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Abstract

Despite recent advancements in Machine001
Learning, many tasks still involve working in002
low-data regimes which can make solving nat-003
ural language problems difficult. Recently, a004
number of text augmentation techniques have005
emerged in the field of Natural Language Pro-006
cessing (NLP) which can enrich the training007
data with new examples, though they are not008
without their caveats. For instance, simple009
rule-based heuristic methods are effective, but010
lack variation in semantic content and syntac-011
tic structure with respect to the original text.012
On the other hand, more complex deep learn-013
ing approaches can cause extreme shifts in the014
intrinsic meaning of the text and introduce un-015
wanted noise into the training data. To more016
reliably control the quality of the augmented017
examples, we introduce a state-of-the-art ap-018
proach for Self-Controlled Text Augmentation019
(STA). Our approach tightly controls the gen-020
eration process by introducing a self-checking021
procedure to ensure that generated examples022
retain the semantic content of the original text.023
Experimental results on multiple benchmarking024
datasets demonstrate that STA substantially out-025
performs existing state-of-the-art techniques,026
whilst qualitative analysis reveals that the gen-027
erated examples are both lexically diverse and028
semantically reliable.029

1 Introduction030

A variety of tasks such as Topic Classification (Li031

and Roth, 2002), Emotion Detection (Saravia et al.,032

2018) and Sentiment Analysis (Socher et al., 2013)033

have become important areas of research in NLP.034

Such tasks generally require a considerable amount035

of accurately labelled data to achieve strong per-036

formance. However, acquiring enough such data is037

both costly and time-consuming, hence making it038

rare in practice. This has motivated a vast body of039

research in techniques that can help alleviate issues040

associated with low-data regimes.041

A popular augmentation approach involves the 042

use of rule-based transformations, which employ 043

intuitive heuristics based on well-known paradig- 044

matic relationships between words. For instance, 045

by using a lexical-semantic database such as Word- 046

Net (Miller, 1995), researchers can make ratio- 047

nal and domain-specific conjectures about suit- 048

able replacements for words from lists of known 049

synonyms or hyponyms/hypernyms (Wang and 050

Yang, 2015; Wei and Zou, 2019; Feng et al., 2020). 051

Whilst these substitution-based approaches can re- 052

sult in novel and lexically diverse data, they also 053

tend to produce highly homogeneous structures, 054

even when context-free grammars are used to gen- 055

erate more syntactically variable examples (Jia and 056

Liang, 2016). 057

The recent success of pretrained transformer lan- 058

guage models such as BERT (Devlin et al., 2019) 059

and GPT-2 (Radford et al., 2019) has helped facil- 060

itate more robust strategies for dealing with low- 061

resource scenarios: Conditional text generation. 062

Large language models — typically trained on a 063

vast corpus of text — contain a rich understand- 064

ing of syntactic structure and semantic phenomena 065

and thus can be well suited for faithful domain- 066

specific generation (Petroni et al., 2019). Indeed, 067

large language models have been conditioned to 068

great success (Kobayashi, 2018; Wu et al., 2019; 069

Anaby-Tavor et al., 2020; Kumar et al., 2020) to 070

synthesize highly diverse training examples result- 071

ing in stronger downstream performance in low- 072

resource settings. However, the use of diverse 073

neurally-generated data may come at the cost of in- 074

troducing semantic discrepancies, which can cause 075

misalignment between the generated samples and 076

their intended labels. Ideally, the optimal augmen- 077

tation method would be one that satisfies both Lex- 078

ical/Syntactic Diversity and Semantic Fidelity 079

(reliable alignment between semantic meaning and 080

class label). 081

In this paper, we propose a novel strategy — self- 082
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controlled text augmentation (STA) that aims to083

