

STA: Self-controlled Text Augmentation for Improving Text Classifications

Removed for anonymous review

Abstract

Despite recent advancements in Machine Learning, many tasks still involve working in low-data regimes which can make solving natural language problems difficult. Recently, a number of text augmentation techniques have emerged in the field of *Natural Language Processing* (NLP) which can enrich the training data with new examples, though they are not without their caveats. For instance, simple rule-based heuristic methods are effective, but lack variation in semantic content and syntactic structure with respect to the original text. On the other hand, more complex deep learning approaches can cause extreme shifts in the intrinsic meaning of the text and introduce unwanted noise into the training data. To more reliably control the quality of the augmented examples, we introduce a state-of-the-art approach for *Self-Controlled Text Augmentation* (STA). Our approach tightly controls the generation process by introducing a self-checking procedure to ensure that generated examples retain the semantic content of the original text. Experimental results on multiple benchmarking datasets demonstrate that STA substantially outperforms existing state-of-the-art techniques, whilst qualitative analysis reveals that the generated examples are both lexically diverse and semantically reliable.

1 Introduction

A variety of tasks such as *Topic Classification* (Li and Roth, 2002), *Emotion Detection* (Saravia et al., 2018) and *Sentiment Analysis* (Socher et al., 2013) have become important areas of research in NLP. Such tasks generally require a considerable amount of accurately labelled data to achieve strong performance. However, acquiring enough such data is both costly and time-consuming, hence making it rare in practice. This has motivated a vast body of research in techniques that can help alleviate issues associated with low-data regimes.

A popular augmentation approach involves the use of rule-based transformations, which employ intuitive heuristics based on well-known paradigmatic relationships between words. For instance, by using a lexical-semantic database such as *WordNet* (Miller, 1995), researchers can make rational and domain-specific conjectures about suitable replacements for words from lists of known synonyms or hyponyms/hypernyms (Wang and Yang, 2015; Wei and Zou, 2019; Feng et al., 2020). Whilst these substitution-based approaches can result in novel and lexically diverse data, they also tend to produce highly homogeneous structures, even when context-free grammars are used to generate more syntactically variable examples (Jia and Liang, 2016).

The recent success of pretrained transformer language models such as BERT (Devlin et al., 2019) and GPT-2 (Radford et al., 2019) has helped facilitate more robust strategies for dealing with low-resource scenarios: Conditional text generation. Large language models — typically trained on a vast corpus of text — contain a rich understanding of syntactic structure and semantic phenomena and thus can be well suited for faithful domain-specific generation (Petroni et al., 2019). Indeed, large language models have been conditioned to great success (Kobayashi, 2018; Wu et al., 2019; Anaby-Tavor et al., 2020; Kumar et al., 2020) to synthesize highly diverse training examples resulting in stronger downstream performance in low-resource settings. However, the use of diverse neurally-generated data may come at the cost of introducing semantic discrepancies, which can cause misalignment between the generated samples and their intended labels. Ideally, the optimal augmentation method would be one that satisfies both **Lexical/Syntactic Diversity** and **Semantic Fidelity** (reliable alignment between semantic meaning and class label).

In this paper, we propose a novel strategy — self-

controlled text augmentation (STA) that aims to tightly control the generation process in order to produce diverse training examples which retain a high level of semantic fidelity. Following previous work, we fine-tune a state-of-the-art sequence-to-sequence transformer model, known as *T5* (Rafel et al., 2020), using a dataset containing only a limited number of samples and generate new samples using task-specific prompting, which has been shown to be effective in low-resource scenarios (Le Scao and Rush, 2021). While similar approaches have been deployed in previous work (Anaby-Tavor et al., 2020), our novel strategy effectively utilizes *Pattern-Exploiting Training* (Schick and Schütze, 2021a,b) by employing templates of verbalization-patterns that simultaneously direct the generation process and filter noisy labels within a single unified framework. Experimental results on multiple benchmarks demonstrate that STA outperforms existing state-of-the-art augmentation techniques. Furthermore, examining the quality of the augmented data reveals better diversity and fidelity as compared to the existing techniques.

2 Related Work

Various text augmentation techniques have been proposed in the literature. Zhang et al. (2015) and Wei and Zou (2019) use simple operations like synonym replacement, random insertion, swap, and deletion to generate new samples. Feng et al. (2020) further explores these substitution techniques for text generation. In contrast, Wang and Yang (2015) and Kobayashi (2018) use word embeddings and contextual language models, respectively, to replace words or phrases with semantically similar concepts.

Back translation is another effective method for text augmentation, transforming sentence between languages (Sennrich et al., 2016; Shleifer, 2019). Recently, researchers have explored the use of pre-trained transformer-based language models for conditional text augmentation to generate novel sentences from the original data (Wu et al., 2019; Anaby-Tavor et al., 2020; Kumar et al., 2020). For instance, Wu et al. (2019) leveraged BERT’s masked language model, while Anaby-Tavor et al. (2020) fine-tuned GPT-2 to generate novel sentences and filter out noisy ones using a jointly trained classifier with some success in tackling the label misalignment problem. Similarly, Kumar et al. (2020) studied conditional text augmentation

using transformer-based models, with BART outperforming other methods in low-resource settings

Building upon ideas presented in the GPT series (Radford et al., 2018, 2019; Brown et al., 2020), prompt-based templates have become an effective approach for eliciting latent knowledge from language models to great success (Trinh and Le, 2018; Petroni et al., 2019; Davison et al., 2019; Talmor et al., 2020; Le Scao and Rush, 2021). Wang et al. (2021) proposed using GPT-3 for text augmentation with zero-label learning, with results that were competitive when compared to fully supervised approaches. More closely related to our instruction-based generation strategy, Schick and Schütze (2021b) propose GenPet which is used to directly tackle a number of text generation tasks rather than text augmentation itself. In their work, which builds upon previous research PET (Schick and Schütze, 2021a), the authors alter the text inputs to form cloze-style questions known as prompting training (Liu et al., 2021), demonstrating improved performance on few-shot downstream tasks. Finally, researchers have proposed an array of techniques aiming to systematically engineer the structure of these templates beyond ad hoc human intuitive reasoning: For example, using automated template generation for the tasks (Shin et al., 2020; Gao et al., 2021), trained end-to-end with soft-prompts (Lester et al., 2021; Gu et al., 2022) or designed from sub-prompts created by decomposing prior task knowledge into rules (Han et al., 2022).

Our approach differs from prior work by using task-specific templates as verbal prompts for generation and classification which signal the model’s objective. The model itself is self-controlling, generating novel data and retaining only the most convincing examples using a classification template to ensure semantic fidelity.

3 Method

In this section, we describe our novel self-controlled approach for text augmentation in text classification (STA). Figure 1 illustrates the workflow of STA and Algorithm 1 states STA in simple terms. At a high level, STA first finetunes a pre-trained sequence-to-sequence (seq2seq) model using a dataset which implicitly includes generation and classification tasks.

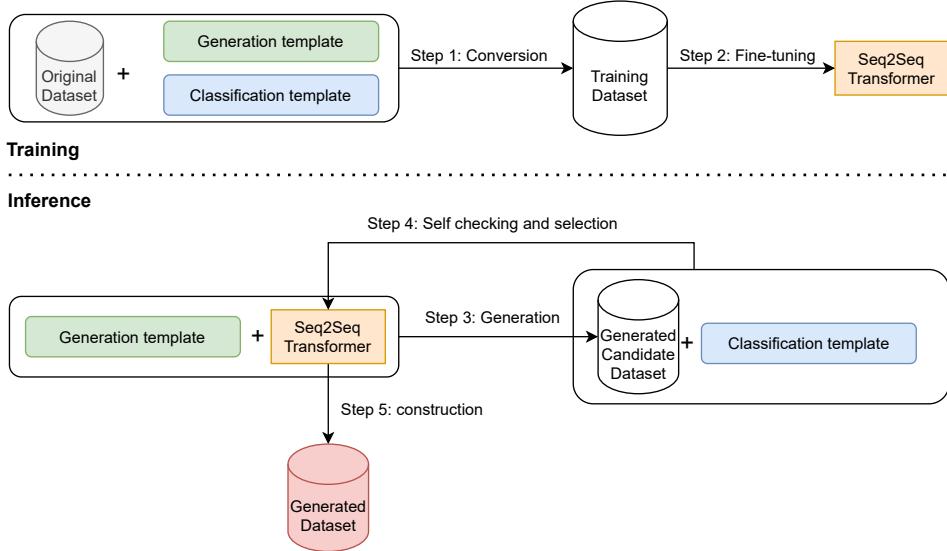


Figure 1: The architecture of our Self-controlled Text Augmentation approach (STA). The upper portion outlines the finetuning component of our method (**Training**), whilst the lower portion demonstrates our procedure for generating novel data (**Inference**). STA is highlighted by using the generation template and classification template for fine-tuning a seq2seq transformer model. The generation template is used for generating samples and the classification template is used for self-controlling and selecting the generated samples.

