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Abstract

Cardiac amyloidosis (CA) subtype classification remains a critical diagnostic challenge.
We propose a multimodal deep learning framework that integrates cine, late gadolinium
enhancement (LGE), and T1/T2 parametric cardiac MRI sequences to differentiate light
chain (AL) and transthyretin (ATTR) amyloidosis. The model employs sequence-specific
encoders and gated attention fusion, enabling robust performance even with missing in-
put sequences. Evaluated on 123 patients with cross-validation, the xLSTM-based model
achieved the highest AUC (0.8506), outperforming a Video Swin Transformer (VST) alter-
native. Grad-CAM visualizations highlight both cardiac and extracardiac regions, demon-
strating interpretability and the potential for identifying systemic imaging biomarkers.
These results support a clinically viable approach to non-invasive CA subtype diagnosis.
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1. Introduction

Cardiac amyloidosis (CA) is a progressive infiltrative cardiomyopathy caused by extracel-
lular deposition of misfolded proteins, most commonly light chain (AL) or transthyretin
(ATTR) amyloid. Accurate subtype classification is essential for guiding therapy and prog-
nosis (Maggialetti et al., 2024; Aus dem Siepen and Hansen, 2024), but current pathways
often rely on invasive biopsy or specialized nuclear imaging (Dorbala et al., 2020). Cardiac
MRI (CMR) offers a non-invasive and information-rich alternative (Fontana et al., 2015a),
yet interpreting cine, late gadolinium enhancement (LGE), and T1/T2 mapping requires
expert knowledge and remains a challenge (Fontana et al., 2015b; Banypersad et al., 2015;
Zhao et al., 2016). We present a multimodal deep learning framework that combines these
CMR sequences using sequence-specific encoders and gated attention fusion (Azam et al.,
2022), with a focus on spatiotemporal learning from cine using xLSTM (Beck et al., 2024).
The model supports missing sequences and provides interpretable Grad-CAM visualiza-
tions (Selvaraju et al., 2017), enabling robust and explainable CA subtype classification.
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Figure 1: Model architecture illustrating sequence-specific encoders and gated multi-head
attention fusion.

2. Methodology

Dataset and Preprocessing. We used cardiac MRI scans from 123 patients with biopsy-
confirmed amyloidosis at The Ohio State University. Each exam included cine sequences
(2D time-resolved), LGE (multi-slice 2D stacks), and T1/T2 parametric maps. While ac-
quired as 2D or 3D in clinical imaging, we refer to their dimensionality based on model
input structure. All images were resampled to 0.94 mm isotropic resolution. Intensity
normalization used z-scoring for cine and LGE, and percentile scaling for parametric maps.
Model Architecture. Our framework (Fig. 1) employs sequence-specific encoders: a
spatiotemporal network (xLSTM (Beck et al., 2024) or Video Swin Transformer (Liu et al.,
2022)) for cine MRI, a 3D CNN for LGE, and a 2D CNN for parametric maps. Each
encoder outputs a latent representation, which is dynamically fused using gated multi-head
attention (Vaswani et al., 2017; Bahdanau et al., 2014). This design supports robustness to
missing modalities while preserving temporal structure in cine sequences.
Training Strategy. We conducted 5-fold stratified cross-validation to compare model vari-
ants: (1) xLSTM vs. VST for cine encoding, and (2) with or without demographics (age,
sex). Single-sequence baselines were also evaluated. Models were trained with cross-entropy
loss, Adam optimizer (Kingma and Ba, 2015), dropout, and label smoothing. Hyperparam-
eters were selected via Bayesian optimization using TPE (Bergstra et al., 2013).

3. Results

Model Comparison. Cross-validation results (Table 1) show that the spatiotemporal
xLSTM achieved the highest AUC (0.8506 ± 0.0654) with lower computational cost. VST
offered slightly lower accuracy (0.8346 ± 0.0410) at nearly double the parameter count and

Table 1: Cross-validation performance comparison across configurations.

Model Configuration AUC Inference Time (ms) Min/Med/Max (ms) # Params Peak GPU (MB)

Spatiotemporal xLSTM 0.8506 ± 0.0654 65.42 ± 45.50 46.12 / 53.73 / 283.31 137M 71.67
Video Swin Transformer 0.8346 ± 0.0410 107.31 ± 36.63 89.88 / 97.31 / 309.29 276M 97.76
xLSTM + Demographics 0.8244 ± 0.0820 61.86 ± 44.57 45.06 / 50.26 / 275.59 137M 71.67
VST + Demographics 0.8154 ± 0.0656 110.79 ± 37.10 93.67 / 101.56 / 298.95 276M 97.76
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Figure 2: Grad-CAM visualization highlighting myocardial and extracardiac regions (e.g.,
kidneys), suggesting systemic features relevant to subtype differentiation.

memory usage. Including demographic data modestly reduced performance in both models
(AUCs 0.8244 and 0.8154), likely due to overfitting given the limited dataset size.

Single-Sequence Instability. Models trained on individual sequences failed to converge
reliably across folds, regardless of architecture. This instability reinforces the value of
multimodal fusion, suggesting that complementary information across sequences is essential
for subtype discrimination.

Interpretability and Systemic Insights. Fig. 2 displays Grad-CAM visualizations show-
ing myocardial and extracardiac activations. Attention weights were consistently balanced
across modalities (range: 0.60–0.65). Notably, extracardiac signals frequently appeared
in renal regions, consistent with systemic amyloid burden reported in radiological litera-
ture (Kawashima et al., 2011).

4. Discussion and Conclusion

Our study demonstrates that a multimodal deep learning framework integrating cine, LGE,
and mapping sequences can achieve strong performance for CA subtype classification. The
xLSTM-based encoder strikes a favorable balance between accuracy and computational cost,
making it suitable for potential clinical deployment.

Adding demographic information did not improve classification, potentially due to over-
fitting in limited sample sizes or the dominant discriminative power of imaging features.
Furthermore, Grad-CAM activations in extracardiac regions may reflect systemic amyloid
burden and open avenues for future research into holistic biomarkers.

These findings align with prior work emphasizing the value of CMR-derived tissue char-
acterization (Fontana et al., 2015a; Banypersad et al., 2015). Our contributions extend
this knowledge by providing an end-to-end interpretable framework that can learn from
incomplete or heterogeneous imaging inputs.

In conclusion, our spatiotemporal model demonstrates strong performance and inter-
pretability in CA subtype classification using multisequence MRI. Future work will focus
on external validation with multi-institutional cohorts and deeper investigation into sys-
temic imaging features.
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