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Abstract

Despite recent advancements in Machine
Learning, many tasks still involve working in
low-data regimes which can make solving nat-
ural language problems difficult. Recently, a
number of text augmentation techniques have
emerged in the field of Natural Language Pro-
cessing (NLP) which can enrich the training
data with new examples, though they are not
without their caveats. For instance, simple
rule-based heuristic methods are effective, but
lack variation in semantic content and syntac-
tic structure with respect to the original text.
On the other hand, more complex deep learn-
ing approaches can cause extreme shifts in the
intrinsic meaning of the text and introduce un-
wanted noise into the training data. To more
reliably control the quality of the augmented
examples, we introduce a state-of-the-art ap-
proach for Self-Controlled Text Augmentation
(STA). Our approach tightly controls the gen-
eration process by introducing a self-checking
procedure to ensure that generated examples
retain the semantic content of the original text.
Experimental results on multiple benchmarking
datasets demonstrate that STA substantially out-
performs existing state-of-the-art techniques,
whilst qualitative analysis reveals that the gen-
erated examples are both lexically diverse and
semantically reliable.

1 Introduction

A variety of tasks such as Topic Classification (Li
and Roth, 2002), Emotion Detection (Saravia et al.,
2018) and Sentiment Analysis (Socher et al., 2013)
have become important areas of research in NLP.
Such tasks generally require a considerable amount
of accurately labelled data to achieve strong per-
formance. However, acquiring enough such data is
both costly and time-consuming, hence making it
rare in practice. This has motivated a vast body of
research in techniques that can help alleviate issues
associated with low-data regimes.

A popular augmentation approach involves the
use of rule-based transformations, which employ
intuitive heuristics based on well-known paradig-
matic relationships between words. For instance,
by using a lexical-semantic database such as Word-
Net (Miller, 1995), researchers can make ratio-
nal and domain-specific conjectures about suit-
able replacements for words from lists of known
synonyms or hyponyms/hypernyms (Wang and
Yang, 2015; Wei and Zou, 2019; Feng et al., 2020).
Whilst these substitution-based approaches can re-
sult in novel and lexically diverse data, they also
tend to produce highly homogeneous structures,
even when context-free grammars are used to gen-
erate more syntactically variable examples (Jia and
Liang, 2016).

The recent success of pretrained transformer lan-
guage models such as BERT (Devlin et al., 2019)
and GPT-2 (Radford et al., 2019) has helped facil-
itate more robust strategies for dealing with low-
resource scenarios: Conditional text generation.
Large language models — typically trained on a
vast corpus of text — contain a rich understand-
ing of syntactic structure and semantic phenomena
and thus can be well suited for faithful domain-
specific generation (Petroni et al., 2019). Indeed,
large language models have been conditioned to
great success (Kobayashi, 2018; Wu et al., 2019;
Anaby-Tavor et al., 2020; Kumar et al., 2020) to
synthesize highly diverse training examples result-
ing in stronger downstream performance in low-
resource settings. However, the use of diverse
neurally-generated data may come at the cost of in-
troducing semantic discrepancies, which can cause
misalignment between the generated samples and
their intended labels. Ideally, the optimal augmen-
tation method would be one that satisfies both Lex-
ical/Syntactic Diversity and Semantic Fidelity
(reliable alignment between semantic meaning and
class label).

In this paper, we propose a novel strategy — self-



controlled text augmentation (STA) that aims to
tightly control the generation process in order to
produce diverse training examples which retain a
high level of semantic fidelity. Following previous
work, we fine-tune a state-of-the-art sequence-to-
sequence transformer model, known as 75 (Raf-
fel et al., 2020), using a dataset containing only
a limited number of samples and generate new
samples using task-specific prompting, which has
been shown to be effective in low-resource sce-
narios (Le Scao and Rush, 2021). While sim-
ilar approaches have been deployed in previous
work (Anaby-Tavor et al., 2020), our novel strat-
egy effectively utilizes Pattern-Exploiting Training
(Schick and Schiitze, 2021a,b) by employing tem-
plates of verbalization-patterns that simultaneously
direct the generation process and filter noisy labels
within a single unified framework. Experimental re-
sults on multiple benchmarks demonstrate that STA
outperforms existing state-of-the-art augmentation
techniques. Furthermore, examining the quality
of the augmented data reveals better diversity and
fidelity as compared to the existing techniques.

2 Related Work

Various text augmentation techniques have been
proposed in the literature. Zhang et al. (2015)
and Wei and Zou (2019) use simple operations
like synonym replacement, random insertion, swap,
and deletion to generate new samples. Feng et al.
(2020) further explores these substitution tech-
niques for text generation. In contrast, Wang and
Yang (2015) and Kobayashi (2018) use word em-
beddings and contextual language models, respec-
tively, to replace words or phrases with semanti-
cally similar concepts.

Back translation is another effective method for
text augmentation, transforming sentence between
languages (Sennrich et al., 2016; Shleifer, 2019).
Recently, researchers have explored the use of pre-
trained transformer-based language models for con-
ditional text augmentation to generate novel sen-
tences from the original data (Wu et al., 2019;
Anaby-Tavor et al., 2020; Kumar et al., 2020).
For instance, Wu et al. (2019) leveraged BERT’s
masked language model, while Anaby-Tavor et al.
(2020) fine-tuned GPT-2 to generate novel sen-
tences and filter out noisy ones using a jointly
trained classifier with some success in tackling
the label misalignment problem. Similarly, Kumar
et al. (2020) studied conditional text augmentation

using transformer-based models, with BART out-
performing other methods in low-resource settings

