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ABSTRACT

Multi-agent reinforcement learning involves interacting agents whose learning
processes are coupled through a shared environment. This work introduces a new
discrete-time approximation model for multi-agent Boltzmann Q-learning that ac-
counts for agents’ update frequencies. We demonstrate why previous models do
not accurately represent the actual stochastic learning dynamics while our model
can reproduce several complex emergent dynamic regimes, including transient co-
operation and metastable states in social dilemmas like the Prisoner’s Dilemma.
We show that increasing the discount factor can prevent convergence by inducing
oscillations through a supercritical Neimark–Sacker bifurcation, which transforms
the unique stable fixed point into a stable limit cycle. This analysis provides a
deeper understanding of the complexities of multi-agent learning dynamics and
the conditions under which convergence and cooperation may not be achieved.

1 INTRODUCTION

A typical approach to multi-agent reinforcement learning (MARL) (Albrecht et al., 2024) is to ex-
tend single-agent algorithms such as Q-learning to multi-agent settings by treating each agent’s
learning as an isolated process, called “independent learning” (Tan, 1997) because the processes are
only indirectly linked to other agents’ learning processes via the shared environment. Although this
implies a loss of stationarity on which single-agent convergence guarantees rely (Hernandez-Leal
et al., 2017), independent learning is popular for its adaptability and scalability (Matignon et al.,
2012) and serves as a competitive baseline in MARL (Papoudakis et al., 2020).

Still, agents’ stochastic learning interactions can lead to complex emergent dynamics that can be
analysed by dynamical systems theory (Sato et al., 2002; Barfuss & Mann, 2022) if the stochastic
algorithms are approximated by deterministic dynamical equations. Often, a continuous-time limit is
taken that links the model to evolutionary game theory (Börgers & Sarin, 1997; Sato & Crutchfield,
2003; Galla, 2009). For Q-learning, this was attempted in Tuyls et al. (2003) and later extended to
general temporal-difference learning with batches in Barfuss et al. (2019). However, these works
do not approximate standard Q-learning but variants with markedly different dynamics. This fact
was noted by some (Leslie & Collins, 2005; Kaisers & Tuyls, 2010; Bloembergen et al., 2015;
Hernandez-Leal et al., 2017; Barfuss, 2022) but not all works in the field (Kianercy & Galstyan,
2012; Galstyan, 2013; Leonardos & Piliouras, 2022; Mintz & Fu, 2024).

In this work, we clarify the relationships between those approximation models and the actual Q-
learning algorithm, explaining the observed discrepancies, and propose a more accurate approxi-
mation model. We then use it to explain why (i) rather than converging, independent Q-learning
might exhibit stable oscillations due to a moving-target problem, and why (ii) agents often appear to
“learn” to spontaneously cooperate over extended periods in social dilemmas where such behaviour
is not a Nash equilibrium but merely a metastable phase of the dynamics. We restrict our analysis
to a paradigmatic example, the Prisoner’s Dilemma, highlighting how even in simple environments,
much caution is needed when interpreting learning results.
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2 BACKGROUND, PROBLEM AND PITFALLS

2.1 INDEPENDENT Q-LEARNING IN A SINGLE-STATE ENVIRONMENT

We study a minimal multi-agent system, serving as a paradigmatic example: two agents interacting
in a single-state environment, playing the Prisoner’s Dilemma, characterised by a single pure Nash
equilibrium where both agents defect. In each of finitely many steps, the agents can either choose to
cooperate (C) or to defect (D). The per-step reward tensor is given by

R =

(
R1

CC , R
2
CC R1

CD, R2
CD

R1
DC , R

2
DC R1

DD, R2
DD

)
=

(
3, 3 0, 5
5, 0 1, 1

)
. (1)

At each time step t, agent i chooses an action Ai(t) = ai ∈ Ai, where Ai = {C,D} and receives
a reward Ri

A(t) based on the joint action A(t) = (Ai(t), A−i(t)), where the superscript −i denotes
the opponent.

Agents update their Q estimates independently using (Watkins & Dayan (1992), Appendix A)

Qi
ai(t+ 1) = Qi

ai(t) + αiδAi(t)ai

(
Ri

A(t) + γi maxbi∈Ai Qi
bi(t)−Qi

ai(t)
)
, (2)

where αi ∈ [0, 1) is i’s learning rate, γi ∈ [0, 1) the discount factor, and Ai(t) ∼ πi(t) the random
action process governed by a Boltzmann softmax policy πi

ai(t) with temperature T i > 0,

πi
ai(t) := f(Qi(t), ai) = exp(Qi

ai(t)/T i)/
∑

bi∈Ai exp(Qi
bi(t)/T

i). (3)

The dynamics of the learning process are fully described by the 4D state vector in Q space,
Q(t) := (Q1

C(t), Q
1
D(t), Q2

C(t), Q
2
D(t)). The joint policy π(t) is a function of Q(t) that has

only two free dimensions due to normalisation, here represented by the cooperation probabilities
πC(t) = (π1

C(t), π
2
C(t)).

We will see that a pitfall for forming an approximate model is that at each time, only the Q values
of the actions actually taken are updated, represented by the Kronecker delta δAi(t)ai in equation 2.

