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Abstract
Exploration remains a fundamental challenge in reinforcement learning (RL), particularly in envi-
ronments with sparse or adversarial reward structures. In this work, we study how the architecture
of deep neural policies implicitly shapes exploration before training. We theoretically and empiri-
cally demonstrate strategies for generating ballistic or diffusive trajectories from untrained policies
in a toy model. Using the theory of infinite-width networks and a continuous-time limit, we show
that untrained policies return correlated actions and result in non-trivial state-visitation distribu-
tions. We discuss the distributions of the corresponding trajectories for a standard architecture,
revealing insights into inductive biases for tackling exploration. Our results establish a theoretical
and experimental framework for using policy initialization as a design tool to understand explo-
ration behavior in early training.

1. Introduction

Effective exploration is crucial for reinforcement learning agents operating in high-dimensional or
sparse-reward environments. While much focus has been placed on designing explicit exploration
bonuses or strategies, we shift attention to a more implicit source of exploration: the parameter-
ization of the policy network. Importantly, studying the effect of policy architecture does not
require training of additional networks [3], or introduction of exploration-dependent rewards [8,
17].Untrained policies are responsible for determining the initial data distribution from which deep
RL agents begin training. As such, the properties of deep policies at initialization is important for
understanding exploration in the early training regime. We hypothesize that the choice of architec-
ture and the corresponding initialization distribution implicitly determine the entropy and geometry
of exploration. As a step toward understanding this phenomenon, we provide some initial theoretical
and experimental results to support this hypothesis. We leverage infinite-width and continuous-time
limits to understand random policy behavior in a toy model with corresponding simulations.

Contributions: In this work, we show that (1) fixed policies lead to ballistic trajectories where
correlations and smoothness in the network dominate (2) random policy initializations at each step
can be used to generate diffusive trajectories with a heavy-tailed steady-state distribution and (3)
combining these methods can provide new pathways for controlled exploration in deep RL.

Related Work: Exploration has been studied from many angles [6]. Our work leverages the
infinite-width limit [5, 11] and analysis of the Fokker-Planck equation which have both proven to be
fruitful avenues of research for various ML communities. Neural architecture search (NAS) might
attempt to optimize the policy architecture directly [21], e.g. for better exploration strategies. Rather
than searching in the space of possible architectures, we instead approach the problem through the
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lens of closed-form solutions, attempting to understand the inductive biases of a fixed architecture
and its impact on exploration behavior.

2. Background

2.1. Reinforcement Learning

Focusing on the effects of untrained policies, we only need the basic and usual definitions: a state
space, S , action space A, deterministic transition dynamics (a function mapping state and action to
successor-state) f : S × A → S. Let πθ : S → A be a policy represented by a feedforward neural
network with parameters θ ∈ Rn randomly initialized according to some specified scheme (e.g.
Xavier-Glorot). We will not introduce any (intrinsic or exploration-dependent) reward functions and
instead focus on the reward-free Markov processes that govern the agent’s data collection process.

Operating in the policy-based RL setting, a network πθ is trained to maximize returns (e.g.
REINFORCE [20], TRPO [15], PPO [16]). Value-based algorithms such as Q-learning and its
offspring [4, 10, 19] typically use ϵ-greedy approaches, and the additional non-linear mapping from
value to policy space can complicate the analysis, so this connection is left to future work.

2.2. Smooth Networks Yield Ballistic Trajectories

For short times, sufficiently smooth neural networks can induce trajectories with a dominating drift
term: “ballistic motion”. Loosely speaking, the structure of a neural net induces similar outputs
(actions) for nearby states, and when compounded with smooth dynamics, this results in agents
with very smooth (non-diffuse) trajectories. This result is visualized in Figures 1 and 2 and is
formalized more precisely below:

Assumption 1 (Transition Dynamics Locality) The environment dynamics are “local”: there ex-
ists a δ > 0 such that for all s ∈ S and a ∈ A, the distance between s and any corresponding
successor state s′ = f(s, a) is upper-bounded |s′ − s| < δ.

Lemma 1 (Short-Time Ballistic Behavior of Lipschitz Neural Policies) Let πθ : Rd → Rd be a
stochastic policy sampled from a neural network prior, such that the realized sample function is
Lπ-Lipschitz. Let the deterministic transition dynamics st+1 = f(st, at) satisfy Assumption 1, and
also be Lipschitz continuous with respect to the action space: |f(s, a) − f(s, a′)| ≤ Lf |a − a′|
and state space, |f(s, a) − f(s′, a)| ≤ Ls|s − s′| for all s, s′ ∈ S and a, a′ ∈ A. Let the constant
c = πθ(s0) denote the initial action and let Ls = 1 (the Ls ̸= 1 regime is dominated by exponential
time dependence, and is further discussed in the Appendix). Then for any initial state s0 the agent’s
trajectory approximately follows the straight-line path ct, up to a bounded error:

|(st − s0)− ct| ≤ 1

2
δLaLπt

2.

