frac{|\partial S|}{\min\{\text{vol}(S), \text{vol}(V \setminus S)\}}$$

851 and to the Cheeger inequality,

$$852 2h_G \geq \lambda_1 \geq \frac{h_G^2}{2}$$

853 which bounds the spectral gap. Here, λ_1 is the first non-zero eigenvalue of the normalized Laplacian;
 854 $\partial S = \{(i, j) : i \in S, j \in V \setminus S\}$; and $\text{vol}(S) = \sum_{i \in S} d_i$. The spectral gap can be interpreted as
 855 how well two partitions of a graph are connected. They use the spectral gap to support their graph
 856 curvature method and argue that negative edge curvature indicates its potential role in contributing
 857 to the oversquashing issue.

$$858 \text{Ric}(i, j) = \frac{2}{d_i} + \frac{2}{d_j} - 2 + 2 \frac{|\#_\Delta(i, j)|}{\max\{d_i, d_j\}}$$

864 where $\#\triangle(i, j)$ counts triangles containing edge (i, j) . Negative curvature indicates potential over-
 865 squashing bottlenecks. Later work argued that not only edges are an indicator of oversquashing, but
 866 the relation between every two nodes on the graph. (2) base their method also on the spectral gap,
 867 and showcase their form of measure between two nodes, the effective resistance

868 **Definition A.6** (Effective Resistance). *For two nodes $u, v \in V$ their effective resistance is*

$$870 \quad R_{u,v} = (1_u - 1_v)^\top \Delta^\dagger (1_v - 1_u)$$

871 where Δ^\dagger is the pseudoinverse of the graph Laplacian.

873 (2) generalized the sensitivity analysis to arbitrary node pairs using effective resistance:

874 **Lemma A.7** (Effective Resistance Sensitivity Bound). *For an MPNN with bounded gradients
 875 $\|\nabla\phi_\ell\| \leq \alpha$ and $\|\nabla\psi_\ell\| \leq \beta$, the sensitivity between nodes u, v at layer r satisfies:*

$$877 \quad \left\| \frac{\partial h_v^{(r)}}{\partial x_u} \right\| \leq (\alpha\beta)^r \cdot \exp(-c \cdot r \cdot R_{u,v})$$

880 where $R_{u,v}$ is the effective resistance and $c > 0$ is a constant depending on the graph.

881 This bound shows that sensitivity decays exponentially with both distance and effective resistance,
 882 providing a more refined measure than path counting alone.

884 While these methods analyze oversquashing from graph topology, we propose that the choice of
 885 graph shift operator (GSO) also critically affects susceptibility to oversquashing. Different GSOs
 886 encode distinct notions of signal propagation, making some inherently more prone to information
 887 bottlenecks than others.

888 B SCHRÖDINGER IN CLASSICAL QUANTUM MECHANICS

891 Our graph based Schrödinger framework extends classical quantum mechanics. Understanding the
 892 classical case provides intuition for why real-valued graph signals require modulation to achieve
 893 directional transport, and establishes the theoretical foundations for our propagation measures. In
 894 this section, we establish the classical quantum mechanical foundations using our graph notation for
 895 consistency. Here, g represents a continuous wavefunction $g : \mathbb{R} \rightarrow \mathbb{C}$, the feature location $f(x) = x$
 896 is the spatial coordinate, and X_f is the position operator acting as $(X_f g)(x) = x \cdot g(x)$. This can
 897 be understood both mathematically and intuitively: a real wave function represents a standing wave
 898 with equal probability of movement in opposite directions, resulting in no net momentum. More
 899 formally, for a real-valued wave function $g(x)$, we have

$$900 \quad \mathcal{E}_{i\nabla_f}(g) = \langle g, i\nabla_f g \rangle = -i\hbar \int g(x) \frac{\partial}{\partial x} g(x) dx = 0$$

902 This property presents a challenge when we want to model directional information flow in graph
 903 neural networks, as real-valued node features would similarly lack directional momentum. We wish
 904 to understand how the wave function evolves in the classical case, so we need to understand the
 905 expected location derivative, also known as the Heisenberg motion equation.

906 **Theorem B.1** (Heisenberg Equation of Motion for Expected Values). *Let $g_t = \mathcal{S}_t g$ where $\mathcal{S}_t =$
 907 $e^{-it\Delta}$ is the Schrödinger evolution operator with Hamiltonian Δ . For any observable A , the derivative
 908 of its expected value with respect to t is*

$$909 \quad \frac{\partial}{\partial t} \mathcal{E}_A(g_t) = i \langle [\Delta, A] g_t, g_t \rangle$$

912 *Proof.* We prove this using the limit definition and the expansion of the Schrödinger operator

$$914 \quad \frac{\partial}{\partial t} \mathcal{E}_A(g_t) = \lim_{h \rightarrow 0} \frac{\mathcal{E}_A(g_{t+h}) - \mathcal{E}_A(g_t)}{h}$$

916 Since $g_{t+h} = \mathcal{S}_h g_t$ and $\mathcal{S}_h = e^{-ih\Delta}$:

$$917 \quad \mathcal{E}_A(g_{t+h}) = \langle A g_{t+h}, g_{t+h} \rangle = \langle A \mathcal{S}_h g_t, \mathcal{S}_h g_t \rangle = \langle \mathcal{S}_{-h} A \mathcal{S}_h g_t, g_t \rangle$$

918 Expanding $\mathcal{S}_h = e^{-ih\Delta} = I - ih\Delta + O(h^2)$ and $\mathcal{S}_{-h} = I + ih\Delta + O(h^2)$:

$$\begin{aligned} 919 \mathcal{S}_{-h}A\mathcal{S}_h &= (I + ih\Delta)A(I - ih\Delta) + O(h^2) \\ 920 &= A + ih\Delta A - ihA\Delta + O(h^2) \\ 921 &= A + ih[\Delta, A] + O(h^2) \\ 922 \\ 923 \end{aligned}$$

924 Taking the limit

$$925 \frac{\partial}{\partial t}\mathcal{E}_A(g_t) = \lim_{h \rightarrow 0} \frac{\langle (A + ih[\Delta, A])g_t, g_t \rangle - \langle Ag_t, g_t \rangle}{h} = i\langle [\Delta, A]g_t, g_t \rangle$$

□

930 **Theorem B.2** (Expected Position Evolution in Classical Case). *Let $g_t = \mathcal{S}_t g$ with $\mathcal{S}_t = e^{-it\Delta}$*
 931 *where $\Delta = -\frac{\partial^2}{\partial x^2}$. Then the expected position evolves linearly with t*

$$932 \mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g_0) - 2t\mathcal{E}_{i\nabla_f}(g_0)$$

934 *Proof.* From Theorem B.1, we have

$$936 \frac{\partial}{\partial t}\mathcal{E}_{X_f}(g_t) = i\langle [\Delta, X_f]g_t, g_t \rangle$$

939 Computing the commutator $[\Delta, X_f] = [-\frac{\partial^2}{\partial x^2}, X_f]$: for any function h ,

$$941 [-\frac{\partial^2}{\partial x^2}, X_f]h = -\frac{\partial^2}{\partial x^2}(xh) + x\frac{\partial^2 h}{\partial x^2} = -2\frac{\partial h}{\partial x} = 2i(i\frac{\partial h}{\partial x}) = 2i(i\nabla_f h)$$

944 Therefore $[\Delta, X_f] = 2i(i\nabla_f)$ and

$$946 \frac{\partial}{\partial t}\mathcal{E}_{X_f}(g_t) = i\langle 2i(i\nabla_f)g_t, g_t \rangle = -2\mathcal{E}_{i\nabla_f}(g_t)$$

948 Next, we show that momentum is conserved:

$$949 \frac{\partial}{\partial t}\mathcal{E}_{i\nabla_f}(g_t) = i\langle [\Delta, i\nabla_f]g_t, g_t \rangle$$

952 Since $[\Delta, i\nabla_f] = [-\frac{\partial^2}{\partial x^2}, i\frac{\partial}{\partial x}] = 0$

$$954 \frac{\partial}{\partial t}\mathcal{E}_{i\nabla_f}(g_t) = 0$$

956 Thus $\mathcal{E}_{i\nabla_f}(g_t) = \mathcal{E}_{i\nabla_f}(g_0)$ for all t . Integrating the position equation

$$957 \mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g_0) + \int_0^t (-2\mathcal{E}_{i\nabla_f}(g_0))ds = \mathcal{E}_{X_f}(g_0) - 2t\mathcal{E}_{i\nabla_f}(g_0)$$

□

961 For real-valued signals, the expected location remains constant under Schrödinger evolution, which
 963 motivates the need for modulation to achieve directional transport.

964 **Theorem B.3** (Linear Evolution of Expected Feature in the Classical Case). *Given two real valued*
 965 *signals g, h such that g is modulated by h at the initial state $g_0 = D_{i\theta h}g$, the evolution of the*
 966 *expected feature is*

$$967 \mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g) - t\theta \int h'(x)|g(x)|^2 dx$$

970 *Proof.* Using the basic evolution from Theorem B.2 and that expected location is invariant to mod-
 971 ulation:

$$\mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g_0) + t\mathcal{E}_{i\nabla_f}(g_0) = \mathcal{E}_{X_f}(g) + t\mathcal{E}_{i\nabla_f}(g_0)$$

972 Isolating the expected momentum:

$$\begin{aligned}
 974 \quad t\mathcal{E}_{i\nabla_f}(g_0) &= ti \int \overline{g(x)e^{i\theta h(x)}} \frac{d}{dx}(g(x)e^{i\theta h(x)})dx = ti \int \overline{g(x)e^{-i\theta h(x)}}(g'(x)e^{i\theta h(x)} + i\theta h'(x)g(x)e^{i\theta h(x)})dx \\
 975 \\
 976 \quad &= t\mathcal{E}_{i\nabla_f}(g) - t\theta \int h'(x)|g(x)|^2dx
 \end{aligned}$$

978 Substituting back into the equation:

$$980 \quad \mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g) - t\theta \int h'(x)|g(x)|^2dx$$

982 \square

983 **Theorem B.4** (Real Signals Have Constant Expected Position). *For any real-valued signal $g : \mathbb{R} \rightarrow \mathbb{R}$, the expected position remains constant under Schrödinger evolution:*

$$986 \quad \mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g) \quad \text{for all } t$$

988 *Proof.* From Theorem B.2, $\mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g) - 2t\mathcal{E}_{i\nabla_f}(g)$. For real-valued g , we have $\mathcal{E}_{i\nabla_f}(g) = 0$ since $\langle g, i\nabla_f g \rangle = -i \int g(x)g'(x)dx = 0$. Therefore $\mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g)$. \square

990 **Theorem B.5** (Time Derivative of Position Variance in the Free Schrödinger Case). *Let $g \in L^2(\mathbb{R})$ be a normalized wavefunction, and let $g_t = e^{-it\Delta}g$ denote the free Schrödinger evolution with $\Delta = -\nabla_f^2$. Then the time derivative of the variance of position is:*

$$994 \quad \frac{\partial}{\partial t} \mathcal{V}_{X_f}(g_t) = \mathcal{E}_{i[\Delta, X_f^2]}(g_t) + 4(\mathcal{E}_{X_f}(g) - 2t\mathcal{E}_{i\nabla_f}(g))\mathcal{E}_{i\nabla_f}(g)$$

