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Abstract

Effective decision-making in high-stakes domains necessi-
tates reconciling information from structured and unstruc-
tured data with incomplete and imprecise background knowl-
edge. Relational Dependency Networks are a popular class
of probabilistic logic models that support efficient reason-
ing over structured data and symbolic domain knowledge but
struggle to accommodate unstructured data such as images
and text. On the other hand, neural networks excel at ex-
tracting patterns from unstructured data but are not amenable
to reasoning. We propose Deep Relational Dependency Net-
works which combine Relational Dependency Networks with
neural networks to reason effectively about multimodal data
and symbolic domain knowledge. Experiments on scene clas-
sification tasks with noisy and limited data indicate that this
approach yields more accurate yet interpretable models.

Introduction

The exponential growth and heterogeneity of available data
present significant challenges for decision-making, partic-
ularly in high-stakes domains such as healthcare (Nor-
man et al. 2017). Effective clinical reasoning often re-
quires integrating and interpreting information from struc-
tured electronic health records (EHRs) and unstructured
sources like medical imaging data and free-text notes (Chin-
Yee and Upshur 2018). Clinicians must also reconcile this
information with decades of accumulated domain knowl-
edge—encompassing medical research findings, clinical
guidelines, and expert heuristics—into their diagnostic,
prognostic, and treatment decisions. Decision support sys-
tems can help reduce the decision-maker’s cognitive load by
partially automating this process (Rabaey et al. 2024).
Probabilistic Logic Models (PLMs) (Getoor and Taskar
2007), such as Relational Dependency Networks (RDNs)
(Neville and Jensen 2007), offer a powerful framework for
reasoning under uncertainty in such complex, inherently
multi-relational domains. RDNs exploit relational symme-
tries to efficiently model complex, multi-entity interactions
and integrate symbolic domain knowledge. This allows them
to produce more interpretable and robust inferences that
align with expert-validated principles. However, the prac-
tical deployment of RDNs in real-world decision support
remains limited by their reliance on fully structured data
representations. In realistic environments, critical informa-

tion often resides in unstructured modalities—such as med-
ical scans, pathology images, or textual clinical notes—and
transcribing these raw data into structured form introduces
information loss and additional engineering overhead.

In this work, we address these limitations by extend-
ing RDNss to directly accommodate unstructured inputs. We
achieve this by coupling RDNs with neural network repre-
sentations that extract semantic features from raw modali-
ties. By integrating these learned embeddings into the re-
lational inference process, our approach preserves the re-
lational reasoning capabilities of PLMs while harnessing
the representational power of deep learning. This results in
a more flexible, information-rich modeling framework that
can handle the complexity and diversity of modern data
ecosystems in high-stakes decision-making domains.

Background
(Relational) Dependency Networks

Dependency Networks (DNs) (Heckerman et al. 2000) are
directed probabilistic graphical models (Koller 2009) that
approximate a joint probability distribution over a set of
variables using a collection of conditional distributions, one
per variable. Unlike Bayesian Networks (BNs), which im-
pose acyclicity, DNs can represent cyclic dependencies, al-
lowing them to capture more complex, real-world phenom-
ena. Although this flexibility can sometimes lead to approx-
imate or inconsistent joint distributions, DNs often provide
computational advantages in learning and inference.

Formally, let X = {X;} ; be a set of n random vari-
ables, and { P;(X; | X_;)}_, be the set of local conditional
distributions, where X _; denotes all variables except X;. A
DN approximates the joint distribution as:

PX)~ [[Pi(Xi | X_y)
i=1

Relational Dependency Networks (RDNs) (Neville and
Jensen 2007) extend DN’ to compactly represent joint prob-
ability distributions over complex, multi-relational domains
by exploiting their structural symmetries. Just like their
propositional counterpart, RDNs approximate the joint dis-
tribution over a relational domain as the product of local
conditionals. However, the conditional for each relational
logic predicate is shared across all of its groundings.



An RDN over a relational domain D consisting of rela-
tions R and objects O is defined using a set of structured
local conditionals over groundings of individual relations
given all ground atoms. Then, the joint distribution over a
grounded database A(D, R) = a can be approximated as:

P(AMD.R)=a)~ [ T[ P(r(o)|a\r(o)

r€ERr(o)ca

where each r(0) is an instantiation of the relational predicate
r € R with an object 0 € O in the grounded database a, and
each P, is the local conditional distribution for 7.