Algorithm 1 :Self-Controlled Text Augmentation

Require: Original dataset \mathcal{D}_o . Generative model M . Generation template \mathcal{G} . Classification template \mathcal{C} .

- 1: Convert \mathcal{D}_o to training dataset \mathcal{D}_t via \mathcal{G} and \mathcal{C} .
- 2: Finetune M on \mathcal{D}_t in a generation task and a classification task jointly to obtain M_t .
- 3: Use \mathcal{G} and M_t to generate candidate dataset \mathcal{D}_c .
- 4: Apply M_t to do classification inference on \mathcal{D}_c with \mathcal{C} to select the most confident examples.
- 5: Form the final generated dataset \mathcal{D}^* with the selected examples.

181
182 **3.1 Pattern-Exploiting Training in seq2seq**
Models

183 PET is a finetuning technique for text classification
184 tasks in masked language models, as demonstrated
185 in (Schick and Schütze, 2021a). By converting
186 inputs into cloze questions, PET enables accurate
187 classification with minimal labeled data. We ex-
188 tend the principles of PET to seq2seq autoregres-
189 sive models in this paper, presenting the theoretical
190 process for prompting-based generation and our
191 innovative self-controlled approach.

192 Consider a pretrained seq2seq autoregressive
193 transformer model denoted as M (we use T5 (Raf-
194 fel et al., 2020) in our experiments). This type of

195 model comprises an encoder-decoder pair, where
196 the encoder takes an input sequence s and generates
197 a contextualized encoded sequence \bar{s} . The decoder
198 then takes the encoded sequence and the current
199 subsequence $t: \{t_1, t_2, \dots, t_{i-1}\}$ as input to compute
200 the conditional distribution $p_M(t_i|t_{1:i-1}, \bar{s})$ for the
201 subsequent token in the sequence. Given \bar{s} , the pos-
202 sible target sample (a sequence) $t: \{t_1, t_2, \dots, t_m\}$
203 can be obtained via the factorization:

$$p_M(t_{1:m}|\bar{s}) = \prod_{i=1}^m p_M(t_i|t_{1:i-1}, \bar{s}) \quad (1)$$

204 Let $\mathcal{D}_o = \{(x_i, y_i)\}_{i=1}^n$ be a dataset for text
205 classification where $x_i \in \mathcal{X}$ and $y_i \in \mathcal{L}$ are text
206 and label respectively. The goal is to produce a
207 derived dataset \mathcal{D}_t to finetune M and ensure it is
208 primed for generating diverse and (label) faithful
209 examples by leveraging a set of prompt templates.

210 Formally, a *template* is a function $T: V^* \times \mathcal{L} \rightarrow$
211 $V^* \times V^*$ where V is the vocabulary of M and V^*
212 denotes the set of finite sequences of symbols in V .
213 Of course, the structure of these templates can be
214 quite malleable. For example, a template could be
215 constructed through intuitive human interpretable
216 verbalizable terms, optimized automatically for the
217 task, fine-tuned with soft prompts or made up of
218 sequentially intuitive sub-prompts. Regardless of
219 the approach, the process is the same.

220 Given a family of templates \mathcal{T} , we set $\mathcal{D}_t =$

222 $\mathcal{T}(\mathcal{D}_o) = \bigcup_{T \in \mathcal{T}} T(\mathcal{D}_o)$. That is, we convert each
 223 sample $(x_i, y_i) \in \mathcal{D}_o$ to $|\mathcal{T}|$ samples in the derived
 224 dataset D_t . In the field of synthetic data gener-
 225 ation for low-resource scenarios, these templates
 226 generally belong to the collection of templates ca-
 227 pable of generating novel examples. Crucially, we
 228 extend these templates to consider two types of
 229 template families: generation templates \mathcal{G} and clas-
 230 sification templates \mathcal{C} , such that $\mathcal{T} = \mathcal{C} \cup \mathcal{G}$. As we
 231 shall demonstrate, by carefully considering these
 232 templates, we can produce a dataset D_t (generated
 233 from these templates \mathcal{T} applied to the dataset D)
 234 that is designed in such a way that the model can
 235 learn to directly optimize for key characteristics of
 236 the synthetic examples: High semantic fidelity and
 237 lexical diversity.

3.1.1 Generation templates

239 Though not exclusive to the field, these templates
 240 are commonplace within the synthetic data gener-
 241 ation literature for creating novel training exam-
 242 ples. Since our work focuses on encoder-decoder
 243 models, the templates take the form $g(x, y) =$
 244 $(f_s(x, y), f_t(x))$, where f_s and f_t denote functions
 245 that map a piece of text to a source sequence and tar-
 246 get sequence respectively. Concretely, the source
 247 function f_s is a verbalizable mapping which de-
 248 pends on the text $x \in \mathcal{X}$ and label $y \in \mathcal{L}$, the latter
 249 of which conditions the model to align the gener-
 250 ated text with the labels. The target function f_t on
 251 the other hand, represents the desired output of the
 252 model, which depends on the text, and typically
 253 corresponds to the identity function.

254 **Diverse Generation.** Without loss of gen-
 255 erality, for a given downstream task $\{\text{Task}\}$,
 256 we could choose the primary template $f_s =$
 257 **Description:** $\{y_i\} \{\text{Task}\}$. **Text:** as our source
 258 function and $f_t = \{x_i\}$ as the desired target for
 259 fine-tuning to facilitate the generation process, fol-
 260 lowing previous work (Anaby-Tavor et al., 2020;
 261 Schick and Schütze, 2021b,a). Here the goal of
 262 Task is to provide context about the dataset, since
 263 providing this sort of context helps when there
 264 are limited training examples (Schick and Schütze,
 265 2021b). In this work, our goal is not only to gen-
 266 erate novel synthetic examples for few-shot classi-
 267 fication, but to generate a diverse range of these
 268 samples. To ensure the model produces lexically
 269 diverse text, we propose a novel generation strat-
 270 egy which additionally includes an auxiliary tem-
 271 plate for generation by including prior knowledge,

272 partially inspired by work in state-of-the-art sub-
 273 prompt engineering (Han et al., 2022). Given some
 274 data point (x_i, y_i) we achieve diversity by mod-
 275 ifying two components to our source and target
 276 functions.

- 277 • **Memory:** We add a previous example of text
 278 x_j which share the same label as an input to
 279 the source function, $j \in \mathbb{N}$ such that $y_j = y_i$.
- 280 • **Priming:** We instantiate the source function
 281 with some of the target output $x_i^{0-n}, n <$
 282 $|x_i| \in \mathcal{N}$, which further constrains the model
 283 to avoid the generation of non-factual hallucin-
 284 nations (Cao et al., 2022).

285 Concretely, we define a second auxiliary tem-
 286 plate function for generation $g'(x_i, x_j, y_i) =$
 287 $(f'_s(x_i, x_j, y_i), f'_t(x_i))$, with the source function
 288 $f'_s = f_s(x_j, y_i)$. Another text: $\{x_i^{0-2}\}$ and target
 289 function $f'_t = \{x_i^{3\cdots}\}$ where $y_j = y_i$. Intuitively,
 290 we use a previous example as prior knowledge be-
 291 fore concatenating them with the new template to
 292 ensure the model produces distinct examples as
 293 opposed to repetitions. It's worth mentioning that
 294 the g' function can be employed multiple times to
 295 create various examples by sampling different texts
 296 during the conversion of a single training example
 297 (check Appendix B demonstrates how an original
 298 training sample is converted by the templates). For
 299 generation, we include both templates g and g' for
 300 tuning our model. These templates are further out-
 301 lined in Table 1.