996 *Proof of Theorem B.5.* The variance of X_f at time t is:

$$998 \quad \mathcal{V}_{X_f}(g_t) = \mathcal{E}_{X_f^2}(g_t) - \mathcal{E}_{X_f}(g_t)^2.$$

1000 Differentiating with respect to t and using the free particle result $\mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g) - 2t\mathcal{E}_{i\nabla_f}(g)$ and that the time derivative of the expected position equals the expected momentum (with our conventions $\frac{\partial}{\partial t}\mathcal{E}_{X_f}(g_t) = -2\mathcal{E}_{i\nabla_f}(g)$):

$$1003 \quad \frac{\partial}{\partial t} \mathcal{V}_{X_f}(g_t) = \frac{\partial}{\partial t} \mathcal{E}_{X_f^2}(g_t) - 2\mathcal{E}_{X_f}(g_t) \cdot \frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t) = \frac{\partial}{\partial t} \mathcal{E}_{X_f^2}(g_t) + 4\mathcal{E}_{X_f}(g_t)\mathcal{E}_{i\nabla_f}(g).$$

1005 Under unitary Schrödinger evolution, for any observable A :

$$1007 \quad \frac{\partial}{\partial t} \mathcal{E}_A(g_t) = \mathcal{E}_{i[\Delta, A]}(g_t).$$

1009 Thus, substituting $A = X_f^2$ and $\mathcal{E}_{X_f}(g_t) = \mathcal{E}_{X_f}(g) - 2t\mathcal{E}_{i\nabla_f}(g)$ yields

$$1011 \quad \frac{\partial}{\partial t} \mathcal{V}_{X_f}(g_t) = \mathcal{E}_{i[\Delta, X_f^2]}(g_t) + 4(\mathcal{E}_{X_f}(g) - 2t\mathcal{E}_{i\nabla_f}(g))\mathcal{E}_{i\nabla_f}(g).$$

1013 \square

1014 C SCHRÖDINGER DYNAMICS

1017 **Theorem C.1** (Expected Momentum Conservation). *For the Schrödinger evolution $g_t = \mathcal{S}_t g$, the expected momentum is conserved:*

$$1019 \quad \mathcal{E}_{i\nabla_f}(g_t) = \mathcal{E}_{i\nabla_f}(g) \quad \text{for all } t$$

1021 *Proof of Theorem 3.4.* We showed previously that the Schrödinger operator is unitary and that it 1022 commutes with ∇_f because it is represented by a sum of identity matrices and powers of ∇_f itself, 1023 thus we can say:

$$1024 \quad \mathcal{E}_{i\nabla_f}(\mathcal{S}_t g) = \langle i\nabla_f \mathcal{S}_t g, \mathcal{S}_t g \rangle = \langle i\mathcal{S}_{-t} \nabla_f \mathcal{S}_t g, g \rangle = \langle i\nabla_f g, g \rangle$$

1025 \square

1026
 1027 **Definition C.2** (ϵ – f Regular Signal). Let $G = (V, E)$ be a graph, $f : V \rightarrow \mathbb{R}$ be a signal, and
 1028 W_f be the f -smoothing operator, a signal $g : V \rightarrow \mathbb{C}$ is called ϵ – f regular if there exists a signal
 1029 e_g such that

$$1029 \quad W_f g = g + e_g, \quad \|e_g\|_2 \leq \epsilon$$

1030 **Lemma C.3** (Smoothing Operator as Commutator).

$$1032 \quad W_f = -i[\nabla_f, X_f] = -i(\nabla_f X_f - X_f \nabla_f)$$

1033 *Proof.* For any signal g and vertex v :

$$1035 \quad ([\nabla_f, X_f]g)(v) = (\nabla_f X_f g)(v) - (X_f \nabla_f g)(v) \\ 1036 \quad = i \sum_{w \in V} a_{v,w} (f(w) - f(v)) f(w) g(w) - f(v) \cdot i \sum_{w \in V} a_{v,w} (f(w) - f(v)) g(w) \\ 1038 \quad = i \sum_{w \in V} a_{v,w} (f(w) - f(v))^2 g(w) = i(W_f g)(v)$$

1041 Therefore $W_f = -i[\nabla_f, X_f]$. □

1042 **Lemma C.4** (Commutator Expansion for Schrödinger Laplacian). For the Schrödinger Laplacian
 1043 $\Delta = -\nabla_f^2$ and feature operator X_f , we have:

$$1045 \quad i[\Delta, X_f] = -i\nabla_f W_f - iW_f \nabla_f$$

1046 where $W_f = [\nabla_f, X_f]$ is the f -smoothing operator.

1047 *Proof.* Using the product rule for commutators $[AB, C] = A[B, C] + [A, C]B$, we have:

$$1050 \quad i[\Delta, X_f] = i[-\nabla_f^2, X_f] = -i[\nabla_f^2, X_f] = -i[\nabla_f \nabla_f, X_f] \\ 1051 \quad = -i\nabla_f [\nabla_f, X_f] - i[\nabla_f, X_f] \nabla_f \\ 1052 \quad = -i\nabla_f W_f - iW_f \nabla_f$$

1054 □

1055 *Proof of Theorem 3.6.* We start from the limit definition of the time derivative:

$$1057 \quad \frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t) = \lim_{h \rightarrow 0} \frac{\mathcal{E}_{X_f}(g_{t+h}) - \mathcal{E}_{X_f}(g_t)}{h}.$$

1058 Because $g_{t+h} = \mathcal{S}_h g_t$ and \mathcal{S}_t is unitary, we may write

$$1061 \quad \mathcal{E}_{X_f}(g_{t+h}) = \langle X_f \mathcal{S}_h g_t, \mathcal{S}_h g_t \rangle = \langle \mathcal{S}_{-h} X_f \mathcal{S}_h g_t, g_t \rangle.$$

1062 Using the Hadamard lemma $\mathcal{S}_{-h} X_f \mathcal{S}_h = X_f + h i[\Delta, X_f] + o(h)$ we obtain

$$1064 \quad \mathcal{E}_{X_f}(g_{t+h}) - \mathcal{E}_{X_f}(g_t) = \langle h i[\Delta, X_f] g_t, g_t \rangle + o(h) \\ 1065 \quad = h \langle i[\Delta, X_f] g_t, g_t \rangle + o(h).$$

1066 Dividing by h and taking $h \rightarrow 0$ gives

$$1068 \quad \frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t) = \langle i[\Delta, X_f] g_t, g_t \rangle.$$

1070 Substituting $\Delta = -\nabla_f^2$ and using Lemma C.4 yields

$$1072 \quad \frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t) = -(\langle i\nabla_f W_f g_t, g_t \rangle + \langle W_f i\nabla_f g_t, g_t \rangle)$$

1074 $i\nabla_f$ is hermitian

$$1076 \quad = -(\langle W_f g_t, i\nabla_f g_t \rangle + \langle i\nabla_f g_t, W_f g_t \rangle) \\ 1077 \quad = -(\overline{\langle i\nabla_f g_t, W_f g_t \rangle} + \langle i\nabla_f g_t, W_f g_t \rangle) = -2 \operatorname{Re}(\langle i\nabla_f g_t, W_f g_t \rangle)$$

1078 where we used the fact that W_f is self-adjoint, the properties of inner products, and the identities
 1079 $\operatorname{Re}(z) = \frac{z + \bar{z}}{2}$ and $\operatorname{Im}(z) = \frac{z - \bar{z}}{2i} = -i\operatorname{Re}(iz)$. □

1080 *Proof of Theorem 3.8.* For the modulated signal $D_{\theta h}g(v) = g(v)e^{i\theta h(v)}$:

1081

$$1082 (\nabla_f D_{\theta h}g(m) = i \sum_{n \in V} a_{m,n} g(n) e^{i\theta h(n)} (f(n) - f(m))$$

1083

1084 The expected momentum is:

1085

$$1086 \mathcal{E}_{i\nabla_f}(D_{\theta h}g) = \langle i\nabla_f D_{\theta h}g, D_{\theta h}g \rangle$$

1087

$$1088 = \sum_{m \in V} \overline{g(m) e^{i\theta h(m)}} \cdot i \sum_{n \in V} a_{m,n} g(n) e^{i\theta h(n)} (f(n) - f(m))$$

1089

$$1090 = i \sum_{m \in V} \sum_{n \in V} a_{m,n} g(m) g(n) e^{i\theta(h(n) - h(m))} (f(n) - f(m))$$

1091

1092 Using the symmetry of undirected graphs and Euler's formula $e^{i\theta} = \cos(\theta) + i \sin(\theta)$:

1093

$$1094 \mathcal{E}_{i\nabla_f}(D_{\theta h}g) = i \sum_{(m,n) \in E} a_{m,n} g(m) g(n) [e^{i\theta(h(n) - h(m))} (f(n) - f(m)) + e^{i\theta(h(m) - h(n))} (f(m) - f(n))]$$

1095

$$1096 = i \sum_{(m,n) \in E} a_{m,n} g(m) g(n) (f(n) - f(m)) [e^{i\theta(h(n) - h(m))} - e^{-i\theta(h(n) - h(m))}]$$

1097

$$1098 = i \sum_{(m,n) \in E} a_{m,n} g(m) g(n) (f(n) - f(m)) \cdot 2i \sin(\theta(h(n) - h(m)))$$

1099

$$1100 = -2 \sum_{(m,n) \in E} a_{m,n} g(m) g(n) (f(n) - f(m)) \sin(\theta(h(n) - h(m)))$$

1101

$$1102$$

1103 \square

1104 **Theorem C.5** (Deviation Bounds for expected feature Dynamics). *For the Schrödinger operator*

1105 $S_t = e^{-it\Delta}$ *with* $\Delta = -\nabla_f^2$ *and signal* $g : V \rightarrow \mathbb{C}$, *if its evolved form* $g_t = S_t g$ *is* ϵ *-f regular, the*

1106 *deviation between the time derivative of expected feature and the expected momentum is bounded:*

1107

$$1108 \left| \frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t) - \mathcal{E}_{i\nabla_f}(g) \right| \leq 2\epsilon \|\nabla_f\|_{op} \|g\|_2$$

1109

1110 *Proof of Theorem C.5.* recall from 3.6 that

1111

$$1112 \frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t) = -2\text{Re}(\langle i\nabla_f g_t, W_f g_t \rangle).$$

1113

1114 By the ϵ -f regularity assumption there exists e_{g_t} with $\|e_{g_t}\|_2 \leq \epsilon$ such that $W_f g_t = g_t + e_{g_t}$.