2.2 PREVIOUS DETERMINISTIC MODELS

The stochastic nature of MARL makes its dynamics obscure and difficult to interpret (Hernandez-
Leal et al., 2017; 2019). The goal of approximation models of MARL processes is to transform
them into deterministic dynamical equations that are easier to analyse and reduce the dynamics to
its core.

Frequency-Adjusted Q-learning (FAQL) Model After Börgers & Sarin (1997) had established
a connection between Cross Learning (Cross, 1973) and evolutionary game theory, Tuyls et al.
(2003)—and similarly Sato & Crutchfield (2003)—attempted to apply their approach to independent
Q-learning in single-state environments. The idea is to assume vanishing time steps ∆t → 0 and
a learning rate α′ = α∆t. Tuyls et al. (2003) proposed that the Boltzmann policy in independent
Q-learning can thus be approximated in the continuous-time limit by the replicator equation

d

dt
πi
ai(t) = αiπi

ai(t)

(
1

T i
EA−i(t)

(
Ri

aiA−i(t) −
∑

bi∈Ai

Ri
biA−i(t)

)
+
∑

bi∈Ai

πi
bi(t) ln

πi
bi(t)

πi
ai(t)

)
.

(4)
But in their derivation, they implicitly assumed that all Q-values are updated at each time step,
effectively treating the update rule equation 2 as if the Kronecker delta δAi(t),ai was absent. This
mistaken assumption has two significant effects: (i) it reduces the dynamics to the two- (instead of
four-) dimensional policy space and (ii) makes it independent of the discount factor. They lead to
crucial discrepancies between model and actual dynamics (Kaisers & Tuyls, 2010).

Interestingly, their approximation model (which we thus call the FAQL model here) does align with
a modified variant of Q-learning, called frequency-adjusted Q-learning (FAQL) (Leslie & Collins,
2005; Kaisers & Tuyls, 2010), which turned out to often be more stable than plain Q-learning. It
smooths the learning process by scaling the learning rate αi with the inverse of the update frequency
πi
ai , capped at some value βi.
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Figure 1: Comparison between a single run of independent Q-learning on the Prisoner’s Dilemma
(top panels: A, B) and our deterministic approximation model (bottom panels: C, D), defined by
equation 6, for T = 1, α = 0.01, γ = 0.8, Qbase = 0. (Timings and trajectories vary across different
runs as learning is a stochastic process). We show the evolution of the Q-values (Q1

C , Q
1
D, Q2

C , Q
2
D)

and the resulting probabilities of cooperation (π1
C , π

2
C). Dotted policy lines in C and D correspond

to previous approximation models FAQL equation 4 and BQL equation 11, obviously fitting the
actual dynamics badly. The left panels (A, C) depict an initial joint policy (π1

C , π
2
C) = (0.5, 0.48),

corresponding to Q-values (0, 0,−0.04, 0.04) via equation 5. The right panels (B, C) show an initial
joint policy (π1

C , π
2
C) = (0.9, 0.7), corresponding to Q-values (1.1,−1.1, 0.4,−0.4) via equation 5.

Batch Q-Learning (BQL) Model Barfuss et al. (2019) extended previous deterministic models
of MARL to encompass multi-state environments with discounting. Their BQL model approximates
a batch version of temporal difference learning, where the timescales of interaction and adaptation
are separated. Appendix B translates the definitions from Barfuss et al. (2019) to our single-state
setup, in which the FAQL model corresponds to the continuous-time limit of the discrete-time BQL
model; hence, we also collectively refer to them as the ‘FAQL/BQL model’.

Both previous approximation models, FAQL and BQL, exhibit the following key characteristics:

1. A fixed point of the dynamics is a boundedly rational strategic equilibrium.

2. They operate within the lower-dim. policy space rather than the higher-dim. Q value space.

3. For single-state environments, they are independent of the discount factor γi.

How well do these models still capture the core dynamics of actual independent Q-learning?

3
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2.3 COMPARISON BETWEEN THE FAQL/BQL MODEL AND INDEPENDENT Q-LEARNING

Actual Q-learning occurs in Q space while the FAQL/BQL models operate in policy space, so we
need to translate between them. Since πi

C = 1/(1 + exp(∆Qi/T i)) with ∆Qi := Qi
D −Qi

C , each
joint policy corresponds to a 2D affine subspace of Q space. As we want to study the influence of
initial conditions in policy space, π(0), on the dynamics, we need to translate those to corresponding
initial conditions in Q space, Q(0), which we choose to be

Qi
C(0) := Qi

base −∆Qi(πi
C(0))/2, Qi

D(0) := Qi
base +∆Qi(πi

C(0))/2, (5)

where Qi
base is a parameter that governs the overall initial level of Qi-values. For simplicity, we

consider αi, γi, T i, Qi
base to be homogeneous, and omit their indices thereafter.

Figure 1.A and 1.B depict the time evolution of single runs of independent Q-learning for Qbase = 0,
γ = 0.8 and two different initial joint policies. In both cases, after the first few hundred time steps,
the policy trajectories settle into metastable phases where they remain for an extended period. The
dynamics then undergo a drastic shift, transitioning into a sustained oscillatory pattern that persists
indefinitely. For the initial joint policy (π1

C(0), π
2
C(0)) = (0.5, 0.48), this occurs after approxi-

mately 70 thousand steps with α = 0.01. For (π1
C(0), π

2
C(0)) = (0.9, 0.7), the shift is even more

pronounced. Initially, the policies seem to converge on mutual cooperation, which appears to con-
tradict individually rational behaviour. However, after about two million steps, the trajectories also
fall into the indefinite oscillations. In stark contrast, the FAQL/BQL models predict fundamentally
simpler behaviour, predicting convergence to a joint policy within just a few hundred steps.