Remark 2 Although the previous lemma holds for all times, a linear approximation holds only for
short timescales, t ≪ 2c

δLaLπ
, beyond which, deviations caused by curvature (resulting from non-

linearities in the deep neural net) become large enough to dominate the effective mean velocity, c.

The Lipschitz constant of a neural policy can be computed [1, 7, 18] or roughly bounded a
priori to make Lemma 1 implementable. Although the assumptions and structure of the above
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dynamics may be limiting in some environments, they provide a starting point to develop intuition
for the relationship between architecture, dynamics, and “depth”1 of trajectories. We will focus on
generalizing these results in future work.

If a fixed policy network is used at the beginning of training (e.g. to fill up a replay buffer), the
agent will not observe diverse trajectories when periodically reset to the initial state, (a common
setup in episodic RL). As an extreme alternative, we can instead consider initializing a new policy
(from a fixed distribution, say) at each timestep and study its effects on the agent’s trajectories.

Figure 1: Though trajectories can
change direction (as evidence in the plot
on the right), on short timescales, the
trajectories can be well-approximated
with linear drift.

Figure 2: Standard MLPs
used for deep RL (with two
hidden layers, 256 hidden
nodes, ReLU activation) pro-
duce ballistic trajectories.

2.3. Random Policy Networks as Gaussian Processes

Rather than a single policy generating an entire trajectory (as is typically the case), we seek to obtain
a more diffusive (and hence potentially more exploratory) trajectory distribution. To this end, the
control policy πθ is now re-sampled sequentially, producing a stochastic trajectory ensemble (even
with deterministic dynamics and deterministic action outputs from the policies):

Definition 3 (Trajectory Under a Random Policy Ensemble) Let Tθ = {s0, s1, . . . , sT } denote
a trajectory generated by:

st+1 = f (st, πθt(st)) , θt ∼ Pθ

where each θt is independently drawn from the initialization distribution Pθ, and πθt is the corre-
sponding deterministic policy network.

With this setup, we can leverage the following closed-form expression for the policy in the
infinite-width limit (cf. also Eq. 1 of [9] and surrounding discussion for more details):

Theorem 4 (Neal [11], Infinite-Width Limit as Gaussian Process) Let πθ be a feedforward neu-
ral network with nonlinear activation ϕ(0) = 0 (e.g., ReLU or Tanh), and i.i.d. weights and biases,

1. In the sense of “deep exploration” [14].

3



EXPLORATION BEHAVIOR OF UNTRAINED POLICIES

with zero mean. In the limit as the width of all hidden layers tends to infinity, the distribution over
functions πθ converges to a Gaussian Process:

πθ
d−→ GP(0,K(s, s′)),

where K is an architecture-dependent kernel.

The GP then produces a structured action covariance when a new policy is sampled at each timestep.
Formally, let states s, s′ ∈ S .

= Rd be given. The covariance between actions (w.r.t. draws from the
initial parameter distribution) at the two states is given by: Cov [πθ(s), πθ(s′)] = K(s, s′) ∈ Rd×d.
Thus, the kernel corresponding to the chosen architecture (and hence the parameter initialization)
gives rise to action correlations across the state-space. Below, we show an example of this struc-
ture in a policy with one (infinitely wide) hidden layer and ReLU activation, for its simplicity and
popularity in the literature.

Note that these properties are complementary to that of the fixed policy, whose architecture is
typically Lipschitz, implying the ballistic trajectories discussed above.

2.4. Case Study: ReLU Network and the Induced State Distribution

For ReLU networks with Gaussian weight initialization, the infinite-width kernel is given by:

K(s, s′) =
σ2
w

π
|s||s′| (sin θ + (π − θ) cos θ) + σ2

b , (1)

where cos θ = ⟨s,s′⟩
|s||s′| . This kernel is not stationary (i.e. it does not only depend on a radial distance

between inputs), and induces a diffusion term that grows with |s|2. Thus, far from the origin,
exploration becomes more diffuse. Stationary kernels (e.g. Radial Basis Functions [2]) depending
on |s− s′| on the other hand would result in constant diffusion coefficient, which may be of interest
in some environments.