1115 Substituting this identity gives

1116

$$1117 \left| \frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t) + 2\mathcal{E}_{i\nabla_f}(g_t) \right| = \left| -2\text{Re}(\langle i\nabla_f g_t, e_{g_t} \rangle) \right|$$

1118

$$1119 \leq 2\|i\nabla_f g_t\|_2 \|e_{g_t}\|_2 \leq 2\epsilon \|\nabla_f\|_F \|g_t\|_2 = 2\epsilon \|\nabla_f\|_F \|g\|_2$$

1120

1121 *Proof of Expected multi-Feature Derivative Theorem 3.9.* To prove the theorem, we start by considering the limit definition of the time derivative of the expected feature:

1122

$$1123 \frac{\partial}{\partial t} \mathcal{E}_{X_{f_k}}(g_t) = \lim_{h \rightarrow 0} \frac{\langle X_{f_k} g_{t+h}, g_{t+h} \rangle - \langle X_{f_k} g_t, g_t \rangle}{h}$$

1124

1125 Since $g_{t+h} = S_h g_t$ and $S_h = e^{-ih\Delta}$ is unitary, we have:

1126

$$1127 \langle X_{f_k} g_{t+h}, g_{t+h} \rangle = \langle X_{f_k} S_h g_t, S_h g_t \rangle$$

1128

$$1129 = \langle S_h^* X_{f_k} S_h g_t, g_t \rangle$$

1130

$$1131 = \langle S_{-h} X_{f_k} S_h g_t, g_t \rangle$$

1132

1134 Using the expansion $\mathcal{S}_h = I - ih\Delta + o(h^2)$ and $\mathcal{S}_{-h} = I + ih\Delta + o(h^2)$, we compute:
 1135

$$\begin{aligned} 1136 \quad \mathcal{S}_{-h} X_{f_k} \mathcal{S}_h &= (I + ih\Delta + o(h^2)) X_{f_k} (I - ih\Delta + o(h^2)) \\ 1137 &= X_{f_k} + ih\Delta X_{f_k} - ih X_{f_k} \Delta + o(h^2) \\ 1138 &= X_{f_k} + ih[\Delta, X_{f_k}] + o(h^2) \\ 1139 \end{aligned}$$

1140 Therefore:

$$\begin{aligned} 1141 \quad \frac{\langle \mathcal{S}_{-h} X_{f_k} \mathcal{S}_h g_t, g_t \rangle - \langle X_{f_k} g_t, g_t \rangle}{h} &= \frac{\langle (X_{f_k} + ih[\Delta, X_{f_k}] + o(h^2)) g_t, g_t \rangle - \langle X_{f_k} g_t, g_t \rangle}{h} \\ 1142 &= i \langle [\Delta, X_{f_k}] g_t, g_t \rangle + o(h) \\ 1143 \\ 1144 \end{aligned}$$

1145 Taking the limit as $h \rightarrow 0$:

$$\begin{aligned} 1146 \quad \frac{\partial}{\partial t} \mathcal{E}_{X_{f_k}}(g_t) &= \lim_{h \rightarrow 0} i \langle [\Delta, X_{f_k}] g_t, g_t \rangle + o(h) = \langle i[\Delta, X_{f_k}] g_t, g_t \rangle \\ 1147 &= - \sum_j \left\langle [i\nabla_{f_j}^2, X_{f_k}] g_t, g_t \right\rangle \\ 1148 &= -2\text{Im} \langle i\nabla_{f_k} g_t, W_{f_k} g_t \rangle + \sum_{j \neq k} \left\langle [i\nabla_{f_j}^2, X_{f_k}] g_t, g_t \right\rangle. \\ 1149 \\ 1150 \\ 1151 \\ 1152 \\ 1153 \end{aligned}$$

1154 This completes the proof. \square

1155 **Theorem C.6** (Multi Channel Deviation Bounds for expected feature Dynamics). *For the*
 1156 *Schrödinger operator $\mathcal{S}_t = e^{-it\Delta}$, the deviation between the time derivative of expected feature*
 1157 *and the expected momentum is bounded as follows: For signals $\{f_1, \dots, f_N\}$ forming a δ -Position-*
 1158 *Momentum Commuting set, and $g_t = \mathcal{S}_t g$ being ϵ - f_k regular for each k , with $\Delta = -\sum_{n=1}^N \nabla_{f_n}^2$:*

$$1159 \quad \left| \frac{\partial}{\partial t} \mathcal{E}_{X_{f_k}}(g_t) - 2\mathcal{E}_{i\nabla_{f_k}}(g) \right| \leq 2\epsilon \|\nabla_{f_k}\|_{op} \|g\|_2 + \delta \sum_{j \neq k} 2\|\nabla_{f_j}\|_{op} \|g\|_2^2$$

1160

1161 *Proof of Theorem C.6.* Using Theorem 3.9,

$$1162 \quad \frac{\partial}{\partial t} \mathcal{E}_{X_{f_k}}(g_t) = \langle i[\Delta, X_{f_k}] g_t, g_t \rangle = - \sum_{n=1}^N \langle i[\nabla_{f_n}^2, X_{f_k}] g_t, g_t \rangle$$

1163 We split the sum into the $n = k$ term and the cross terms $n \neq k$:

$$1164 \quad \frac{\partial}{\partial t} \mathcal{E}_{X_{f_k}}(g_t) = -\langle i[\nabla_{f_k}^2, X_{f_k}] g_t, g_t \rangle - \sum_{n \neq k} \langle i[\nabla_{f_n}^2, X_{f_k}] g_t, g_t \rangle$$

1165 For the main term ($n = k$), by the single-feature deviation bound (Theorem C.5):

$$1166 \quad \left| -\langle i[\nabla_{f_k}^2, X_{f_k}] g_t, g_t \rangle - 2\mathcal{E}_{i\nabla_{f_k}}(g) \right| \leq 2\epsilon \|\nabla_{f_k}\|_{op} \|g\|_2$$

1167 Note that in the multi-feature case, $\mathcal{E}_{i\nabla_{f_k}}(g_t)$ may not be exactly constant, but we compare to the
 1168 initial value $\mathcal{E}_{i\nabla_{f_k}}(g)$.

1169 For each cross term $n \neq k$, using the δ -commuting property $[X_{f_k}, \nabla_{f_n}] = E_{k,n}$ with $\|E_{k,n}\|_{op} \leq \delta$,
 1170 we expand:

$$1171 \quad [\nabla_{f_n}^2, X_{f_k}] = \nabla_{f_n} [\nabla_{f_n}, X_{f_k}] + [\nabla_{f_n}, X_{f_k}] \nabla_{f_n} = -(\nabla_{f_n} E_{k,n} + E_{k,n} \nabla_{f_n})$$

1172 Thus,

$$1173 \quad |\langle i[\nabla_{f_n}^2, X_{f_k}] g_t, g_t \rangle| = |\langle i(-\nabla_{f_n} E_{k,n} - E_{k,n} \nabla_{f_n}) g_t, g_t \rangle| \leq 2\delta \|\nabla_{f_n}\|_{op} \|g_t\|_2^2 = 2\delta \|\nabla_{f_n}\|_{op} \|g\|_2^2$$

1174 Summing over $n \neq k$:

$$1175 \quad \left| \sum_{n \neq k} \langle i[\nabla_{f_n}^2, X_{f_k}] g_t, g_t \rangle \right| \leq \delta \sum_{n \neq k} 2\|\nabla_{f_n}\|_{op} \|g\|_2^2$$

1188 Combining both parts:
 1189

$$1190 \quad \left| \frac{\partial}{\partial t} \mathcal{E}_{X_{f_k}}(g_t) - 2\mathcal{E}_{i\nabla_{f_k}}(g) \right| \leq 2\epsilon \|\nabla_{f_k}\|_{op} \|g\|_2 + \delta \sum_{j \neq k} 2\|\nabla_{f_j}\|_{op} \|g\|_2^2$$

1192

□

1193

1194

1195 *Proof of the Variance Dynamics Theorem 3.12.* Starting from the definition of variance:

$$1196 \quad \mathcal{V}_{X_f}(g_t) = \mathcal{E}_{X_f^2}(g_t) - \mathcal{E}_{X_f}(g_t)^2$$

1197

1198 Taking the derivative with respect to t :

$$1200 \quad \frac{\partial}{\partial t} \mathcal{V}_{X_f}(g_t) = \frac{\partial}{\partial t} \mathcal{E}_{X_f^2}(g_t) - 2\mathcal{E}_{X_f}(g_t) \frac{\partial}{\partial t} \mathcal{E}_{X_f}(g_t)$$

1201

1202 From the time evolution of expected feature for every observable, we know that:

$$1204 \quad \frac{\partial}{\partial t} \mathcal{E}_{X_f^2}(g_t) = \mathcal{E}_{i[\Delta, X_f^2]}(g_t)$$

1205

1206

1207 Substituting this into our expression:

$$1209 \quad \frac{\partial}{\partial t} \mathcal{V}_{X_f}(g_t) = \mathcal{E}_{i[\Delta, X_f^2]}(g_t) - 2\mathcal{E}_{X_f}(g_t) \mathcal{E}_{i[\Delta, X_f]}(g_t)$$

1210

1211

1212 using theorem 3.6

$$1213 \quad = \mathcal{E}_{i[\Delta, X_f^2]}(g_t) + 4\mathcal{E}_{X_f}(g_t) \operatorname{Re}(\langle i\nabla_f g_t, W_f g_t \rangle)$$

1214

1215

1216 *Proof of the Mixed Derivative of The Signal Routing Measure Claim 3.13 .*

$$1217 \quad \frac{d}{dt} \mathcal{P}_{X_f}(g, g_t, r)|_{t=0} = \frac{d}{dt} \frac{\mathcal{V}_{X_f}(g_t) + (r - \mathcal{E}_{X_f}(g_t))^2}{\mathcal{V}_{X_f}(g)}|_{t=0}$$

$$1220 \quad = \frac{\mathcal{E}_{i[\Delta, X_f^2]}(g_0) + 4\mathcal{E}_{X_f}(g_0) \operatorname{Re}(\langle i\nabla_f g_0, W_f g_0 \rangle) - 2(r - \mathcal{E}_{X_f}(g_0)) \frac{d}{dt} \mathcal{E}_{X_f}(g_t)|_{t=0}}{\mathcal{V}_{X_f}(g)|_{t=0}}$$

1221

1222

1223 using the 3.6

$$1224 \quad = \frac{\mathcal{E}_{i[\Delta, X_f^2]}(g_0) + 4\mathcal{E}_{X_f}(g_0) \operatorname{Re}(\langle i\nabla_f g_0, W_f g_0 \rangle) + 4(r - \mathcal{E}_{X_f}(g_0)) \operatorname{Re}(\langle i\nabla_f g_0, W_f g_0 \rangle)}{\mathcal{V}_{X_f}(g_0)}$$

$$1227 \quad = \frac{\mathcal{E}_{i[\Delta, X_f^2]}(g_0) + 4r \operatorname{Re}(\langle i\nabla_f g_0, W_f g_0 \rangle)}{\mathcal{V}_{X_f}(g_0)}$$

1228

1229

1230 Treating the measure derivative at $t = 0$ as a function of θ we get

$$1232 \quad \frac{\mathcal{E}_{i[\Delta, X_f^2]}(D_{\theta h} g) + 4r \operatorname{Re}(\langle i\nabla_f D_{\theta h} g, W_f D_{\theta h} g \rangle)}{\mathcal{V}_{X_f}(D_{\theta h} g)}$$