A comparison of the dynamics in policy space highlights the differences. Figure 2.I shows
averaged policy trajectories of Q-learning over five runs for two different initialisation ap-
proaches and two different values of γ. Figure 2.II displays the dynamics of the simplified
deterministic models. Apparently, the actual trajectories deviate from the model predictions.
For Qbase = min(R)/(1 − γ) = 0, the trajectories follow the edges of the policy space. For
Qbase = max(R)/(1 − γ), the trajectories initially cluster near the center of the policy space.
For γ = 0, although the trajectories differ from the FAQL/BQL model, they eventually equilibrate
around the same fixed point, regardless of initialisation. However, for γ = 0.8 the trajectories
fall into indefinite oscillations, which are not centred around the fixed point. In figure 2.B, some
trajectories appear to converge to mutual cooperation in the depicted time span of 1 × 105 steps.
However, as mentioned previously, these states are only metastable. Given sufficient time, the
trajectories eventually transition to the oscillatory pattern. Notably, these metastable phases do not
occur for trajectories initialised at Qbase = 25.

In summary, the stylised discrepancies are:

1. Whereas the FAQL/BQL model dynamics converge to a single Logit Quantal Response
equilibrium in the Prisoner’s Dilemma after a couple of hundred steps, actual independent
Q-learning does not necessarily converge to any strategic equilibrium and may instead settle
into oscillations that might emerge only after millions of steps.

2. Whereas the FAQL/BQL model reside in the lower-dim. policy space, actual independent
Q-learning dynamics cannot be reduced from the higher-dim. Q space: the initialisation
(Qbase) matters.

3. Whereas the FAQL/BQL model is independent of the discount factor in single-state envi-
ronments, actual independent Q-learning dynamics are clearly influenced by changes in γ
and exhibit fundamentally different behaviour.

3 A CHOICE-PROBABILITY-AWARE MODEL OF INDEPENDENT Q-LEARNING

The discrepancies between the FAQL/BQL models and independent Q-learning arise from the im-
plicit assumption that all Q-values are updated at each step. Recently Hu et al. (2022) proposed an
adjusted “continuity equation model” of independent Q-learning in large-scale multi-agent systems
modelled as population games. However, their model is limited to the case γ = 0. Thus, we cannot
apply it to explain all of the stylised discrepancies from above.

4
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Figure 2: Comparison between averaged policy trajectories of independent Q-learning on the Pris-
oner’s Dilemma (I) and previous deterministic models (II) for T = 1 and α = 0.01. I: Top panels
(A, B): Qbase = min(R)/(1−γ). Bottom panels (C, D): Qbase = max(R)/(1−γ). Left panels (A,
C): γ = 0. Right panels (B, D): γ = 0.8. For each initialisation, five runs are executed. Trajectories
from the same initialisation are grouped based on their final location in policy space (below or above
the diagonal from (0,1) to (1,0)), and the mean of each group is plotted. Line thickness indicates the
proportion of runs in each group. The colour gradient (purple to yellow) indicates time evolution.
The red cross marks the fixed point of the FAQL/BQL model. Note that in panel B, some trajecto-
ries initialised in the top right appear to converge to the metastable phase of mutual cooperation in
the depicted time span of 1 × 105 steps. II: Vector fields of previous models. E: FAQL model in
continuous time, defined by equation 4. F: BQL model in discrete time, defined by equation 11. G:
Stability analysis of the BQL model (see appendix C). It has a unique symmetric fixed point π∗ > 0,
depending on the temperature T > 0. All absolute eigenvalues of the Jacobian at πi

C∗ are below 1,
indicating a stable node.
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A B

C D

Figure 3: Projection of the 4D deterministic dynamics, defined by equation 6, into 2D policy space
for the Prisoner’s Dilemma with T = 1, α = 0.01, and different values of γ and Qbase. The
colour gradient (purple to yellow) represents time evolution. The end point of each trajectory is
indicated by a red cross. Top panels (A, B): Qbase = min(R)/(1 − γ). Bottom panels (C, D):
Qbase = max(R)/(1 − γ). Left panels (A, C): γ = 0. Right panels (B, D): γ = 0.8. Note
that in panel B, the trajectory initialised at πi

C(0) = 0.9 eventually converges to the fixed point
πi
C∗ ≈ 0.227, but only after 4× 107 steps, far beyond the depicted 2× 106 steps.

Here, we propose a more accurate approximation model for independent Q-learning in a single-state,
repeated environment, with discounting but no memory, that correctly makes update frequencies
proportional to current policies and can explain all of the dynamics observed above.

Our model retains the discrete time steps of actual Q-learning and represents the expected change in
Q values from step to step:

EA(t)[Q
i
ai(t+ 1) | Qi(t)] = Qi

ai(t) + απi
ai(t)

(
EA−i(t)R

i
aiA−i(t) + γ max

bi∈Ai
Qi

bi(t)−Qi
ai(t)

)
.