These conditionals can be learned from data as Relational
Probability Trees (RPTs) (Blockeel and Raedt 1998) and
gradient-boosted Relational Regression Trees (GB-RRTs)
(Natarajan et al. 2012).

Domain Knowledge as label preference rules

While purely data-driven learning methods have achieved
remarkable success (Mitchell 1997; Cristianini 2000;
Schapire and Freund 2013), they often struggle when faced
with noisy or incomplete observations. This challenge be-
comes more pronounced in relational domains, where the
complexity of the data and the exponential growth in possi-
ble relationships can make data collection and labeling ex-
pensive and error-prone. In such situations, exploiting do-
main knowledge, often held by human experts, becomes in-
valuable. By providing insights and constraints that guide
model construction (McCarthy 1959), domain knowledge
can significantly enhance robustness and accuracy (Baffes
and Mooney 1996), particularly when labeled data is noisy
and limited (Yang and Natarajan 2013; Kokel et al. 2020;
Karpatne, Kannan, and Kumar 2022; Mathur, Gogate, and
Natarajan 2023; Mathur, Antonucci, and Natarajan 2024).

Label preference rules (Boutilier 2002; Odom and Natara-
jan 2018) are a powerful framework for representing such
knowledge. Label preference rules express partial domain
knowledge about the relationships between multi-relational
data and target labels. These rules specify which labels are
favored or disfavoured for specific subsets of examples.
These rules can encode diverse forms of domain knowl-
edge. For instance, knowledge about monotonicities (Al-
tendorf, Restificar, and Dietterich 2005), synergies (Yang
and Natarajan 2013), class-imbalance tradeoffs (Yang et al.
2014), and privileged information (Vapnik and Vashist 2009)
can be represented as label preference rules.

Concretely, we can learn conditional distributions over a
boolean target concept (say, Y) given a set of features (say,
X) from small and noisy data sets (say, D) by exploiting
domain knowledge in the form of positive and negative la-
bel preferences rules (say, r;(x) and r¢(z)) by minimizing
a modified log likelihood-based objective function that in-
cludes a penalty term measuring the deviation of the model
from the target. If the conditional is defined as P(Y = 1 |
X = x) = o(¢(x)) where o is the sigmoid function and
1) is a real-valued potential function, the modified objective
function is given by the following equation:

MLL(y, D) = —=L(1, D)=X Y (x)(ne(x)—ny(x))

(x,y)€D

where n; and ny are the number of preference rules that
were true and false for x respectively. This augmented
objective encourages the learned model to align with ex-
pert knowledge, leading to improved robustness and inter-
pretability.

Deep Relational Dependency Networks

We aim to learn probabilistic logic models (PLMs) from
datasets that contain both structured (e.g., relational ta-
bles, knowledge graphs) and unstructured (e.g., images, text)
data. The structured data (Z) provides a well-defined sym-
bolic representation of entities and relationships, while the
unstructured data (X) often conveys complementary, richer
information that is not easily captured by relational predi-
cates alone. Integrating these two modalities poses signif-
icant challenges, particularly when domain knowledge is
available and must be leveraged, yet the data is incom-
plete or only partially observable. Existing frameworks for
advice-based learning in PLMs primarily focus on scenarios
where only structured data is observed and is sufficient for
inferring the target labels. However, in multimodal settings,
structured data might offer only partial information, requir-
ing an adaptation of advice to handle partial observability.
We first formalize the learning problem and then describe
our proposed neurosymbolic framework, which we refer to
as a Deep Relational Dependency Network (Deep-RDN).

Problem Definition. Our task is to learn a conditional
distribution over a target concept (y € {0, 1}) given data in
structured (z € Z) and unstructured (z € X) forms from a
dataset (D) and symbolic domain knowledge (K).

Given: Data set D = {(z(¥, 2 y(")}V  and symbolic
domain knowledge K.

To Do: Learn a deep probabilistic logic model M that
accurately models P(Y | X, Z).