Building upon ideas presented in the GPT series
(Radford et al., 2018, 2019; Brown et al., 2020),
prompt-based templates have become and effec-
tive approach for eliciting latent knowledge from
language models to great success (Trinh and Le,
2018; Petroni et al., 2019; Davison et al., 2019;
Talmor et al., 2020; Le Scao and Rush, 2021).
Wang et al. (2021) proposed using GPT-3 for text
augmentation with zero-label learning, with re-
sults that were competitive when compared to fully
supervised approaches. More closely related to
our instruction-based generation strategy, Schick
and Schiitze (2021b) propose GenPet which is
used to directly tackle a number of text genera-
tion tasks rather than text augmentation itself. In
their work, which builds upon previous research
PET (Schick and Schiitze, 2021a), the authors alter
the text inputs to form cloze-style questions known
as prompting training (Liu et al., 2021), demon-
strating improved performance on few-shot down-
stream tasks. Finally, researchers have proposed
an array of techniques aiming to systematically en-
gineer the structure of these templates beyond ad
hoc human intuitive reasoning: For example, using
automated template generation for the tasks (Shin
et al., 2020; Gao et al., 2021), trained end-to-end
with soft-prompts (Lester et al., 2021; Gu et al.,
2022) or designed from sub-prompts created by
decomposing prior task knowledge into rules (Han
et al., 2022).

Our approach differs from prior work by using
task-specific templates as verbal prompts for gen-
eration and classification which signal the model’s
objective. The model itself is self-controlling, gen-
erating novel data and retaining only the most con-
vincing examples using a classification template to
ensure semantic fidelity.

3 Method

In this section, we describe our novel self-
controlled approach for text augmentation in text
classification (STA). Figure 1 illustrates the work-
flow of STA and Algorithm 1 states STA in simple
terms. At a high level, STA first finetunes a pre-
trained sequence-to-sequence (seq2seq) model us-
ing a dataset which implicitly includes generation
and classification tasks.
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Figure 1: The architecture of our Self-controlled Text Augmentation approach (STA). The upper portion outlines
the finetuning component of our method (Training), whilst the lower portion demonstrates our procedure for
generating novel data (Inference). STA is highlighted by using the generation template and classification template
for fine-tuning a seq2seq transformer model. The generation template is used for generating samples and the
classification template is used for self-controlling and selecting the generated samples.

Algorithm 1 :Self-Controlled Text Augmentation

Require: Original dataset D,. Generative model
M. Generation template G. Classification tem-
plate C.

1. Convert D, to training dataset D; via G and C.

2: Finetune M on D, in a generation task and a
classification task jointly to obtain M.

3: Use G and M; to generate candidate dataset
D..

4: Apply M, to do classification inference on D,
with C to select the most confident examples.

5: Form the final generated dataset D* with the
selected examples.

3.1 Pattern-Exploiting Training in seq2seq
Models

PET is a finetuning technique for text classification
tasks in masked language models, as demonstrated
in (Schick and Schiitze, 2021a). By converting
inputs into cloze questions, PET enables accurate
classification with minimal labeled data. We ex-
tend the principles of PET to seq2seq autoregres-
sive models in this paper, presenting the theoretical
process for prompting-based generation and our
innovative self-controlled approach.

Consider a pretrained seq2seq autoregressive
transformer model denoted as M (we use T5 (Raf-
fel et al., 2020) in our experiments). This type of

model comprises an encoder-decoder pair, where
the encoder takes an input sequence s and generates
a contextualized encoded sequence s. The decoder
then takes the encoded sequence and the current
subsequence t: {t1,t2,..t;—1} as input to compute
the conditional distribution py(¢;|t1.5—1,3) for the
subsequent token in the sequence. Given s, the pos-
sible target sample (a sequence) ¢: {t1,t2, ..., tm}
can be obtained via the factorization:

pu(timls) = [ [ oar(tiltri1,3) (1)
i=1

Let D, = {(z,yi)}|/-; be a dataset for text
classification where z; € X and y; € L are text
and label respectively. The goal is to produce a
derived dataset D; to finetune M and ensure it is
primed for generating diverse and (label) faithful
examples by leveraging a set of prompt templates.

Formally, a template is a function T : V* x L —
V* x V* where V is the vocabulary of M and V*
denotes the set of finite sequences of symbols in V.
Of course, the structure of these templates can be
quite malleable. For example, a template could be
constructed through intuitive human interpretable
verbalizable terms, optimized automatically for the
task, fine-tuned with soft prompts or made up of
sequentially intuitive sub-prompts. Regardless of
the approach, the process is the same.

Given a family of templates 7, we set D; =



T(Do) = Urper T(D,). That is, we convert each
sample (z;,y;) € D, to |T| samples in the derived
dataset D;. In the field of synthetic data gener-
ation for low-resource scenarios, these templates
generally belong to the collection of templates ca-
pable of generating novel examples. Crucially, we
extend these templates to consider two types of
template families: generation templates G and clas-
sification templates C, such that 7 = CUG. As we
shall demonstrate, by carefully considering these
templates, we can produce a dataset D; (generated
from these templates 7 applied to the dataset D)
that is designed in such as way that the model can
learn to directly optimize for key characteristics of
the synthetic examples: High semantic fidelity and
lexical diversity.

3.1.1 Generation templates

Though not exclusive to the field, these templates
are commonplace within the synthetic data gener-
ation literature for creating novel training exam-
ples. Since our work focuses on encoder-decoder
models, the templates take the form g(z,y) =
(fs(z,y), fr(z)), where fs and f; denote functions
that map a piece of text to a source sequence and tar-
get sequence respectively. Concretely, the source
function fs is a verbalizable mapping which de-
pends on the text x € X and label y € L, the latter
of which conditions the model to align the gener-
ated text with the labels. The target function f; on
the other hand, represents the desired output of the
model, which depends on the text, and typically
corresponds to the identity function.