(6)
It is not possible to reduce these dynamics to policy space since E∆Qi(t+ 1) depends on absolute
Q values rather than only on Q differences.

However a projection of the dynamics onto policy space can still reveal interesting dynamics (Fig-
ure 3). For reasonably small learning rates (α = 0.01), a comparison with the averaged trajecto-
ries of actual independent Q-learning (figure 2) demonstrates that our model captures the observed
complexities. For γ = 0, all trajectories converge to the fixed point of the FAQL/BQL model,

6
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 γcr1  γcr2  γcr3
 γcr1  γcr2  γcr

A B C

Figure 4: Stability analysis of equation 6 for the Prisoner’s Dilemma, with α = 0.01 and three
different temperature values: T = 0.3 (A), T = 1 (B), and T = 10 (C). The first row shows a
projection of the 4D fixed point Q∗, defined by equation 20, in 2D policy space, illustrating how the
equilibrium policy is not affected by the discount factor. The second row shows the absolute eigen-
values of the Jacobian at Q∗ as a function of γ, with the discrete-time stability threshold (|λ| = 1)
highlighted. It demonstrates that although the position of the fixed point in policy space remains
unaffected by γ, its stability properties in Q space change. The third row provides schematic rep-
resentations in a lower-dim. representation of the corresponding dynamical regimes for different
ranges of γ, illustrating transitions between stability, oscillatory dynamics, and divergence.

πi
C∗ ≈ 0.227. In contrast, for γ = 0.8, the behaviour depends on the initial policies: symmetric

initial policies converge to πi
C∗ while asymmetric initial policies lead to oscillatory dynamics. Note

that for Qbase = 0, γ = 0.8, the trajectory starting at the symmetric initial condition πi
C = 0.9

remains in the cooperation state for up to two million steps, seemingly contradicting the statement
just made. However, after an astonishing four billion steps, it finally converges to πi

C∗.

These phenomena are readily explained and proven through a stability analysis (Appendix D), offer-
ing an efficient approach while avoiding ambiguities of interpreting individual trajectories or specific
parameter cases. Note that a policy space projection π∗ = π(Q∗) of a fixed point Q∗ of equation 6
is also an equilibrium solution of the FAQL/BQL model, but their stability differs. While π∗ is a
stable node for all values of T and γ in the FAQL/BQL model, the stability of Q∗ is more nuanced.

For T = 1, the 4D fixed point Q∗ is a stable focus for γ ≲ 0.75 (figure 4). At γcr1 ≈ 0.75,
the system undergoes a supercritical Neimark–Sacker bifurcation, turning the stable focus into an
unstable one, around which a stable limit cycle emerges. All trajectories with asymmetric initial
conditions, even with minimal deviation, converge to this limit cycle, leading to the oscillations
observed for γ = 0.8. For γ ≳ 0.95, the unstable focus turns into a saddle node. Figure 5 illustrates
these different dynamical regimes. Note that the trajectory initialised at πi

C(0) = 0.9 for γ = 0.97
remains at mutual cooperation (πi

C ≈ 1) within any finite number of steps feasible for computational
simulation. However, the equations show that this is not a stable fixed point.

Using the fixed point equation 20 (Appendix D), which also defines an agent’s target values given
its opponent’s policy, we can now explain the observed phenomena step by step. As a representative
case, we analyse the trajectory shown in Fig. 1C.

Metastable Phases Starting at zero, all Q-values grow at first. Since defection yields higher
rewards, Qi

D grows faster than Qi
C so that ∆Qi increases and both cooperation probabilities decline

fast. Assuming w.l.o.g. π2
C(0) < π1

C(0), the cooperation probability of agent 2 approaches zero

7
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Figure 5: Projection of the 4D deterministic dynamics, defined by equation 6, for the Prisoner’s
Dilemma with T = 1, α = 0.01 and different values of γ. Left panels (A, D, G): γ = 0.7.
Middle panels (B, E, F): γ = 0.8. Right panels (G, H, I): γ = 0.97. All trajectories are initialised
around the fixed point Q-values, defined by equation 20: Qbase = QC∗ + ∆Q∗/2. The colour
gradient (purple to yellow) represents time evolution over 3 × 104 steps. The end point of each
trajectory is indicated by a red cross. Top panels (A, B, C): Projection of 4D dynamics into 2D
policy space. Middle panels (D, E, F): Projection into a 3D space defined by the basis vectors
q1 = (1,−1, 0, 0), q2 = (0, 0, 1,−1), and q3 = (1, 1,−1,−1). The first two dimensions represent
the ∆Qi-values, while the third dimension captures the difference between agents. Bottom panels
(G, H, I): Projection into the same 3D space, viewed from a different angle. For γ = 0.7 and
γ = 0.8, only the last two-thirds of the time evolution are shown for clarity. For γ = 0.7, the unique
fixed point πi

C∗ is a stable focus. For γ = 0.8, it is an unstable focus surrounded by a stable limit
cycle for all asymmetric joint policies. For γ = 0.97, it is a saddle point, with stable eigenvectors
projected onto the diagonal of the policy space and unstable eigenvectors directed perpendicular to
it. The trajectory initialised at πi