1233

1234

1235 Taking the derivative with respect to θ to show that for nontrivial signals when $\theta = 0$ the value of
 1236 the derivative is nonzero, thus the use of modulation can minimize the measure value

$$1238 \quad \frac{d}{d\theta} \frac{\mathcal{E}_{i[\Delta, X_f^2]}(D_{\theta h} g) + 4r \operatorname{Re}(\langle i\nabla_f D_{\theta h} g, W_f D_{\theta h} g \rangle)}{\mathcal{V}_{X_f}(D_{\theta h} g)} =$$

$$1240 \quad = \frac{\frac{d}{d\theta} \mathcal{E}_{i[\Delta, X_f^2]}(D_{\theta h} g) + 4r \frac{d}{d\theta} \operatorname{Re}(\langle i\nabla_f D_{\theta h} g, W_f D_{\theta h} g \rangle)}{\mathcal{V}_{X_f}(g)}$$

1241

1242 We can interpret $D_{\theta h}g = e^{i\theta X_h}g = (I + i\theta X_h + o(\theta^2))g$
 1243

$$\begin{aligned} 1244 \frac{d}{d\theta} \mathcal{E}_{i[\Delta, X_f^2]}(D_{\theta h}g) &= \lim_{\epsilon \rightarrow 0} \frac{\mathcal{E}_{i[\Delta, X_f^2]}(D_{(\theta+\epsilon)h}g) - \mathcal{E}_{i[\Delta, X_f^2]}(D_{\theta h}g)}{\epsilon} \\ 1245 &= \lim_{\epsilon \rightarrow 0} \frac{\langle i(I - i\epsilon X_h + o(\theta^2)[\Delta, X_f^2])(I + i\epsilon X_h + o(\theta^2)D_{\theta h}g, D_{\theta h}g) - \mathcal{E}_{i[\Delta, X_f^2]}(D_{\theta h}g)}{\epsilon} \\ 1246 &= -\langle [[\Delta, X_f^2], X_h]D_{\theta h}g, D_{\theta h}g \rangle \end{aligned}$$

1247 At $\theta = 0$:
 1248

$$1249 \frac{d}{d\theta} \mathcal{E}_{i[\Delta, X_f^2]}(D_{\theta h}g)|_{\theta=0} = -\langle [[\Delta, X_f^2], X_h]g, g \rangle$$

1250 For the second term, we use the fact that for $F(\theta) = \langle i\nabla_f e^{i\theta X_h}g, W_f e^{i\theta X_h}g \rangle$:
 1251

$$1252 \frac{d}{d\theta} \text{Re}(F(\theta)) = \text{Re} \left(\frac{d}{d\theta} F(\theta) \right)$$

1253 Computing the derivative:
 1254

$$\begin{aligned} 1255 \frac{d}{d\theta} \langle i\nabla_f e^{i\theta X_h}g, W_f e^{i\theta X_h}g \rangle &= \langle i\nabla_f(iX_h)e^{i\theta X_h}g, W_f e^{i\theta X_h}g \rangle + \langle i\nabla_f e^{i\theta X_h}g, W_f(iX_h)e^{i\theta X_h}g \rangle \\ 1256 &= -\langle \nabla_f X_h e^{i\theta X_h}g, W_f e^{i\theta X_h}g \rangle - i\langle i\nabla_f e^{i\theta X_h}g, W_f X_h e^{i\theta X_h}g \rangle \end{aligned}$$

1257 At $\theta = 0$:
 1258

$$\begin{aligned} 1259 \frac{d}{d\theta} F(\theta) \Big|_{\theta=0} &= -\langle \nabla_f X_h g, W_f g \rangle + \langle \nabla_f g, W_f X_h g \rangle \\ 1260 \frac{\partial}{\partial \theta} \frac{\partial}{\partial t} \mathcal{P}_{X_f}(g, \mathcal{S}[t, f]D[\theta h]g, r) \Big|_{t=\theta=0} &= \frac{\langle [X_h, [\Delta, X_f^2]]g, g \rangle + 4r \text{Re} \langle [X_h, W_f \nabla_f]g, g \rangle}{\mathcal{V}_{X_f}(g)}. \end{aligned}$$

1261 This completes the proof.
 1262

□

1263 D PROPERTIES OF UNITARY OPERATORS ON GRAPHS

1264 In a general Hilbert space \mathcal{H}_G of graph signals, a **unitary operator** $U : \mathcal{H}_G \rightarrow \mathcal{H}_G$ satisfies $U^*U = UU^* = I$. Unitary operators generated by self-adjoint operators, such as the Schrödinger operator $\mathcal{S}_t = e^{-it\Delta}$ where Δ is self-adjoint, possess several fundamental properties that make them particularly suitable for graph neural network applications. We establish these properties formally below.

1265 **Theorem D.1** (Inner Product Preservation). *A unitary operator U preserves the inner product structure of the Hilbert space. For any two signals $f, g : V \rightarrow \mathbb{C}$*

$$1266 \langle Uf, Ug \rangle = \langle f, g \rangle$$

1267 The inner product preservation ensures norm preservation: $\|Uf\| = \|f\|$ for any signal f , which guarantees numerical stability during the evolution process, preventing signal amplification or attenuation that could lead to vanishing or exploding gradients in deep network architectures.

1268 **Theorem D.2** (Equivariance). *Let P be a permutation matrix corresponding to a graph automorphism. A unitary operator U commutes with P if it is generated by a self-adjoint operator that commutes with P . In particular, for the Schrödinger operator $\mathcal{S}_t = e^{-it\Delta}$ where Δ commutes with P , we have for any signal $f : V \rightarrow \mathbb{C}$:*

$$1269 \mathcal{S}_t(Pf) = P(\mathcal{S}_t f)$$

1296 *Proof of Theorem D.2.* Since P is a graph automorphism, then the Laplacian commutes with P (i.e.,
 1297 $P\Delta = \Delta P$), we have:

$$\begin{aligned} 1299 \quad \mathcal{S}_t(Pf) &= e^{-it\Delta}(Pf) = \sum_{n=0}^{\infty} \frac{(-it\Delta)^n}{n!} Pf = \sum_{n=0}^{\infty} \frac{(-it)^n}{n!} \Delta^n Pf = \\ 1300 \quad &= P \sum_{n=0}^{\infty} \frac{(-it)^n}{n!} \Delta^n f = P(\mathcal{S}_t f) \\ 1301 \quad & \end{aligned}$$

□

1302 **Theorem D.3** (Observable Conservation). *Let A be a self-adjoint operator on \mathcal{H}_G and $U_t = e^{itA}$
 1303 be the unitary operator generated by A . For any signal f and any polynomial p , the expected value
 1304 of A is invariant under evolution by any unitary operator of the form $e^{itp(A)}$:*

$$1310 \quad \mathcal{E}_A \left(e^{itp(A)} f \right) = \mathcal{E}_A(f) \\ 1311 \quad$$

1312 *In particular, for the Schrödinger operator $\mathcal{S}_t = e^{-it\Delta}$, the Dirichlet energy $\mathcal{E}_\Delta(f)$ is conserved.*

1313 These properties establish unitary operators, and in particular the Schrödinger operator, as natural
 1314 choices for information propagation on graphs while maintaining both stability and structural
 1315 consistency.

1316 *Proof of Theorem D.3.* Let $U_p = e^{itp(A)}$. We prove that $\mathcal{E}_A(U_p f) = \mathcal{E}_A(f)$:

$$\begin{aligned} 1317 \quad \mathcal{E}_A(U_p f) &= \langle AU_p f, U_p f \rangle \\ 1318 \quad &= \langle U_p^* AU_p f, f \rangle \quad (\text{using unitarity of } U_p) \\ 1319 \quad &= \langle AU_p^* U_p f, f \rangle \quad (\text{since } [A, U_p] = 0 \text{ as } U_p = e^{itp(A)}) \\ 1320 \quad &= \langle Af, f \rangle \quad (\text{since } U_p^* U_p = I) \\ 1321 \quad &= \mathcal{E}_A(f) \\ 1322 \quad & \end{aligned}$$

1323 The key insight is that A commutes with any function of A , including $U_p = e^{itp(A)}$. □

1329 E IMPLEMENTATION

1330 E.1 MATRIX EXPONENTIAL IMPLEMENTATION

1331 For practical implementation of the Schrödinger operator $\mathcal{S}_t = e^{-it\Delta}$, we need to compute the
 1332 exponential of a matrix. We consider two common approaches:

1333 **Taylor Series Approximation.** For an operator A , its exponential e^A is defined through its Taylor
 1334 series expansion:

$$1335 \quad e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots$$

1336 where A^k denotes the operator A applied k times, and $A^0 = I$ is the identity operator. In practice,
 1337 this infinite series is truncated at a finite order T for computational feasibility:

$$1338 \quad e^A \approx \sum_{k=0}^T \frac{A^k}{k!}$$

1339 For the Schrödinger operator with a small time step, this approximation provides sufficient accuracy
 1340 while maintaining computational efficiency. The choice of truncation order T depends on the
 1341 spectral properties of the Laplacian and the desired accuracy of the evolution.

1350 E.2 SHIFT OPERATOR
1351

1352 Let $A \in \mathbb{R}^{|V| \times |V|}$ be the (symmetric) adjacency matrix with entries $a_{n,m}$ and let $f : V \rightarrow \mathbb{R}$ be
1353 a real node feature. Denote by $X_f := \text{diag}(f)$ the feature-location operator. We define the graph
1354 derivative along f by the Hermitian commutator

$$1355 \nabla_f := [X_f, A] = X_f A - A X_f, \quad (\nabla_f)_{n,m} = a_{n,m}(f(n) - f(m)).$$

1356 This operator mixes values only across edges and measures signed change of the signal in the di-
1357 rection where f varies. It satisfies: (i) Locality: $(\nabla_f)_{n,m} = 0$ whenever $(n, m) \notin E$. (ii) Gauge-
1358 invariance: if f is constant then $\nabla_f = 0$. (iii) Structure: for real f and symmetric A , $[X_f, A]$
1359 is skew-symmetric, hence ∇_f is Hermitian and generates unitary dynamics. We use the feature-
1360 weighted Laplacian

$$1361 \Delta_f := -\nabla_f^2 = -(X_f A - A X_f)^2,$$

1362 and the unitary shift $\mathcal{S}_t = e^{-it\Delta_f}$.