3.1.2 Classification templates

302 Classification has been employed as an additional
 303 processing step to filter synthetic examples which
 304 do not align with the generated label (Anaby-
 305 Tavor et al., 2020). In previous work, a sepa-
 306 rate network is trained using the original data
 307 to classify the examples, based on the intuition
 308 that checking the results is easier than produc-
 309 ing new examples. One problem that emerges
 310 from adding a filter in low-resource settings is
 311 that it creates an additional layer of complexity
 312 within the system: Not only must the generator
 313 predict the correct label from limited data, but so
 314 must the classifier. These templates take the form
 315 $c(x, y) = (f_s(x), f_t(y))$ where f_t and f_s similarly
 316 denote the source sequence and target sequence
 317 functions respectively. In this case, the source func-
 318 tions are similar to the generation templates (the

Template		Source sequence (s)	Target sequence (t)	
Classification	Primary	c	Given {Task}: $\{\mathcal{L}\}$. Classify: $\{x_i\}$	$\{y_i\}$
	Auxiliary	c_{pos}	Text: $\{x_i\}$. Is this text about $\{y_i\}$ {Task}?	yes
	Auxiliary	c_{neg}	Text: $\{x_i\}$. Is this text about $\{\bar{y}_i\}$ {Task}?	no
Generation	Primary	g	Description: $\{y_i\}$ {Task}. Text:	$\{x_i\}$
	Auxiliary	g'	Description: $\{y_i\}$ {Task}. Text: $\{x_j\}$. Another text: $\{x_i^{0-2}\}$	$\{x_i^{3\dots}\}$

Table 1: Prompt templates for training sequences conversion. “Task” refers to a simple keyword describing the dataset e.g. “Sentiment” or “Emotion” and \mathcal{L} is the list of all class labels in the dataset. The symbol \bar{y}_i in c_{neg} stands for any label in $\mathcal{L} \setminus \{y_i\}$, chosen randomly. In g' , the x_j denotes another sample from the same class as x_i (i.e. $y_j = y_i$) chosen randomly.

320 text can be conditioned on the labels or independent, although the target function instead relates
321 to the target label or some semantically compatible class. It is simple to translate the feed-forward
322 approach into a primary template using verbalizations. In this case we set the source function as
323 $f_s(x_i) = \text{Given } \{\text{Task}\}: \{\mathcal{L}\}. \text{Classify: } \{x_i\}$ and target function as
324 $f_t(y_i) = y_i$, with \mathcal{L} providing context to the possible labels.
325

326 **Semantic Fidelity.** Although prompt-based
327 tuning has proven to work better in limited
328 data settings than simple feed-forward approaches
329 ([Le Scao and Rush, 2021](#)), we further supplement
330 the template dataset by generating multiple intuitive
331 patterns following previous work ([Schick and](#)
332 [Schütze, 2021a](#)). To achieve this, we supplement
333 our base classification templates with two more
334 auxiliary templates which we refer to as c_{pos} and
335 c_{neg} in the vein of cloze-style questions. Concretely, we define $c_{pos} = (f_s(x_i), f_t(y_i))$ such that
336 $f_s = \text{Text: } \{x_i\}. \text{Is this text about } \{y_i\} \{ \text{Task} \}?$ and $f_t = \text{yes}$, with the goal of classifying
337 whether the correct label conforms to the
338 text. Furthermore, we generate a counter
339 template $c_{neg} = (f_s(x_i), f_t(y_i))$ such that
340 $f_s = \text{Text: } \{x_i\}. \text{Is this text about } \{\hat{y}_i\} \{ \text{Task} \}?$ and $f_t = \text{no}$, $\hat{y}_i \sim \mathcal{L} \setminus \{y_i\}$, with the goal of determining
341 that the incorrectly sampled label does not
342 conform to the text. These templates are given in
343 detail in Table 1.
344

345 **Self-Checking.** We note that these auxillary
346 verbalizable patterns for classification are simply
347 meant to supplement and do not represent the
348 optimal solution for eliciting important knowledge
349 from the network ([Gao et al., 2021](#)). We instead
350 wish to avoid cascading errors between the
351 generation and classification template: The classifica-
352 tion network’s performance should be within an
353 acceptable tolerance. In order to extract synthetic
354 examples with high levels of semantic alignment
355 between the generated text and labels, we propose
356 a novel strategy for controlled self-supervised data
357 generation, which we refer to as *Self-Checking*. Dif-
358 ferent from previous work, we perform generation
359 and classification filtering within a single unified
360 neural framework. We hypothesise that this multi-
361 view learning process should allow the network
362 to discover the semantic relationship between the
363 labels and text, further preventing non-factual hal-
364 lucinations of incorrect labels during the generation
365 process.
366

367 acceptable tolerance. In order to extract synthetic
368 examples with high levels of semantic alignment
369 between the generated text and labels, we propose
370 a novel strategy for controlled self-supervised data
371 generation, which we refer to as *Self-Checking*. Dif-
372 ferent from previous work, we perform generation
373 and classification filtering within a single unified
374 neural framework. We hypothesise that this multi-
375 view learning process should allow the network
376 to discover the semantic relationship between the
377 labels and text, further preventing non-factual hal-
378 lucinations of incorrect labels during the generation
379 process.
380

381 3.2 Data Generation, Self-checking and 382 Selection

383 We follow a two-step process: first we generate
384 candidates and second we select a fraction of the
385 candidates to be included as augmentations. This
386 processes is conducted for each class separately so
387 we may assume for the remainder of this section
388 that we have fixed a label $y \in \mathcal{L}$.
389

390 That is, first, we generate $\alpha \times n_y$ samples where
391 n_y is the original number of samples in \mathcal{D}_o for label
392 y and then select the top $\beta \times n_y$ samples ($\beta < \alpha$).
393 In our experiments, we call β the *augmentation factor*
394 and set $\alpha = 5 \times \beta$. Namely, our self-checking
395 technique selects the top 20% of the candidate ex-
396 amples per class ¹ to form the final generated \mathcal{D}^*
397 that is combined with the original dataset \mathcal{D}_o for
398 downstream model training.
399

400 For the generation task, we need to choose a pre-
401 fix/source sequence s and proceed autoregressively
402 using Equation 1. Referring back to Table 1, there
403 are two choices g and g' that can be used to con-
404 struct s . In this work, we employ g for generating
405

¹This is based on our experimental search over {10%, 20%, 30%, 40%, 50%}.

393 examples because it allows for greater flexibility in
 394 generating diverse examples. We aim to generate
 395 as many diverse examples as possible at this stage
 396 (rather than selecting g' , which requires a few initial
 397 words from an existing example as the context
 398 and can restrict the freedom of generating diverse
 399 examples). Nevertheless, all generated samples
 400 will be self-checked for semantic fidelity next.

401 Here we generate $\alpha \times n_y$ samples using the fine-
 402 tuned encoder-decoder model M_t where α is the
 403 times of the number of generated candidate exam-
 404 ples to that of original examples.

405 We now possess a synthetic candidate dataset
 406 $\mathcal{D}_c^y = \{(x_i, y)\}_{i=1}^{\alpha \times n_y}$ which we will refine using a
 407 self-checking strategy for selecting the generated
 408 samples based on the confidence estimated by the
 409 model M_t itself.

410 For each synthetic sample (x, y) , we construct a
 411 source sequence using the classification template
 412 $c(x, y)$ as described in Table 1 to generate the
 413 source s . Given the source s , we define a score
 414 function u :

$$u(y|s) = \log p_{M_t}(\{y\}|\bar{s})$$

415 equivalently this is the *logit* computed by M_t for
 416 the sequence $\{y\}$. We then renormalize over the
 417 labels in \mathcal{L} by applying a softmax over each of the
 418 scores $u(\cdot|s)$:

$$q(y|s) = \frac{e^{u(y|s)}}{\sum_{l \in \mathcal{L}} e^{u(l|s)}}$$

419 Finally, we rank the elements of \mathcal{D}_c^y by the value
 420 of q and select the top $\beta \times n_y$ samples to form the
 421 dataset \mathcal{D}_*^y and set $\mathcal{D}_* = \bigcup_{y \in \mathcal{L}} \mathcal{D}_*^y$

4 Experiments

418 Next, we conduct extensive experiments to test the
 419 effectiveness of our approach in low-data regimes.
 420 This section first describes the datasets choices, and
 421 then presents the baselines for comparison. Experi-
 422 mental details on how to train STA and evaluate it
 423 with the baselines in low-data settings can be found
 424 in the Appendix D.