Diverse Generation. Without loss of gen-
erality, for a given downstream task {Task},
we could choose the primary template f, =
Description: {y;} {T'ask}. Text: as our source

function and f; = {x;} as the desired target for
fine-tuning to facilitate the generation process, fol-
lowing previous work (Anaby-Tavor et al., 2020;
Schick and Schiitze, 2021b,a). Here the goal of
Task is to provide context about the dataset, since
providing this sort of context helps when there
are limited training examples (Schick and Schiitze,
2021b). In this work, our goal is not only to gen-
erate novel sythetic examples for few-shot classi-
fication, but to generate a diverse range of these
samples. To ensure the model produces lexically
diverse text, we propose a novel generation strat-
egy which additionally includes an auxiliary tem-
plate for generation by including prior knowledge,

partially inspired by work in state-of-the-art sub-
prompt engineering (Han et al., 2022). Given some
data point (z;,y;) we achieve diversity by mod-
ifying two components to our source and target
functions.

* Memory: We add a previous example of text
x; which share the same label as an input to
the source function, j € N such that y; = y;.

* Priming: We instantiate the source function
with some of the target output x?_",n <
|z;| € N, which further constrains the model
to avoid the generation of non-factual halluci-
nations (Cao et al., 2022).

Concretely, we define a second auxiliary tem-
plate function for generation ¢'(z;,z;,vy;) =
(fl(xi,xj,y), fi(x;)), with the source function

fi = fs(xj,vi). Another text: {x)~?} and target

function f/ = {x3} where y; = y;. Intuitively,
we use a previous example as prior knowledge be-
fore concatenating them with the new template to
ensure the model produces distinct examples as
opposed to repetitions. It’s worth mentioning that
the ¢’ function can be employed multiple times to
create various examples by sampling different texts
during the conversion of a single training example
(check Appendix B demonstrates how an original
training sample is converted by the templates). For
generation, we include both templates g and ¢’ for
tuning our model. These templates are further out-
lined in Table 1.

3.1.2 Classification templates

Classification has been employed as an additional
processing step to filter synthetic examples which
do not align with the generated label (Anaby-
Tavor et al., 2020). In previous work, a sepa-
rate network is trained using the original data
to classify the examples, based on the intuition
that checking the results is easier than produc-
ing new examples. One problem that emerges
from adding a filter in low-resource settings is
that it creates an additional layer of complexity
within the system: Not only must the generator
predict the correct label from limited data, but so
must the classifier. These templates take the form
c(z,y) = (fs(x), fi(y)) where f; and f, similarly
denote the source sequence and target sequence
functions respectively. In this case, the source func-
tions are similar to the generation templates (the



Template \ Source sequence (s)

Target sequence (t) |

Primary c Given {Task}: {L£}. Classify: {z;} {vi}

Classification Auxiliary | cpos Text: {x;}. Is this text about {y;} {Task}? yes
Auxiliary | cneg Text: {z;}. Is this text about {y,} {Task}? no

Generation Primary Description: {y;} {Task}. Text: {xi}
Auxiliary ! Description: {y;} {Task}. Text: {x;}. Another text: {292} {z3

Table 1: Prompt templates for training sequences conversion. “Task” refers to a simple keyword describing the
dataset e.g. “Sentiment” or “Emotion” and L is the list of all class labels in the dataset. The symbol 7, in ¢4
stands for any label in £ \ {y;}, chosen randomly. In ¢/, the x; denotes another sample from the same class as x;

(i.e. y; = y;) chosen randomly.

text can be conditioned on the labels or indepen-
dent), although the target function instead relates
to the target label or some semantically compati-
ble class. It is simple to translate the feed-forward
approach into a primary template using verbaliza-
tions. In this case we set the source function as
fs(x;) = Given {Task}: {£}. Classify: {z;} and
target function as f;(y;) = v; , with £ providing
context to the possible labels.

Semantic Fidelity. Although prompt-based
tuning has proven to work better in limited
data settings than simple feed-forward approaches
(Le Scao and Rush, 2021), we further supplement
the template dataset by generating multiple intu-
itive patterns following previous work (Schick and
Schiitze, 2021a). To achieve this, we supplement
our base classification templates with two more
auxiliary templates which we refer to as c,,s and
Cneg 1n the vein of cloze-style questions. Con-
cretely, we define cp0s = (fs(2i), ft(yi)) such that
fs = Text: {x;}. Is this text about {y;} {Task}?
and f;=yes, with the goal of classifying
whether the correct label conforms to the
text.  Furthermore, we generate a counter
template cpeg = (fs(@i), fi(y;)) such that
fs = Text: {x;}. Is this text about {7;} {Task}?
and f; = no, y; ~ L\{y;}, with the goal of deter-
mining that the incorrectly sampled label does not
conform to the text. These templates are given in
detail in Table 1.

Self-Checking. We note that these auxillary
verbalizable patterns for classification are simply
meant to supplement and do not represent the op-
timal solution for eliciting important knowledge
from the network (Gao et al., 2021). We instead
wish to avoid cascading errors between the gen-
eration and classification template: The classifica-
tion network’s performance should be within an

acceptable tolerance. In order to extract synthetic
examples with high levels of semantic alignment
between the generated text and labels, we propose
a novel strategy for controlled self-supervised data
generation, which we refer to as Self-Checking. Dif-
ferent from previous work, we perform generation
and classification filtering within a single unified
neural framework. We hypothesise that this mul-
tiview learning process should allow the network
to discover the semantic relationship between the
labels and text, further preventing non-factual hal-
Iucinations of incorrect labels during the generation
process.

3.2 Data Generation, Self-checking and
Selection

We follow a two-step process: first we generate
candidates and second we select a fraction of the
candidates to be included as augmentations. This
processes is conducted for each class separately so
we may assume for the remainder of this section
that we have fixed a label y € L.

That is, first, we generate o X n,, samples where
n, is the original number of samples in D,, for label
y and then select the top 3 x n, samples (5 < «).
In our experiments, we call 5 the augmentation fac-
tor and set « = 5 x (. Namely, our self-checking
technique selects the top 20% of the candidate ex-
amples per class ! to form the final generated D*
that is combined with the original dataset D, for
downstream model training.