tightly control the generation process in order to084

produce diverse training examples which retain a085

high level of semantic fidelity. Following previous086

work, we fine-tune a state-of-the-art sequence-to-087

sequence transformer model, known as T5 (Raf-088

fel et al., 2020), using a dataset containing only089

a limited number of samples and generate new090

samples using task-specific prompting, which has091

been shown to be effective in low-resource sce-092

narios (Le Scao and Rush, 2021). While sim-093

ilar approaches have been deployed in previous094

work (Anaby-Tavor et al., 2020), our novel strat-095

egy effectively utilizes Pattern-Exploiting Training096

(Schick and Schütze, 2021a,b) by employing tem-097

plates of verbalization-patterns that simultaneously098

direct the generation process and filter noisy labels099

within a single unified framework. Experimental re-100

sults on multiple benchmarks demonstrate that STA101

outperforms existing state-of-the-art augmentation102

techniques. Furthermore, examining the quality103

of the augmented data reveals better diversity and104

fidelity as compared to the existing techniques.105

2 Related Work106

Various text augmentation techniques have been107

proposed in the literature. Zhang et al. (2015)108

and Wei and Zou (2019) use simple operations109

like synonym replacement, random insertion, swap,110

and deletion to generate new samples. Feng et al.111

(2020) further explores these substitution tech-112

niques for text generation. In contrast, Wang and113

Yang (2015) and Kobayashi (2018) use word em-114

beddings and contextual language models, respec-115

tively, to replace words or phrases with semanti-116

cally similar concepts.117

Back translation is another effective method for118

text augmentation, transforming sentence between119

languages (Sennrich et al., 2016; Shleifer, 2019).120

Recently, researchers have explored the use of pre-121

trained transformer-based language models for con-122

ditional text augmentation to generate novel sen-123

tences from the original data (Wu et al., 2019;124

Anaby-Tavor et al., 2020; Kumar et al., 2020).125

For instance, Wu et al. (2019) leveraged BERT’s126

masked language model, while Anaby-Tavor et al.127

(2020) fine-tuned GPT-2 to generate novel sen-128

tences and filter out noisy ones using a jointly129

trained classifier with some success in tackling130

the label misalignment problem. Similarly, Kumar131

et al. (2020) studied conditional text augmentation132

using transformer-based models, with BART out- 133

performing other methods in low-resource settings 134

Building upon ideas presented in the GPT series 135

(Radford et al., 2018, 2019; Brown et al., 2020), 136

prompt-based templates have become and effec- 137

tive approach for eliciting latent knowledge from 138

language models to great success (Trinh and Le, 139

2018; Petroni et al., 2019; Davison et al., 2019; 140

Talmor et al., 2020; Le Scao and Rush, 2021). 141

Wang et al. (2021) proposed using GPT-3 for text 142

augmentation with zero-label learning, with re- 143

sults that were competitive when compared to fully 144

supervised approaches. More closely related to 145

our instruction-based generation strategy, Schick 146

and Schütze (2021b) propose GenPet which is 147

used to directly tackle a number of text genera- 148

tion tasks rather than text augmentation itself. In 149

their work, which builds upon previous research 150

PET (Schick and Schütze, 2021a), the authors alter 151

the text inputs to form cloze-style questions known 152

as prompting training (Liu et al., 2021), demon- 153

strating improved performance on few-shot down- 154

stream tasks. Finally, researchers have proposed 155

an array of techniques aiming to systematically en- 156

gineer the structure of these templates beyond ad 157

hoc human intuitive reasoning: For example, using 158

automated template generation for the tasks (Shin 159

et al., 2020; Gao et al., 2021), trained end-to-end 160

with soft-prompts (Lester et al., 2021; Gu et al., 161

2022) or designed from sub-prompts created by 162

decomposing prior task knowledge into rules (Han 163

et al., 2022). 164

Our approach differs from prior work by using 165

task-specific templates as verbal prompts for gen- 166

eration and classification which signal the model’s 167

objective. The model itself is self-controlling, gen- 168

erating novel data and retaining only the most con- 169

vincing examples using a classification template to 170

ensure semantic fidelity. 171

3 Method 172

In this section, we describe our novel self- 173

controlled approach for text augmentation in text 174

classification (STA). Figure 1 illustrates the work- 175

flow of STA and Algorithm 1 states STA in simple 176

terms. At a high level, STA first finetunes a pre- 177

trained sequence-to-sequence (seq2seq) model us- 178

ing a dataset which implicitly includes generation 179

and classification tasks. 180
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Figure 1: The architecture of our Self-controlled Text Augmentation approach (STA). The upper portion outlines
the finetuning component of our method (Training), whilst the lower portion demonstrates our procedure for
generating novel data (Inference). STA is highlighted by using the generation template and classification template
for fine-tuning a seq2seq transformer model. The generation template is used for generating samples and the
classification template is used for self-controlling and selecting the generated samples.

Algorithm 1 :Self-Controlled Text Augmentation

Require: Original dataset Do. Generative model
M . Generation template G. Classification tem-
plate C.

1: Convert Do to training dataset Dt via G and C.
2: Finetune M on Dt in a generation task and a

classification task jointly to obtain Mt.
3: Use G and Mt to generate candidate dataset

Dc.
4: Apply Mt to do classification inference on Dc

with C to select the most confident examples.
5: Form the final generated dataset D∗ with the

selected examples.

3.1 Pattern-Exploiting Training in seq2seq181

Models182

PET is a finetuning technique for text classification183

tasks in masked language models, as demonstrated184

in (Schick and Schütze, 2021a). By converting185

inputs into cloze questions, PET enables accurate186

classification with minimal labeled data. We ex-187

tend the principles of PET to seq2seq autoregres-188

sive models in this paper, presenting the theoretical189

process for prompting-based generation and our190

innovative self-controlled approach.191

Consider a pretrained seq2seq autoregressive192

transformer model denoted as M (we use T5 (Raf-193

fel et al., 2020) in our experiments). This type of194

model comprises an encoder-decoder pair, where 195

the encoder takes an input sequence s and generates 196

a contextualized encoded sequence s. The decoder 197

then takes the encoded sequence and the current 198

subsequence t : {t1, t2, ..ti−1} as input to compute 199

the conditional distribution pM (ti|t1:i−1, s) for the 200

subsequent token in the sequence. Given s, the pos- 201

sible target sample (a sequence) t : {t1, t2, ..., tm} 202

can be obtained via the factorization: 203

pM (t1:m|s) =
m∏
i=1

pM (ti|t1:i−1, s) (1) 204

Let Do = {(xi, yi)}|ni=1 be a dataset for text 205

classification where xi ∈ X and yi ∈ L are text 206

and label respectively. The goal is to produce a 207

derived dataset Dt to finetune M and ensure it is 208

primed for generating diverse and (label) faithful 209

examples by leveraging a set of prompt templates. 210

Formally, a template is a function T : V ∗×L → 211

V ∗ × V ∗ where V is the vocabulary of M and V ∗ 212

denotes the set of finite sequences of symbols in V . 213

Of course, the structure of these templates can be 214

quite malleable. For example, a template could be 215

constructed through intuitive human interpretable 216

verbalizable terms, optimized automatically for the 217

task, fine-tuned with soft prompts or made up of 218

sequentially intuitive sub-prompts. Regardless of 219

the approach, the process is the same. 220

Given a family of templates T , we set Dt = 221
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T (Do) =
⋃