4.1 Datasets

426 Following previous work in the augmentation liter-
 427 erature (Kumar et al., 2020; Anaby-Tavor et al.,
 428 2020), two bench-marking datasets are used in
 429 our experiments: **SST-2** (Socher et al., 2013) and
 430 **TREC** (Li and Roth, 2002). We also include **EMO-**
 431 **TION** (emotion classification) (Saravia et al., 2018)

432 and **HumAID** (crisis tweets categorisation) (Alam
 433 et al., 2021) to extend the domains of testing STA’s
 434 effectiveness. More information on the datasets
 435 can be found in Appendix C.

4.2 Baselines

436 We evaluate our novel strategy against a set of state-
 437 of-the-art techniques found within the literature.
 438 These approaches include a variety of augmentation
 439 procedures from rule-based heuristics to deep
 440 neural text generation. We compare STA to the aug-
 441 mentation techniques as they are directly related to
 442 our method in generating samples that can be used
 443 in our subsequent study for examining the quality
 444 of generated examples².

445 **Baseline:** No data augmentation is applied to
 446 the original training data.

447 **EDA (Wei and Zou, 2019):** Easy Data Augmen-
 448 tation involves applying local word-level changes
 449 to an existing example, such as synonym replace-
 450 ment and random insertion.

451 **BT and BT-Hops (Edunov et al., 2018;**
 452 **Shleifer, 2019):** Back-translation techniques in-
 453 volve translating from English to one (BT) or more
 454 randomly selected languages (BT-Hops) using a
 455 pre-trained translation model.

456 **GPT-2 (Kumar et al., 2020) and GPT-2-
 457 λ (Anaby-Tavor et al., 2020):** GPT-2³ generates
 458 new examples conditioned on the label description
 459 and the first three words of an existing example.
 460 GPT-2- λ adds the LAMBDA technique, which se-
 461 lects generated examples based on the performance
 462 of the downstream classification model on the orig-
 463 inal training data.

464 **CBERT (Wu et al., 2019):** it is a strong word-
 465 replacement based method for text augmentation
 466 that replaces words in the original examples while
 467 conditioning on the labels.

468 **BART-Span (Kumar et al., 2020):**⁴ it finetunes
 469 the large model BART (Lewis et al., 2020) based on
 470 the label names and the texts of 40% consecutive
 471 masked words to generate new examples.

5 Results and Discussion

5.1 Classification Tasks

475 Table 2 demonstrates the results of STA in com-
 476 parison to baselines under low-data conditions for

477 ²For a direct comparison between STA and existing non-
 478 augmentation few-shot baselines on downstream classification
 479 tasks, this refers to Appendix E.

480 ³Licensing: Modified MIT License

481 ⁴Licensing: Attribution-NonCommercial 4.0 International

Augmentation Method	5	10	20	50	100
Baseline (No Aug.)	56.5 (3.8)	63.1 (4.1)	68.7 (5.1)	81.9 (2.9)	85.8 (0.8)
EDA (Wei and Zou, 2019)	59.7 (4.1)	66.6 (4.7)	73.7 (5.6)	83.2 (1.5)	86.0 (1.4)
BT (Edunov et al., 2018)	59.6 (4.2)	67.9 (5.3)	73.7 (5.8)	82.9 (1.9)	86.0 (1.2)
BT-Hops (Shleifer, 2019)	59.1 (4.6)	67.1 (5.2)	73.4 (5.2)	82.4 (2.0)	85.8 (1.1)
CBERT (Wu et al., 2019)	59.8 (3.7)	66.3 (6.8)	72.9 (4.9)	82.5 (2.5)	85.6 (1.2)
GPT-2 (Kumar et al., 2020)	53.9 (2.8)	62.5 (3.8)	69.4 (4.6)	82.4 (1.7)	85.0 (1.7)
GPT-2-λ (Anaby-Tavor et al., 2020)	55.4 (4.8)	65.9 (4.3)	76.2 (5.6)	84.5 (1.4)	86.4 (0.6)
BART-Span (Kumar et al., 2020)	60.0 (3.7)	69.0 (4.7)	78.4 (5.0)	83.8 (2.0)	85.8 (1.0)
STA w/o Self-Checking	66.7 (5.0)	77.1 (4.7)	81.8 (2.1)	84.8 (1.0)	85.7 (1.0)
STA w/o Auxiliary Prompts	69.8 (4.9)	79.1 (3.4)	81.7 (4.5)	86.0 (0.8)	87.5 (0.6)
STA (ours)	72.8 (6.2)	81.4 (2.6)	84.2 (1.8)	86.0 (0.8)	87.2 (0.6)

Table 2: STA on **SST-2** in 5, 10, 20, 50, 100 examples per class. The results are reported as average (std.) accuracy (in %) based on 10 random experimental runs. Numbers in **bold** indicate the highest in columns.

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

the **SST-2** classification task. The results of the remaining three classification tasks can be interpreted similarly; thus, they are presented in Appendix F, namely Table 7 for **EMOTION**, Table 8 for **TREC**, and Table 9 for **HumAID**, respectively. In all cases, our approach provides state-of-the-art performance for text augmentation across all low-resource settings. When a higher number of samples (50-100)⁵ are used for training we see that STA is better, as in the cases of **SST-2**, **EMOTION** and **HumAID** tasks, or competitive, as in the case of **TREC**. Furthermore, we can see that STA is superior to other augmentation techniques when only a small number of examples are used to train the generator (5-10-20). In fact, STA on average demonstrates a difference of $+9.4\Delta$ and $+4.7\Delta$ when trained on only 5 and 10 samples per class respectively, demonstrating its ability to generate salient and effective training examples from limited amounts of data.

5.2 Ablation Studies: Self-Checking and Auxiliary Prompts

To demonstrate the importance of our self-checking procedure, we performed our empirical investigations on STA both with and without the self-checking step, denoted as **STA w/o Self-Checking** in Table 2, 7, 8 and 9. Furthermore, we investigate STA within a minimal template setting where we only include the templates *c* and *g* in Table 1, omitting our proposed auxiliary templates, denoted as **STA w/o Auxiliary Prompts**, to empirically separate the contribution of these components. Comparing our model with no self-checking (STA w/o Self-Checking) against other state-of-the-art approaches,

⁵We note that around 100 examples per class, all techniques tend to approximate no augmentation baselines, indicating that most likely constitute something more equivalent to full data training rather than a low-resource setting

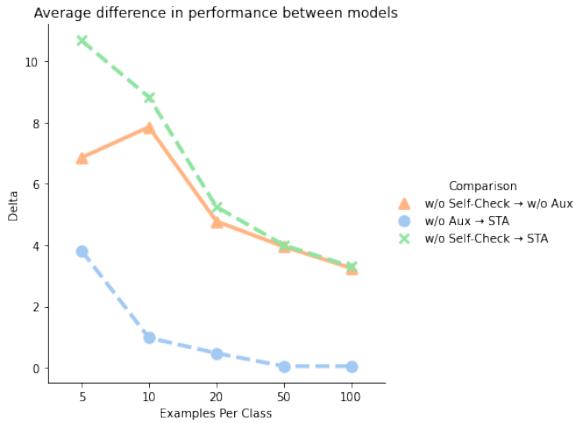


Figure 2: Graph showing the average difference between **STA w/o Self-Checking** to **STA w/o Auxiliary Prompts**, **STA w/o Auxiliary Prompts** to **STA** and **STA w/o Self-Checking** to **STA**, as the number of examples per class varies.

we see that the model provides the best performance particularly when the data is more sparse (5-10-20), with the exclusion of **TREC**. However, when we add self-checking with only basic generation and classification templates (STA w/o Auxiliary Prompts), we see a significant improvement, indicating that self-checking more important to the downstream performance. We also compare the average difference between these models across all datasets with altering components in Figure 2. Looking at Figure 2 we see that the inclusion of self-checking provides the greatest increase in performance, while the contribution of our auxiliary prompts, including our novel generation template, decreases with larger examples per class. However, we note that the inclusion of both templates and self-checking provides the best performance, particularly in lower data regimes.