For the generation task, we need to choose a pre-
fix/source sequence s and proceed autoregressively
using Equation 1. Referring back to Table 1, there
are two choices g and ¢’ that can be used to con-
struct s. In this work, we employ g for generating

"This is based on our experimental search over {10%, 20%,
30%, 40%, 50%}.



examples because it allows for greater flexibility in
generating diverse examples. We aim to generate
as many diverse examples as possible at this stage
(rather than selecting ¢’, which requires a few ini-
tial words from an existing example as the context
and can restrict the freedom of generating diverse
examples). Nevertheless, all generated samples
will be self-checked for semantic fidelity next.

Here we generate o X n,, samples using the fine-
tuned encoder-decoder model M; where « is the
times of the number of generated candidate exam-
ples to that of original examples.

We now possess a synthetic candidate dataset
DY = {(zi,y)}|52)" which we will refine using a
self-checking strategy for selecting the generated
samples based on the confidence estimated by the
model M, itself.

For each synthetic sample (x, y), we construct a
source sequence using the classification template
c(z,y) as described in Table 1 to generate the
source s. Given the source s, we define a score
function u:

u(yls) = logpa, ({y}s)

equivalently this is the /logit computed by M; for
the sequence {y}. We then renormalize over the
labels in £ by applying a softmax over each of the
scores u(-|s):

culyls)

TS ells)
Finally, we rank the elements of DY by the value

of ¢ and select the top 5 x n, samples to form the
dataset DY and set Dy = |J, e DY

q(yls)

4 Experiments

Next, we conduct extensive experiments to test the
effectiveness of our approach in low-data regimes.
This section first describes the datasets choices, and
then presents the baselines for comparison. Experi-
mental details on how to train STA and evaluate it
with the baselines in low-data settings can be found
in the Appendix D.

4.1 Datasets

Following previous work in the augmentation lit-
erature (Kumar et al., 2020; Anaby-Tavor et al.,
2020), two bench-marking datasets are used in
our experiments: SST-2 (Socher et al., 2013) and
TREC (Li and Roth, 2002). We also include EMO-
TION (emotion classification) (Saravia et al., 2018)

and HumAID (crisis tweets categorisation) (Alam
et al., 2021) to extend the domains of testing STA’s
effectiveness. More information on the datasets
can be found in Appendix C.

4.2 Baselines

We evaluate our novel strategy against a set of state-
of-the-art techniques found within the literature.
These approaches include a variety of augmenta-
tion procedures from rule-based heuristics to deep
neural text generation. We compare STA to the aug-
mentation techniques as they are directly related to
our method in generating samples that can be used
in our subsequent study for examining the quality
of generated examples?.

Baseline: No data augmentation is applied to
the original training data.

EDA (Wei and Zou, 2019): Easy Data Augmen-
tation involves applying local word-level changes
to an existing example, such as synonym replace-
ment and random insertion.

BT and BT-Hops (Edunov et al., 2018;
Shleifer, 2019): Back-translation techniques in-
volve translating from English to one (BT) or more
randomly selected languages (BT-Hops) using a
pre-trained translation model.

GPT-2 (Kumar et al.,, 2020) and GPT-2-
A (Anaby-Tavor et al., 2020): GPT-23 generates
new examples conditioned on the label description
and the first three words of an existing example.
GPT-2-) adds the LAMBDA technique, which se-
lects generated examples based on the performance
of the downstream classification model on the orig-
inal training data.

CBERT (Wu et al., 2019): it is a strong word-
replacement based method for text augmentation
that replaces words in the original examples while
conditioning on the labels.

BART-Span (Kumar et al., 2020):* it finetunes
the large model BART (Lewis et al., 2020) based on
the label names and the texts of 40% consecutive
masked words to generate new examples.

5 Results and Discussion

5.1 Classification Tasks

Table 2 demonstrates the results of STA in com-
parison to baselines under low-data conditions for

%For a direct comparison between STA and existing non-
augmentation few-shot baselines on downstream classification
tasks, this refers to Appendix E.

3Licensing: Modified MIT License

#Licensing: Attribution-NonCommercial 4.0 International



Augmentation Method \ 5 10 20 50 100

Baseline (No Aug.) | 56.5 (3.8) 63.1 (41) 687 (5.1) 819 (29) 858 (0.8)
EDA (Wei and Zou, 2019) 59.7 (4.1) 66.6 (4.7) 73.7 (5.6) 832 (1.5) 86.0 (1.4)
BT (Edunov et al., 2018) 59.6 (42) 679 (5.3) 73.7(5.8) 829 (1.9) 86.0 (1.2)
BT-Hops (Shleifer, 2019) 59.1 4.6) 67.1 (5.2) 734 (5.2 824 2.0 858 (1.1
CBERT (Wu et al., 2019) 59.8 3.7) 663 (6.8) 729 (49) 825 2.5 856 (1.2
GPT-2 (Kumar et al., 2020) 539 (2.8) 625 (3.8) 694 4.6) 82417 85017
GPT-2-)\ (Anaby-Tavor et al., 2020) | 554 (4.8) 659 (4.3) 762 (5.6) 845 (14) 86.4 (0.6)
BART-Span (Kumar et al., 2020) 60.0 3.7) 69.0 (47) 784 (5.00 83.8 (2.00 858 (1.0)
STA w/o Self-Checking 66.7 (5.00 77.1 47) 81.8 (2.1) 848 (1.0) 85.7 (1.0)
STA w/o Auxiliary Prompts 69.8 (49) 79.1 34) 81.7 (45 86.0 (0.8) 87.5 (0.6)
STA (ours) 72.8 (6.2) 814 (2.6) 84.2(1.8) 86.0 (0.8) 87.2 (0.6)

Table 2: STA on SST-2 in 5, 10, 20, 50, 100 examples per class. The results are reported as average (std.) accuracy
(in %) based on 10 random experimental runs. Numbers in bold indicate the highest in columns.