1363 E.3 SCHRÖDINGER GNN ARCHITECTURE DETAILS
1364

1365 Let $f \in \mathbb{R}^{N \times K}$ denote the learned feature-location channels (after Position–Momentum Optimiza-
1366 tion), and let $X \in \mathbb{C}^{N \times J}$ be the current layer’s signal. A Schrödinger filter with M terms applies
1367

$$1368 Y = \sum_{m=1}^M \mathcal{S}[t_m, f] D[\theta_m f T^{(m)}] X W^{(m)},$$

1369 where $t_m, \theta_m \in \mathbb{R}$, $T^{(m)} \in \mathbb{R}^{K \times 1}$ selects a modulation direction in feature space, $W^{(m)} \in \mathbb{C}^{J \times D}$
1370 mixes channels, and $\mathcal{S}[t, f] = e^{-it\Delta_f}$ with $\Delta_f = -\sum_k \nabla_{f_k}^2$. A typical layer stacks a nonlinearity
1371 (e.g., absolute value) and normalization after this filter, and layers are composed depth-wise. Shapes:
1372 $X \in \mathbb{C}^{N \times J}$, $Y \in \mathbb{C}^{N \times D}$.
1373

1374 **Implementation realization.** The code instantiates this design with (i) a single input modulation
1375 and (ii) a stacked unitary propagation realized via a truncated Taylor approximation. Input feature
1376 modulation (FeatureModulationLayer) given real features $X \in \mathbb{R}^{N \times d_{in}}$, two linear maps $B, P \in$
1377 $\mathbb{R}^{d_{in} \times d}$ produce

$$1378 \tilde{X} = X B \odot \exp(i X P) \in \mathbb{C}^{N \times d},$$

1379 with orthogonal initialization of B, P . Unitary propagation each layer approximates a unitary flow
1380 $e^{\delta \mathcal{H}}$ by a truncated series

$$1381 \Phi_T(\mathcal{H}, \delta) z = \sum_{k=0}^T \frac{(\delta \mathcal{H})^k}{k!} z,$$

1382 where the generator \mathcal{H} is implemented by a complex GCN operator that applies an i -weighted ag-
1383 gregation. The step size δ is learned per output channel, and each layer uses a complex activation
1384 and dropout. Layers may include residual and bias.
1385

1386 **Position-Momentum Optimization (PMO) Implementation.** In experiments where PMO is
1387 used, we run it as a preprocessing step before training the main Schrödinger GNN. The PMO objec-
1388 tive (Definition 3.11) is optimized via gradient descent over the training set graphs. Specifically, we
1389 initialize the linear transformation $T \in \mathbb{R}^{M \times K}$ randomly and minimize the PMO loss by iterating
1390 over batches of training graphs. For each graph, we compute the commutator norms $\|[\nabla_{f_j}^2, X_{f_i}]\|_{op}$
1391 and the regularization term, then backpropagate to update T . We use the Adam optimizer with a
1392 learning rate of 10^{-3} and run for a fixed number of iterations (typically 50–100) until convergence.
1393 Once optimized, the transformation T is fixed, and the resulting orthogonalized features $f = qT$
1394 are used as input to the Schrödinger GNN during training and inference. This two-stage approach
1395 decouples feature orthogonalization from the main task objective, ensuring that the position and
1396 momentum operators approximately commute before learning begins.
1397

1398 **Complex Features.** As noted, the Schrödinger GNN operates on complex-valued features. The
1399 input features are first projected to the complex domain via the feature modulation layer described
1400 above.
1401

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Complex Dropout and Nonlinearity. For dropout in complex-valued layers, we apply standard dropout only to the real part of the features while keeping the imaginary part unchanged. This preserves the phase information encoded in the imaginary component while still providing regularization. For all nonlinearities throughout the network, we apply ReLU separately to the real and imaginary parts: $\sigma(z) = \text{ReLU}(\text{Re}(z)) + i \cdot \text{ReLU}(\text{Im}(z))$, another option is using the absolute value as nonlinearity $\sigma(z) = |z|$. This component-wise approach maintains the complex structure while introducing the necessary nonlinearity for expressive power. The magnitude $|z|$ is only used at the final layer to produce real-valued outputs for downstream tasks.

Computational Complexity. The primary computational cost of the Schrödinger GNN lies in the approximation of the matrix exponential $e^{-it\Delta_f}$ using the truncated Taylor series. For a truncation order K , this involves K applications of the sparse operator Δ_f (or \mathcal{H}). Since Δ_f has the same sparsity pattern as the graph adjacency matrix (proportional to $|E|$ edges), each application costs $O(|E|C)$ where C is the feature dimension. Thus, the total complexity per layer is $O(K|E|C)$. This is linear in the number of edges and comparable to a standard Message Passing Neural Network (MPNN) with K message passing steps or a ChebNet with polynomial order K . In our experiments, we found $K \approx 10 - 15$ to be sufficient, making the overhead manageable compared to deep GCNs. The memory complexity is $O((|V| + |E|)C)$, similar to standard GNNs, as we do not explicitly construct the dense matrix exponential.

Uniform Time Initialization We initialize the per-channel scaling parameters that modulate the Taylor steps with an independent uniform distribution. Let C denote the number of output channels of a layer. We create a complex parameter $t \in \mathbb{C}^C$ and set

$$t_j \sim \text{Uniform}(0, 1.5), \quad j = 1, \dots, C.$$

The parameter t_j effectively controls the propagation distance (or time) for the j -th channel. By initializing these values uniformly, we enable the network to learn a diverse set of filters where some channels aggregate local information (small t) while others capture long-range interactions (large t). This design resembles a convolution operation that samples features from both close and distant nodes across different channels. When learning is disabled, a non-trainable scalar buffer with value 1.0 is used instead.

F EXPERIMENTS

F.1 TOY EXPERIMENT - GRID ORTHOGONALITY

To assess the effectiveness of our optimization, we conduct a simple grid experiment. We consider a grid graph whose node features are the Cartesian coordinates x and y . We then replace the features by x and $x + y$, apply the Position–Momentum Orthogonalization optimization described earlier, and expect the learned transformation to recover two orthogonal directions. We visualize the input features and the optimized, orthogonalized features below.

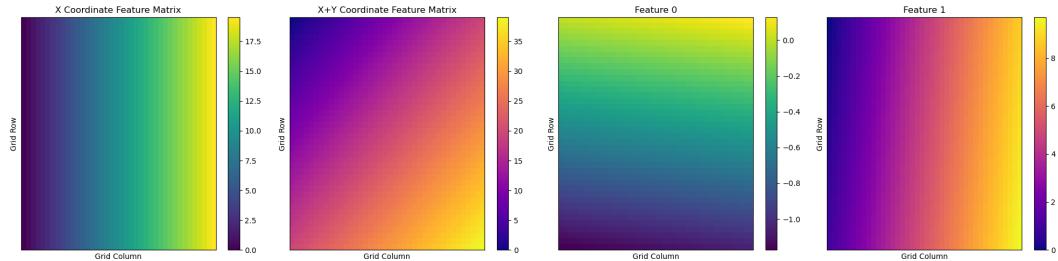


Figure 6: Grid orthogonality toy experiment. first two from left: original coordinate features x and $x + y$. two to the right: features after applying the Position–Momentum Orthogonalization optimization; the recovered directions are orthogonal.

1458
1459

F.2 OPTIMIZING SIGNAL TRANSPORT VIA MODULATION

1460
1461
1462
1463
1464
1465
1466

We constructed an experiment to show that the use of modulation can benefit signal transport on graphs. We generate $N = 60$ nodes from two 2D Gaussians, 30 around $(-1, 0)$ and 30 around $(1, 0)$ with standard deviation 0.5 per axis. An undirected, unweighted edge is added when Euclidean distance is < 1.5 . We define a scalar node feature f_i as the x -coordinate, which serves as the modulation feature. We also define the g graph signal as the Euclidean distance of each node's x, y coordinates from $(-1, 0)$. Our target value to move the signal to is $r = 1$. We calculated the expected feature location, variance and routing measure as follows:

1467
1468
1469
1470
1471
1472

1. expected feature location: $\mathcal{E}_{X_f}(g) = \sum_{j=1}^N f_j |g_j|^2$
2. variance: $\mathcal{V}_{X_f}(g) = \mathcal{E}_{X_f^2}(g) - \mathcal{E}_{X_f}(g)^2$
3. routing measure: $\mathcal{P}_{X_f}(g_0, g_t, r) = \frac{\mathcal{V}_{X_f}(g_t) + (r - \mathcal{E}_{X_f}(g_t))^2}{\mathcal{V}_{X_f}(g_0)}$

1473
1474
1475
1476
1477

We used our Schrödinger method $\mathcal{S}_{0.1}$, and iterated it 3 times over multiple θ values on the interval of $[-5, 5]$. Theoretically the norm should remain 1, but due to numerical instability we normalized each Schrödinger output by $\|g\|_2 = 1$ and its absolute value was taken. The results of the expected feature location, variance, and routing measure can be found in the figure 2.

1478
1479

F.3 GAUSSIAN TRANSLATE TOY EXPERIMENT

1480
1481
1482
1483
1484

We study a controlled equivariant task on a ring graph that isolates translation behavior. Given a real signal sampled on a cycle graph, the model must learn the circular shift operator S_d such that the target is $y = S_d x$. This task stresses whether a graph model can implement phase consistent transport on a simple topology.

1485
1486
1487
1488
1489

Data. We generate a cycle graph with $N = 100$ nodes and undirected edges to immediate neighbors. Angles are $\theta_n = -\pi + 2\pi n/N$. For each sample we draw variance $\sigma^2 \sim \mathcal{U}[0.5, 1.5]$ (effectively bounded by “variance_random_bound=1” around the center used in code), add Gaussian noise with standard deviation 10^{-3} , roll by a random shift, normalize to unit ℓ_2 norm, and set the label $y = S_d x$ with $d = 35$. Datasets use an 80/10/10 split and batch size 32.

1490
1491
1492
1493
1494
1495
1496
1497

Models. We compare standard real-valued GNNs with Schrödinger models that implement unitary graph propagation via a truncated exponential. Let \mathcal{A} denote the aggregation operator on the cycle and define the complex generator $\mathcal{H} = i \mathcal{A}$. Each Schrödinger layer applies a learnable linear map W and a Taylor approximation of the unitary flow $e^{\delta \mathcal{H}}: z \leftarrow \sum_{k=0}^T \frac{(\delta \mathcal{H})^k}{k!} W z$ with $T = 15$. We use depth $L = 35$, feature normalization after every layer, and a magnitude nonlinearity. The *modulated* variants inject positional phase through a learned linear modulation direction $m = \text{Linear}([x, \theta])$ and multiply features by $e^{i \epsilon m}$ with $\epsilon = 25$. The step size δ is learnable.

1498
1499
1500
1501
1502
1503

Training. Loss is the L_2 distance between the model prediction $f(x_i) = \hat{y}_i$ for some sample x_i and the target y_i , $\|\hat{y}_i - y_i\|_2$. We train with Adam (24) for 250 epochs, using two parameter groups (modulation parameters at $10 \times$ the base learning rate), base learning rate 0.1, ReduceLROnPlateau with factor 0.7 and patience 10. The evaluation plots show smoothed test losses per epoch with a dashed reference line corresponding to a naive baseline.

1504
1505
1506

Baselines. Vanilla GCN and GAT are trained with the same depth 35 and comparable width, using the same magnitude readout and normalization.

1507
1508
1509
1510
1511

F.4 MNIST EXPERIMENT DETAILS

Dataset Construction The MNIST Graph dataset converts standard 28×28 pixel images into graph structures.