T∈T T (Do). That is, we convert each222

sample (xi, yi) ∈ Do to |T | samples in the derived223

dataset Dt. In the field of synthetic data gener-224

ation for low-resource scenarios, these templates225

generally belong to the collection of templates ca-226

pable of generating novel examples. Crucially, we227

extend these templates to consider two types of228

template families: generation templates G and clas-229

sification templates C, such that T = C ∪G. As we230

shall demonstrate, by carefully considering these231

templates, we can produce a dataset Dt (generated232

from these templates T applied to the dataset D)233

that is designed in such as way that the model can234

learn to directly optimize for key characteristics of235

the synthetic examples: High semantic fidelity and236

lexical diversity.237

3.1.1 Generation templates238

Though not exclusive to the field, these templates239

are commonplace within the synthetic data gener-240

ation literature for creating novel training exam-241

ples. Since our work focuses on encoder-decoder242

models, the templates take the form g(x, y) =243

(fs(x, y), ft(x)), where fs and ft denote functions244

that map a piece of text to a source sequence and tar-245

get sequence respectively. Concretely, the source246

function fs is a verbalizable mapping which de-247

pends on the text x ∈ X and label y ∈ L, the latter248

of which conditions the model to align the gener-249

ated text with the labels. The target function ft on250

the other hand, represents the desired output of the251

model, which depends on the text, and typically252

corresponds to the identity function.253

Diverse Generation. Without loss of gen-254

erality, for a given downstream task {Task},255

we could choose the primary template fs =256

Description: {yi} {Task}. Text: as our source257

function and ft = {xi} as the desired target for258

fine-tuning to facilitate the generation process, fol-259

lowing previous work (Anaby-Tavor et al., 2020;260

Schick and Schütze, 2021b,a). Here the goal of261

Task is to provide context about the dataset, since262

providing this sort of context helps when there263

are limited training examples (Schick and Schütze,264

2021b). In this work, our goal is not only to gen-265

erate novel sythetic examples for few-shot classi-266

fication, but to generate a diverse range of these267

samples. To ensure the model produces lexically268

diverse text, we propose a novel generation strat-269

egy which additionally includes an auxiliary tem-270

plate for generation by including prior knowledge,271

partially inspired by work in state-of-the-art sub- 272

prompt engineering (Han et al., 2022). Given some 273

data point (xi, yi) we achieve diversity by mod- 274

ifying two components to our source and target 275

functions. 276

• Memory: We add a previous example of text 277

xj which share the same label as an input to 278

the source function, j ∈ N such that yj = yi. 279

• Priming: We instantiate the source function 280

with some of the target output x0−n
i , n < 281

|xi| ∈ N , which further constrains the model 282

to avoid the generation of non-factual halluci- 283

nations (Cao et al., 2022). 284

Concretely, we define a second auxiliary tem- 285

plate function for generation g′(xi, xj , yi) = 286

(f ′
s(xi, xj , yi), f

′
t(xi)), with the source function 287

f ′
s = fs(xj , yi). Another text: {x0−2

i } and target 288

function f ′
t = {x3...i } where yj = yi. Intuitively, 289

we use a previous example as prior knowledge be- 290

fore concatenating them with the new template to 291

ensure the model produces distinct examples as 292

opposed to repetitions. It’s worth mentioning that 293

the g′ function can be employed multiple times to 294

create various examples by sampling different texts 295

during the conversion of a single training example 296

(check Appendix B demonstrates how an original 297

training sample is converted by the templates). For 298

generation, we include both templates g and g′ for 299

tuning our model. These templates are further out- 300

lined in Table 1. 301

3.1.2 Classification templates 302

Classification has been employed as an additional 303

processing step to filter synthetic examples which 304

do not align with the generated label (Anaby- 305

Tavor et al., 2020). In previous work, a sepa- 306

rate network is trained using the original data 307

to classify the examples, based on the intuition 308

that checking the results is easier than produc- 309

ing new examples. One problem that emerges 310

from adding a filter in low-resource settings is 311

that it creates an additional layer of complexity 312

within the system: Not only must the generator 313

predict the correct label from limited data, but so 314

must the classifier. These templates take the form 315

c(x, y) = (fs(x), ft(y)) where ft and fs similarly 316

denote the source sequence and target sequence 317

functions respectively. In this case, the source func- 318

tions are similar to the generation templates (the 319
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Template Source sequence (s) Target sequence (t)

Classification
Primary c Given {Task}: {L}. Classify: {xi} {yi}

Auxiliary cpos Text: {xi}. Is this text about {yi} {Task}? yes

Auxiliary cneg Text: {xi}. Is this text about {yi} {Task}? no

Generation Primary g Description: {yi} {Task}. Text: {xi}

Auxiliary g′ Description: {yi} {Task}. Text: {xj}. Another text: {x0-2
i } {x3...

i }

Table 1: Prompt templates for training sequences conversion. “Task” refers to a simple keyword describing the
dataset e.g. “Sentiment” or “Emotion” and L is the list of all class labels in the dataset. The symbol yi in cneg
stands for any label in L \ {yi}, chosen randomly. In g′, the xj denotes another sample from the same class as xi

(i.e. yj = yi) chosen randomly.

text can be conditioned on the labels or indepen-320

dent), although the target function instead relates321

to the target label or some semantically compati-322

ble class. It is simple to translate the feed-forward323

approach into a primary template using verbaliza-324

tions. In this case we set the source function as325

fs(xi) = Given {Task}: {L}. Classify: {xi} and326

target function as ft(yi) = yi , with L providing327

context to the possible labels.328

Semantic Fidelity. Although prompt-based329

tuning has proven to work better in limited330

data settings than simple feed-forward approaches331

(Le Scao and Rush, 2021), we further supplement332

the template dataset by generating multiple intu-333

itive patterns following previous work (Schick and334

Schütze, 2021a). To achieve this, we supplement335

our base classification templates with two more336

auxiliary templates which we refer to as cpos and337

cneg in the vein of cloze-style questions. Con-338

cretely, we define cpos = (fs(xi), ft(yi)) such that339

fs = Text: {xi}. Is this text about {yi} {Task}?340

and ft= yes , with the goal of classifying341

whether the correct label conforms to the342

text. Furthermore, we generate a counter343

template cneg = (fs(xi), ft(yi)) such that344

fs = Text: {xi}. Is this text about {ŷi} {Task}?345

and ft = no , ŷi ∼ L\{yi}, with the goal of deter-346

mining that the incorrectly sampled label does not347

conform to the text. These templates are given in348

detail in Table 1.349

Self-Checking. We note that these auxillary350

verbalizable patterns for classification are simply351

meant to supplement and do not represent the op-352

timal solution for eliciting important knowledge353

from the network (Gao et al., 2021). We instead354

wish to avoid cascading errors between the gen-355

eration and classification template: The classifica-356

tion network’s performance should be within an357

acceptable tolerance. In order to extract synthetic 358

examples with high levels of semantic alignment 359

between the generated text and labels, we propose 360

a novel strategy for controlled self-supervised data 361

generation, which we refer to as Self-Checking. Dif- 362

ferent from previous work, we perform generation 363

and classification filtering within a single unified 364

neural framework. We hypothesise that this mul- 365

tiview learning process should allow the network 366

to discover the semantic relationship between the 367

labels and text, further preventing non-factual hal- 368

lucinations of incorrect labels during the generation 369

process. 370

3.2 Data Generation, Self-checking and 371

Selection 372

We follow a two-step process: first we generate 373

candidates and second we select a fraction of the 374

candidates to be included as augmentations. This 375

processes is conducted for each class separately so 376

we may assume for the remainder of this section 377

that we have fixed a label y ∈ L. 378

That is, first, we generate α× ny samples where 379

ny is the original number of samples in Do for label 380

y and then select the top β × ny samples (β < α). 381

In our experiments, we call β the augmentation fac- 382

tor and set α = 5× β. Namely, our self-checking 383

technique selects the top 20% of the candidate ex- 384

amples per class 1 to form the final generated D∗ 385

that is combined with the original dataset Do for 386

downstream model training. 387

For the generation task, we need to choose a pre- 388

fix/source sequence s and proceed autoregressively 389

using Equation 1. Referring back to Table 1, there 390

are two choices g and g′ that can be used to con- 391

struct s. In this work, we employ g for generating 392

1This is based on our experimental search over {10%, 20%,
30%, 40%, 50%}.
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examples because it allows for greater flexibility in393