Average difference in performance between models

the SST-2 classification task. The results of the re-

maining three classification tasks can be interpreted 1
similarly; thus, they are presented in Appendix F,
namely Table 7 for EMOTION, Table 8 for TREC, B

and Table 9 for HumAID, respectively. In all cases,
our approach provides state-of-the-art performance
for text augmentation across all low-resource set-
tings. When a higher number of samples (50-100)°
are used for training we see that STA is better, as in 2
the cases of SST-2, EMOTION and HumAID tasks,
or competitive, as in the case of TREC. Further-
more, we can see that STA is superior to other aug-
mentation techniques when only a small number of
examples are used to train the generator (5-10-20).

6 Comparisen

wifo Self-Check — wio Aux
wifo Aux —= STA

wifo Self-Check —+ STA

Delta

5 10 20 50 100
Examples Per Class

Figure 2: Graph showing the average difference be-
tween STA w/o Self-Checking to STA w/o Auxiliary

In fact, STA on average demonstrates a difference
of +9.4A and +4.7A when trained on only 5 and
10 samples per class respectively, demonstrating
its ability to generate salient and effective training
examples from limited amounts of data.

5.2 Ablation Studies: Self-Checking and
Auxiliary Prompts

To demonstrate the importance of our self-checking
procedure, we performed our empirical investi-
gations on STA both with and without the self-
checking step, denoted as STA w/o Self-Checking
in Table 2, 7, 8 and 9. Furthermore, we investigate
STA within a minimal template setting where we
only include the templates c and g in Table 1, omit-
ting our proposed auxiliary templates, denoted as
STA w/o Auxiliary Prompts, to empirically sepa-
rate the contribution of these components. Compar-
ing our model with no self-checking (STA w/o Self-
Checking) against other state-of-the-art approaches,

SWe note that around 100 examples per class, all tech-
niques tend to approximate no augmentation baselines, indi-

cating that most likely constitute something more equivalent
to full data training rather than a low-resource setting

Prompts, STA w/o Auxiliary Prompts to STA and
STA w/o Self-Checking to STA, as the number of ex-
amples per class varies.

we see that the model provides the best perfor-
mance particularly when the data is more sparse
(5-10-20), with the exclusion of TREC. However,
when we add self-checking with only basic gener-
ation and classification templates (STA w/o Aux-
iliary Prompts), we see a significant improvement,
indicating that self-checking more important to the
downstream performance. We also compare the
average difference between these models across
all datasets with altering components in Figure 2.
Looking at Figure 2 we see that the inclusion of
self-checking provides the greatest increase in per-
formance, while the contribution of our auxiliary
prompts, including our novel generation template,
decreases with larger examples per class. How-
ever, we note that the inclusion of both templates
and self-checking provides the best performance,
particularly in lower data regimes.
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Figure 3: Diversity versus semantic fidelity of generated texts by various augmentation methods. The average scores

over 10 runs are reported.

SST-2  EMOTION TREC HumAID

Test 91.8 93.5 96.6 89.7

Table 3: Accuracy (in %) on test set predicted by BERT
that is trained on the whole training data for measuring
semantic fidelity.

5.3 Lexical Diversity and Semantic Fidelity

To further analyse the quality of the generated data,
we measure its lexical diversity and semantic fi-
delity (i.e., its ability to align with the correct la-
bel). Diversity is assessed using the UNIQUE TRI-
GRAMS metric (Feng et al., 2020; Kumar et al.,
2020), which calculates the ratio of unique tri-
grams to total tri-grams in a population consisting
of both original and generated training data. To co-
incide with the previous work (Kumar et al., 2020),
semantic fidelity is determined by fine-tuning a
“BERT-base-uncased” model on the 100% origi-
nal training data for each classification task and
measuring the accuracy of the generated data pre-
dictions by this model. Results are presented in
Table 3. A higher score indicates better diversity or
fidelity.

To present the quality of generated data in di-
versity and fidelity, we take the training data (10
examples per class) along with its augmented data
(8 = 1) for investigation. Figure 3 depicts the di-
versity versus semantic fidelity of generated data
by various augmentation methods across three
datasets. We find that generation-based approaches
such as GPT-2 or GPT-2- ), achieve strong diversity
but less competitive fidelity. On the contrary, rule-
based heuristics methods such as EDA perform
well in retaining the semantic meaning but not in
lexical diversity. The merit of STA is that it is good
in both diversity and fidelity, as seen from its po-
sition at the top-right of Figure 3a, 3b, 3c and 3d.
Finally, if we compare our STA approach with and

without self-checking, we see that each approach
produces highly diverse examples, although only
self-checking STA retains a high level of semantic
fidelity. Comparing with GPT-2 and GPT-2-A —
the other sample filtering approach — we see that
the inclusion of a separate classifier results in an av-
erage increase of 18.3% in fidelity. However, if we
compare our STA approach with and without self-
checking, we see an average increase of 32.38%
in fidelity, further demonstrating the validity of
our join generation and classification approach as
opposed to an independent classification module.
As previously suggested, this ability to align the
semantic content of generated examples with the
correct label is the most probable reason for the
increase in downstream classification performance
when self-checking is employed. This supports the
notion that our generation-based approach is able to
produce novel data that is lexically diverse, whilst
the self-checking procedure can ensure consistent
label retention, which guarantees a high semantic
fidelity in the generated examples®.

6 Conclusion

We propose a novel strategy for text-based data
augmentation that leverages prompt templates to
generate training examples and ensure better label
alignment. Our approach substantially outperforms
the previous state-of-the-art on a variety of down-
stream classification tasks and across a range of
low-resource scenarios. Furthermore, we provide
an analysis of the lexical diversity and label con-
sistency of generated examples, demonstrating that
our approach produces uniquely varied training ex-
amples with more consistent label alignment than
previous work. In the future, we hope to improve
this approach in rich-data regime and extend it to
other downstream natural language tasks.

