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Learning Dual Enhanced Representation for Contrastive
Multi-view Clustering

Anonymous Authors

ABSTRACT
Contrastive multi-view clustering is widely recognized for its ef-
fectiveness in mining feature representation across views via con-
trastive learning (CL), gaining significant attention in recent years.
Most existing methods mainly focus on the feature-level or/and
cluster-level CL, but there are still two shortcomings. Firstly, feature-
level CL is limited by the influence of anomalies and large noise
data, resulting in insufficient mining of discriminative feature rep-
resentation. Secondly, cluster-level CL lacks the guidance of global
information and is always restricted by the local diversity infor-
mation. We in this paper Learn dUal enhanCed rEpresentation for
Contrastive Multi-view Clustering (LUCE-CMC) to effectively ad-
dresses the above challenges, and it mainly contains two parts, i.e.,
enhanced feature-level CL (En-FeaCL) and enhanced cluster-level
CL (En-CluCL). Specifically, we first adopt a shared encoder to learn
shared feature representations between multiple views and then
obtain cluster-relevant information that is beneficial to the cluster-
ing results. Moreover, we design a reconstitution approach to force
the model to concentrate on learning features that are critical to
reconstructing the input data, reducing the impact of noisy data and
maximizing the sufficient discriminative information of different
views in helping the En-FeaCL part. Finally, instead of contrasting
the view-specific clustering result like most existing methods do,
we in the En-CluCL part make the information at the cluster-level
more richer by contrasting the cluster assignment from each view
and the cluster assignment obtained from the shared fused fea-
tures. The end-to-end training methods of the proposed model are
mutually reinforcing and beneficial. Extensive experiments con-
ducted on multi-view datasets show that the proposed LUCE-CMC
outperforms established baselines to a considerable extent.

CCS CONCEPTS
• Computing methodologies→ Cluster analysis.

KEYWORDS
Deep multi-view clustering, contrastive learning, representation
learning

1 INTRODUCTION
In the era of Industry 4.0 and the global spread of big data, multi-
view clustering (MVC) [8, 10–12] has received extreme attention
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from scholars due to its ability to capture the relationships among
different views or modals of the same object. Existing MVC meth-
ods have made important breakthroughs in fields such as 3D ob-
ject recognition [16], pedestrian captioning [17] and object detec-
tion [6].

Contrastive MVC [23, 26, 30, 33] methods have gained lots of at-
tention due to its excellent performance in clustering via contrastive
learning (CL). It can not only effectively solve the challenges of
multi-view clustering, but also ensure that global information can
be explored without destroying the internal structure of the data.
Xue et al. [30] proposed to use contrastive learning to regularize
intra- and inter-data correlation that is beneficial to the clustering
task to the greatest extent. However, this approach ignores features
that only appear in a specific view and contribute to the clustering
task. Wang et al. [23] utilized the relationships in each view to elim-
inate noise in the data by selecting positive and negative samples
for graph CL on a unified graph. This method uses graph CL to
learn public feature representations to the greatest extent, but CL
is susceptible to the influence of abnormal data, and lacks global
information guidance in the cluster-level CL process, reducing the
diversity of perspective information. With the help of deep learning
and end-to-end training, contrastive MVC performance has been
significantly improved. The most existing contrastive MVC meth-
ods mainly focus on feature-level and cluster-level CL, but there
are still two challenges.

The first is that feature-level CL is sensitive to anomalies and
high levels of noise. These anomalies and noise data have a par-
ticular impact on the feature space because they may distort the
true distribution of the data, resulting in insufficient mining of
discriminative feature representation. This lowers the upper limit
of mining useful information for clustering tasks between views.
The second is that cluster-level CL lacks consideration of global in-
formation. Because cluster-level CL often focuses on local features
or differences between relatively independent data clusters, models
may not fully capture and exploit global structure and information
across different views or sources. The limitations of this method
may result in the diversity and richness of information not being
fully exploited, which in turn affects the final clustering quality.