In the special case of the one hidden layer, infinitely wide ReLU, we take weights and biases
drawn from centered Gaussians with variance σw, σb, respectively. In this case, the policy is mean
zero and has diffusion coefficient K(s, s) = Σ(s) = σ2

b +
σ2
w
π ∥s∥2. For the simplest linear dynamics

st+1 = st + π(st), we can model the stochastic policy as a random walk in state space. In the
continuous time (equivalently “small action”) limit, the Fokker-Planck equation can be employed
to study the dynamical distribution p(s, t) over state space:

∂p

∂t
= −µ⊤

0 ∇p+
1

2
∇2 : (Σ(s)p), (2)

which in the long-time limit (assuming stationarity) can be written as:

∇2

[(
σ2
b +

σ2
w

π
∥s∥2

)
p∞(s)

]
= 0.

With radial symmetry p∞(s) = f(r), r = ∥s∥, we obtain the solution:

f(r) ∝
(
σ2
b +

σ2
w · r2

π

)−d/2

∼ 1

rd
. (3)

This describes a heavy-tailed stationary distribution (resembling Cauchy or power-law distribu-
tions) and is normalizable if σb > 0. Note that as σ2

b → 0, the tails become increasingly heavy, and
exploration is more likely to reach distant regions of state space.
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2.5. Experiments

Unsurprisingly, an agent’s exploration behavior depends on the nature of its policy parameteriza-
tion. To demonstrate our theoretical results, we show that ballistic or diffusive motion can be con-
trolled via policy “resets”. As illustrated in Figure 3, placing a barrier in state space with a narrow
hallway drastically reduces the likelihood of uniformly exploring state space (i.e., passing through
the hallway). Ballistic trajectories, generated by a fixed MLP (red), often do not pass through
the hallway: they follow straight paths, and small errors result in failed exploration. In contrast,
the trajectories from policy networks that are re-initialized at every step (green) exhibit diffusive,

Figure 3: Exploration through a narrow hall-
way. Ballistic trajectories from a fixed MLP
struggle to pass through the barrier; stepwise re-
initialization produces overly-diffusive motion,
while a hybrid strategy leverages both behaviors
for efficient exploration.

fat-tailed distributions that will eventually (but
slowly) explore across the barrier. A hybrid
switching strategy, where a fixed MLP is used
for the first n steps before switching to per-step
re-initialization, captures both the initial linear
drift and later diffusion, enabling more effec-
tive exploration in this scenario. Within the lin-
ear regime, choosing a value of n ≪ L−1

π (cf.
Lemma 1) ensures that trajectories will escape
the initial state, while n > 2∆/δ can ensure that
agents reach the states of interest (e.g. those a dis-
tance ∆ from the origin) before diffusing. Study-
ing this tradeoff with a more quantitative defini-
tion of “exploration” in more complex environ-
ments is the focus of future work. The policy re-
set can also be done stochastically with increasing
probability, based on agent observations, which
may be especially relevant in the deep RL setting,
perhaps providing additional insight to the [13].

3. Discussion

In this work, we explored how the architecture
and initialization of policy networks can shape
the exploration dynamics of reinforcement learn-
ing agents. By modeling untrained policies as
draws from Gaussian Processes (GPs) in the infinite-width limit, we demonstrated that distinct
neural architectures and parameterizations implicitly induce nontrivial priors over agent behavior.
For simple dynamics models, these behaviors are analytically tractable, giving insight into the ex-
ploration distribution. These priors manifest themselves as specific patterns in trajectory geometry,
ranging from ballistic drift to heavy-tailed diffusive exploration.

Our analysis showed that Lipschitz continuity in deterministic policy networks leads to smooth,
directional (ballistic) trajectories which may limit early exploration. In contrast, policies sampled
at each timestep from an architectural prior induce highly stochastic (but structured) trajectory dis-
tributions. We studied these trajectories in the continuous-time limit, employing a Fokker–Planck
equation, revealing a connection between a network’s kernel and steady-state distribution. We found
that ReLU-based policies generate quasi-Cauchy state distributions in free space, encouraging broad
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exploration. Notably, the magnitude and shape of the induced kernel dictate the correlation be-
tween actions at different states, determining whether trajectories are locally consistent or rapidly
de-correlating, when using the per-step policy sampling scheme.