®See also Appendix G for the demonstration of augmented
examples.
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A Limitations

Our work explores the possibility of data augmen-
tation for boosting text classification performance
when the downstream model is finetuned using pre-
trained language models. The results show that
STA consistently performs well across different
bench-marking tasks using the same experimen-
tal setup, which addresses the limitation stated in
the previous work (Kumar et al., 2020) calling for
a unified data augmentation technique. However,
similar to Kumar et al. (2020), although STA can
achieve improved performance as the data size goes
up to 100 examples per class in some cases (such
as 100 examples per class in EMOTION, Table 7
and HumAID, Table 9), the absolute gain in per-
formance plateaus when the training data becomes
richer (such as 100 examples per class in SST-2
and TREC). This suggests that it is challenging
for STA to improve pre-trained classifier’s model
performance in more abundant data regimes.

Another important consideration is the choice
of templates used in STA. Ablation experiments in
Section 5.2 show that our chosen set of templates
yields better performance than a ‘minimal subset’
consisting of the two simplest templates; the ques-
tion as to how to choose optimal templates for this
augmentation scheme remains unanswered. Hence,
in future work, we will explore better methods for
constructing the prompt templates, aiming to re-
duce the dependency on the manual work at this
step.
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B Template Example

Table 4 presents how an original training example
is converted to multiple examples in STA using the
prompt templates from Table 1.

C Datasets

Table 5 lists the basic information of the four
datasets used in our experiments and they are
shortly described as follows.

* SST-2 (Socher et al., 2013) is a binary sen-
timent classification dataset that consists of
movie reviews annotated with positive and
negative labels.

EMOTION (Saravia et al., 2018) is a dataset
for emotion classification comprising short
comments from social media annotated with
six emotion types, such as, sadness, joy, etc.

TREC (Li and Roth, 2002) is a dataset for
question topic classification comprising ques-
tions across six categories including human,
location, etc.

HumAID (Alam et al., 2021) is a dataset
for crisis messages categorisation comprising
tweets collected during 19 real-world disaster
events, annotated by humanitarian categories
including rescue volunteering or donation ef-
fort, sympathy and support, etc.

D Training Details

When finetuning the generation model, we select
the pre-trained TS base checkpoint as the starting
weights. For the downstream classification task,
we finetune “bert-base-uncased”’ on the original
training data either with or without the augmented
samples. Regarding the pre-trained models, we
use the publicly-released version from the Hug-
gingFace’s transformers library (Wolf et al., 2019).
For the augmentation factor (i.e., 3 in Section 3.2),
the augmentation techniques including ours and
the baselines are applied to augment 1 to 5 times
of original training data. In the experiments, it is
regarded as a hyper-parameter to be determined.
Since our work focuses on text augmentation for
classification in low-data settings, we sampled 5,
10, 20, 50 and 100 examples per class for each
training dataset as per Anaby-Tavor et al. (2020).

7h'ctps ://huggingface.co/bert-base-uncased
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To alleviate randomness, we run all experiments 10
times so the average accuracy along with its stan-
dard deviation (std.) is reported on the full test set
in the evaluation.

To select the downstream checkpoint and the
augmentation factor, we select the run with the
best performance on the development set for all
methods. The hyper-parameters for finetuning
the generation model and the downstream model
are also setup based on the development set. Al-
though using the full development set does not nec-
essarily represent a real-life situation in low-data
regime (Schick and Schiitze, 2021a; Gao et al.,
2021), we argue that it is valid in a research-
oriented study. We choose to use the full develop-
ment set since we aim to maximize the robustness
of various methods’ best performance given small
training data available. As all augmentation meth-
ods are treated the same way, we argue this is valid
to showcase the performance difference between
our method and the baselines.

For all experiments presented in this work, we
exclusively use Pytorch® for general code and
Huggingface® for transformer implementations re-
spectively, unless otherwise stated. In finetuning
TS, we set the learning rate to 5 x 107> using
Adam (Kingma and Ba, 2014) with linear sched-
uler (10% warmup steps), the training epochs to
be 32 and batch size to be 16. At generation time,
we use top-k (k = 40) and top-p (p = 1.0) sam-
pling technique (Holtzman et al., 2019) for next
token generation. In finetuning downstream BERT,
the hyper-parameters are similar to those of T5
finetuning, although the training epoch is set to be
20. We set the training epochs to be as large as
possible with the aim of finding the best model
when trained on a small dataset, where the quality
is based on performance on the development set.
In our experiments, for a single run on all datasets,
it takes around one day with a single Tesla P100
GPU (16GB) and thus estimated 10 days for 10
runs. To aid reproducibility, we will release our
experimental code to the public at '°.

E Comparing to Few-shot Baselines

Since our work explores a text augmentation ap-
proach for improving text classification in low-
data regime, it is also related to few-shot learning

8https://pytorch.org/
*https://huggingface.co/
10ht'cps ://github.com/wangcongcong123/STA
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An example from SST-2 a sentiment classification dataset where the classes (£): negative, positive

Text (x) top-notch action powers this romantic drama.
Label (y) positive

Converted examples by classification templates (C: ¢, cpos and cneq): source(s), target(t)

Given sentiment: negative, positive. Classify: top-notch | positive

action powers this romantic drama.

Text: top-notch action powers this romantic drama. Is this | yes

text about positive sentiment?

Text: top-notch action powers this romantic drama. Is this | no

text about negative sentiment?

Converted examples by generation templates (G: g and g'):

source(s), target(t)

Description: positive sentiment. Text:

top-notch action powers this romantic drama.

Description: positive sentiment. Text: top-notch action
powers this romantic drama. Another text: spielberg ’s
realization of

a near-future america is masterful .

Description: positive sentiment. Text: top-notch action
powers this romantic drama. Another text: a movie in

which laughter and self-exploitation merge into jolly soft-
porn ’em powerment . ’

Description: positive sentiment. Text: top-notch action
powers this romantic drama . Another text: a tightly di-
rected

highly professional film that ’s old-fashioned in all the best
possible ways .

Table 4: The demonstration of an example conversion by the prompt templates in Table 1 where the example’s text
is highlighted in blue and label is highlighted in red for readability.

