
HiLD 2025: 3rd Workshop on High-dimensional Learning Dynamics

Exploration Behavior of Untrained Policies

author names withheld

Under Review for the Workshop on High-dimensional Learning Dynamics, 2025

Abstract
Exploration remains a fundamental challenge in reinforcement learning (RL), particularly in envi-
ronments with sparse or adversarial reward structures. In this work, we study how the architecture
of deep neural policies implicitly shapes exploration before training. We theoretically and empiri-
cally demonstrate strategies for generating ballistic or diffusive trajectories from untrained policies
in a toy model. Using the theory of infinite-width networks and a continuous-time limit, we show
that untrained policies return correlated actions and result in non-trivial state-visitation distribu-
tions. We discuss the distributions of the corresponding trajectories for a standard architecture,
revealing insights into inductive biases for tackling exploration. Our results establish a theoretical
and experimental framework for using policy initialization as a design tool to understand explo-
ration behavior in early training.

1. Introduction

Effective exploration is crucial for reinforcement learning agents operating in high-dimensional or
sparse-reward environments. While much focus has been placed on designing explicit exploration
bonuses or strategies, we shift attention to a more implicit source of exploration: the architecture of
the policy network. Importantly, studying the effect of policy architecture does not necessitate the
training of additional networks [3], or the introduction of exploration-dependent rewards [7, 12].

Untrained policies are responsible for determining the initial data distribution from which deep
RL agents begin training. We hypothesize that the choice of architecture and initialization distribu-
tion implicitly determines the entropy and geometry of exploration in state space. As a step toward
understanding this phenomenon, we provide initial theoretical and experimental results to support
this hypothesis. We leverage the infinite-width theory and a continuous-time limit to understand
random policy behavior in a toy model with corresponding simulations.

Contributions: Our results are as follows: we first show that fixed policies lead to ballistic
trajectories (where correlations and smoothness in the network dominate), before demonstrating
that random policy initializations at each step can be used to generate diffusive trajectories with
heavy-tailed steady-state distributions. Lastly, we show that combining these methods can lead to
interesting effects, providing new pathways for structured exploration in deep RL.

Related Work: The exploration problem in RL has been studied from many angles [5], but
combining with analytically tractable models of deep RL appears to be novel. The infinite-width
limit [4, 9] and analysis of the Fokker-Planck equation, which characterize our results have also
proven to be fruitful avenues of research. Our work is also somewhat related to the vast research
on neural architecture search (NAS) which attempts to optimize policy architecture directly [15],

© .

EXPLORATION BEHAVIOR OF UNTRAINED POLICIES

e.g. for better exploration strategies, which we instead approach through the lens of closed-form
solutions.

2. Background

2.1. Reinforcement Learning

As we focus on the effects of untrained policies, we only need the basic and usual definitions: a state
space, S , action space A, deterministic transition dynamics (a function mapping state and action to
successor-state) f : S × A → S. Let πθ : S → A be a policy represented by a feedforward neural
network with parameters θ ∈ Rn randomly initialized according to some specified scheme (e.g.
Xavier-Glorot). We will not introduce any (intrinsic or exploration-dependent) reward functions and
instead focus on the reward-free Markov processes that govern the agent’s data collection processes.

Operating in the policy-based RL setting, the network πθ (whose initialization effects we study)
is trained to maximize returns (e.g. REINFORCE [14], TRPO [10], PPO [11]). Value-based algo-
rithms related to DQN may yield similar results, but the additional non-linear mapping from value
to policy space can complicate the analysis, and is left to future work.

2.2. Smooth Networks Yield Ballistic Trajectories

For short times, sufficiently smooth neural networks can induce trajectories with a dominating drift
term: “ballistic motion”. Loosely speaking, the structure of a neural net induces similar outputs
(actions) for nearby states, and when compounded with smooth dynamics, this results in agents
with very smooth (non-diffuse) trajectories. This result is visualized in Figures 1 and 2 and is
formulated precisely below.

Assumption 1 (Transition Dynamics Locality) The environment dynamics are “local”: there ex-
ists a δ > 0 such that for all s ∈ S and successor states s′ = f(s, ·) the gap between two successive
states is upper-bounded |s′ − s| < δ.

Lemma 1 (Short-Time Ballistic Behavior of Lipschitz Neural Policies) Let πθ : Rd → Rd be a
stochastic policy sampled from a neural network prior, such that the realized sample function is
Lπ-Lipschitz. Let the dynamics satisfy Assumption 1 for some δ > 0, and define the deterministic
linear dynamics:

st+1 = st + πθ(st).