generating diverse examples. We aim to generate394

as many diverse examples as possible at this stage395

(rather than selecting g′, which requires a few ini-396

tial words from an existing example as the context397

and can restrict the freedom of generating diverse398

examples). Nevertheless, all generated samples399

will be self-checked for semantic fidelity next.400

Here we generate α× ny samples using the fine-401

tuned encoder-decoder model Mt where α is the402

times of the number of generated candidate exam-403

ples to that of original examples.404

We now possess a synthetic candidate dataset405

Dy
c = {(xi, y)}|

α×ny

i=1 which we will refine using a406

self-checking strategy for selecting the generated407

samples based on the confidence estimated by the408

model Mt itself.409

For each synthetic sample (x, y), we construct a
source sequence using the classification template
c(x, y) as described in Table 1 to generate the
source s. Given the source s, we define a score
function u:

u(y|s) = log pMt({y}|s)

equivalently this is the logit computed by Mt for410

the sequence {y}. We then renormalize over the411

labels in L by applying a softmax over each of the412

scores u(·|s):413

q(y|s) = eu(y|s)∑
l∈L eu(l|s)

Finally, we rank the elements of Dy
c by the value414

of q and select the top β × ny samples to form the415

dataset Dy
∗ and set D∗ =

⋃
y∈LDy

∗416

4 Experiments417

Next, we conduct extensive experiments to test the418

effectiveness of our approach in low-data regimes.419

This section first describes the datasets choices, and420

then presents the baselines for comparison. Experi-421

mental details on how to train STA and evaluate it422

with the baselines in low-data settings can be found423

in the Appendix D.424

4.1 Datasets425

Following previous work in the augmentation lit-426

erature (Kumar et al., 2020; Anaby-Tavor et al.,427

2020), two bench-marking datasets are used in428

our experiments: SST-2 (Socher et al., 2013) and429

TREC (Li and Roth, 2002). We also include EMO-430

TION (emotion classification) (Saravia et al., 2018)431

and HumAID (crisis tweets categorisation) (Alam 432

et al., 2021) to extend the domains of testing STA’s 433

effectiveness. More information on the datasets 434

can be found in Appendix C. 435

4.2 Baselines 436

We evaluate our novel strategy against a set of state- 437

of-the-art techniques found within the literature. 438

These approaches include a variety of augmenta- 439

tion procedures from rule-based heuristics to deep 440

neural text generation. We compare STA to the aug- 441

mentation techniques as they are directly related to 442

our method in generating samples that can be used 443

in our subsequent study for examining the quality 444

of generated examples2. 445

Baseline: No data augmentation is applied to 446

the original training data. 447

EDA (Wei and Zou, 2019): Easy Data Augmen- 448

tation involves applying local word-level changes 449

to an existing example, such as synonym replace- 450

ment and random insertion. 451

BT and BT-Hops (Edunov et al., 2018; 452

Shleifer, 2019): Back-translation techniques in- 453

volve translating from English to one (BT) or more 454

randomly selected languages (BT-Hops) using a 455

pre-trained translation model. 456

GPT-2 (Kumar et al., 2020) and GPT-2- 457

λ (Anaby-Tavor et al., 2020): GPT-23 generates 458

new examples conditioned on the label description 459

and the first three words of an existing example. 460

GPT-2-λ adds the LAMBDA technique, which se- 461

lects generated examples based on the performance 462

of the downstream classification model on the orig- 463

inal training data. 464

CBERT (Wu et al., 2019): it is a strong word- 465

replacement based method for text augmentation 466

that replaces words in the original examples while 467

conditioning on the labels. 468

BART-Span (Kumar et al., 2020):4 it finetunes 469

the large model BART (Lewis et al., 2020) based on 470

the label names and the texts of 40% consecutive 471

masked words to generate new examples. 472

5 Results and Discussion 473

5.1 Classification Tasks 474

Table 2 demonstrates the results of STA in com- 475

parison to baselines under low-data conditions for 476

2For a direct comparison between STA and existing non-
augmentation few-shot baselines on downstream classification
tasks, this refers to Appendix E.

3Licensing: Modified MIT License
4Licensing: Attribution-NonCommercial 4.0 International
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Augmentation Method 5 10 20 50 100
Baseline (No Aug.) 56.5 (3.8) 63.1 (4.1) 68.7 (5.1) 81.9 (2.9) 85.8 (0.8)

EDA (Wei and Zou, 2019) 59.7 (4.1) 66.6 (4.7) 73.7 (5.6) 83.2 (1.5) 86.0 (1.4)
BT (Edunov et al., 2018) 59.6 (4.2) 67.9 (5.3) 73.7 (5.8) 82.9 (1.9) 86.0 (1.2)
BT-Hops (Shleifer, 2019) 59.1 (4.6) 67.1 (5.2) 73.4 (5.2) 82.4 (2.0) 85.8 (1.1)
CBERT (Wu et al., 2019) 59.8 (3.7) 66.3 (6.8) 72.9 (4.9) 82.5 (2.5) 85.6 (1.2)
GPT-2 (Kumar et al., 2020) 53.9 (2.8) 62.5 (3.8) 69.4 (4.6) 82.4 (1.7) 85.0 (1.7)
GPT-2-λ (Anaby-Tavor et al., 2020) 55.4 (4.8) 65.9 (4.3) 76.2 (5.6) 84.5 (1.4) 86.4 (0.6)
BART-Span (Kumar et al., 2020) 60.0 (3.7) 69.0 (4.7) 78.4 (5.0) 83.8 (2.0) 85.8 (1.0)

STA w/o Self-Checking 66.7 (5.0) 77.1 (4.7) 81.8 (2.1) 84.8 (1.0) 85.7 (1.0)
STA w/o Auxiliary Prompts 69.8 (4.9) 79.1 (3.4) 81.7 (4.5) 86.0 (0.8) 87.5 (0.6)
STA (ours) 72.8 (6.2) 81.4 (2.6) 84.2 (1.8) 86.0 (0.8) 87.2 (0.6)