Dataset | #Train #Dev  #Test | # Classes (N) SST-2 EMOTION TREC

SST-2 6,228 692 1,821 2 DART 66.5(5.8) 267(3.0) 740 (2.7)
EMOTION | 160,000 2,000 2,000 6 LM-BFF  71.1(9.5) 302(3.8) 77.1(3.0)
TREC 4906 546 500 6 PET 56.7(0.8) 284(1.0)  69.1(1.1)
HumAID 40623 5913 11,508 8 STA (ours) 81.4(2.6) 57.8(3.7) 709 (6.6)

Table 5: Datasets statistics

methods that use few examples for text classifica-
tion. We further conduct an experiment to com-
pare STA to three state-of-the-art few-shot learn-
ing approaches: PET (Schick and Schiitze, 2021a),
LM-BFF (Gao et al., 2021), and DART (Zhang
et al., 2022). For fair comparison, we set the ex-
periment under the 10 examples per class scenario
with 10 random seeds ensuring the 10 examples per
class are sampled the same across the methods. Be-
sides, we use bert-base-uncased!! as the start-
ing weights of the downstream classifier. The re-
sults are shown in Table 6. We found that although
STA loses the best score to DART and LM-BFF
on the TREC dataset, it substantially outperforms
the few-shot baselines on SST-2 and EMOTION.
This tells us that STA is a competitive approach for
few-shot learning text classification.

F More Results of Classification Tasks

Table 7, Table 8 and Table 9 present the results of
STA comparing to baselines in low-data settings

11https ://huggingface.co/bert-base-uncased

Table 6: The comparison between STA and few-shot
baselines using 10 examples per class on SST-2 and
EMOTION and TREC. The results are reported as
average (std.) accuracy (in %) based on 10 random
experimental runs. Numbers in bold indicate the highest
in columns.

for the EMOTION, TREC and HumAID classifi-
cation tasks respectively.

G Demonstration

Table 10 and Table 11 demonstrate some original
examples and augmented examples by different
methods. In comparison, the examples generated
by STA tend to be not only diverse but also highly
label relevant (semantic fidelity).
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Augmentation Method \ 5 10 20 50 100

Baseline (No Aug.) [267 (85) 285 (63) 324 (39) 3590 2.6) 747 (1.0)
EDA 30.1 (6.2) 33.1 (4.3) 475 (5.0) 667 (27) 774 (1.8)
BT 320 (3.0) 374 (3.0) 485 (5.1) 655 (2.0) 756 (1.6)
BT-Hops 313 (2.6) 37.1 (4.6) 49.1 (3.5) 650 (2.3) 750 (1.5)
CBERT 292 (65) 326 3.9) 441 (5.2) 62.1 (2.0) 755 (2.2)
GPT-2 284 (8.5) 313 (3.5) 390 (4.1) 57.1 (3.1) 699 (1.3)
GPT-2-\ 286 (5.1) 30.8 (3.1) 433 (7.5 71.6 (1.5 80.7 (0.4)
BART-Span 299 (4.5) 354 (5.7) 464 (3.9) 709 (1.5) 77.8 (1.0)
STA w/o Self-Checking 340 (4.0) 414 (5.5) 533 (22) 651 (23) 740 (1.1)
STA w/o Auxiliary Prompts | 41.8 (6.1) 562 (3.0) 649 (3.3) 75.1 (1.5) 81.3 (0.7)
STA (ours) 438 (69 578 3.7) 641 (2.1) 753 (1.8) 815 (L1)

Table 7: STA on EMOTION in 5,10, 20, 50, 100 examples per class. The results are reported as average (std.)
accuracy (in %) based on 10 random experimental runs. Numbers in bold indicate the highest in columns.

Augmentation Method | 5 10 20 50 100

Baseline (No Aug.) | 33.9 (104) 558 (62) 713 (63) 879 3.1) 932 (0.7)
EDA 54.1 (7.7) 70.6 (5.7) 795 (34) 893 (1.9 923 (1.1)
BT 56.0 (8.7) 67.0 (4.1) 794 (4.8) 89.0 (24) 927 (0.8)
BT-Hops 53.8 (8.2) 67.7 (5.1) 78.7 (5.6) 88.0 (23) 91.8 (0.9)
CBERT 522 (9.8) 67.0 (7.1)  78.0 (5.3) 89.1 (2.5) 926 (1.1)
GPT-2 47.6 (7.9) 67.7 (49) 769 (5.6) 87.8 (24) 91.6 (1.1)
GPT-2-)\ 49.6 (11.0) 702 (5.8) 809 (4.4) 89.6 (2.2) 93.5 (0.8
BART-Span 55.0 (9.9) 659 (6.7) 77.1 (5.5) 8838 (34) 92.7 (1.6)
STA w/o Self-Checking 454 (3.2) 619 (10.2) 772 (5.5 883 (1.2) 91.7 (0.8)
STA w/o Auxiliary Prompts | 49.6 (9.0) 69.1 (8.0) 81.0 (59) 894 (3.00 93.1 (0.9
STA (ours) 59.6 (74) 709 (6.6) 811 (3.9 89.1 (2.7) 932 (0.8)

Table 8: STA on TREC in 5, 10, 20, 50, 100 examples per class. The results are reported as average (std.) accuracy
(in %) based on 10 random experimental runs. Numbers in bold indicate the highest in columns.