This task can be formulated as the optimization problem
argmin — L(M, D) s.t. M satisfies K
M

where —L£(M, D) is the negative (conditional) loglikli-
hood of the data set D under the distribution induced by the
model M. This is an exceedingly hard problem to solve in
general. So, we solve it approximately by relaxing the hard
constraint to a soft penalty. The resulting problem is

argmin — L(M, D) — A\((M, K, D) (D)
M

where (M, IC,D) is a penalty function measuring the
degree of violation of the domain knowledge by the model.
We assume that M induces a conditional of the form

P | X,Z) = o(¢(x, 2))

where o is the sigmoid function and ¢)(x, z) € R is the po-
tential function. Then, the penalty function (M, K, D) for
symbolic domain knowledge K in the form of preference
rules can be defined as

(MDY= > e, 2)(ne(2) —ny(2))

(z,z,y)€D
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where n;(z) and ns(z) are the number of preference rules
that are true and false for z respectively.

Two-Step Learning Procedure. We solve the relaxed op-
timization problem in eq. (1) in a two-step process. First, we
learn a relational probabilistic decision tree (Blockeel and
Raedt 1998) based solely on the structured portion (Z) of
the data to predict the target label (Y'). Each path from root
to leaf in a decision tree can be viewed as a Horn clause.
This tree-based partitioning divides the data space into re-
lated groups, each characterized by a conjunction of logical
predicates. Let this tree be 7 = (r, w) where  is a function
mapping the structured part (Z) of each data point to a leaf
(r(Z)) in the decision tree and w is a function mapping each
leaf (1) to its potential value (w({)). Then, relational proba-
bilistic decision tree 7 induces the conditional distribution:

PY [ Z;7) = o(w(r(2)))

where o is the sigmoid function. This symbolic model pro-
vides a high-level interpretation of the relationship between
structured data and the target and is learned by solving the
following optimization problem:

arngin —L(1,D) — A Z w(r(z))(ny(z) —ny(2)).

(z,2,9)€D

In the second step, we refine the predictions made by the
relational decision tree by incorporating information from
the unstructured data (X). To do so, we train a neural net-
work that takes as input both the raw unstructured data and
an embedding representing the decision tree’s prediction for
a given instance. We consider a simple embedding consist-
ing of the one-hot encoding of the leaf ID corresponding to
the instance (r(Z)). Specifically, we learn a neural network
f to map this structured data embedding and the unstruc-
tured data to the functional newton-raphson update for the
relational probabilistic decision tree. This value for an exam-
ple (z,y, z) and a relational decision tree 7 = (7, w) is de-
fined as —g(z,y)/h(z,y) where g(z,y) = P(y | z;7) —y —
A(ne(z) —np (=) and h(z,y) = Ply | :7)(1=P(y | % 7))

both symbolic reasoning and neural
representation learning.

are the functional gradient and hessian respectively. The
overall output of the model is defined as

PY | X, Z;7, f) = o(w(r(2)) + f(X,7(2)))
This allows us to use the expressive power of neural net-
works to capture complex interactions between the struc-
tured and unstructured data while grounding the learning
process in the symbolic reasoning of the decision tree.

Experimental Evaluation

We experimentally validated the ability of Deep Relational
Dependency Networks (Deep-RDN) to effectively integrate
structured (relational) and unstructured data on two datasets
of varying complexity - ADE20K (Zhou et al. 2017) and
RelKP (Wiist et al. 2024), which we describe below.

Datasets. ADE20K contains 20,000 scenes annotated
with pixel-level segmentation maps for various objects
present in the scenes. From this dataset, we extracted re-
lational features such as object presence, spatial configu-
rations, object sizes, and hierarchical relationships derived
from WordNet to enable higher-level reasoning. The RelKP
dataset consists of 200 Kandinsky patterns designed using
relational clauses, representing varying levels of complex-
ity based on the number of objects, object pairs, concept
types, and relations. Examples of relations in this dataset
include concepts such as “same shape” and one object is
a red triangle.” ADE20K is thus a challenging dataset that
allows the evaluation of reasoning under noisy real-world
conditions, while RelKP on the other hand, is a controlled
dataset that facilitates reasoning over well-defined relational
structures. For our experiments, we focused on a subset of
ADE20K containing 256 images and relations associated
with the Street and Highway classes. For RelKP, we con-
structed a dataset with 50 images, corresponding to the com-
plex concept “same color OR one is a red triangle.” These
datasets enable a thorough examination of our framework’s
ability to reason over both unstructured and structured data
sources. To simulate noisy data, we randomly remove 15%
of the relational predicates in the structured part and relabel
15% of the positive training examples as negative examples.
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Figure 2: Qualitative Illustration.
Ll For a given input image corresppnd-
A S ing to class=street, the relational
gl ' 8/ | probability tree (RPT), using only
b - structured predicates, assigns a po-
tential of —2.8, reflecting low con-
fidence for the presence of a street,
due to noisy or incomplete relational
features. The neural refinement mod-
ule uses unstructured visual cues to
add a corrective potential of +4.5,
increasing the total potential to 1.7
and the final conditional probability
to 0.85. This demonstrates the effec-
tiveness of combining relational rea-
soning with deep learning.