Table 2: STA on SST-2 in 5, 10, 20, 50, 100 examples per class. The results are reported as average (std.) accuracy
(in %) based on 10 random experimental runs. Numbers in bold indicate the highest in columns.

the SST-2 classification task. The results of the re-477

maining three classification tasks can be interpreted478

similarly; thus, they are presented in Appendix F,479

namely Table 7 for EMOTION, Table 8 for TREC,480

and Table 9 for HumAID, respectively. In all cases,481

our approach provides state-of-the-art performance482

for text augmentation across all low-resource set-483

tings. When a higher number of samples (50-100)5484

are used for training we see that STA is better, as in485

the cases of SST-2, EMOTION and HumAID tasks,486

or competitive, as in the case of TREC. Further-487

more, we can see that STA is superior to other aug-488

mentation techniques when only a small number of489

examples are used to train the generator (5-10-20).490

In fact, STA on average demonstrates a difference491

of +9.4∆ and +4.7∆ when trained on only 5 and492

10 samples per class respectively, demonstrating493

its ability to generate salient and effective training494

examples from limited amounts of data.495

5.2 Ablation Studies: Self-Checking and496

Auxiliary Prompts497

To demonstrate the importance of our self-checking498

procedure, we performed our empirical investi-499

gations on STA both with and without the self-500

checking step, denoted as STA w/o Self-Checking501

in Table 2, 7, 8 and 9. Furthermore, we investigate502

STA within a minimal template setting where we503

only include the templates c and g in Table 1, omit-504

ting our proposed auxiliary templates, denoted as505

STA w/o Auxiliary Prompts, to empirically sepa-506

rate the contribution of these components. Compar-507

ing our model with no self-checking (STA w/o Self-508

Checking) against other state-of-the-art approaches,509

5We note that around 100 examples per class, all tech-
niques tend to approximate no augmentation baselines, indi-
cating that most likely constitute something more equivalent
to full data training rather than a low-resource setting

Figure 2: Graph showing the average difference be-
tween STA w/o Self-Checking to STA w/o Auxiliary
Prompts, STA w/o Auxiliary Prompts to STA and
STA w/o Self-Checking to STA, as the number of ex-
amples per class varies.

we see that the model provides the best perfor- 510

mance particularly when the data is more sparse 511

(5-10-20), with the exclusion of TREC. However, 512

when we add self-checking with only basic gener- 513

ation and classification templates (STA w/o Aux- 514

iliary Prompts), we see a significant improvement, 515

indicating that self-checking more important to the 516

downstream performance. We also compare the 517

average difference between these models across 518

all datasets with altering components in Figure 2. 519

Looking at Figure 2 we see that the inclusion of 520

self-checking provides the greatest increase in per- 521

formance, while the contribution of our auxiliary 522

prompts, including our novel generation template, 523

decreases with larger examples per class. How- 524

ever, we note that the inclusion of both templates 525

and self-checking provides the best performance, 526

particularly in lower data regimes. 527
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(d) HumAID

Figure 3: Diversity versus semantic fidelity of generated texts by various augmentation methods. The average scores
over 10 runs are reported.

SST-2 EMOTION TREC HumAID
Test 91.8 93.5 96.6 89.7

Table 3: Accuracy (in %) on test set predicted by BERT
that is trained on the whole training data for measuring
semantic fidelity.

5.3 Lexical Diversity and Semantic Fidelity528

To further analyse the quality of the generated data,529

we measure its lexical diversity and semantic fi-530

delity (i.e., its ability to align with the correct la-531

bel). Diversity is assessed using the UNIQUE TRI-532

GRAMS metric (Feng et al., 2020; Kumar et al.,533

2020), which calculates the ratio of unique tri-534

grams to total tri-grams in a population consisting535

of both original and generated training data. To co-536

incide with the previous work (Kumar et al., 2020),537

semantic fidelity is determined by fine-tuning a538

“BERT-base-uncased” model on the 100% origi-539

nal training data for each classification task and540

measuring the accuracy of the generated data pre-541

dictions by this model. Results are presented in542

Table 3. A higher score indicates better diversity or543

fidelity.544

To present the quality of generated data in di-545

versity and fidelity, we take the training data (10546

examples per class) along with its augmented data547

(β = 1) for investigation. Figure 3 depicts the di-548

versity versus semantic fidelity of generated data549

by various augmentation methods across three550

datasets. We find that generation-based approaches551

such as GPT-2 or GPT-2-λ, achieve strong diversity552

but less competitive fidelity. On the contrary, rule-553

based heuristics methods such as EDA perform554

well in retaining the semantic meaning but not in555

lexical diversity. The merit of STA is that it is good556

in both diversity and fidelity, as seen from its po-557

sition at the top-right of Figure 3a, 3b, 3c and 3d.558

Finally, if we compare our STA approach with and559

without self-checking, we see that each approach 560

produces highly diverse examples, although only 561

self-checking STA retains a high level of semantic 562

fidelity. Comparing with GPT-2 and GPT-2-λ — 563

the other sample filtering approach — we see that 564

the inclusion of a separate classifier results in an av- 565

erage increase of 18.3% in fidelity. However, if we 566

compare our STA approach with and without self- 567

checking, we see an average increase of 32.38% 568

in fidelity, further demonstrating the validity of 569

our join generation and classification approach as 570

opposed to an independent classification module. 571

As previously suggested, this ability to align the 572

semantic content of generated examples with the 573

correct label is the most probable reason for the 574

increase in downstream classification performance 575

when self-checking is employed. This supports the 576

notion that our generation-based approach is able to 577

produce novel data that is lexically diverse, whilst 578

the self-checking procedure can ensure consistent 579

label retention, which guarantees a high semantic 580

fidelity in the generated examples6. 581

6 Conclusion 582

We propose a novel strategy for text-based data 583

augmentation that leverages prompt templates to 584

generate training examples and ensure better label 585

alignment. Our approach substantially outperforms 586

the previous state-of-the-art on a variety of down- 587

stream classification tasks and across a range of 588

low-resource scenarios. Furthermore, we provide 589

an analysis of the lexical diversity and label con- 590

sistency of generated examples, demonstrating that 591

our approach produces uniquely varied training ex- 592

amples with more consistent label alignment than 593

previous work. In the future, we hope to improve 594

this approach in rich-data regime and extend it to 595

other downstream natural language tasks. 596

6See also Appendix G for the demonstration of augmented
examples.
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A Limitations811