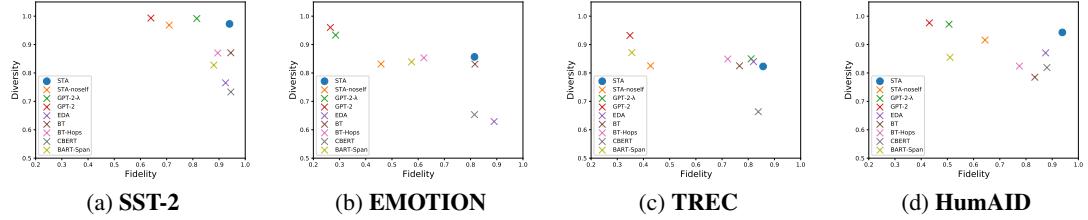


Figure 3: Diversity versus semantic fidelity of generated texts by various augmentation methods. The average scores over 10 runs are reported.

	SST-2	EMOTION	TREC	HumAID
Test	91.8	93.5	96.6	89.7

Table 3: Accuracy (in %) on test set predicted by BERT that is trained on the whole training data for measuring semantic fidelity.

528 5.3 Lexical Diversity and Semantic Fidelity

529 To further analyse the quality of the generated data,
530 we measure its lexical diversity and semantic fidelity (i.e., its ability to align with the correct label). **Diversity** is assessed using the UNIQUE TRIGRAMS metric (Feng et al., 2020; Kumar et al.,
531 2020), which calculates the ratio of unique tri-
532 grams to total tri-grams in a population consisting
533 of both original and generated training data. To co-
534 incide with the previous work (Kumar et al., 2020),
535 **semantic fidelity** is determined by fine-tuning a
536 “BERT-base-uncased” model on the 100% original
537 training data for each classification task and
538 measuring the accuracy of the generated data pre-
539 dictions by this model. Results are presented in
540 Table 3. A higher score indicates better diversity or
541 fidelity.

542 To present the quality of generated data in di-
543 versity and fidelity, we take the training data (10
544 examples per class) along with its augmented data
545 ($\beta = 1$) for investigation. Figure 3 depicts the di-
546 versity versus semantic fidelity of generated data
547 by various augmentation methods across three
548 datasets. We find that generation-based approaches
549 such as GPT-2 or GPT-2- λ , achieve strong diversity
550 but less competitive fidelity. On the contrary, rule-
551 based heuristics methods such as EDA perform
552 well in retaining the semantic meaning but not in
553 lexical diversity. The merit of STA is that it is good
554 in both diversity and fidelity, as seen from its po-
555 sition at the top-right of Figure 3a, 3b, 3c and 3d.
556 Finally, if we compare our STA approach with and

557 without self-checking, we see that each approach
558 produces highly diverse examples, although only
559 self-checking STA retains a high level of semantic
560 fidelity. Comparing with GPT-2 and GPT-2- λ —
561 the other sample filtering approach — we see that
562 the inclusion of a separate classifier results in an av-
563 erage increase of 18.3% in fidelity. However, if we
564 compare our STA approach with and without self-
565 checking, we see an average increase of 32.38%
566 in fidelity, further demonstrating the validity of
567 our join generation and classification approach as
568 opposed to an independent classification module.
569 As previously suggested, this ability to align the
570 semantic content of generated examples with the
571 correct label is the most probable reason for the
572 increase in downstream classification performance
573 when self-checking is employed. This supports the
574 notion that our generation-based approach is able to
575 produce novel data that is lexically diverse, whilst
576 the self-checking procedure can ensure consistent
577 label retention, which guarantees a high semantic
578 fidelity in the generated examples⁶.

582 6 Conclusion

583 We propose a novel strategy for text-based data
584 augmentation that leverages prompt templates to
585 generate training examples and ensure better label
586 alignment. Our approach substantially outperforms
587 the previous state-of-the-art on a variety of down-
588 stream classification tasks and across a range of
589 low-resource scenarios. Furthermore, we provide
590 an analysis of the lexical diversity and label con-
591 sistency of generated examples, demonstrating that
592 our approach produces uniquely varied training ex-
593 amples with more consistent label alignment than
594 previous work. In the future, we hope to improve
595 this approach in rich-data regime and extend it to
596 other downstream natural language tasks.

⁶See also Appendix G for the demonstration of augmented examples.

References

597

598 Firoj Alam, Umair Qazi, Muhammad Imran, and Ferda 600 Ofli. 2021. Humaid: Human-annotated disaster 601 incidents data from twitter with deep learning 602 benchmarks. In *Proceedings of the International AAAI 603 Conference on Web and Social Media*, volume 15, 604 pages 933–942.

605 Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich, 606 Amir Kantor, George Kour, Segev Shlomov, Naama 607 Tepper, and Naama Zwerdling. 2020. Do not have 608 enough data? deep learning to the rescue! In *Proceedings 609 of the AAAI Conference on Artificial Intelligence*, volume 34, pages 7383–7390.

610 Tom Brown, Benjamin Mann, Nick Ryder, Melanie 611 Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 612 Neelakantan, Pranav Shyam, Girish Sastry, Amanda 613 Askell, et al. 2020. Language models are few-shot 614 learners. *Advances in neural information processing 615 systems*, 33:1877–1901.

616 Meng Cao, Yue Dong, and Jackie Chi Kit Cheung. 2022. 617 Hallucinated but factual! inspecting the factuality 618 of hallucinations in abstractive summarization. In 619 *Proceedings of the 60th Annual Meeting of the 620 Association for Computational Linguistics (Volume 1: 621 Long Papers)*, pages 3340–3354.

622 Joe Davison, Joshua Feldman, and Alexander M Rush. 623 2019. Commonsense knowledge mining from pre- 624 trained models. In *Proceedings of the 2019 conference 625 on empirical methods in natural language 626 processing and the 9th international joint conference 627 on natural language processing (EMNLP-IJCNLP)*, 628 pages 1173–1178.

629 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 630 Kristina Toutanova. 2019. Bert: Pre-training of 631 deep bidirectional transformers for language 632 understanding. In *NAACL-HLT (1)*.

633 Sergey Edunov, Myle Ott, Michael Auli, and David 634 Grangier. 2018. Understanding back-translation at 635 scale. In *EMNLP*.

636 Steven Y Feng, Varun Gangal, Dongyeop Kang, Teruko 637 Mitamura, and Eduard Hovy. 2020. Genaug: Data 638 augmentation for finetuning text generators. In *Proceedings 639 of Deep Learning Inside Out (DeeLIO): The First 640 Workshop on Knowledge Extraction and 641 Integration for Deep Learning Architectures*, pages 642 29–42.

643 Tianyu Gao, Adam Fisch, and Danqi Chen. 2021. 644 Making pre-trained language models better few-shot 645 learners. In *Association for Computational Linguistics 646 (ACL)*.

647 Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. 648 2022. Ppt: Pre-trained prompt tuning for few-shot 649 learning. In *Proceedings of the 60th Annual Meeting 650 of the Association for Computational Linguistics 651 (Volume 1: Long Papers)*, pages 8410–8423.

652 Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and 653 Maosong Sun. 2022. Ptr: Prompt tuning with rules 654 for text classification. *AI Open*, 3:182–192.

655 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and 656 Yejin Choi. 2019. The curious case of neural text 657 degeneration. In *International Conference on Learning 658 Representations*.

659 Robin Jia and Percy Liang. 2016. Data recombination 660 for neural semantic parsing. In *Proceedings of the 661 54th Annual Meeting of the Association for Computational 662 Linguistics (Volume 1: Long Papers)*, pages 663 12–22.

664 Diederik P Kingma and Jimmy Ba. 2014. Adam: A 665 method for stochastic optimization. *arXiv preprint 666 arXiv:1412.6980*.

667 Sosuke Kobayashi. 2018. Contextual augmentation: 668 Data augmentation by words with paradigmatic 669 relations. In *Proceedings of the 2018 Conference of 670 the North American Chapter of the Association for 671 Computational Linguistics: Human Language 672 Technologies, Volume 2 (Short Papers)*, pages 673 452–457.

673 Varun Kumar, Ashutosh Choudhary, and Eunah Cho. 674 2020. Data augmentation using pre-trained 675 transformer models. In *Proceedings of the 2nd Workshop 676 on Life-long Learning for Spoken Language Systems*, 677 pages 18–26, Suzhou, China. Association for 678 Computational Linguistics.