Let the constant c = πθ(s0) denote the initial action. Then for any initial state s0 the agent’s
trajectory approximately follows the straight-line path ct, up to a bounded error:

∥st − ct∥ ≤ 1

2
δLπt

2.

Remark 2 Although the previous lemma holds for all times, a linear approximation holds only
for short timescales, t ≪ 1

δLπ
, beyond which, deviations caused by curvature (resulting from non-

linearities in the deep neural net) become large enough to significantly affect the effective mean
velocity, c.

2

EXPLORATION BEHAVIOR OF UNTRAINED POLICIES

The Lipschitz constant of a neural policy can be computed [1, 6, 13] or roughly bounded a priori
to make Lemma 1 implementable. Although the assumptions and structure of the above dynamics
appear limiting, they provide a starting point to develop intuition for exploration behaviors. We
will focus on generalizing these results in future work. Since the same neural network is often
used at the beginning of training (e.g. to fill up a replay buffer), a (frozen) policy will not supply
diverse trajectories. As an alternative, we will now consider initializing a new policy (from a fixed
distribution, say) and study its effects on the agent’s trajectories.

Figure 1: Though trajectories can
change direction (as evidence in the plot
on the right), on short timescales, the
trajectories can be well-approximated
with linear drift.

Figure 2: Standard MLPs
used for deep RL (with two
hidden layers, 256 hidden
nodes, ReLU activation) pro-
duce ballistic trajectories.

2.3. Random Policy Networks as Gaussian Processes

Rather than a single policy generating an entire trajectory (as is typically the case), we seek to obtain
a more diffusive (and hence potentially more exploratory) trajectory distribution. To this end, the
control policy πθ is now re-sampled sequentially:

Definition 3 (Trajectory Under a Random Policy Ensemble) Let Tθ = {s0, s1, . . . , sT } denote
a trajectory generated by:

st+1 = f (st, πθt(st)) , θt ∼ Pθ

where each θt is independently drawn from the initialization distribution Pθ, and πθt is the corre-
sponding deterministic policy network.

With this setup, we can leverage the following closed-form expression for the policy in the
infinite-width limit (cf. also Eq. 1 of [8] and surrounding discussion for more details):

Theorem 4 (Neal [9], Infinite-Width Limit as Gaussian Process) Let πθ be a feedforward neural
network with nonlinear activation ϕ(0) = 0 (e.g., ReLU or Tanh), and i.i.d. weights and biases,
with zero mean. In the limit as the width of all hidden layers tends to infinity, the distribution over
functions πθ converges to a Gaussian Process:

πθ
d−→ GP(0,K(s, s′)),

where K is an architecture-dependent kernel.

3

EXPLORATION BEHAVIOR OF UNTRAINED POLICIES

The GP then produces an action covariance when a fresh policy is sampled at each timestep: let
s, s′ ∈ S, then the covariance between actions at two states is given by: Cov [πθ(s), πθ(s′)] =
K(s, s′) ∈ Rd×d. Thus, the kernel corresponding to the chosen architecture (and choice of parame-
ter initialization) is responsible for giving structure to action correlations across state-space. Below,
we show an example of this structure in a policy with one (infinitely wide) hidden layer and ReLU
activation, for its simplicity and popularity in the literature.

Note that these effects are complementary to that of a single policy, whose architecture is typi-
cally Lipschitz, implying ballistic trajectories, as shown above.

2.4. Case Study: ReLU Networks and Induced Kernels

For ReLU networks with Gaussian weight initialization, the infinite-width kernel is given by:

K(s, s′) = σ2
w

1

π
|s||s′| (sin θ + (π − θ) cos θ) + σ2

b , (1)

where cos θ = ⟨s,s′⟩
|s||s′| . This kernel is not stationary but is radial and induces a diffusion term that

grows with |s|2. Thus, far from the origin, exploration becomes more diffuse. Stationary kernels
(e.g. Radial Basis Functions [2]) depending on |s − s′| on the other hand would result in constant
diffusion coefficient, which may be of interest in some environments.