Our work explores the possibility of data augmen-812

tation for boosting text classification performance813

when the downstream model is finetuned using pre-814

trained language models. The results show that815

STA consistently performs well across different816

bench-marking tasks using the same experimen-817

tal setup, which addresses the limitation stated in818

the previous work (Kumar et al., 2020) calling for819

a unified data augmentation technique. However,820

similar to Kumar et al. (2020), although STA can821

achieve improved performance as the data size goes822

up to 100 examples per class in some cases (such823

as 100 examples per class in EMOTION, Table 7824

and HumAID, Table 9), the absolute gain in per-825

formance plateaus when the training data becomes826

richer (such as 100 examples per class in SST-2827

and TREC). This suggests that it is challenging828

for STA to improve pre-trained classifier’s model829

performance in more abundant data regimes.830

Another important consideration is the choice831

of templates used in STA. Ablation experiments in832

Section 5.2 show that our chosen set of templates833

yields better performance than a ‘minimal subset’834

consisting of the two simplest templates; the ques-835

tion as to how to choose optimal templates for this836

augmentation scheme remains unanswered. Hence,837

in future work, we will explore better methods for838

constructing the prompt templates, aiming to re-839

duce the dependency on the manual work at this840

step.841
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B Template Example842

Table 4 presents how an original training example843

is converted to multiple examples in STA using the844

prompt templates from Table 1.845

C Datasets846

Table 5 lists the basic information of the four847

datasets used in our experiments and they are848

shortly described as follows.849

• SST-2 (Socher et al., 2013) is a binary sen-850

timent classification dataset that consists of851

movie reviews annotated with positive and852

negative labels.853

• EMOTION (Saravia et al., 2018) is a dataset854

for emotion classification comprising short855

comments from social media annotated with856

six emotion types, such as, sadness, joy, etc.857

• TREC (Li and Roth, 2002) is a dataset for858

question topic classification comprising ques-859

tions across six categories including human,860

location, etc.861

• HumAID (Alam et al., 2021) is a dataset862

for crisis messages categorisation comprising863

tweets collected during 19 real-world disaster864

events, annotated by humanitarian categories865

including rescue volunteering or donation ef-866

fort, sympathy and support, etc.867

D Training Details868

When finetuning the generation model, we select869

the pre-trained T5 base checkpoint as the starting870

weights. For the downstream classification task,871

we finetune “bert-base-uncased”7 on the original872

training data either with or without the augmented873

samples. Regarding the pre-trained models, we874

use the publicly-released version from the Hug-875

gingFace’s transformers library (Wolf et al., 2019).876

For the augmentation factor (i.e., β in Section 3.2),877

the augmentation techniques including ours and878

the baselines are applied to augment 1 to 5 times879

of original training data. In the experiments, it is880

regarded as a hyper-parameter to be determined.881

Since our work focuses on text augmentation for882

classification in low-data settings, we sampled 5,883

10, 20, 50 and 100 examples per class for each884

training dataset as per Anaby-Tavor et al. (2020).885

7https://huggingface.co/bert-base-uncased

To alleviate randomness, we run all experiments 10 886

times so the average accuracy along with its stan- 887

dard deviation (std.) is reported on the full test set 888

in the evaluation. 889

To select the downstream checkpoint and the 890

augmentation factor, we select the run with the 891

best performance on the development set for all 892

methods. The hyper-parameters for finetuning 893

the generation model and the downstream model 894

are also setup based on the development set. Al- 895

though using the full development set does not nec- 896

essarily represent a real-life situation in low-data 897

regime (Schick and Schütze, 2021a; Gao et al., 898

2021), we argue that it is valid in a research- 899

oriented study. We choose to use the full develop- 900

ment set since we aim to maximize the robustness 901

of various methods’ best performance given small 902

training data available. As all augmentation meth- 903

ods are treated the same way, we argue this is valid 904

to showcase the performance difference between 905

our method and the baselines. 906

For all experiments presented in this work, we 907

exclusively use Pytorch8 for general code and 908

Huggingface9 for transformer implementations re- 909

spectively, unless otherwise stated. In finetuning 910

T5, we set the learning rate to 5 × 10−5 using 911

Adam (Kingma and Ba, 2014) with linear sched- 912

uler (10% warmup steps), the training epochs to 913

be 32 and batch size to be 16. At generation time, 914

we use top-k (k = 40) and top-p (p = 1.0) sam- 915

pling technique (Holtzman et al., 2019) for next 916

token generation. In finetuning downstream BERT, 917

the hyper-parameters are similar to those of T5 918

finetuning, although the training epoch is set to be 919

20. We set the training epochs to be as large as 920

possible with the aim of finding the best model 921

when trained on a small dataset, where the quality 922

is based on performance on the development set. 923

In our experiments, for a single run on all datasets, 924

it takes around one day with a single Tesla P100 925

GPU (16GB) and thus estimated 10 days for 10 926

runs. To aid reproducibility, we will release our 927

experimental code to the public at 10. 928

E Comparing to Few-shot Baselines 929

Since our work explores a text augmentation ap- 930

proach for improving text classification in low- 931

data regime, it is also related to few-shot learning 932

8https://pytorch.org/
9https://huggingface.co/

10https://github.com/wangcongcong123/STA
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An example from SST-2 a sentiment classification dataset where the classes (L): negative, positive
Text (x) top-notch action powers this romantic drama.

Label (y) positive

Converted examples by classification templates (C: c, cpos and cneg): source(s), target(t)
Given sentiment: negative, positive. Classify: top-notch
action powers this romantic drama.

positive

Text: top-notch action powers this romantic drama. Is this
text about positive sentiment?

yes

Text: top-notch action powers this romantic drama. Is this
text about negative sentiment?

no

Converted examples by generation templates (G: g and g′): source(s), target(t)
Description: positive sentiment. Text: top-notch action powers this romantic drama.
Description: positive sentiment. Text: top-notch action
powers this romantic drama. Another text: spielberg ’s
realization of

a near-future america is masterful .

Description: positive sentiment. Text: top-notch action
powers this romantic drama. Another text: a movie in

which laughter and self-exploitation merge into jolly soft-
porn ’em powerment . ’

Description: positive sentiment. Text: top-notch action
powers this romantic drama . Another text: a tightly di-
rected

highly professional film that ’s old-fashioned in all the best
possible ways .

Table 4: The demonstration of an example conversion by the prompt templates in Table 1 where the example’s text
is highlighted in blue and label is highlighted in red for readability.