679 Teven Le Scao and Alexander M Rush. 2021. How 680 many data points is a prompt worth? In *Proceedings 681 of the 2021 Conference of the North American Chapter 682 of the Association for Computational Linguistics: 683 Human Language Technologies*, pages 2627–2636.

684 Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 685 The power of scale for parameter-efficient prompt 686 tuning. In *Proceedings of the 2021 Conference on 687 Empirical Methods in Natural Language Processing*, 688 pages 3045–3059.

689 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 690 Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 691 Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart: 692 Denoising sequence-to-sequence pre-training for 693 natural language generation, translation, and comprehension. 694 In *Proceedings of the 58th Annual Meeting of 695 the Association for Computational Linguistics*, pages 696 7871–7880.

697 Xin Li and Dan Roth. 2002. Learning question 698 classifiers. In *COLING 2002: The 19th International 699 Conference on Computational Linguistics*.

700 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, 701 Hiroaki Hayashi, and Graham Neubig. 2021. Pre- 702 train, prompt, and predict: A systematic survey of 703 prompting methods in natural language processing. 704 *arXiv preprint arXiv:2107.13586*.

705 George A Miller. 1995. Wordnet: a lexical database for 706 english. *Communications of the ACM*, 38(11):39–41.

707	Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander Miller. 2019. Language models as knowledge bases? In <i>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</i> , pages 2463–2473.	763
708		764
709		765
710		766
711		767
712		
713		
714		
715	Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018. Improving language understanding by generative pre-training.	768
716		769
717		770
718	Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019. Language models are unsupervised multitask learners. <i>OpenAI blog</i> , 1(8):9.	772
719		773
720		
721		
722	Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. <i>Journal of Machine Learning Research</i> , 21:1–67.	775
723		776
724		777
725		778
726		779
727		780
728	Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, and Yi-Shin Chen. 2018. CARER: Contextualized affect representations for emotion recognition. In <i>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</i> , pages 3687–3697, Brussels, Belgium. Association for Computational Linguistics.	782
729		783
730		784
731		
732		
733		
734		
735	Timo Schick and Hinrich Schütze. 2021a. Exploiting cloze-questions for few-shot text classification and natural language inference. In <i>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</i> , pages 255–269.	785
736		786
737		787
738		
739		
740		
741	Timo Schick and Hinrich Schütze. 2021b. Few-shot text generation with natural language instructions. In <i>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</i> , pages 390–402.	788
742		789
743		
744		
745		
746	Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Improving neural machine translation models with monolingual data. In <i>Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</i> , pages 86–96.	790
747		791
748		
749		
750		
751	Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. 2020. Autoprompt: Eliciting knowledge from language models with automatically generated prompts. In <i>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</i> , pages 4222–4235.	792
752		793
753		794
754		795
755		796
756		797
757	Sam Shleifer. 2019. Low resource text classification with ulmfit and backtranslation. <i>arXiv preprint arXiv:1903.09244</i> .	798
758		799
759		800
760	Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank.	801
761		
762		
763	In <i>Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing</i> , pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.	802
764		803
765		804
766		805
767		806
768	Alon Talmor, Yanai Elazar, Yoav Goldberg, and Jonathan Berant. 2020. olmpics-on what language model pre-training captures. <i>Transactions of the Association for Computational Linguistics</i> , 8:743–758.	807
769		808
770		809
771		810
772	Trieu H Trinh and Quoc V Le. 2018. A simple method for commonsense reasoning. <i>arXiv preprint arXiv:1806.02847</i> .	807
773		808
774		
775	William Yang Wang and Diyi Yang. 2015. That’s so annoying!!!: A lexical and frame-semantic embedding based data augmentation approach to automatic categorization of annoying behaviors using# petpeeve tweets. In <i>Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing</i> , pages 2557–2563.	807
776		808
777		809
778		810
779		
780		
781		
782	Zirui Wang, Adams Wei Yu, Orhan Firat, and Yuan Cao. 2021. Towards zero-label language learning. <i>arXiv preprint arXiv:2109.09193</i> .	807
783		808
784		
785	Jason Wei and Kai Zou. 2019. Eda: Easy data augmentation techniques for boosting performance on text classification tasks. In <i>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</i> , pages 6382–6388.	807
786		808
787		809
788		809
789		809
790		809
791		809
792	Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierrette Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. 2019. Huggingface’s transformers: State-of-the-art natural language processing. <i>arXiv preprint arXiv:1910.03771</i> .	807
793		808
794		808
795		808
796		808
797		808
798	Xing Wu, Shangwen Lv, Liangjun Zang, Jizhong Han, and Songlin Hu. 2019. Conditional bert contextual augmentation. In <i>International Conference on Computational Science</i> , pages 84–95. Springer.	807
799		808
800		808
801		
802	Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng, Zhen Bi, Chuanqi Tan, Fei Huang, and Huajun Chen. 2022. Differentiable prompt makes pre-trained language models better few-shot learners. In <i>International Conference on Learning Representations</i> .	807
803		808
804		809
805		809
806		809
807	Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text classification. <i>Advances in neural information processing systems</i> , 28:649–657.	807
808		808
809		809
810		810

811 **A Limitations**

812 Our work explores the possibility of data augmen-
813 tation for boosting text classification performance
814 when the downstream model is finetuned using pre-
815 trained language models. The results show that
816 STA consistently performs well across different
817 bench-marking tasks using the same experimen-
818 tal setup, which addresses the limitation stated in
819 the previous work (Kumar et al., 2020) calling for
820 a unified data augmentation technique. However,
821 similar to Kumar et al. (2020), although STA can
822 achieve improved performance as the data size goes
823 up to 100 examples per class in some cases (such
824 as 100 examples per class in **EMOTION**, Table 7
825 and **HumAID**, Table 9), the absolute gain in per-
826 formance plateaus when the training data becomes
827 richer (such as 100 examples per class in **SST-2**
828 and **TREC**). This suggests that it is challenging
829 for STA to improve pre-trained classifier’s model
830 performance in more abundant data regimes.

831 Another important consideration is the choice
832 of templates used in STA. Ablation experiments in
833 Section 5.2 show that our chosen set of templates
834 yields better performance than a ‘minimal subset’
835 consisting of the two simplest templates; the ques-
836 tion as to how to choose optimal templates for this
837 augmentation scheme remains unanswered. Hence,
838 in future work, we will explore better methods for
839 constructing the prompt templates, aiming to re-
840 duce the dependency on the manual work at this
841 step.

842 B Template Example

843 Table 4 presents how an original training example
844 is converted to multiple examples in STA using the
845 prompt templates from Table 1.

846 C Datasets

847 Table 5 lists the basic information of the four
848 datasets used in our experiments and they are
849 shortly described as follows.

- 850 • **SST-2** (Socher et al., 2013) is a binary sentiment
851 classification dataset that consists of
852 movie reviews annotated with positive and
853 negative labels.
- 854 • **EMOTION** (Saravia et al., 2018) is a dataset
855 for emotion classification comprising short
856 comments from social media annotated with
857 six emotion types, such as, sadness, joy, etc.
- 858 • **TREC** (Li and Roth, 2002) is a dataset for
859 question topic classification comprising ques-
860 tions across six categories including human,
861 location, etc.
- 862 • **HumAID** (Alam et al., 2021) is a dataset
863 for crisis messages categorisation comprising
864 tweets collected during 19 real-world disaster
865 events, annotated by humanitarian categories
866 including rescue volunteering or donation ef-
867 fort, sympathy and support, etc.

868 D Training Details

869 When finetuning the generation model, we select
870 the pre-trained T5 base checkpoint as the starting
871 weights. For the downstream classification task,
872 we finetune “bert-base-uncased”⁷ on the original
873 training data either with or without the augmented
874 samples. Regarding the pre-trained models, we
875 use the publicly-released version from the Hug-
876 gingFace’s transformers library (Wolf et al., 2019).
877 For the augmentation factor (i.e., β in Section 3.2),
878 the augmentation techniques including ours and
879 the baselines are applied to augment 1 to 5 times
880 of original training data. In the experiments, it is
881 regarded as a hyper-parameter to be determined.
882 Since our work focuses on text augmentation for
883 classification in low-data settings, we sampled 5,
884 10, 20, 50 and 100 examples per class for each
885 training dataset as per Anaby-Tavor et al. (2020).