To address the above challenges, we Learn dUal enhanCed rEp-
resentation for Contrastive Multi-view Clustering (LUCE-CMC).
LUCE-CMC lies in two critical enhancements: enhanced feature-
level contrastive learning (En-FeaCL) and enhanced cluster-level
contrastive learning (En-CluCL). The dual enhanced representation
manifests itself in En-FeaCL through the augmentation of latent fea-
ture representation via feature alignment and reconstitution. While
En-CluCL achieves an enhanced clustering structure through the
utilization of a shared representation. First, our method adopts a
shared encoder, aiming to maximize the extraction of shared feature
representations in multi-view data, laying the foundation for a com-
prehensive understanding of the inherent characteristics of the data.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Subsequently, feature alignment is implemented to enhance the sim-
ilarity between different data samples, thereby significantly enhanc-
ing the model’s robustness in processing the input data. Nonethe-
less, feature alignment is somewhat limited by view-specific infor-
mation. To mitigate this, we employ autoencoders, leveraging their
unique reconstruction mechanism to force the model to prioritize
learned features necessary for accurate reconstruction of the input
data. This method can effectively remove view-specific features,
thereby promoting En-FeaCL to learn sufficient discriminative fea-
ture representations. Furthermore, unlike previous cluster-level CL
methods, our method performs contrastive learning by contrasting
the cluster assignments of different views with the assignments
obtained from the fused features. Throughout the end-to-end learn-
ing process, all component modules of the LUCE-CMC framework
are collaboratively optimized to ensure enhanced collaboration and
ultimately superior clustering results. This dual enhanced repre-
sentation method not only ensures the robustness and adaptability
of the model when dealing with complex data, but also emphasizes
the importance of sufficient discriminative features.

The main contributions are as follows:

• We propose a novel LUCE-CMC method, which effectively
mines feature representations related to clustering tasks and
removes redundant information harmful to clustering tasks
in an end-to-end manner.

• A new enhanced feature-level CL module has been designed,
which combines the concepts of feature alignment and recon-
stitution to force the model to focus on learning features that
are critical for reconstructing the input data. By doing so, it
effectively mitigates the impact of noisy data and maximizes
the learning of sufficient discriminative information.

• A novel enhanced cluster-level CL mechanism is proposed to
enhance cluster representation and increase the diversity of
contrastive samples and make full use of the fused high-level
features to better capture the similarities and differences
between data.

• Experimental evaluations conducted on various challenging
multi-view datasets demonstrate the superior performance
of the proposed approach over several traditional MVCmeth-
ods and state-of-the-art deep MVC methods.

2 RELATEDWORK
In this part, we introduce the related works on contrastive learning
and deep multi-view clustering.

2.1 Contrastive Learning
In the field of self-supervised learning, contrastive learning has
received increasing attention, playing an important role in promot-
ing the advancements across a myriad of application areas. This
approach distinguishes itself by leveraging the intrinsic structure
of data without reliance on explicit labels, facilitating a deeper
understanding and representation of data characteristics. Chen et
al. [3] pioneered a method wherein an augmented version of the
original datum serves as the positive sample, while all other data
points within the dataset are treated as negative samples, thereby
enhancing the discriminative capacity of the model. By extending

the utility of contrastive learning, Hu et al. [7] synergistically com-
bined it with a robust Gaussian mixture model, thereby augmenting
the precision and efficacy of text clustering methodologies. Xu et
al. [29] worked by integrating instance-level contrastive learning
with multi-scale graph convolutional networks, significantly enrich-
ing the depth and accuracy of clustering tasks pertinent to image
data. This evolution underscores the transformative potential of
contrastive learning in the self-supervised learning, fostering a
more comprehensive exploitation of unlabeled data across various
domains.

2.2 Deep Multi-view Clustering
Deep multi-view clustering uses the powerful feature extraction
and representation learning capabilities of deep learning models
to effectively reduce the dimensionality of data, while filtering out
noise and improving the accuracy and robustness of clustering.
On the one hand, deep MVC is superior to traditional multi-view
clustering because it uses a deep neural network to more effectively
mine and explore potential information between different views,
and at the same time can solve high-dimensional data problems.
On the other hand, it is better than single-view clustering, because
the single-view object information described by the data is very
limited and ignores additional important information.

To name a few, Chen et al. [4] ingeniously integrated the prin-
ciples of federated learning with the objective of extracting com-
plementary clustering architectures from a group of clients. This
innovative approach not only facilitates the identification of syn-
ergistic cluster configurations across diverse data sources but also
adeptly addresses the prevailing challenges associated with data in-
completeness and the safeguarding of privacy. By expanding upon
the paradigm of multi-dimensional data analysis, Wang et al. [24]
architect a triadic rank contrastive learning framework. This sophis-
ticated model is predicated on the exhaustive elicitation of salient
information across three hierarchical layers. By doing so, it sys-
tematically uncovers and leverages intricate patterns within data,
thereby significantly improving the effectiveness of information
retrieval and data interpretation processes. By contributing to the
advancement of adaptive learning methodologies, Wang et al. [25]
introduced a new deep sparse regularizer learning mechanism. This
model distinguishes itself by its capacity to autonomously derive
data-driven sparse regularizers, thereby optimizing the representa-
tion and processing of data.