Dataset # Train # Dev # Test # Classes (N )

SST-2 6,228 692 1,821 2
EMOTION 160,000 2,000 2,000 6
TREC 4,906 546 500 6
HumAID 40,623 5,913 11,508 8

Table 5: Datasets statistics

methods that use few examples for text classifica-933

tion. We further conduct an experiment to com-934

pare STA to three state-of-the-art few-shot learn-935

ing approaches: PET (Schick and Schütze, 2021a),936

LM-BFF (Gao et al., 2021), and DART (Zhang937

et al., 2022). For fair comparison, we set the ex-938

periment under the 10 examples per class scenario939

with 10 random seeds ensuring the 10 examples per940

class are sampled the same across the methods. Be-941

sides, we use bert-base-uncased11 as the start-942

ing weights of the downstream classifier. The re-943

sults are shown in Table 6. We found that although944

STA loses the best score to DART and LM-BFF945

on the TREC dataset, it substantially outperforms946

the few-shot baselines on SST-2 and EMOTION.947

This tells us that STA is a competitive approach for948

few-shot learning text classification.949

F More Results of Classification Tasks950

Table 7, Table 8 and Table 9 present the results of951

STA comparing to baselines in low-data settings952

11https://huggingface.co/bert-base-uncased

SST-2 EMOTION TREC

DART 66.5 (5.8) 26.7 (3.0) 74.0 (2.7)
LM-BFF 71.1 (9.5) 30.2 (3.8) 77.1 (3.0)
PET 56.7 (0.8) 28.4 (1.0) 69.1 (1.1)

STA (ours) 81.4 (2.6) 57.8 (3.7) 70.9 (6.6)

Table 6: The comparison between STA and few-shot
baselines using 10 examples per class on SST-2 and
EMOTION and TREC. The results are reported as
average (std.) accuracy (in %) based on 10 random
experimental runs. Numbers in bold indicate the highest
in columns.

for the EMOTION, TREC and HumAID classifi- 953

cation tasks respectively. 954

G Demonstration 955

Table 10 and Table 11 demonstrate some original 956

examples and augmented examples by different 957

methods. In comparison, the examples generated 958

by STA tend to be not only diverse but also highly 959

label relevant (semantic fidelity). 960
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Augmentation Method 5 10 20 50 100
Baseline (No Aug.) 26.7 (8.5) 28.5 (6.3) 32.4 (3.9) 59.0 (2.6) 74.7 (1.7)

EDA 30.1 (6.2) 33.1 (4.3) 47.5 (5.0) 66.7 (2.7) 77.4 (1.8)
BT 32.0 (3.0) 37.4 (3.0) 48.5 (5.1) 65.5 (2.0) 75.6 (1.6)
BT-Hops 31.3 (2.6) 37.1 (4.6) 49.1 (3.5) 65.0 (2.3) 75.0 (1.5)
CBERT 29.2 (6.5) 32.6 (3.9) 44.1 (5.2) 62.1 (2.0) 75.5 (2.2)
GPT-2 28.4 (8.5) 31.3 (3.5) 39.0 (4.1) 57.1 (3.1) 69.9 (1.3)
GPT-2-λ 28.6 (5.1) 30.8 (3.1) 43.3 (7.5) 71.6 (1.5) 80.7 (0.4)
BART-Span 29.9 (4.5) 35.4 (5.7) 46.4 (3.9) 70.9 (1.5) 77.8 (1.0)

STA w/o Self-Checking 34.0 (4.0) 41.4 (5.5) 53.3 (2.2) 65.1 (2.3) 74.0 (1.1)
STA w/o Auxiliary Prompts 41.8 (6.1) 56.2 (3.0) 64.9 (3.3) 75.1 (1.5) 81.3 (0.7)
STA (ours) 43.8 (6.9) 57.8 (3.7) 64.1 (2.1) 75.3 (1.8) 81.5 (1.1)

Table 7: STA on EMOTION in 5, 10, 20, 50, 100 examples per class. The results are reported as average (std.)
accuracy (in %) based on 10 random experimental runs. Numbers in bold indicate the highest in columns.

Augmentation Method 5 10 20 50 100
Baseline (No Aug.) 33.9 (10.4) 55.8 (6.2) 71.3 (6.3) 87.9 (3.1) 93.2 (0.7)

EDA 54.1 (7.7) 70.6 (5.7) 79.5 (3.4) 89.3 (1.9) 92.3 (1.1)
BT 56.0 (8.7) 67.0 (4.1) 79.4 (4.8) 89.0 (2.4) 92.7 (0.8)
BT-Hops 53.8 (8.2) 67.7 (5.1) 78.7 (5.6) 88.0 (2.3) 91.8 (0.9)
CBERT 52.2 (9.8) 67.0 (7.1) 78.0 (5.3) 89.1 (2.5) 92.6 (1.1)
GPT-2 47.6 (7.9) 67.7 (4.9) 76.9 (5.6) 87.8 (2.4) 91.6 (1.1)
GPT-2-λ 49.6 (11.0) 70.2 (5.8) 80.9 (4.4) 89.6 (2.2) 93.5 (0.8)
BART-Span 55.0 (9.9) 65.9 (6.7) 77.1 (5.5) 88.38 (3.4) 92.7 (1.6)

STA w/o Self-Checking 45.4 (3.2) 61.9 (10.2) 77.2 (5.5) 88.3 (1.2) 91.7 (0.8)
STA w/o Auxiliary Prompts 49.6 (9.0) 69.1 (8.0) 81.0 (5.9) 89.4 (3.0) 93.1 (0.9)
STA (ours) 59.6 (7.4) 70.9 (6.6) 81.1 (3.9) 89.1 (2.7) 93.2 (0.8)

Table 8: STA on TREC in 5, 10, 20, 50, 100 examples per class. The results are reported as average (std.) accuracy
(in %) based on 10 random experimental runs. Numbers in bold indicate the highest in columns.