⁷<https://huggingface.co/bert-base-uncased>

886 To alleviate randomness, we run all experiments 10
887 times so the average accuracy along with its stan-
888 dard deviation (std.) is reported on the full test set
889 in the evaluation.

890 To select the downstream checkpoint and the
891 augmentation factor, we select the run with the
892 best performance on the development set for all
893 methods. The hyper-parameters for finetuning
894 the generation model and the downstream model
895 are also setup based on the development set. Al-
896 though using the full development set does not nec-
897 essarily represent a real-life situation in low-data
898 regime (Schick and Schütze, 2021a; Gao et al.,
899 2021), we argue that it is valid in a research-
900 oriented study. We choose to use the full develop-
901 ment set since we aim to maximize the robustness
902 of various methods’ best performance given small
903 training data available. As all augmentation meth-
904 ods are treated the same way, we argue this is valid
905 to showcase the performance difference between
906 our method and the baselines.

907 For all experiments presented in this work, we
908 exclusively use *Pytorch*⁸ for general code and
909 *Huggingface*⁹ for transformer implementations re-
910 spectively, unless otherwise stated. In finetuning
911 T5, we set the learning rate to 5×10^{-5} using
912 Adam (Kingma and Ba, 2014) with linear sched-
913 ule (10% warmup steps), the training epochs to
914 be 32 and batch size to be 16. At generation time,
915 we use top-k ($k = 40$) and top-p ($p = 1.0$) sam-
916 pling technique (Holtzman et al., 2019) for next
917 token generation. In finetuning downstream BERT,
918 the hyper-parameters are similar to those of T5
919 finetuning, although the training epoch is set to be
920 20. We set the training epochs to be as large as
921 possible with the aim of finding the best model
922 when trained on a small dataset, where the quality
923 is based on performance on the development set.
924 In our experiments, for a single run on all datasets,
925 it takes around one day with a single Tesla P100
926 GPU (16GB) and thus estimated 10 days for 10
927 runs. To aid reproducibility, we will release our
928 experimental code to the public at ¹⁰.

929 E Comparing to Few-shot Baselines

930 Since our work explores a text augmentation ap-
931 proach for improving text classification in low-
932 data regime, it is also related to few-shot learning

⁸<https://pytorch.org/>

⁹<https://huggingface.co/>

¹⁰<https://github.com/wangcongcong123/STA>

An example from SST-2 a sentiment classification dataset where the classes (\mathcal{L}): negative, positive Text (x)	
	<i>top-notch action powers this romantic drama.</i>
Label (y)	
	<i>positive</i>
Converted examples by classification templates (\mathcal{C} : c , c_{pos} and c_{neg}): source(s), target(t)	
Given sentiment: negative, positive. Classify: <i>top-notch action powers this romantic drama.</i>	<i>positive</i>
Text: <i>top-notch action powers this romantic drama</i> . Is this text about <i>positive</i> sentiment?	<i>yes</i>
Text: <i>top-notch action powers this romantic drama</i> . Is this text about negative sentiment?	<i>no</i>
Converted examples by generation templates (\mathcal{G} : g and g'): source(s), target(t)	
Description: <i>positive</i> sentiment. Text:	<i>top-notch action powers this romantic drama.</i>
Description: <i>positive</i> sentiment. Text: <i>top-notch action powers this romantic drama</i> . Another text: <i>spielberg's realization of</i>	<i>a near-future america is masterful</i> .
Description: <i>positive</i> sentiment. Text: <i>top-notch action powers this romantic drama</i> . Another text: <i>a movie in</i>	<i>which laughter and self-exploitation merge into jolly soft-porn 'em powerment</i> .
Description: <i>positive</i> sentiment. Text: <i>top-notch action powers this romantic drama</i> . Another text: <i>a tightly directed</i>	<i>highly professional film that's old-fashioned in all the best possible ways</i> .

Table 4: The demonstration of an example conversion by the prompt templates in Table 1 where the example’s text is highlighted in **blue** and label is highlighted in **red** for readability.

Dataset	# Train	# Dev	# Test	# Classes (N)
SST-2	6,228	692	1,821	2
EMOTION	160,000	2,000	2,000	6
TREC	4,906	546	500	6
HumAID	40,623	5,913	11,508	8

	SST-2	EMOTION	TREC
DART	66.5 (5.8)	26.7 (3.0)	74.0 (2.7)
LM-BFF	71.1 (9.5)	30.2 (3.8)	77.1 (3.0)
PET	56.7 (0.8)	28.4 (1.0)	69.1 (1.1)
STA (ours)	81.4 (2.6)	57.8 (3.7)	70.9 (6.6)

Table 5: Datasets statistics

933 methods that use few examples for text classification
934 We further conduct an experiment to compare STA to three state-of-the-art few-shot learning
935 approaches: PET (Schick and Schütze, 2021a),
936 LM-BFF (Gao et al., 2021), and DART (Zhang
937 et al., 2022). For fair comparison, we set the
938 experiment under the 10 examples per class scenario
939 with 10 random seeds ensuring the 10 examples per
940 class are sampled the same across the methods. Be-
941 sides, we use `bert-base-uncased`¹¹ as the start-
942 ing weights of the downstream classifier. The re-
943 sults are shown in Table 6. We found that although
944 STA loses the best score to DART and LM-BFF
945 on the **TREC** dataset, it substantially outperforms
946 the few-shot baselines on **SST-2** and **EMOTION**.
947 This tells us that STA is a competitive approach for
948 few-shot learning text classification.
949

F More Results of Classification Tasks

951 Table 7, Table 8 and Table 9 present the results of
952 STA comparing to baselines in low-data settings

Table 6: The comparison between STA and few-shot baselines using 10 examples per class on **SST-2** and **EMOTION** and **TREC**. The results are reported as average (std.) accuracy (in %) based on 10 random experimental runs. Numbers in **bold** indicate the highest in columns.

953 for the **EMOTION**, **TREC** and **HumAID** classifi-
954 cation tasks respectively.

G Demonstration

955 Table 10 and Table 11 demonstrate some original
956 examples and augmented examples by different
957 methods. In comparison, the examples generated
958 by STA tend to be not only diverse but also highly
959 label relevant (semantic fidelity).
960

¹¹<https://huggingface.co/bert-base-uncased>

Augmentation Method	5	10	20	50	100
Baseline (No Aug.)	26.7 (8.5)	28.5 (6.3)	32.4 (3.9)	59.0 (2.6)	74.7 (1.7)
EDA	30.1 (6.2)	33.1 (4.3)	47.5 (5.0)	66.7 (2.7)	77.4 (1.8)
BT	32.0 (3.0)	37.4 (3.0)	48.5 (5.1)	65.5 (2.0)	75.6 (1.6)
BT-Hops	31.3 (2.6)	37.1 (4.6)	49.1 (3.5)	65.0 (2.3)	75.0 (1.5)
CBERT	29.2 (6.5)	32.6 (3.9)	44.1 (5.2)	62.1 (2.0)	75.5 (2.2)
GPT-2	28.4 (8.5)	31.3 (3.5)	39.0 (4.1)	57.1 (3.1)	69.9 (1.3)
GPT-2- λ	28.6 (5.1)	30.8 (3.1)	43.3 (7.5)	71.6 (1.5)	80.7 (0.4)
BART-Span	29.9 (4.5)	35.4 (5.7)	46.4 (3.9)	70.9 (1.5)	77.8 (1.0)
STA w/o Self-Checking	34.0 (4.0)	41.4 (5.5)	53.3 (2.2)	65.1 (2.3)	74.0 (1.1)
STA w/o Auxiliary Prompts	41.8 (6.1)	56.2 (3.0)	64.9 (3.3)	75.1 (1.5)	81.3 (0.7)
STA (ours)	43.8 (6.9)	57.8 (3.7)	64.1 (2.1)	75.3 (1.8)	81.5 (1.1)

Table 7: STA on **EMOTION** in 5, 10, 20, 50, 100 examples per class. The results are reported as average (std.) accuracy (in %) based on 10 random experimental runs. Numbers in **bold** indicate the highest in columns.