In the special case of the one hidden layer, infinitely wide ReLU, we take weights and biases
drawn from centered Gaussians with variance σw, σb, respectively. In this case, the policy is mean
zero and has diffusion coefficient K(s, s) = Σ(s) = σ2

b +
σ2
w
π ∥s∥2. For the simplest linear dynamics

st+1 = st + π(st), the stochastic policy induces a random walk in state space that can be modeled
by a Fokker-Planck equation:

∂p

∂t
= −µ⊤

0 ∇p+
1

2
∇2 : (Σ(s)p), (2)

which in the long-time limit (assuming stationarity) can be written as:

∇2

[(
σ2
b +

σ2
w

π
∥s∥2

)
p∞(s)

]
= 0.

With radial symmetry p∞(s) = f(r), r = ∥s∥, we obtain the solution:

p∞(s) ∝
(
σ2
b +

σ2
w

π
∥s∥2

)−d/2

. (3)

This describes a heavy-tailed stationary distribution (resembling Cauchy or power-law distribu-
tions) and is normalizable if σb > 0. Note that as σ2

b → 0, the tails become increasingly heavy, and
exploration is more likely to reach distant regions of state space.

2.5. Experiments

Exploration behavior depends strongly on the nature of the policy architecture. As illustrated in
Figure 3, placing a barrier in state space with a narrow hallway drastically changes the likeli-
hood of successful exploration. Ballistic trajectories, generated by a fixed MLP (red), often do not
pass through the hallway: they follow straight paths, and even small errors result in failed explo-
ration. In contrast, trajectories from networks re-initialized at every step (green) exhibit diffusive,

4

EXPLORATION BEHAVIOR OF UNTRAINED POLICIES

Figure 3: Exploration through a narrow hall-
way. Ballistic trajectories from a fixed MLP
struggle to pass through the barrier; stepwise re-
initialization produces overly-diffusive motion,
while a hybrid strategy leverages both behaviors
for efficient exploration.

fat-tailed distributions that may slowly explore
across the barrier. A hybrid switching strategy,
where a fixed MLP is used for the first n steps be-
fore switching to per-step re-initialization, captur-
ing both initial momentum and later diffusion, en-
abling more effective exploration in this challeng-
ing scenario. Choosing a value of n ≪ (δLπ)

−1

(cf. Lemma 1) ensures that trajectories will lin-
early escape the initial state, while n > 2∆/δ
can ensure trajectories reach states of interest (a
distance ∆ from the origin). Studying this trade-
off in more complex environments is the focus of
future work.

3. Discussion

In this work, we explored how the architecture
and initialization of policy networks can shape
the exploration dynamics of reinforcement learn-
ing agents. By modeling untrained policies as
draws from Gaussian Processes (GPs) in the
infinite-width limit, we demonstrated that dis-
tinct neural architectures and parameterizations
implicitly induce nontrivial priors over agent be-
havior. For simple dynamics models, these be-
haviors are analytically tractable, giving insight into the exploration distribution. These priors man-
ifest themselves as specific patterns in trajectory geometry, ranging from ballistic drift to heavy-
tailed diffusive exploration.

Our analysis showed that Lipschitz continuity in deterministic policy networks leads to smooth,
directional (ballistic) trajectories which may limit early exploration. In contrast, policies sampled
at each timestep from an architectural prior induce highly stochastic (but structured) trajectory dis-
tributions. We studied these trajectories in the continuous-time limit, employing a Fokker–Planck
equation, revealing a connection between a network’s kernel and steady-state distribution. We found
that ReLU-based policies generate quasi-Cauchy state distributions in free space, encouraging broad
exploration. Notably, the magnitude and shape of the induced kernel dictate the correlation be-
tween actions at different states, determining whether trajectories are locally consistent or rapidly
de-correlating, when using the per-step policy sampling scheme.

These findings suggest a new lens for understanding exploration. Rather than a process to be
tuned through learning or incentivized via external bonuses, one can envisage exploration as an ar-
chitectural and initialization design problem. By tailoring policy architectures to match the topology
or reward sparsity of a target environment, one can influence early-stage exploration “zero-shot”.
This discussion aligns with a broader incentive to align network architectures with environments,
an area in deep reinforcement learning that has not yet been explored.

5

EXPLORATION BEHAVIOR OF UNTRAINED POLICIES

References

[1] Aritra Bhowmick, Meenakshi D’Souza, and G Srinivasa Raghavan. Lipbab: Computing exact
lipschitz constant of relu networks. In Artificial Neural Networks and Machine Learning–
ICANN 2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slo-
vakia, September 14–17, 2021, Proceedings, Part IV 30, pages 151–162. Springer, 2021.