3 THE PROPOSED METHOD
3.1 Problem Formulation
Consider a multi-view learning scenario with𝑚 discrete random
variables {𝑋 1, 𝑋 2, . . . , 𝑋𝑚} observed from𝑚 different input views.
Each data sample X𝑖 = {𝑥𝑖1, 𝑥

𝑖
2, . . . , 𝑥

𝑖
𝑛} ∈ R𝑛×𝑑

𝑖
consists of 𝑛 obser-

vations in the 𝑖-th view, where 𝑑𝑖 is the feature dimension, and 𝑛 is
the number of data samples in each view. Each observation 𝑥𝑖

𝑗
∈ R𝑑𝑖

is a vector with 𝑑𝑖 dimensions. Each view is treated as a discrete
random variable 𝑋 𝑖 , denoted by the index 𝑖 . The aim of LUCE-CMC
is to learn dual enhanced representation for feature-level CL im-
provement with alignment and reconstitution, and cluster-level CL
improvement using shared representation. During the end-to-end
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Figure 1: The framework of LUCE-CMC method. First, with the input multi-view data {𝑋 𝑖 }𝑚
𝑖=1, the feature representation

of each view {𝐻 𝑖 }𝑚
𝑖=1 is obtained through parameter sharing encoder, then enhanced feature-level CL (En-FeaCL) through

feature alignment and reconstitutionmethod are imposed. Afterwards, the feature representation {𝐻 𝑖 }𝑚
𝑖=1 feeds into En-CluCL

mechanism, which contrasts the cluster assignments obtained from fused features with the assignments from each view. Thus
the global information is compressed to the greatest extent, promoting complementarity and diversity at the cluster-level.
Finally more satisfactory clustering results are obtained.

learning process, all modules within the LUCE-CMC framework
are optimized collaboratively to ensure improved cooperation and
superior clustering outcomes.

3.2 Overall Framework
Figure 1 shows the overall framework of our proposed model, in-
cluding enhanced feature-level CL (En-FeaCL), and cluster-level
CL (En-CluCL) mechanism, and deep divergence-based clustering
(DDC) module. En-FeaCLmechanism consists of feature contrastive
alignment and reconstitution module. The feature contrastive align-
ment and reconstitution module ensure global information explo-
ration without compromising internal data structure. En-CluCL
mechanism conducts contrastive learning between cluster assign-
ments obtained from the fused features with assignment from each
view, leveraging rich fused features for increased diversity and
improved contrast performance. DDC module utilizes clustering
space structure to enhance the compactness of similar samples and
separability of dissimilar samples during optimization.

3.3 Enhanced Feature-level Contrastive
Learning Mechanism

By observing that most existing feature-level CL based methods are
sensitive to noise, we design an enhanced feature-level contrastive
learning (En-FeaCL) mechanism, which includes feature alignment
and reconstruction model.

Feature alignment can more effectively explore global informa-
tion without destroying the internal structure of the data. When

facing multi-view data input, feature alignment can enhance the
similarity between different samples and improve the robustness of
the model to the input data. By using contrastive learning to achieve
feature alignment, the model can be prompted to learn richer and
more representative feature representations that better capture the
intrinsic structure and similarities of the data. Therefore the loss
function is

L𝑎𝑙𝑖 =
1
𝑛

𝑛∑
𝑖=1

1(𝑚
2
) 𝑚∑
𝑢=1

𝑚∑
𝑣=𝑢+1

1𝑢≠𝑣𝑙
𝑢𝑣
𝑖 , (1)

where 1𝑢≠𝑣 takes the value of 1 when the constraint 𝑢 ≠ 𝑣 is
satisfied. 𝑙𝑢𝑣

𝑖
is defined as

𝑙𝑢𝑣𝑖 = −E
[
log

𝑒𝑠
𝑢𝑣
𝑖𝑖

(ℎ𝑢
𝑖
,ℎ𝑣

𝑖
)/𝜏1∑

𝑠′∈𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑎𝑚𝑝𝑙𝑒 (ℎ𝑢
𝑖
,ℎ𝑣

𝑖
) 𝑒𝑠

′/𝜏1

]
, (2)

where 𝜏1 denotes the temperature hyperparameter of feature align-
ment, and 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑎𝑚𝑝𝑙𝑒 (ℎ𝑢