C(0) = 0.9 remains at mutual cooperation (πi
C ≈ 1) within any

finite number of steps feasible for computational simulation. Note however that the equations show
that this is not a true fixed point and pure policies are prohibited due to T > 0.
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first. At this point agent 1’s target values given π2
C ≈ 0 are according to equation 20

Q1
C,target ≈ 0 +

γ

1− γ
= 4, Q1

D,target ≈ 1 +
γ

1− γ
= 5,

resulting in π1
C ≈ 0.27. In return, agent 2’s target values are then Q2

C,target ≈ 9.1 and
Q2

D,target ≈ 10.4. Since agent 2 primarily defects, Q2
D updates frequently and reaches its target

quickly, while Q2
C lags due to very infrequent updates, exacerbated by the Boltzmann policy’s ex-

ponential amplification of Q differences, thus keeping π2
C near zero. This metastable phase persists

until Q2
C finally received enough updates as well to approach its target. Over time, Q2

C gradually
catches up, closing the gap ∆Q2, and the assumption π2

C ≈ 0 no longer holds.

Oscillations As π2
C grows, the expected rewards and hence also the target values of agent 1 grow.

But again, due to the asymmetric update frequency, Q1
D increases much faster than Q1

C . The policy
π1
C plummets close to zero. This has the effect that the target values of agent 2 decrease drastically

as well, closing the ∆Q2 gap even further. As a result, π2
C grows rapidly. Now, the roles of agent 1

and 2 are swapped and the process begins all over again, albeit with a shorter period. An oscillating
pattern emerges. The oscillations can be understood as a feedback loop in which the agents’ adapta-
tions consistently lag behind the changes of their effective environment. This phenomenon, known
as the ‘moving target problem’ (Sutton & Barto, 2018), poses a significant challenge in MARL
(Albrecht et al., 2024; Hernandez-Leal et al., 2017).

4 DISCUSSION AND CONCLUSION

Our analysis underscores the importance of accounting for Q-value update frequencies to under-
stand independent Q-learning dynamics. Our deterministic approximation captures behaviours that
simpler policy-space approximations cannot describe. This is evident in the Prisoner’s Dilemma,
where dynamics may oscillate after long metastable transients, while the FAQL/BQL models pre-
dict global convergence. While our focus here was on single-state environments, our insights are
also relevant in cyclic multi-state environments. Preliminary results show that in environments with
two states and low transition probabilities, similar behaviour can emerge.

We illustrated how a Boltzmann policy can cause update frequencies to approach zero, inducing
metastable phases. Their length can far exceed any realistic number of learning steps, making them
easy to mistake for equilibria. This highlights the importance of examining all dynamic variables
(all Q-values) rather than focusing solely on the target variables of interest (the policy), as only a few
of these might display perceptible drift during a metastable phase indicating instability (Kittel et al.,
2017). Apparent stable cooperation in the Prisoner’s Dilemma is only a prolonged transient of the
Q-learning process that eventually converges to mutual defection. While such misinterpretations are
relatively easy to avoid in simple environments like the Prisoner’s Dilemma, they become far more
challenging in complex environments with many agents, actions, and multiple Nash equilibria.

Further, we demonstrated how a moving target problem can cause stable oscillations that prevent
convergence. Although tweaks like batch learning, frequency-adjusted updates, or alternative ex-
ploration policies (epsilon-greedy) can help mitigate these symptoms, the root cause of oscillations
lies in the non-stationarity of the effective environment for each agent, a fundamental challenge in
MARL (Hernandez-Leal et al., 2019).

While the proposed model improves to capture the dynamics of independent Q-learning, it cannot
predict exact timing or outcomes of individual runs, which depend on randomness and sensitivity
to initial conditions. Incorporating a noise term—turning the ordinary difference equations into
stochastic ones—could improve fidelity in this regard.

If the independent Q-learning algorithm with a Boltzmann policy is used as a model of actual learn-
ing processes occurring in humans or other organisms, the described complex dynamics should be
considered interesting features worthy of further study. Most of the time, however, MARL algo-
rithms are used as a numerical tool for finding certain types of strategic equilibria. For that appli-
cation, the described dynamics should rather be considered a bug than a feature. In that context,
addressing the non-stationarity challenge is crucial for developing scalable MARL algorithms with
robust convergence guarantees, which remains an open research problem (Albrecht et al., 2024). As
demonstrated, a dynamical systems perspective can be helpful for future work in this regard.

9
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Algorithm 1: Independent Q-learning with Boltzmann policy in a single-state environment

Input: Action space Ai, learning rate αi, discount factor γi, temperature parameter T i for each
agent i, common environment E

Output: Learned Q-values Qi
ai for each agent i

Initialise Qi
ai arbitrarily for all ai ∈ Ai for each agent i

while not reached terminal time step do
for each agent i do

Choose action ai with Boltzmann policy:

πi
ai ←

eQ
i
ai/T

i∑
bi e

Qi
bi
/T i

for all ai ∈ Ai

ai ∼ πi
ai

end
Take joint action a = (a1, a2, ..., an) in the environment E
for each agent i do

Observe own reward ri in the environment E
Update Q-value of chosen action:

Qi
ai ← Qi

ai + αi

[
ri + γi max

bi
Qi

bi −Qi
ai

]
end

end

A Q-LEARNING

The original single-agent incremental Q-learning algorithm (Watkins & Dayan, 1992) is defined in
the framework of a finite Markov Decision Processes (MDP) (Albrecht et al., 2024), consisting of
a finite non-empty set of states S, a subset of terminal states Sterminal ⊂ S, a finite non-empty set
of actions A, a reward function R : S × A × S → R and a state transition probability function
T : S ×A× S → [0, 1], such that for all s ∈ S, a ∈ A :

∑
s′∈S T (s′|a, s) = 1.