Augmentation Method	5	10	20	50	100
Baseline (No Aug.)	33.9 (10.4)	55.8 (6.2)	71.3 (6.3)	87.9 (3.1)	93.2 (0.7)
EDA	54.1 (7.7)	70.6 (5.7)	79.5 (3.4)	89.3 (1.9)	92.3 (1.1)
BT	56.0 (8.7)	67.0 (4.1)	79.4 (4.8)	89.0 (2.4)	92.7 (0.8)
BT-Hops	53.8 (8.2)	67.7 (5.1)	78.7 (5.6)	88.0 (2.3)	91.8 (0.9)
CBERT	52.2 (9.8)	67.0 (7.1)	78.0 (5.3)	89.1 (2.5)	92.6 (1.1)
GPT-2	47.6 (7.9)	67.7 (4.9)	76.9 (5.6)	87.8 (2.4)	91.6 (1.1)
GPT-2- λ	49.6 (11.0)	70.2 (5.8)	80.9 (4.4)	89.6 (2.2)	93.5 (0.8)
BART-Span	55.0 (9.9)	65.9 (6.7)	77.1 (5.5)	88.38 (3.4)	92.7 (1.6)
STA w/o Self-Checking	45.4 (3.2)	61.9 (10.2)	77.2 (5.5)	88.3 (1.2)	91.7 (0.8)
STA w/o Auxiliary Prompts	49.6 (9.0)	69.1 (8.0)	81.0 (5.9)	89.4 (3.0)	93.1 (0.9)
STA (ours)	59.6 (7.4)	70.9 (6.6)	81.1 (3.9)	89.1 (2.7)	93.2 (0.8)

Table 8: STA on **TREC** in 5, 10, 20, 50, 100 examples per class. The results are reported as average (std.) accuracy (in %) based on 10 random experimental runs. Numbers in **bold** indicate the highest in columns.

Augmentation Method	5	10	20	50	100
Baseline (No Aug.)	29.1 (6.6)	37.1 (6.4)	60.7 (4.0)	80.0 (0.9)	83.4 (1.0)
EDA	49.5 (4.5)	64.4 (3.6)	74.7 (1.5)	80.7 (1.0)	83.5 (0.6)
BT	45.8 (5.7)	59.1 (5.2)	73.5 (2.1)	80.4 (1.2)	83.1 (0.7)
BT-Hops	43.4 (6.4)	57.5 (5.2)	72.4 (2.8)	80.1 (1.1)	82.8 (1.4)
CBERT	44.8 (7.6)	59.5 (4.8)	73.4 (1.7)	80.3 (0.8)	82.7 (1.2)
GPT-2	46.0 (4.7)	55.7 (5.7)	67.3 (2.6)	77.8 (1.6)	81.1 (0.6)
GPT-2- λ	50.7 (8.6)	68.1 (6.2)	78.5 (1.3)	82.1 (1.1)	84.2 (0.8)
BART-Span	42.4 (7.3)	58.6 (7.0)	70.04 (3.7)	79.3 (1.4)	83.33 (0.9)
STA w/o Self-Checking	56.4 (7.0)	70.2 (4.3)	76.3 (3.3)	79.4 (4.5)	81.8 (1.3)
STA w/o Auxiliary Prompts	68.7 (10.9)	77.6 (3.6)	80.1 (1.7)	82.9 (1.6)	84.3 (0.7)
STA (ours)	69.0 (3.9)	75.8 (3.3)	80.2 (1.6)	83.2 (0.5)	84.5 (1.1)

Table 9: STA on **HumAID** in 5, 10, 20, 50, 100 examples per class. The results are reported as average (std.) accuracy (in %) based on 10 random experimental runs. Numbers in **bold** indicate the highest in columns.

Original training examples and augmented examples for “Sadness” of **EMOTION**

Original	i sit here feeling blank about this i feel ashamed that i so readily turn it aside i feel positively ashamed when i look out of the window and see the state of things i had just lost my uncle i would be sad but i feel as if i am devastated i was feeling kind of discouraged because nothing happened
	i sit here opinion blank about this i feel that ashamed i so readily turn it aside i feel positively ashamed when i look out of the window and construe the state of things i had just lost my uncle i would be pitiful but i feel as if i am devastated i happened feeling kind of discouraged because nothing was
	ive seen so many girls walk around feeling ashamed of their bodi ive got to admit that i feel a little weird for a moment seeing her standing in front of my face when i walk into the shop ive always wondered what im doing right now im feeling ive read many blogs about her and how much she hates those who don't admit to being kind or caring about others but instead blame them for not doing something about it ive never felt sympathetic towards people because of the way they look and act because of their skin to
	i feel like the whole world is watching and feeling it's failing me i want people to know i am not alone i feel ashamed when i look out of the window and see the state of things i walked away feeling disappointed because i don t know the answer i drank some cold drink or find some ice dessert such as chendol or ice kacang
	i feel sad seeing people who have to work harder to cope i walked away feeling disappointed because i don t know the answer i was feeling sad seeing the state of things that i never did i really want to see if it lasted i feel sad seeing the state of things but the truth is im not sure how to express it gracefully i feel like the whole world is watching and feeling it's failing me

Table 10: The demonstration of original training examples and augmented examples for “sadness” of **EMOTION**. It is noted that the 5 augmented examples in each block are randomly selected instead of cherry-picked. This reveals some difference between the original training examples and the augmented examples by our STA and other methods (Here we use a rule-based heuristics method EDA, a generation-based method GPT-2- λ and STA-noself for comparison).

Original training examples and augmented examples for “missing or found people” of HumAID

Original	<p>UPDATE: Body found of man who disappeared amid Maryland flooding Open Missing People Search Database from Mati and Rafina areas #Greecefires #PrayForGreece #PrayForAthens @ThinBlueLine614 @GaetaSusan @DineshDSouza case in point, #California Liberalism has created the hell which has left 1000s missing 70 dead,... Heres the latest in the California wildfires #CampFire 1011 people are missing Death toll rises to 71 Trump blames fires on poor ... #Idai victims buried in mass grave in Sussundenga, at least 60 missing - #Mozambique #CycloneIdai #CicloneIdai</p>
EDA	<p>update flooding found of man who disappeared amid maryland boy open missing people search database from mati escape and rafina areas greecefires prayforgreece prayforathens created gaetasusan dineshdsouza hell in point california missing has thinblueline the case which has left s liberalism dead an countless people... heres blames latest in the california wildfires campfire people are missing death toll rises to trump more fires on poor... idai victims buried in mass grave in sussundenga at mozambique missing least cycloneidai cicloneidai</p>
GPT-2-lambda	<p>@KezorNews - Search remains in #Morocco after @deweathersamp; there has been no confirmed death in #Kerala #Cambodia - Search & Rescue is assisting Search & Rescue officials in locating the missing 27 year old woman who disappeared in ... @JHodgeEagle Rescue Injured After Missing Two Children In Fresno County #Florence #Florence Missing On-Rescue Teams Searching For Search and Rescue Members #Florence #Florence #DisasterInformer #E RT @LATTAODAYOUT: RT @HannahDorian: Search Continues After Disappearance of Missing People in Florida</p>
STA-noself	<p>Search Database from Matias, Malaysia, missing after #Maria, #Kerala, #Bangladesh #KeralaKerala, #KeralaFloods, ... RT @hubarak: Yes, I can guarantee you that our country is safe from flooding during the upcoming weekend! Previous story Time Out! 2 Comments The missing persons who disappeared amid Maryland flooding are still at large. More on this in the next article. the number of missing after #CycloneIdai has reached more than 1,000, reports CNN. RT @adriane@przkniewskiZeitecki 1 person missing, police confirm #CycloneIdai. #CicloneIdai</p>
STA	<p>The missing persons who disappeared amid Maryland flooding are still at large. More on this in the next article. Search Triangle County for missing and missing after #Maria floods #DisasterFire Just arrived at San Diego International Airport after #Atlantic Storm. More than 200 people were missing, including 13 helicopters ... Search Database contains information on missing and found people #HurricaneMaria, hashtag #Firefighter Were told all too often that Californians are missing in Mexico City, where a massive flood was devastating. ...</p>

Table 11: The demonstration of original training examples and augmented examples for “missing or found people” of **HumAID**. It is noted that the 5 augmented examples in each block are randomly selected instead of cherry-picked. This reveals some difference between the original training examples and the augmented examples by our STA and other methods (Here we use a rule-based heuristics method EDA, a generation-based method GPT-2- λ and STA-noself for comparison).