- **Nodes:** Each pixel is treated as a node ($N = 784$ nodes per graph).

Model	Params
vanilla GCN	2,136
graph_attention (GAT)	6,193
Schrödinger non modulated	4,273
Schrödinger	4,275

Table 5: Gaussian-Translate on a ring with $N = 100$ and shift $d = 35$. The modulated Schrödinger family dominates; our complex modulated model attains strong performance with substantially lower error than standard GNNs.

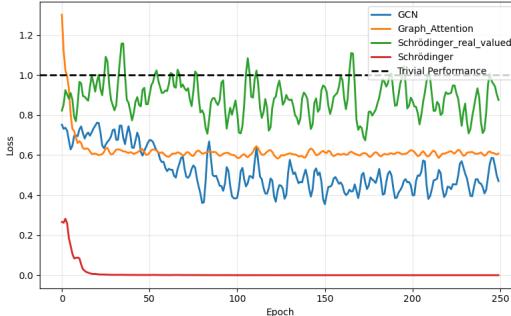


Figure 7: Gaussian-Translate learning curves. Lower is better. Our complex modulated Schrödinger model converges rapidly to the best error, outperforming real-valued and non-modulated variants, as well as standard GNN baselines. The dashed line denotes the trivial predictor.

- **Edges:** We construct an undirected graph using an 8-neighbor grid connectivity (Chebyshev radius $r = 1$), representing the local spatial structure of the image.
- **Node Features:** Each node v_i is assigned a 3-dimensional feature vector $\mathbf{x}_i = [x_{norm}, y_{norm}, I]$, where $x_{norm}, y_{norm} \in [0, 1]$ are the normalized spatial coordinates and $I \in [0, 1]$ is the pixel intensity.
- **Splits:** We use the standard MNIST partition with 60,000 graphs for training and 10,000 for testing(28).

We trained each model across 5 random seeds (0-4) to report mean accuracy and standard deviation.

Hyperparameters

- **Hidden Dimension:** 64
- **Layers:** 3
- **Epochs:** 200
- **Batch Size:** 16
- **Optimizer:** Adam with learning rate $\alpha = 3 \times 10^{-4}$
- **Dropout:** 0.1
- **Aggregation:** Global Mean Pooling

The CNN baseline is a classical 2D convolutional neural network (27) operating directly on raw 28×28 images (not graphs). It uses the same hyperparameters (hidden dimension, number of layers, dropout, learning rate) as the GNN models, with Conv2d layers followed by adaptive average pooling and a linear classifier. This provides a non-graph reference point for comparison.

Baselines We evaluated five standard GNN architectures to provide a comprehensive performance benchmark:

- **GCN** (Graph Convolutional Network): Uses standard spectral graph convolution layers (25).
- **GAT** (Graph Attention Network): Utilizes attention mechanisms to learn adaptive edge weights for neighbor aggregation (53).
- **GIN** (Graph Isomorphism Network): A theoretically expressive model that uses Multi-Layer Perceptrons (MLPs) within the aggregation step to distinguish non-isomorphic graphs (56).
- **MPNN** (Message Passing Neural Network): A general framework employing explicit MLPs for both the message calculation and node update steps (16).
- **ChebConv**: A spectral graph convolution based on Chebyshev polynomials ($K = 2$), capable of approximating higher-order graph Laplacian filters to capture local geometric patterns (12).

All models use Global Mean Pooling to aggregate node embeddings into a graph-level representation for classification.

F.5 TU EXPERIMENT - GRAPH CLASSIFICATION

This section provides a thorough explanation of the constraints and hyperparameter search process for the architecture-matched comparison presented on the datasets ENZYMES, IMDB-BINARY, MUTAG, and PROTEINS tasks from TU Dataset (36), the results can be found in table 3.

Table 6: Statistics of graph classification datasets (TU Datasets).

	ENZYMES	IMDB	MUTAG	PROTEINS
#Graphs	600	1000	188	1113
#Nodes (range)	2 - 126	12 - 136	10 - 28	4 - 620
#Edges (range)	2 - 298	52 - 2498	20 - 66	10 - 2098
Avg #Nodes	32.63	19.77	17.93	39.06
Avg #Edges	124.27	193.062	39.58	145.63
#Classes	6	2	2	2
Directed	False	False	False	False
ORC Mean	0.13	0.58	-0.27	0.17
ORC Std	0.15	0.19	0.05	0.20

Architectural Constraints To ensure a fair and controlled comparison, all models were implemented with a standardized architecture consisting of six graph convolution layers followed by a single linear layer for classification. The core constraint was matching the total number of trainable parameters across all models. We first established a baseline parameter count using the Unitary (UniGCN) (23) architecture with a hidden dimension of 128. Subsequently, for all other models (GAT, GCN, GIN, Adaptive Unitary, Schrödinger, and Schrödinger PMO), we adjusted their respective hidden dimensions until their total parameter count matched the GCN baseline within a strict 0.6% tolerance. This methodology isolates the architectural differences as the primary variable, ensuring that performance variations are attributable to the intrinsic properties of the convolution operators rather than model capacity. For complex-valued models like the Schrödinger variants, each complex parameter was counted as two real-valued parameters.

Hyperparameter Search We performed a grid search to identify the optimal hyperparameters for each model-dataset combination. The search space was adapted from (23) and (37) as follows:

- **Learning Rate:** {0.0005, 0.001, 0.005, 0.01}
- **Dropout Rate:** {0, 0.25, 0.5}

The best-performing combination of hyperparameters was selected based on the mean validation accuracy over 100 runs for each combination. The specific values chosen for each model are detailed in Table 7.

1620
1621
1622 Table 7: Hyperparameters for the Architecture-Matched Comparison.
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647

MODEL	HYPERPARAMETER	ENZYMES	IMDB	MUTAG	PROTEINS
GCN	Learning Rate	0.005	0.005	0.005	0.001
	Dropout	0	0	0	0
	Hidden Dimension	190	190	190	190
GAT	Learning Rate	0.001	0.001	0.0005	0.005
	Dropout	0	0.5	0	0.5
	Hidden Dimension	189	189	189	189
Schrödinger	Learning Rate	0.005	0.0005	0.005	0.005
	Dropout	0.25	0	0.25	0
	Hidden Dimension	117	170	170	170
Schrödinger PMO	Learning Rate	0.005	0.001	0.01	0.005
	Dropout	0	0	0	0
	Hidden Dimension	117	117	117	117
Unitary	Learning Rate	0.001	0.001	0.001	0.0005
	Dropout	0	0	0	0
	Hidden Dimension	128	128	128	128
Adaptive Unitary	Learning Rate	0.005	0.0005	0.005	0.001
	Dropout	0	0	0	0
	Hidden Dimension	127	127	127	127
Adaptive Unitary PMO	Learning Rate	0.001	0.01	0.001	0.001
	Dropout	0.25	0	0	0
	Hidden Dimension	127	127	127	127
GIN	Learning Rate	0.001	0.005	0.01	0.0005
	Dropout	0	0	0	0
	Hidden Dimension	190	190	190	190

1648
1649
1650 **Runtime Comparison** Table 8 reports the mean and standard deviation of the training time per
1651 epoch for each model on the TU datasets.1652
1653 Table 8: Runtime comparison on TU datasets (seconds per run, mean \pm std).
1654

Model	ENZYMES	IMDB	MUTAG	PROTEINS
GCN	$33.4 \pm 7.85s$	$27.5 \pm 5.66s$	$19.0 \pm 4.30s$	$33.9 \pm 2.02s$
GAT	$61.5 \pm 15.51s$	$42.6 \pm 0.52s$	$14.3 \pm 2.83s$	$65.7 \pm 8.13s$
GIN	$39.8 \pm 5.41s$	$32.9 \pm 9.12s$	$9.1 \pm 1.52s$	$43.2 \pm 10.40s$
Unitary	$216.7 \pm 6.25s$	$261.9 \pm 72.57s$	$60.4 \pm 14.47s$	$189.3 \pm 6.79s$
Adaptive Unitary	$200.1 \pm 27.03s$	$285.5 \pm 48.41s$	$47.5 \pm 12.85s$	$202.2 \pm 36.36s$
Adaptive Unitary PMO	$84.3 \pm 15.91s$	$142.9 \pm 7.83s$	$45.0 \pm 0.67s$	$158.0 \pm 0.82s$
Schrödinger	$172.8 \pm 12.89s$	$255.9 \pm 55.36s$	$44.4 \pm 13.06s$	$247.6 \pm 47.71s$
Schrödinger PMO	$173.5 \pm 25.11s$	$279.1 \pm 67.42s$	$68.6 \pm 8.54s$	$258.5 \pm 30.49s$

1664
1665
1666
1667 F.5.1 DIAGNOSTIC VISUALIZATION AND MODEL VARIANTS
16681669 For empirical diagnostics, we use a variant of our Schrödinger GNN that applies phase modulation at
1670 each layer, where each layer derives its phase from a learned linear projection of the current layer’s
1671 input features and an absolute value activation.1672 **Diagnostic Methodology: Expected Location and Distance.** To quantify how signal content
1673 shifts through the network, we use the expected feature location $\mathcal{E}_{X_f}(g)$ as defined in Section 3,
which measures where the signal’s energy is concentrated in phase space. We then define the *nor-*

1674 *malized expected distance* for layer l and channel k as:

$$1676 \quad D_{l,k} = \frac{|\mathcal{E}_\phi(g_{\text{in}}) - \mathcal{E}_\phi(g_{\text{out}})|}{\phi_{\max} - \phi_{\min}}, \quad (8)$$

1678 where g_{in} is the broadcast (amplitude) before convolution, g_{out} is the output after convolution, ϕ
 1679 is the phase of the signal (the part in the exponent of the modulation operator), ϕ_{\max} and ϕ_{\min}
 1680 are the maximum and minimum phase values in the signal. This metric captures how much the
 1681 “center of mass” shifts relative to the total phase range, enabling comparison of signal transport
 1682 across different layers and channels. We compare two scenarios: (i) *Conv-only*: applying only
 1683 the unitary convolution without phase modulation, and (ii) *Modulation + Conv*: applying phase
 1684 modulation before convolution. The diagnostic reveals that modulation systematically shifts the
 1685 expected location, while conv-only operations preserve it.

1686 **Windowed Analysis via Soft Phase Windows.** Since typical signals span the entire graph, their
 1687 global expected location may not be meaningful. Following the conceptual decomposition discussed
 1688 in Section 3, we partition signals into localized “chunks” using soft Gaussian windows in phase
 1689 space. For channel k with phase values $\phi_k(n)$, we construct L windows as follows:

- 1691 **Window centers:** Divide the phase range $[\phi_{\min}, \phi_{\max}]$ into L equal regions with centers
 1692 $c_l = \phi_{\min} + \frac{2l+1}{2L}(\phi_{\max} - \phi_{\min})$ for $l = 0, \dots, L - 1$.
- 1694 **Gaussian distances:** For each node n and window l , compute $d_l(n) = -\frac{(\phi_k(n) - c_l)^2}{2\sigma^2}$ where
 1695 $\sigma = \frac{\phi_{\max} - \phi_{\min}}{2L}$.
- 1696 **Soft partition via softmax:** Apply $w_l(n) = \frac{e^{d_l(n)}}{\sum_{l'} e^{d_{l'}(n)}}$, ensuring $\sum_l w_l(n) = 1$.