[2] Martin Dietrich Buhmann. Radial basis functions. Acta numerica, 9:1–38, 2000.

[3] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. arXiv preprint arXiv:1810.12894, 2018.

[4] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31,
2018.

[5] Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforce-
ment learning: A survey. Information Fusion, 85:1–22, 2022.

[6] Fabian Latorre, Paul Rolland, and Volkan Cevher. Lipschitz constant estimation of neural
networks via sparse polynomial optimization. arXiv preprint arXiv:2004.08688, 2020.

[7] Sam Lobel, Akhil Bagaria, and George Konidaris. Flipping coins to estimate pseudocounts
for exploration in reinforcement learning. In International Conference on Machine Learning,
pages 22594–22613. PMLR, 2023.

[8] Lassi Meronen, Martin Trapp, and Arno Solin. Periodic activation functions induce stationar-
ity. Advances in Neural Information Processing Systems, 34:1673–1685, 2021.

[9] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 2012.

[10] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889–
1897. PMLR, 2015.

[11] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[12] Adrien Ali Taiga, William Fedus, Marlos C Machado, Aaron Courville, and Marc G Belle-
mare. On bonus-based exploration methods in the arcade learning environment. arXiv preprint
arXiv:2109.11052, 2021.

[13] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis
and efficient estimation. Advances in Neural Information Processing Systems, 31, 2018.

[14] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8:229–256, 1992.

[15] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

6

EXPLORATION BEHAVIOR OF UNTRAINED POLICIES

Appendix

We first prove a useful inequality for obtaining our main result, Lemma 1.

Lemma 5 The sequential inequality
ϵt+1 ≤ ϵt + kt (4)

has iterates upper bounded by ϵt ≤ kt2/2 + ϵ0.

Proof The proof is straightforward by induction. For the base case, note that ϵ0 ≤ k(0)2/2 + ϵ0.
From the inductive hypothesis,

ϵt+1 ≤ ϵt + kt

≤ kt2

2
+ ϵ0 + kt

=
k(t2 + 2t)

2
+ ϵ0

=
k(t+ 1)2 − k

2
+ ϵ0

=
k(t+ 1)2

2
+ ϵ0 −

k

2

≤ k(t+ 1)2

2
+ ϵ0

which is the form of iterate (t+ 1), thus completing the proof.

We now prove Lemma 1:
Proof First, denote s̃t = ct+s0, the linear approximation of the trajectory. We examine the iterates
of the error, ϵt

.
= |st − s̃t| to verify the bound presented in the lemma.

ϵt+1 = |st+1 − s̃t+1| (5)

= |st+1 − s̃t − c| (6)

= |st + πθ(st)− s̃t − c| (7)

≤ |st − s̃t|+ |πθ(st)− c| (8)

≤ ϵt + |πθ(st)− c| (9)

≤ ϵt + |πθ(st)− πθ(s0)| (10)

≤ ϵt + Lπ|st − s0| (11)

≤ ϵt + δLπt (12)

(13)

Several notes are in order: In the last three lines we (a) made the substitution of c = πθ(s0) as an
estimate of the mean velocity, (b) used the Lipschitz property of the neural network πθ, and (c) used
the locality of dynamics iteratively to bound the distance in state-space. For (c), we have iterated
the bound in Assumption 1 for multiple timesteps, making use of the triangle inequality.

7

EXPLORATION BEHAVIOR OF UNTRAINED POLICIES

Note that for (a), this choice leads naturally to the desired result and is easy to compute (once the
first action is drawn, the estimate of the drift is complete). However, it may not lead to the tightest
bounds in practice. Empirically, we have found that using a mean of actions along the trajectory can
smooth out the estimate for velocity, somewhat improving the bound. Similar steps can be taken
to arrive at a linear upper bound, using that e.g. |πθ(st) − ⟨πθ(st)⟩| < gε. where g is a geometric
factor and ε is the diameter of a ball over which the average ⟨πθ(st)⟩ is computed. In any case, the
resulting bound is linear.

Using Lemma 5, we see that ϵt ≤ δLπt
2/2, neglecting the initial error term ϵ0 = 0. Ensuring

the error does not accumulate past the linear prediction results in the upper bound on timesteps
presented in the main text.

8

	Introduction
	Background
	Reinforcement Learning
	Smooth Networks Yield Ballistic Trajectories
	Random Policy Networks as Gaussian Processes
	Case Study: ReLU Networks and Induced Kernels
	Experiments

	Discussion