Input Image (X)) for

Model RelKP ADE20k-Highway ADE20k-Street
AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC

NN 0.86+0.09 0.81+0.11 0.88+£0.04 094+£0.04 085£0.08 0.66=+0.19

RPT 0.85+0.12 0.88+0.09 0.73+£0.14 093+£0.06 091£0.03 0.77£0.05

Deep-RDN (Ours)

091+010 0.88=£0.12 0.91£0.07 0.96+0.05

092+0.04 0.78£0.13

Table 1: Performance Comparison (mean + standard deviation) of the three approaches—Neural Network (NN), Relational
Probability Tree (RPT), and Deep Relational Dependency Network (Deep-RDN)—across the RelKP, ADE20k-Highway, and
ADE20k-Street datasets in terms of Area Under the Precision-Recall Curve (AUC-PR) and Area Under the Receiver Operating

Characteristic Curve (AUC-ROC).

Methods. We compare our framework against two base-
line approaches: (1) a neural network classifier (NN) that
only uses unstructured modality X, and (2) a relational prob-
abilistic decision tree (RPT) learned from the structured
modality (Z) and domain knowledge in the form of prefer-
ence rules (K). In contrast, our Deep-RDN model combines
RPT with NN to use both unstructured (X) and structured
(Z) data representations together with domain knowledge
(K). Since the unstructured modalities in both datasets are
images, we used ResNetl8 to encode each image as 512-
dimensional vectors. All neural networks have one hidden
layer of size 1/4th of the input dimension (512 for baseline
NN, 512 + number of leaves in Deep-RDN). The neural net-
works for the Deep-RDN case were initialized by training
them using the maximum likelihood objective function.

Metrics. We measure performance using two standard
metrics: the Area Under the Receiver Operating Character-
istic Curve (AUC-ROC) and the Area Under the Precision-
Recall Curve (AUC-PR). AUC-ROC assesses the model’s
overall ability to discriminate between positive and negative
examples at all possible thresholds, while AUC-PR evalu-
ates the model’s precision and recall across various thresh-
olds, offering a more informative assessment in cases where
class imbalance is significant.

Results. Table 1 presents the mean test AUC-PR and
AUC-ROC scores for the three methods averaged over five
folds of the RelKP, ADE20k-highway, and ADE20k-street

datasets. We observe that our Deep-RDN approach consis-
tently outperforms both the NN-only and RPT-only base-
lines, demonstrating the value of jointly modeling struc-
tured relational knowledge and complex unstructured fea-
tures. Notably, for the ADE20k-Street subset, Deep-RDN
achieves approximately a 7% improvement in AUC-PR and
a 12% improvement in AUC-ROC compared to the NN
baseline, underscoring the benefits of combining structured
knowledge with learned visual features.

Conclusion

In this work, we introduced Deep Relational Dependency
Networks (Deep-RDN), a novel framework for learning re-
lational models by effectively integrating structured and
unstructured data with domain knowledge. The proposed
model combines the interpretability and reasoning capabil-
ities of probabilistic relational logic with the rich represen-
tation learning capabilities of deep neural networks. Our ex-
perimental results highlighted the advantages of this hybrid
framework in scenarios with noisy and incomplete data. Fu-
ture research directions to enhance the framework’s adapt-
ability include extending it to support multi-class and multi-
label classification tasks, scaling it to accommodate larger
multimodal datasets with more complex relational struc-
tures, and enabling end-to-end learning where the symbolic
component and neural module iteratively exchange feedback
to improve each other’s learning and performance.
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