𝑖
, ℎ𝑣

𝑖
) indicates the collection of all

negative sample pair similarities. The cosine similarity 𝑠𝑢𝑣
𝑖 𝑗

(ℎ𝑢
𝑖
, ℎ𝑣

𝑗
)

of two feature representations ℎ𝑢
𝑖
and ℎ𝑣

𝑗
refers to

𝑠𝑢𝑣𝑖 𝑗 (ℎ
𝑢
𝑖 , ℎ

𝑣
𝑗 ) =

(ℎ𝑢
𝑖
)𝑇ℎ𝑣

𝑗

∥ℎ𝑢
𝑖
∥ · ∥ℎ𝑣

𝑗
∥ . (3)

However, in the process of feature alignment, a major challenge
we face is how to effectively eliminate or minimize view-specific
information in the data. This often prevents the model from learn-
ing common feature representations with higher generalization
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ability from different views. The autoencoder uses its unique recon-
struction mechanism to force the model to concentrate on learning
those features that are crucial to reconstructing the input data (i.e.,
feature representation {𝐻 𝑖 }𝑚

𝑖=1). This is crucial to achieve high-
quality feature alignment, as the success of feature alignment relies
heavily on the ability to effectively express features from different
data sources. On the one hand, it ignores those features that only
appear in specific viewpoints and has limited contribution to the
clustering task. On the other hand, it is possible to automatically
extract useful and compact feature representations from the data.
In short, reconstruction mechanism not only improves the quality
of feature representation, but also promotes the optimization of
the feature alignment process, which is beneficial to enhance the
learning of more potential representations of multi-view data.

We use mean square error (MSE) loss to implement the reconsti-
tution idea. The loss function is:

L𝑟𝑒𝑐𝑜𝑛 =
1
𝑚

𝑚∑
𝑖=1

| |X𝑖 − X̃𝑖 | |2, (4)

where 𝑋 𝑖 represents the original input, �̃� 𝑖 = 𝜇 (𝐻 𝑖 ) represents the
predicted value obtained by reconstructing the feature representa-
tion 𝐻 𝑖 through the autoencoder network 𝜇 (·).

The loss of enhanced feature-level contrastive learning function
is:

L𝐸𝑛−𝐹𝑒𝑎𝐶𝐿 = L𝑎𝑙𝑖 + L𝑟𝑒𝑐𝑜𝑛 . (5)

Unlike Shu et al. [20], our method involves first deriving the fea-
ture representation {𝐻 𝑖 }𝑚

𝑖=1 via an encoder from {𝑋 𝑖 }𝑚
𝑖=1, followed

by feeding {𝐻 𝑖 }𝑚
𝑖=1 into an autoencoder to reconstruct the data

{�̃� 𝑖 }𝑚
𝑖=1. In contrast, Shu et al. [20] feed the original data {𝑋 𝑖 }𝑚

𝑖=1
directly into the autoencoder. This method is limited by the com-
plex, high-dimensional nature of multi-view data, hindering the
model’s ability to discern inherent data patterns. Consequently,
our method’s feature representation {𝐻 𝑖 }𝑚

𝑖=1 effectively captures
the data’s deep features and essential attributes. Additionally, this
ensures that {𝐻 𝑖 }𝑚

𝑖=1 retains sufficient information for data recon-
struction, indirectly validating the effectiveness and completeness
of our feature extraction model.

3.4 Enhanced Cluster-level Contrastive
Learning Mechanism

In existing multi-view contrastive learning methods, cluster-level
contrastive learning (CluCL) based MVC methods have gained lots
of attention. Cluster assignments are obtained through multi-layer
perceptron networks and activation functions, and cluster assign-
ments between different views are contrasted and learned. It can
effectively improve the distinction of learned features. But exist-
ing methods heavily depend on the quality of clustering. If the
clustering results are inaccurate, it may lead to learning wrong
or inaccurate feature representations. With this as motivation, we
propose an Enhance cluster-level CL (En-CluCL) mechanism. We
further enhance the effectiveness of feature representation by con-
trasting the cluster assignments between different views with that
of the fused features. With the fused features as the dominant ones,
cluster-level CL are more comprehensive and efficient, mitigating
the impact of single-view bias. Compared with previous methods,

the En-CluCL module can capture more comprehensive data fea-
tures and improve the complementarity at the clustering level. This
complementarity helps to improve the accuracy of clustering and
the richness of feature representation.