Augmentation Method | 5 10 20 50 100
Baseline (No Aug,) 29166) 37164 60740 800(09) 83.4(L0)
EDA 49.5 (4.5) 64.4 (3.6) 74.7(1.5) 80.7 (1.0)  83.5(0.6)
BT 458(5.7) 59.1(52) 73.5(2.1) 804(12) 83.1(0.7)
BT-Hops 43.4 (6.4) 57.5(5.2) 72.4(2.8) 80.1(1.1) 82.8(1.4)
CBERT 44.8 (7.6) 59.54.8) 73.4(1.7) 80.3(0.8) 82.7(1.2)
GPT-2 46.0 (4.7) 55.7(5.7) 67.3(2.6) 77.8 (1.6) 81.1(0.6)
GPT-2-) 507 (8.6) 68.1(62) 785(13) 821(11) 842(08)
BART-Span 424 (7.3) 58.6(7.0) 70.04 (3.7) 79.3(1.4) 83.33(0.9)
STA w/o Self-Checking 56.4 (7.0) 70.2 (4.3) 76.3(3.3) 79.4(4.5) 81.8(1.3)
STA w/o Auxiliary Prompts | 68.7 (10.9) 77.6 (3.6) 80.1 (1.7) 82.9(1.6) 84.3(0.7)
STA (ours) 69.0 (3.9) 75.8(3.3) 80.2 (1.6) 83.2(0.5) 84.5(1.1)

Table 9: STA on HumAID in 5,10, 20, 50, 100 examples per class. The results are reported as average (std.)
accuracy (in %) based on 10 random experimental runs. Numbers in bold indicate the highest in columns.
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Original training examples and augmented examples for “Sadness" of EMOTION

Original

i sit here feeling blank about this

i feel ashamed that i so readily turn it aside

i feel positively ashamed when i look out of the window and see the state of things
1 had just lost my uncle i would be sad but i feel as if i am devastated

i was feeling kind of discouraged because nothing happened

EDA

i sit here opinion blank about this

i feel that ashamed i so readily turn it aside

1 feel positively ashamed when i look out of the window and construe the state of things
i had just lost my uncle i would be pitiful but i feel as if i am devastated

1 happened feeling kind of discouraged because nothing was

GPT-2-)\

ive seen so many girls walk around feeling ashamed of their bodi

ive got to admit that i feel a little weird for a moment seeing her standing in front of my face when i walk into
the shop

ive always wondered what im doing right now im feeling

ive read many blogs about her and how much she hates those who don’t admit to being kind or caring about
others but instead blame them for not doing something about it

ive never felt sympathetic towards people because of the way they look and act because of their skin to

STA-noself

i feel like the whole world is watching and feeling it’s failing me

i want people to know i am not alone

i feel ashamed when i look out of the window and see the state of things

i walked away feeling disappointed because i don t know the answer

i drank some cold drink or find some ice dessert such as chendol or ice kacang

STA

i feel sad seeing people who have to work harder to cope

i walked away feeling disappointed because i don t know the answer

i was feeling sad seeing the state of things that i never did i really want to see if it lasted

i feel sad seeing the state of things but the truth is im not sure how to express it gracefully
i feel like the whole world is watching and feeling it’s failing me

Table 10: The demonstration of original training examples and augmented examples for “sadness” of EMOTION.
It is noted that the 5 augmented examples in each block are randomly selected instead of cherry-picked. This
reveals some difference between the original training examples and the augmented examples by our STA and other
methods (Here we use a rule-based heuristics method EDA, a generation-based method GPT-2-\ and STA-noself
for comparison).
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Original training examples and augmented examples for “missing or found people" of HumAID

UPDATE: Body found of man who disappeared amid Maryland flooding
Open Missing People Search Database from Mati and Rafina areas #Greecefires #PrayForGreece #PrayForA-

Original thens

@ThinBlueLine614 @GaetaSusan @DineshDSouza case in point, #California Liberalism has created the hell
which has left 1000s missing 70 dead.,...
Heres the latest in the California wildfires #CampFire 1011 people are missing Death toll rises to 71 Trump
blames fires on poor ...
#Idai victims buried in mass grave in Sussundenga, at least 60 missing - #Mozambique #Cycloneldai
#Cicloneldai
update flooding found of man who disappeared amid maryland boy
open missing people search database from mati escape and rafina areas greecefires prayforgreece prayforathens

EDA created gaetasusan dineshdsouza hell in point california missing has thinblueline the case which has left s

liberalism dead an countless people...

heres blames latest in the california wildfires campfire people are missing death toll rises to trump more fires
on poor...

idai victims buried in mass grave in sussundenga at mozambique missing least cycloneidai cicloneidai

GPT-2-lambda

@KezorNews - Search remains in #Morocco after @deweathersamp; there has been no confirmed death in
#Kerala

#Cambodia - Search & Rescue is assisting Search & Rescue officials in locating the missing 27 year old
woman who disappeared in ...

@JHodgeEagle Rescue Injured After Missing Two Children In Fresno County

#Florence #Florence Missing On-Rescue Teams Searching For Search and Rescue Members #Florence
#Florence #DisasterInformer #E

RT @LATTAODAYOUT: RT @HannahDorian: Search Continues After Disappearance of Missing People in
Florida

STA-noself

Search Database from Matias, Malaysia, missing after #Maria, #Kerala, #Bangladesh #KeralaKerala, #Ker-
alaFloods, ...

RT @hubarak: Yes, I can guarantee you that our country is safe from flooding during the upcoming weekend!
Previous story Time Out! 2 Comments

The missing persons who disappeared amid Maryland flooding are still at large. More on this in the next
article.

the number of missing after #Cycloneldai has reached more than 1,000, reports CNN.

RT @adriane @przkniewskiZeitecki 1 person missing, police confirm #Cycloneldai. #Cicloneldai

STA

The missing persons who disappeared amid Maryland flooding are still at large. More on this in the next
article.

Search Triangle County for missing and missing after #Maria floods #DisasterFire

Just arrived at San Diego International Airport after #Atlantic Storm. More than 200 people were missing,
including 13 helicopters ...

Search Database contains information on missing and found people #HurricaneMaria, hashtag #Firefighter
Were told all too often that Californians are missing in Mexico City, where a massive flood was devastating.

Table 11: The demonstration of original training examples and augmented examples for “missing or found people”
of HumAID. It is noted that the 5 augmented examples in each block are randomly selected instead of cherry-picked.
This reveals some difference between the original training examples and the augmented examples by our STA
and other methods (Here we use a rule-based heuristics method EDA, a generation-based method GPT-2-\ and
STA-noself for comparison).
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