At each time step t, a singular Q-learning agent observes state S(t) = s of the environment, chooses
action A(t) = a, upon which the environment transitions to state S(t + 1) = snext and the agent
receives the reward R(s, a, snext) = r. The agent then updates its value estimate of the state-action
pair (s, a), called Q-value, via the update rule

Qs,a(t+ 1) = Qs,a(t) + α

[
r + γmax

b∈A
Qsnext,b(t)−Qs,a(t)

]
, (7)

Qs′,a′(t+ 1) = Qs′,a′(t) for all (s′, a′) ̸= (s, a), (8)

where α ∈ [0, 1) is the agent’s learning rate, and the discount factor γ ∈ [0, 1) determines the
weight the agent assigns to the current estimate of the optimal value of the next state snext. Note
that only the Q-value of the state-action pair actually played at time t gets updated, the remaining
Q-values retain their current values. Q-learning is guaranteed to converge to optimal state-action
values under certain conditions (Watkins & Dayan, 1992), with one key requirement being that the
environment remains stationary—a crucial property of an MDP.

A.1 REMARKS

Formally, the environment analysed in this work consists of a single non-terminal state, s0, defined
by equation 1. After each non-terminal time step, the environment transitions back to s0. The
learning process concludes at a terminal time step, at which point the environment transitions to a
terminal state, sterminal. By definition, no rewards are provided in the terminal state, and agents
remain there indefinitely (Albrecht et al., 2024). We note that this setup corresponds to the game-
theoretic definition of a finitely repeated normal-form game, where agents do not condition their
policies on past interactions.

12
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In the original single-agent Q-learning algorithm, the discount factor γi is a hyperparameter that
determines an agent’s preference for future state values in multi-state environments. The necessity of
including a discount factor in a single-state environment, as considered here, is therefore debatable.
Some studies effectively set γi = 0 by defining the environment to transition into a terminal state
after each round (Galstyan, 2013; Kianercy & Galstyan, 2012; Leonardos & Piliouras, 2022; Hu
et al., 2022). Others define the environment as static yet repetitive and keep the term involving γ
(Tuyls et al., 2003; Babes et al., 2009; Wunder et al., 2010; Kaisers & Tuyls, 2010; Zschache, 2018;
Mintz & Fu, 2024). To preserve the algorithm’s core structure—where the term involving γi is a
defining feature—we consider a repetitive environment and retain the discount factor. Given that the
agents lack knowledge of when the game will end, our framework is consistent with the common
interpretation of γi to be the agent’s belief about the probability that the game continues in the next
time step.

The Boltzmann exploration policy is chosen over common alternatives like epsilon-greedy because
it uses a smooth probability distribution based on Q-values rather than discrete choices. Some
studies suggest this mechanism aligns with human and animal decision-making in competitive and
observational learning tasks (Lee et al., 2004; Kim et al., 2009). The temperature parameter T i >
0 regulates the exploration-exploitation trade-off: higher T i promotes exploration by equalising
probabilities, while lower T i emphasises exploitation of actions with higher Q-values. As T i → 0,
the agent converges to a pure policy. We keep the temperature constant throughout the learning
process, rather than annealing it (Sandholm & Crites, 1996), to simplify the process and enhance the
interpretability of the results.

In QL, the outcome of the learning process is typically interpreted as a pure policy: the action with
the maximum Q-value in a given state is regarded as the “learned” action. However, in this work, we
focus on the dynamics of the learning process itself, interpreting the Boltzmann distribution as the
“learned” policy at any time t, as it reflects the agent’s probabilistic decision-making process. Our
primary interest lies in understanding the long-term behaviour of the learning process as a function
of parameters and initial conditions.

B THE BQL MODEL

In the BQL model (Barfuss et al., 2019), agents interact K ∈ N+ times under a constant joint policy
π(t). Information from these interactions are stored inside a batch of size K. At the update step
(t + K), agents then use the sample average of the gathered experience to update their Q-values
and subsequently the joint policy π(t+K). With a minor abuse of notation to improve readability,
equation 2 is modified to

Qi
ai(t+K) = Qi

ai(t) + αiDi
ai,A(t),...,A(t+K),Qi(t), (9)

Di
ai,A(t),...,A(t+K),Qi(t) :=

1

Kai

K−1∑
k=0

δAi(t+k)ai

[
Ri

A(t+k) + γi max
bi∈Ai

Qi
bi(t)−Qi

ai(t)

]
, (10)

where Kai := max
(
1,
∑K−1

k=0 δAi(t+k)ai

)
denotes the number of times agent i played action ai.

To avoid division of zero, Kai := 1 if the action ai was never played. For a batch size of K = 1,
batch Q-learning is equal to regular Q-learning. Note however that for K > 1, batch learning allows
to update multiple Q-values per agent per update step—all Q-values whose actions were played in
the batch.