Specifically, we contrast the obtained perspective features {𝑌 𝑖 }𝑚
𝑖=1

with the fused features 𝑄 . Our method introduces an additional
representation space during the mapping process. This represen-
tation space allows us to compare label-level and fused high-level
features. We can use Eq. (3) to get the cosine similarity 𝑠𝑢

𝑖 𝑗
(𝑞𝑖 , 𝑦𝑢𝑗 )

between two features in𝑄 and {𝑌 𝑖 }𝑚
𝑖=1. The loss function is written

as

L𝐸𝑛−𝐶𝑙𝑢𝐶𝐿 =
1
2

𝑚∑
𝑢=1

1𝑢≠𝑣𝑙
𝑢 − 𝑌 (𝑄), (6)

where 𝑌 (𝑄) represents the entropy of the cluster assignment prob-
abilities, 𝑌 (𝑄) = ∑𝑚

𝑖=1
∑𝑐

𝑗=1 (
1
𝑁

∑𝑁
𝑘=1 𝑦

𝑖
𝑘 𝑗
) log( 1

𝑁

∑𝑁
𝑘=1 𝑦

𝑖
𝑘 𝑗
) calcu-

lates the entropy of the fused feature 𝑄 . The first term in Eq. (6) is
responsible for learning the consistency across clusters from differ-
ent modalities, while the second term is used for regularization, in
order to avoid trivial solutions. 𝑙𝑢 is defined as

𝑙𝑢 = −1
𝑟

𝑟∑
𝑖=1

log
𝑒𝑠 (𝑞𝑖 ,𝑦

𝑢
𝑖
)/𝜏2∑𝑟

𝑗=1 (𝑒
𝑠 (𝑞𝑖 ,𝑦𝑢𝑗 )/𝜏2 )

, (7)

where 𝜏2 represents the temperature hyperparameter of the En-
CluCL mechanism.

3.5 Deep Divergence-based Clustering Module
Since the K-Means clustering algorithm can only handle data with
a single perspective and cannot effectively fit nonlinear data, we
use the deep divergence-based clustering (DDC) method. The DDC
divergence-based metric is used as the clustering criterion, by max-
imizing divergence principle is used to measure the differences
between data distributions to achieve more accurate data cluster-
ing.

DDC losses consist of three main components. The first term is
a generalized version of Cauchy-Schwartz divergence, which mea-
sures the divergence between cluster centers and data distributions.
The second term ensures that the vectors of clustering results are
orthogonal. Finally, the third term introduces geometric structure
into the Cauchy-Schwartz divergence, helping to prevent trivial
solutions from being learned. By fusing these three terms, DDC loss
can effectively optimize the clustering results of multi-view non-
linear data while taking into account the distribution differences
between them. The overall function of DDC loss is given by

L𝐷𝐷𝐶 =
1
𝑘

𝑘−1∑
𝑖=1

∑
𝑗>𝑖

𝜇𝑇
𝑖
E𝜇 𝑗√

𝜇𝑇
𝑖
E𝜇𝑖𝜇𝑇𝑗 E𝜇 𝑗

+ 𝑡𝑟𝑖𝑢 (𝐶𝑇𝐶)

+ 1
𝑘

𝑘−1∑
𝑖=1

∑
𝑗>𝑖

𝛾𝑇
𝑖
E𝛾 𝑗√

𝛾𝑇
𝑖
E𝛾𝑖𝛾𝑇𝑗 E𝛾 𝑗

.

(8)

The equation calculates the DDC loss using various terms. Here,
𝑘 is the total count of clusters, while E signifies a matrix derived
using the Gaussian kernel. The term 𝜇𝑖 is the column vector from
the clustering outcome 𝐶 . Furthermore, 𝛾𝑖 is identified as the 𝑖-th
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Algorithm 1 The proposed algorithm
Input: Multi-view dataset {𝑋 𝑖 }𝑚

𝑖=1; number of clusters 𝑐
Parameter: Hyperparameters 𝛼 , 𝜏1, 𝜏2; learning rate 𝛾

Output: The label predictor 𝐶
1: Initialize the neural network parameters{𝜃𝑖 }𝑚

𝑖=1.
2: while not converge do
3: Extract view-specific representations {𝐻 𝑖 }𝑚

𝑖=1 by sharing
view-specific encoders.