Augmentation Method 5 10 20 50 100

Baseline (No Aug.) 29.1 (6.6) 37.1 (6.4) 60.7 (4.0) 80.0 (0.9) 83.4 (1.0)
EDA 49.5 (4.5) 64.4 (3.6) 74.7 (1.5) 80.7 (1.0) 83.5 (0.6)
BT 45.8 (5.7) 59.1 (5.2) 73.5 (2.1) 80.4 (1.2) 83.1 (0.7)
BT-Hops 43.4 (6.4) 57.5 (5.2) 72.4 (2.8) 80.1 (1.1) 82.8 (1.4)
CBERT 44.8 (7.6) 59.5 (4.8) 73.4 (1.7) 80.3 (0.8) 82.7 (1.2)
GPT-2 46.0 (4.7) 55.7 (5.7) 67.3 (2.6) 77.8 (1.6) 81.1 (0.6)
GPT-2-λ 50.7 (8.6) 68.1 (6.2) 78.5 (1.3) 82.1( 1.1) 84.2 (0.8)
BART-Span 42.4 (7.3) 58.6(7.0) 70.04 (3.7) 79.3 (1.4) 83.33 (0.9)
STA w/o Self-Checking 56.4 (7.0) 70.2 (4.3) 76.3 (3.3) 79.4 (4.5) 81.8 (1.3)
STA w/o Auxiliary Prompts 68.7 (10.9) 77.6 (3.6) 80.1 (1.7) 82.9 (1.6) 84.3 (0.7)
STA (ours) 69.0 (3.9) 75.8 (3.3) 80.2 (1.6) 83.2 (0.5) 84.5 (1.1)

Table 9: STA on HumAID in 5, 10, 20, 50, 100 examples per class. The results are reported as average (std.)
accuracy (in %) based on 10 random experimental runs. Numbers in bold indicate the highest in columns.
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Original training examples and augmented examples for “Sadness" of EMOTION

Original

i sit here feeling blank about this
i feel ashamed that i so readily turn it aside
i feel positively ashamed when i look out of the window and see the state of things
i had just lost my uncle i would be sad but i feel as if i am devastated
i was feeling kind of discouraged because nothing happened

EDA

i sit here opinion blank about this
i feel that ashamed i so readily turn it aside
i feel positively ashamed when i look out of the window and construe the state of things
i had just lost my uncle i would be pitiful but i feel as if i am devastated
i happened feeling kind of discouraged because nothing was

GPT-2-λ

ive seen so many girls walk around feeling ashamed of their bodi
ive got to admit that i feel a little weird for a moment seeing her standing in front of my face when i walk into
the shop
ive always wondered what im doing right now im feeling
ive read many blogs about her and how much she hates those who don’t admit to being kind or caring about
others but instead blame them for not doing something about it
ive never felt sympathetic towards people because of the way they look and act because of their skin to

STA-noself

i feel like the whole world is watching and feeling it’s failing me
i want people to know i am not alone
i feel ashamed when i look out of the window and see the state of things
i walked away feeling disappointed because i don t know the answer
i drank some cold drink or find some ice dessert such as chendol or ice kacang

STA

i feel sad seeing people who have to work harder to cope
i walked away feeling disappointed because i don t know the answer
i was feeling sad seeing the state of things that i never did i really want to see if it lasted
i feel sad seeing the state of things but the truth is im not sure how to express it gracefully
i feel like the whole world is watching and feeling it’s failing me

Table 10: The demonstration of original training examples and augmented examples for “sadness” of EMOTION.
It is noted that the 5 augmented examples in each block are randomly selected instead of cherry-picked. This
reveals some difference between the original training examples and the augmented examples by our STA and other
methods (Here we use a rule-based heuristics method EDA, a generation-based method GPT-2-λ and STA-noself
for comparison).
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Original training examples and augmented examples for “missing or found people" of HumAID

Original

UPDATE: Body found of man who disappeared amid Maryland flooding
Open Missing People Search Database from Mati and Rafina areas #Greecefires #PrayForGreece #PrayForA-
thens
@ThinBlueLine614 @GaetaSusan @DineshDSouza case in point, #California Liberalism has created the hell
which has left 1000s missing 70 dead,...
Heres the latest in the California wildfires #CampFire 1011 people are missing Death toll rises to 71 Trump
blames fires on poor ...
#Idai victims buried in mass grave in Sussundenga, at least 60 missing - #Mozambique #CycloneIdai
#CicloneIdai

EDA

update flooding found of man who disappeared amid maryland boy
open missing people search database from mati escape and rafina areas greecefires prayforgreece prayforathens
created gaetasusan dineshdsouza hell in point california missing has thinblueline the case which has left s
liberalism dead an countless people...
heres blames latest in the california wildfires campfire people are missing death toll rises to trump more fires
on poor...
idai victims buried in mass grave in sussundenga at mozambique missing least cycloneidai cicloneidai

GPT-2-lambda

@KezorNews - Search remains in #Morocco after @deweathersamp; there has been no confirmed death in
#Kerala
#Cambodia - Search & Rescue is assisting Search & Rescue officials in locating the missing 27 year old
woman who disappeared in ...
@JHodgeEagle Rescue Injured After Missing Two Children In Fresno County
#Florence #Florence Missing On-Rescue Teams Searching For Search and Rescue Members #Florence
#Florence #DisasterInformer #E
RT @LATTAODAYOUT: RT @HannahDorian: Search Continues After Disappearance of Missing People in
Florida

STA-noself

Search Database from Matias, Malaysia, missing after #Maria, #Kerala, #Bangladesh #KeralaKerala, #Ker-
alaFloods, ...
RT @hubarak: Yes, I can guarantee you that our country is safe from flooding during the upcoming weekend!
Previous story Time Out! 2 Comments
The missing persons who disappeared amid Maryland flooding are still at large. More on this in the next
article.
the number of missing after #CycloneIdai has reached more than 1,000, reports CNN.
RT @adriane@przkniewskiZeitecki 1 person missing, police confirm #CycloneIdai. #CicloneIdai

STA

The missing persons who disappeared amid Maryland flooding are still at large. More on this in the next
article.
Search Triangle County for missing and missing after #Maria floods #DisasterFire
Just arrived at San Diego International Airport after #Atlantic Storm. More than 200 people were missing,
including 13 helicopters ...
Search Database contains information on missing and found people #HurricaneMaria, hashtag #Firefighter
Were told all too often that Californians are missing in Mexico City, where a massive flood was devastating.
...

Table 11: The demonstration of original training examples and augmented examples for “missing or found people”
of HumAID. It is noted that the 5 augmented examples in each block are randomly selected instead of cherry-picked.
This reveals some difference between the original training examples and the augmented examples by our STA
and other methods (Here we use a rule-based heuristics method EDA, a generation-based method GPT-2-λ and
STA-noself for comparison).
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