In the infinite batch limit K → ∞ (and subsequently Kai → ∞), the stochastic batch temporal
difference error equation 10 becomes almost surely (a.s.) deterministic due to the law of large
numbers. The limit implies that, with probability one, all Q-values are updated simultaneously at
each update step. This enables the derivation of a deterministic update rule in a separated update
timescale u that operates exclusively in the lower-dimensional policy space (see appendix B.1 for a
detailed derivation):

πi
ai(u+ 1) =

πi
ai(u) exp[αiDi

aiπ(u)/T
i]∑

bi∈Ai πi
bi(u) exp[α

iDi
biπ(u)/T

i]
, (11)

where
Di

ai,π(u) := EA−i(u)∼π−i(u)R
i
aiA−i(u) − T i lnπi

ai(u). (12)
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Note that for single-state environments, all terms which include the discount factor γi vanish in the
derivation of equation 11. As in the FAQL model, this is again due to the implicit assumption that
all Q-values get updated simultaneously. Good agreement of equation 11 with actual behaviour for
K ≈ 103 − 104 was demonstrated in Barfuss (2022), but not for smaller K-values. To emphasise
its distinction from incremental Q-learning, we will refer to this model throughout this work as
the ‘Batch Q-Learning’ (BQL) model. In single-state environments, the FAQL model corresponds
to the continuous-time limit of the BQL model; hence, we also collectively refer to them as the
‘FAQL/BQL model’.

A fixed point policy π∗ of equation 11 can be determined by finding the roots of equation 12 for all
i, ai. After normalisation, this results in the two-dimensional system of equations

πi
ai∗ =

exp[EA−i∼π−i
∗
Ri

aiA−i/T ]∑
bi∈Ai exp[EA−i∼π−i

∗
Ri

biA−i/T ]
. (13)

This equation can also be interpreted outside the learning context as defining a “soft” version of Nash
equilibrium based on a form of bounded rationality rather than full rationality: if the equation is ful-
filled, both players do not maximise but “soft maximise” their reward under the correct assumption
that the other player does likewise, by playing the corresponding Boltzmann policy. In behavioural
game theory, this form of equilibrium is called ‘Logit Quantal Response equilibrium’ (McKelvey
& Palfrey, 1995). As experimental evidence from humans suggest that indeed boundedly rational
human decisions sometimes approximate such soft equilibria (Teeselink et al., 2024), the ques-
tion of whether MARL algorithms converge to such points as well is an important plausibility check.

B.1 DERIVATION OF THE BQL EQUATIONS

In the limit K → ∞ (and subsequently Kai → ∞), the stochastic batch temporal difference error
equation 10 becomes almost surely (a.s.) deterministic because of the law of large numbers. It can
be written in dependence of all Q-values at time t as

Di
ai,Q(t) := lim

K→∞
Di

ai,A(t),...,A(t+K),Qi(t)

a.s.
= EAi(t)=ai,A−i(t)∼π−i(t)

(
δAi(t)ai

[
Ri

A(t) + γi max
bi∈Ai

Qi
bi(t)−Qi

ai(t)

])
= EA−i(t)∼π−i(t)R

i
aiA−i(t) + γi max

bi∈Ai
Qi

bi(t)︸ ︷︷ ︸
constant in ai

− T i lnπi
ai(t)− T i ln

∑
bi∈Ai

exp[Qi
bi(t)/T

i]︸ ︷︷ ︸
constant in ai

,

(14)

where the last two terms are the inverse of equation 3. The deterministic update rule for the Q-values
in the separated update timescale u then reads

Qi
ai(u+ 1) = Qi

ai(u) + αiDi
ai,Q(u). (15)

Inserting equation 15 into equation 3 returns a deterministic update rule for the policy,

πi
ai(u+ 1) =

exp[Qi
ai(u+ 1)/T i]∑

bi∈Ai exp[Qi
bi(u+ 1)/T i]

=
exp[Qi

ai(u)/T i] exp[αiDi
ai,Q(u)/T

i]∑
bi∈Ai exp[Qi

bi(u)/T
i] exp[αiDi

bi,Q(u)/T
i]

=
πi
ai(u) exp[αiDi

ai,Q(u)/T
i]∑

bi∈Ai πi
bi(u) exp[α

iDi
bi,Q(u)/T

i]
.

(16)

As it is, equation 16 depends on the four-dimensional vector Q(u). To have an approximation that
conveniently reduces the learning dynamics to the two-dimensional policy space, equation 16 needs

14
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to be expressed purely in terms of π(u). Luckily, one can make use of the fact that equation 16 is
invariant under adding terms to Di

ai,Q(u) that are constant in ai, such as the last term of equation 14.
Note that in single-state environments, also the second term including the discount factor is constant
in action—no matter which actions the agents choose, the environment transitions back to the same
unique non-terminal state—and can thus be excluded. This means that the dynamics are independent
of the discount factor. Equation 16 simplifies to

πi
ai(u+ 1) =

πi
ai(u) exp[αiDi

ai,π(u)/T
i]∑

bi∈Ai πi
bi(u) exp[α

iDi
bi,π(u)/T

i]
, (17)

where
Di

ai,π(u) := EA−i(u)∼π−i(u)R
i
aiA−i(u) − T i lnπi

ai(u). (18)