1698 The windowed signal $g^l = w_l \odot g$ represents the portion of signal concentrated around phase center
 1699 c_l . By tracking how each window’s expected location shifts after convolution, we can visualize
 1700 directional signal flow: windows in different phase regions exhibit different propagation behaviors
 1701 depending on the modulation.

1703 F.6 HETEROPILOUS NODE CLASSIFICATION

1705 We evaluate our model on heterophilous node classification benchmarks from (40), which specifically
 1706 test the ability of GNNs to learn on graphs where connected nodes tend to have different labels.
 1707 We follow the experimental protocol from (23), using the same data splits and evaluation metrics.
 1708 Results are reported in Table 9

1710 Table 9: Performance on heterophilous node classification benchmarks. Top performing are in bold.

1712 TYPE	1713 METHOD	1714 ROMAN-E. Test AP \uparrow	1715 AMAZON-R. Test AP \uparrow	1716 MINESWEEPER ROC AUC \uparrow	1717 TOLOKERS ROC AUC \uparrow	1718 QUESTIONS ROC AUC \uparrow
1714 MP	GCN [†] (25)	73.69 \pm 0.74	48.70 \pm 0.63	89.75 \pm 0.52	83.64 \pm 0.67	76.09 \pm 1.27
	SAGE [†] (19)	85.74 \pm 0.67	53.63 \pm 0.39	93.51 \pm 0.57	82.43 \pm 0.44	76.44 \pm 0.62
	GAT [†] (53)	80.87 \pm 0.30	49.09 \pm 0.63	92.01 \pm 0.68	83.70 \pm 0.47	77.43 \pm 1.20
	GT [†] (13)	86.51 \pm 0.73	51.17 \pm 0.66	91.85 \pm 0.76	83.23 \pm 0.64	77.95 \pm 0.68
1717 Unitary	Unitary GCN [‡] (23)	87.21 \pm 0.76	55.34 \pm 0.74	94.27 \pm 0.58	84.83 \pm 0.68	79.21 \pm 0.79
	Lie Unitary GCN [‡] (23)	85.50 \pm 0.22	52.35 \pm 0.26	96.11 \pm 0.10	85.18 \pm 0.43	80.01 \pm 0.43
Ours	Schrödinger	88.56 \pm 0.71	49.55 \pm 0.71	96.31 \pm 0.49	84.3 \pm 0.31	70.66 \pm 2.55

1720 [†]Reported performance taken from (40). [‡]Reported performance taken from (23).

1721 **Dataset Statistics** Table 10 summarizes the statistics of the heterophilous node classification
 1722 datasets.

1723 **Experimental Setup** We follow the experimental protocol from (23). All baseline results for MP
 1724 methods (GCN, SAGE, GAT, GT) are taken from (40), and Unitary GCN and Lie Unitary GCN
 1725 results are taken from (23).

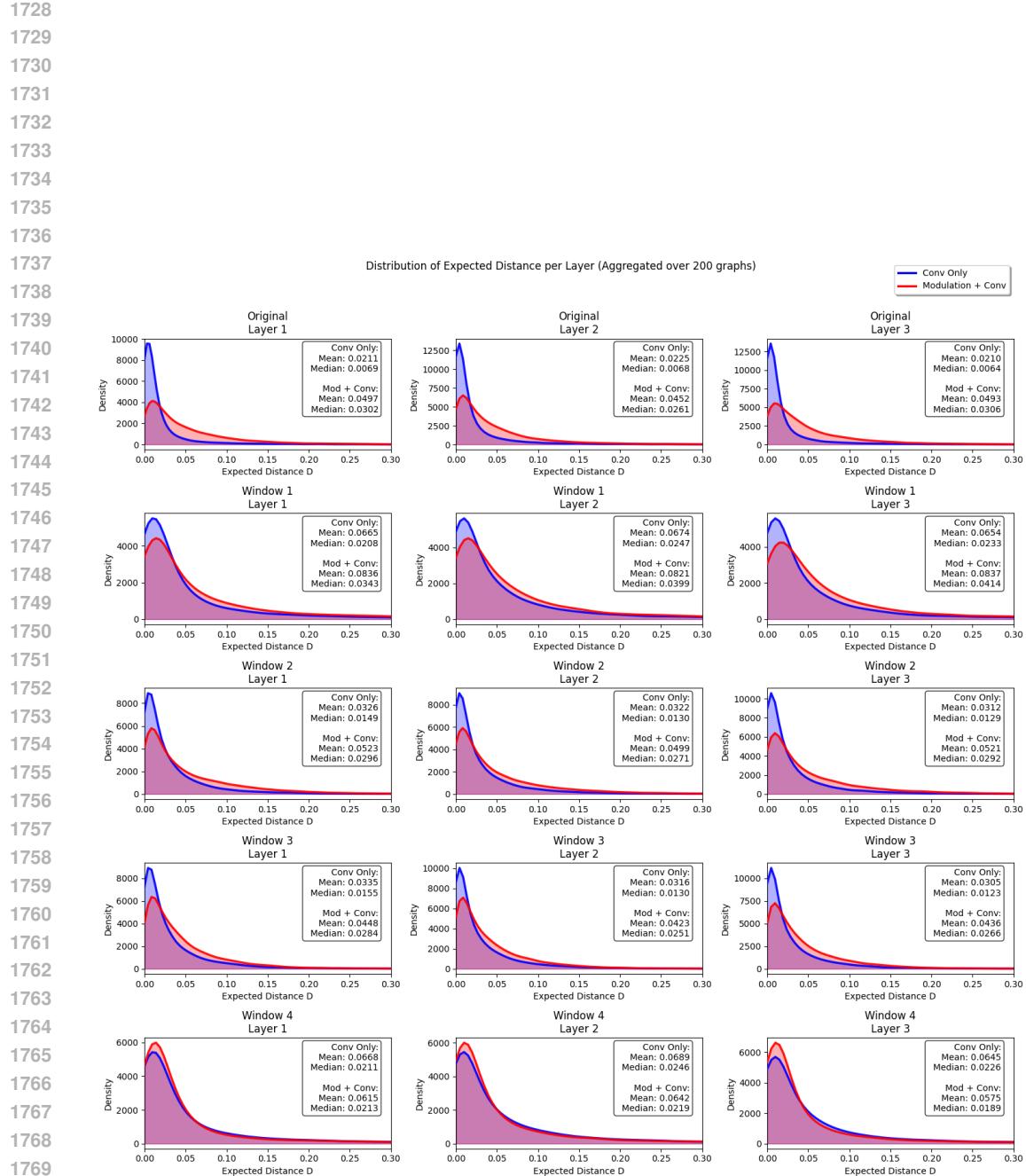


Figure 8: Distribution of expected distance $D_{l,k}$ across layers and channels. Blue curves show Conv-only, red curves show Modulation + Conv. The shift in the red distribution demonstrates that phase modulation enables directional signal transport.

1782
1783
1784 Table 10: Statistics of heterophilous node classification datasets (40).
1785
1786
1787
1788
1789

	ROMAN-EMPIRE	AMAZON-RATINGS	MINESWEEPER	TOLOKERS	QUESTIONS
#Nodes	22,662	24,492	10,000	11,758	48,921
#Edges	32,927	93,050	39,402	519,000	153,540
#Classes	18	5	2	2	2
Homophily	0.05	0.38	0.68	0.59	0.84
Metric	AP	AP	ROC AUC	ROC AUC	ROC AUC

1790
1791
1792 **Architecture** For our Schrödinger model, we use the following architecture:
1793
1794
1795
1796
1797
1798
1799

- **Preprocessing:** Position-Momentum Optimization (PMO) run for 50 epochs with a learning rate of 0.001 on input features to obtain orthogonalized feature locations
- **Convolution layers:** the first layer is Schrödinger layers with feature modulation and the rest are Schrödinger layer without a modulation layer
- **Readout:** Linear layer for node classification

1800
1801 **Hyperparameters** Table 11 shows the hyperparameter configuration for our Schrödinger model
1802 on the heterophilous benchmarks.
1803Table 11: Hyperparameters for Schrödinger on heterophilous node classification.
1804

	ROMAN-EMPIRE	AMAZON-RATINGS	MINESWEEPER	TOLOKERS	QUESTIONS
Learning Rate	0.001	0.001	0.001	0.0001	0.0001
Dropout	0.5	0.5	0.5	0.5	0.5
# Conv. Layers	8	4	8	4	4

1810
1811 F.7 ABLATION STUDY ON ENZYMES
1812

1813 We conducted an ablation study on the ENZYMES dataset to investigate the contribution of each
1814 component in our Schrödinger GNN framework. We utilized a fixed architecture across all models: 3
1815 graph convolution layers followed by a final linear layer, with a hidden dimension of 128, a dropout
1816 rate of 0, and a learning rate of 0.005. All models were trained for 300 epochs, and results are
1817 averaged over 100 independent trials. The ablation progression is as follows:

- **Unitary (UniGCN):** The baseline unitary graph convolution network (23).
- **Adaptive Unitary:** Extends UniGCN by learning the time parameter t in the unitary operator.
- **Schrödinger:** Further extends Adaptive Unitary by introducing feature modulation, effectively creating the full Schrödinger filter.
- **Schrödinger PMO:** The complete model which includes Position-Momentum Optimization (PMO) on the input features before applying the Schrödinger filter.

1827
1828 Table 12: Ablation study results on ENZYMES (Test Accuracy \pm Std). All models share the same
1829 backbone architecture and hyperparameters.
1830

Model	Test Accuracy
Unitary (UniGCN)	37.33 ± 8.25
Adaptive Unitary	41.56 ± 5.67
Schrödinger	43.61 ± 4.58
Schrödinger PMO	44.83 ± 4.03

1836 Table 13: Statistics of Peptides datasets (LRGB). Both datasets share the same underlying graphs
 1837 but differ in their prediction tasks.

Statistic	Value
#Graphs	15,535
Avg #Nodes	150.94
Avg #Edges	307.30
TASKS	
PEPTIDES-FUNC	10 (Graph Classification)
PEPTIDES-STRUCT	11 (Graph Regression)

1848 Table 14: Hyperparameters for Schrödinger models on Peptides-Func
 1849

	SCHRÖDINGER	SCHRÖDINGER (NON-MODULATED)
lr	0.001	0.001
dropout	0.2	0.1
attn dropout	0.1	0.1
delta init	log_stratified	log_stratified
# Conv. Layers	4	4
hidden dim.	195	195
node type	RSWE (42)	RSWE (42)
batch size	200	200
# epochs	4000	4000
edge aggregator	GINE	GINE
# Parameters	493K	492K

1863 F.8 PEPTIDES

1864 **Experimental Setup and Implementation Details** Our evaluation framework leverages the
 1865 GraphGym platform (57) for systematic assessment on Peptide datasets datasets. Tables 4 presents
 1866 comprehensive benchmark results compiled from various state-of-the-art architectures, including
 1867 (26; 10; 49; 47; 50; 22; 35; 54; 55; 12; 21; 6), with all reported metrics collected from published
 1868 literature as of September 2025. The experimental infrastructure utilizes PyTorch (39) as the primary
 1869 deep learning framework, supplemented by PyTorch Geometric (15) for specialized graph neural
 1870 network operations.