These findings suggest a new lens for understanding exploration. Rather than a process to
be tuned through learning or incentivized via external bonuses, one can envisage exploration as
an architectural and initialization design problem. By tailoring policy architectures to match the
topology or reward sparsity of a target environment, one can influence early-stage exploration “zero-
shot”. Future work will study the relationship to resetting parameters during training [12], which
may have the additional benefit of improving exploration ability. This discussion aligns with a
broader incentive to align network architectures with environments, an area in deep reinforcement
learning that has not yet been explored.
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Appendix

We first provide a useful inequality for obtaining our main result, Lemma 1, first focusing on the
case of Ls = 1:

Lemma 5 The sequence of inequalities

ϵt+1 ≤ ϵt + kt (4)

has iterates that are upper bounded by ϵt ≤ kt2/2 + ϵ0.

Proof The proof is straightforward by induction. For the base case, note that ϵ0 ≤ k(0)2/2 + ϵ0.
From the inductive hypothesis,

ϵt+1 ≤ ϵt + kt

≤ kt2

2
+ ϵ0 + kt

=
k(t2 + 2t)

2
+ ϵ0

=
k(t+ 1)2 − k

2
+ ϵ0

=
k(t+ 1)2

2
+ ϵ0 −

k

2

≤ k(t+ 1)2

2
+ ϵ0

which is the form of iterate (t+ 1), thus completing the proof.

When Ls ̸= 1, the recursive form is instead controlled by an exponential behavior, Lt
s:

Lemma 6 The sequence of inequalities

ϵt+1 ≤ Aϵt + kt (5)

has iterates that are upper bounded by ϵt ≤ ktA
t−1

A−1 + ϵ0.

Proof The proof is similar to that of Lemma 5, except that a factor of A is accumulated at each step
in a geometric series.

We now prove Lemma 1:
Proof First, denote s̃t = ct+s0, the linear approximation of the trajectory. We examine the iterates
of the error, ϵt

.
= |st − s̃t| to verify the bound presented in the lemma.

ϵt+1 = |st+1 − s̃t+1| (6)

= |f(st, πθ(st))− f(s̃t, c)| (7)

= |f(st, πθ(st))− f(st, c) + f(st, c)− f(s̃t, c)| (8)

≤ |f(st, πθ(st))− f(st, c)|+ |f(st, c)− f(s̃t, c)| (9)

≤ La|πθ(st)− πθ(s0)|+ Ls|st − s̃t| (10)

≤ LaLπ|st − s0|+ Lsϵt (11)

≤ LaLπδt+ Lsϵt (12)
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Several notes are in order: In the last three lines we (a) made the substitution of c = πθ(s0) as an
estimate of the mean velocity, (b) used the Lipschitz property of the neural network πθ, and (c) used
the locality of dynamics iteratively to bound the distance in state-space. For (c), we have iterated
the bound in Assumption 1 for multiple timesteps, making use of the triangle inequality.

Note that for (a), this choice leads naturally to the desired result and is easy to compute (once the
first action is drawn, the estimate of the drift is complete). However, it may not lead to the tightest
bounds in practice. Empirically, we have found that using a mean of actions along the trajectory can
smooth out the estimate for velocity, somewhat improving the bound. Similar steps can be taken
to arrive at a linear upper bound, using that e.g. |πθ(st) − ⟨πθ(st)⟩| < gε. where g is a geometric
factor and ε is the diameter of a ball over which the average ⟨πθ(st)⟩ is computed. In any case, the
resulting bound is linear.

Using Lemma 5, we see that ϵt ≤ δLaLπt
2/2, neglecting the initial error term ϵ0 = 0 (since

at t = 0 we have the correct state s̃0 = s0 and there is no approximation). Ensuring the error does
not accumulate past the linear prediction (δLaLπt

2/2 < ct) results in the upper bound on timesteps
presented in the main text.

When considering Ls ̸= 1, Lemma 6 applies and there are two distinct cases: (1) If Ls < 1
the dynamics are contractive, and trajectories remain roughly linear (∝ t(1 − e−t/τ )) beyond a
timescale τ = lnLs. Intuitively, this should be expected since a Lipschitz constant less than unity is
subsumed by the weaker case of Ls = 1. (2) If Ls > 1 the dynamics are explosive and trajectories
exponentially separate (∝ t(et/τ − 1)). Although a large global Lipschitz constant Ls > 1 may be
required from a theoretical standpoint, in practical settings, much of state-space may be governed
by relatively small local Lipschitz constants Ls ≲ 1, making (sub)trajectories more well-behaved
than naı̈vely expected by this worst-case analysis.
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