C STABILITY ANALYSIS OF THE BQL MODEL

We solve the two-dimensional system of equations 13 numerically using the fsolve function from
Python’s SciPy library. For the Prisoner’s Dilemma, there exists a unique symmetric fixed point (see
figure 2). To determine its stability, we conduct a linear stability analysis at the fixed point. To this
end, we calculate the Jacobian

J =

(
∂π1

C
π1
C ∂π2

C
π1
C

∂π1
C
π2
C ∂π2

C
π2
C

)
=

 0 − p1
π2q

1
π2

T [p1
π2+q1

π2 ]
2

− p2
π1q

2
π1

T [p2
π1+q2

π1 ]
2 0

 , (19)

where

piπ−i := exp[EA−i∼π−iRi
ai=C,A−i/T ],

qiπ−i := exp[EA−i∼π−iRi
ai=D,A−i/T ].

Note that the prefactor −1 in equation 19 comes from the reward structure in equation 1

Ri
ai=C,a−i=C −Ri

ai=C,a−i=D −Ri
ai=D,a−i=C +Ri

ai=D,a−i=D = 3− 0− 5 + 1 = −1

We calculate the Eigenvalues λn of the Jacobi matrix numerically with the function
numpy.linalg.eig from Python’s NumPy library. Since all eigenvalues are |λn| < 1, we
deduce the discrete-time fixed point to be a stable node.

D STABILITY ANALYSIS OF OUR MODEL

The four-dimensional fixed point Q∗ of equation 6 is obtained by finding the roots of the second
term for all i, ai. The coupled equations read

Qi
ai∗ := EA−i∼π−i

∗
Ri

aiA−i + γ max
bi∈Ai

Qi
bi∗

= EA−i∼π−i
∗
Ri

aiA−i + γ max
bi∈Ai

∞∑
k=0

γkEA−i∼π−i
∗
Ri

biA−i

= EA−i∼π−i
∗
Ri

aiA−i +
γ

1− γ
max
bi∈Ai

EA−i∼π−i
∗
Ri

biA−i︸ ︷︷ ︸
constant in ai

.

(20)

Note that in the translation of Q∗ to π∗ via equation 3, the second term of equation 20 is irrelevant as
it is an offset constant in ai and only the differences of the Q-values matter. This means that a fixed
point of the dynamics described by equation 17 is also a fixed point of equation 6 in policy space,
and vice versa. So why does the model described by equation 6 behave so differently compared to
the FAQL/BQL model?

The key lies in stability. Although both models share the same unique fixed point in policy space,
their stability properties differ. While it is a stable node for all values of T and all values of γ in the
BQL and FAQ model, it is more nuanced in the new model.
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If we take into account that for the Prisoner’s Dilemma, Qi
C∗ < Qi

D∗ holds at the fixed point Q∗,
the maximum term of equation 6 reduces to max(Qi

C∗Q
i
D∗) = Qi

D∗. We can therefore simplify
equation 6 at the fixed point Q∗ to

EA(t)∼π(t)[Q
i
ai(t+ 1) | Qi

∗(t)] = Qi
ai∗(t)

+ απi
ai∗(t)

[
EA−i(t)∼π−i

∗ (t)R
i
aiA−i(t) + γQi

D∗ −Qi
ai∗

]
.

(21)

To shorten the notation, we omit the dependencies and the fixed point subscript index ∗ in the
following, and make use of the relations

∂Qi
C
πi
C = ∂Qi

D
πi
D =

e(Q
i
C+Qi

D)/T

T (eQ
i
C/T + eQ

i
D/T )2

,

∂Qi
D
πi
C = −∂Qi

C
πi
C = −∂Qi

D
πi
D = ∂Qi

C
πi
D.

To shorten the notation further, we introduce

f i := α∂Qi
C
πi
C

[
π−i
C Ri

ai=C,a−i=C + (1− π−i
C )Ri

ai=C,a−i=D + γQi
D −Qi

C

]
,

gi := απi
C∂Q−i

C
π−i
C

[
Ri

ai=C,a−i=C −Ri
ai=C,a−i=D

]
,

hi := α∂Qi
C
πi
C

[
π−i
C Ri

ai=D,a−i=C + (1− π−i
C )Ri

ai=D,a−i=D − (1− γ)Qi
D

]
,

ki := α(1− πi
C)∂Q−i

C
π−i
C

[
Ri

ai=D,a−i=C −Ri
ai=D,a−i=D

]
,

and
vi := hi − α(1− γ)(1− πi

C) + 1

which help to write the Jacobi matrix at the fixed point as

J =


f i − απi

C + 1 −f i + αγπi
C gi −gi

−hi vi ki −ki
g−i −g−i f−i − απ−i

C + 1 −f−i + αγπ−i
C

k−i −k−i −h−i v−i

 . (22)

We solve the eigenvalues of the Jacobi matrix at the fixed point equation 20 numerically with the
function numpy.linalg.eig from Python’s NumPy library. The absolute eigenvalues are plot-
ted against the discount factor in figure 4 for three different temperature values, revealing that the
4D dynamics may undergo bifurcations upon changes of the discount factor. Figure 4 further depicts
that changes of T not only affect the fixed point position but also the effect of the discount factor γ
on its stability.
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