1871 **Edge Feature Handling** A notable limitation of our unitary graph convolution implementation is
 1872 the absence of native edge feature support. To address this constraint in edge-attributed datasets, we
 1873 employ a preprocessing strategy incorporating either GINE (56) or Gated GCN (3) architectures as
 1874 initial layers. These components serve as edge feature aggregators, effectively transforming edge
 1875 attributes into node representations. When such preprocessing is utilized, we explicitly document
 1876 this configuration through an "edge aggregator" hyperparameter specification in our experimental
 1877 tables.

1878 **Computational Resources and Performance** All experimental runs were conducted on individ-
 1879 ual GPUs, specifically utilizing an NVIDIA NVIDIA L40S hardware. Training duration exhibited
 1880 convergence with less than 15 seconds epochs. Dataset storage requirements was 1GB. The smaller
 1881 datasets typically completed training epochs within seconds.

1882 **Parameter Count** LRGB datasets require a parameter limit of 500k, thus each complex parameter
 1883 is count as 2.

1884 **Hyperparameters** We employ the Adam optimizer (24) with an initial learning rate of 0.001,
 1885 utilizing a cosine learning rate scheduler and run a hyperparameter sweep for the basic model with
 1886 the following hyperparameters:

Table 15: Hyperparameters for Schrödinger models on Peptides-Struct

	SCHRÖDINGER	SCHRÖDINGER (NON-MODULATED)
lr	0.001	0.001
dropout	0.15	0.1
# Conv. Layers	4	6
hidden dim.	150	64
node type	LapPE (42)	LapPE (42)
batch size	200	200
# epochs	500	500
edge aggregator	GINE	GINE
# Parameters	496K	499K

- **Number of layers:** {2, 4, 6, 8}
- **Dropout:** {0.1, 0.15, 0.2}
- **Hidden dimensions:** maximized according to the 500K parameter count limit and considering complex as 2 parameters.

G PROOFS

Theorem G.1 (Dirichlet Energy is a Laplacian Observable). *For a signal f and \tilde{f} its Fourier transform, the Dirichlet energy is equivalent to the expected squared momentum in momentum space:*

$$\mathcal{E}_{\tilde{\Delta}}(f) = \frac{1}{2} \int p^2 |\tilde{f}(p)|^2 dp = \frac{1}{2} \mathcal{E}_{P^2}(\tilde{f})$$

where $\tilde{f}(p)$ is the Fourier transform of f and p represents momentum.

Proof of Theorem G.1. The proof follows from the spectral decomposition of the Laplacian operator:

$$\begin{aligned} \mathcal{E}_{\tilde{\Delta}}(f) &= \langle \tilde{\Delta}f, f \rangle = \langle -\nabla \cdot \nabla f, f \rangle \\ &= \frac{1}{2} \int \|\nabla f(x)\|_2^2 dx = \frac{1}{2} \int p^2 |\tilde{f}(p)|^2 dp = \frac{1}{2} \mathcal{E}_{P^2}(\tilde{f}) \end{aligned}$$

where we used Parseval's theorem and the fact that the Fourier transform of the gradient operator corresponds to multiplication by ip in momentum space. \square

G.1 COMMUTATOR IDENTITIES USED IN SECTION 3

We collect concise commutator expansions used in Section 3. Throughout, $X_f := \text{diag}(f)$, ∇_f is as in Definition 3.1, $\Delta_f = -\nabla_f^2$, and $W_f := -i[\nabla_f, X_f]$ (Lemma: Smoothing Operator as Commutator).

Lemma G.2 (Product-rule commutator). *For any features f, h ,*

$$[X_h, W_f \nabla_f] = [X_h, W_f] \nabla_f + W_f [X_h, \nabla_f].$$

Proof. Use $[A, BC] = [A, B]C + B[A, C]$ with $A = X_h$, $B = W_f$, $C = \nabla_f$. \square

Lemma G.3 (Expansion of $i[\Delta_f, X_f^2]$). *and $i[[\Delta_f, X_f^2], X_h]$ Let $S_f := X_f W_f + W_f X_f$. Then*

$$i[\Delta_f, X_f^2] = \nabla_f S_f + S_f \nabla_f.$$

Moreover, for any feature h ,

$$i[[\Delta_f, X_f^2], X_h] = \nabla_f [S_f, X_h] + [\nabla_f, X_h] S_f + S_f [\nabla_f, X_h] + [S_f, X_h] \nabla_f.$$

Since $[\nabla_f, X_h] = iW_h$ and $[S_f, X_h] = X_f [W_f, X_h] + [W_f, X_h] X_f$ (as $[X_f, X_h] = 0$ for diagonal real features), both identities reduce to products of W_f, W_h , and diagonal multipliers.

1944 *Proof.* By $[AB, C] = A[B, C] + [A, C]B$ and $[\nabla_f, X_f^2] = [\nabla_f, X_f]X_f + X_f[\nabla_f, X_f] =$
 1945 $i(W_f X_f + X_f W_f) = iS_f$. Then
 1946

$$1947 \quad i[\Delta_f, X_f^2] = -i[\nabla_f^2, X_f^2] = -i(\nabla_f[\nabla_f, X_f^2] + [\nabla_f, X_f^2]\nabla_f) = \nabla_f S_f + S_f \nabla_f.$$

1948 The double commutator follows by another application of $[AB + BA, X_h]$ and collecting terms,
 1949 using $[\nabla_f, X_h] = iW_h$ and $[X_f, X_h] = 0$. \square
 1950

1951 *Proof of Routing Measure Equation (2).*

$$1952 \quad \mathcal{P}_A(g_0, g_t, r) = \frac{\mathcal{V}_A(g_t) + (r - \mathcal{E}_A(g_t))^2}{\mathcal{V}_A(g_0)}.$$

1953 We will focus on the numerator of the energy flow measure, we have:
 1954

$$1955 \quad \langle (X_f - rI)^2 U g, U g \rangle = \langle (X_f^2 - 2rX_f + r^2 I - \mathcal{E}_{X_f}(Ug)^2 I + \mathcal{E}_{X_f}(Ug)^2 I + 2\mathcal{E}_{X_f}(Ug)X_f - 2\mathcal{E}_{X_f}(Ug)X_f)Ug, Ug \rangle$$

1956 Rearranging terms to complete the square:
 1957

$$1958 \quad = \langle (X_f^2 - 2\mathcal{E}_{X_f}(Ug)X_f + \mathcal{E}_{X_f}(Ug)^2 I)Ug, Ug \rangle + \langle (r^2 - \mathcal{E}_{X_f}(Ug)^2)IUg, Ug \rangle + \langle 2(\mathcal{E}_{X_f}(Ug) - r)X_f U g, U g \rangle$$

1959
 1960 The first term is the variance:
 1961

$$1962 \quad \langle (X_f - \mathcal{E}_{X_f}(Ug)I)^2 U g, U g \rangle = \mathcal{V}_{X_f}(Ug)$$

1963 The second term simplifies using norm preservation ($\|Ug\|^2 = \|g\|^2 = 1$ for normalized signals):
 1964

$$1965 \quad \langle (r^2 - \mathcal{E}_{X_f}(Ug)^2)IUg, Ug \rangle = (r^2 - \mathcal{E}_{X_f}(Ug)^2)$$

1966 The third term uses the definition of expected feature:
 1967

$$1968 \quad \langle 2(\mathcal{E}_{X_f}(Ug) - r)X_f U g, U g \rangle = 2(\mathcal{E}_{X_f}(Ug) - r)\mathcal{E}_{X_f}(Ug)$$

1969 Combining all terms:
 1970

$$1971 \quad \begin{aligned} \langle (X_f - rI)^2 U g, U g \rangle &= \mathcal{V}_{X_f}(Ug) + (r^2 - \mathcal{E}_{X_f}(Ug)^2) + 2(\mathcal{E}_{X_f}(Ug) - r)\mathcal{E}_{X_f}(Ug) \\ 1972 &= \mathcal{V}_{X_f}(Ug) + r^2 - \mathcal{E}_{X_f}(Ug)^2 + 2\mathcal{E}_{X_f}(Ug)^2 - 2r\mathcal{E}_{X_f}(Ug) \\ 1973 &= \mathcal{V}_{X_f}(Ug) + r^2 + \mathcal{E}_{X_f}(Ug)^2 - 2r\mathcal{E}_{X_f}(Ug) \\ 1974 &= \mathcal{V}_{X_f}(Ug) + (r - \mathcal{E}_{X_f}(Ug))^2 \end{aligned}$$

1975 Therefore, the energy flow measure becomes:
 1976

$$1977 \quad \frac{\langle (X_f - rI)^2 U g, U g \rangle}{\mathcal{V}_{X_f}(g)} = \frac{\mathcal{V}_{X_f}(Ug) + (r - \mathcal{E}_{X_f}(Ug))^2}{\mathcal{V}_{X_f}(g)}$$

1978 \square
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143

1998 *Proof of Theorem G.4.* Recall the edge form of the Dirichlet energy $\mathcal{E}_\Delta(f) =$
 1999 $\frac{1}{2} \sum_{(m,n) \in E} a_{m,n} |f(n) - f(m)|^2$. For $g_\theta(v) = g(v)e^{i\theta h(v)}$ we compute
 2000

$$|g_\theta(n) - g_\theta(m)|^2 = |g(n) - g(m)|^2 e^{i\theta(h(m) - h(n))} = g(n)^2 + g(m)^2 - 2g(n)g(m) \cos(\theta(h(n) - h(m))).$$

Substituting into the edge sum gives

$$\begin{aligned}\mathcal{E}_\Delta(g_\theta) &= \frac{1}{2} \sum_{(m,n) \in E} a_{m,n} (g(n)^2 + g(m)^2 - 2g(n)g(m) \cos(\theta \Delta h)) \\ &= \mathcal{E}_\Delta(g) + \sum_{(m,n) \in E} a_{m,n} g(n)g(m) (1 - \cos(\theta \Delta h)),\end{aligned}$$

where $\Delta h := h(n) - h(m)$. The cosine term satisfies $1 - \cos(\cdot) \geq 0$, proving the non-decreasing property and the condition for equality. \square

H LICENSES

We list below the licenses of code and datasets that we use in our experiments.

Table 16: Licenses for Code and Datasets

MODEL/DATASET	LICENSE	NOTES
LRGB (14)	Custom	License
MNIST (28)	CC BY-SA 3.0	Open Source
TUDataset (36)	Open	Open Source
Heterophilous Benchmarks (40)	MIT	License
PyTorch Geometric (15)	MIT	License
GraphGym (57)	MIT	License
GraphGPS (42)	MIT	License
PyTorch (39)	3-clause BSD	License