4: Enhanced feature-level contrastive learning:
5: Compute the feature contrastive alignment loss Eq. (1).
6: Compute the reconstitution loss Eq. (4).
7: Compute the En-FeaCL loss Eq. (5).
8: Compute the En-CluCL loss Eq. (6).
9: Compute the DDC loss by Eq. (8).
10: Optimize the overall loss Eq. (9) by adam optimizer and back-

propagation.
11: end while
12: return 𝐶

column vector from the matrix𝑈𝑎𝑏 = 𝑒𝑥𝑝 (− ∥ 𝛼𝑎 − 𝑒𝑏 ∥2), with 𝑒𝑏
being the simplex’s 𝑏-th vertex. The expression 𝑡𝑟𝑖𝑢 (𝐶𝑇𝐶) denotes
the summation of the elements in the upper triangular portion of
the matrix.

3.6 Optimization
The models we proposed promote each other in an end-to-end
training manner and achieve mutual benefit to achieve our goals.
By jointly optimizing the model, satisfactory clustering results are
obtained. The overall loss of this model is

L𝑡𝑜𝑡𝑎𝑙 = L𝐷𝐷𝐶 + 𝛼L𝐸𝑛−𝐹𝑒𝑎𝐶𝐿 + (1 − 𝛼)L𝐸𝑛−𝐶𝑙𝑢𝐶𝐿 . (9)

where 𝛼 is the trade-off parameter of contrastive learning in the
overall loss. Algorithm 1 provides a comprehensive overview of
the proposed framework, offering a detailed and structured repre-
sentation of the computational steps involved in the algorithmic
process.

3.7 Connection with Information Bottleneck
Theory

Information bottleneck methods [9, 31] aim to identify key data fea-
tures by minimizing the compression information and maximizing
the preserved information. Yan et al. [32] applied the information
bottleneck concept to multimodal clustering, treating it as a two-
stage data compression process across heterogeneous modalities.
The information bottleneck methodology is based on two key con-
cepts: "compression" and "preservation".

"Compression" involves reducing the information that represents
input data. This process aims to extract a refined data representation
with reduced information content, yet retaining the original data’s
key features. Our En-FeaCL mechanism leverages view-specific
encoders and autoencoders for reconstructing and extracting global
features from each view. This method transforms raw and high-
dimensional data into a compact and low-dimensional feature space.
This process aligns with the information bottleneck theory, aiming

to remove redundant information from a multi-view perspective.
It also ensures the preservation of critical information, enhancing
data efficacy and relevance for downstream tasks.

"Preservation" in data compression ensures that information cru-
cial to output variables or task goals is retained. This principle states
that the compressed representationmust retain enough information
to enable accurate predictions, like clustering outcomes, despite
data compression. Our En-CluCL mechanism enhances the accu-
racy of cluster-level contrastive learning. This enhancement comes
from comparing cluster assignments across different views with
fused features. En-CluCL optimizes the retention of key features
in fused representations, enriching the information content vital
for clustering tasks. Essentially, En-CluCL upholds the information
preservation principle, satisfying data compression needs while
maintaining the accuracy and effectiveness of clustering outcomes.

4 EXPERIMENTS
4.1 Datasets
We evaluate our proposed method on five challenging multi-view
datasets.Caltech [5] dataset contains 1440 samples from seven clus-
ters. The dataset provides five feature processing methods, namely
WM, CENTRIST, LBP, GIST and HOG. We consider each of these
features as a modality with increasing viewing angle to evaluate
the robustness of the proposed method. CCV [14] dataset contains
6773 video samples and 20 types of classes. The three views of this
dataset are SIFT, STIP, and MFCC. The details of the dataset are
shown in Table 1.

4.2 Evaluation Metrics
In our experiments, we employ two widely recognized metrics:
accuracy (ACC) and normalized mutual information (NMI). ACC
measures the consistency of prediction results with real labels,
while NMI assesses the similarity between clustering results and
real labels. Higher values for both metrics indicate better model
performance.

4.3 Baselines
In order to further verify the superiority of the proposed method,
we used a total of eighteen baseline methods for comparative
experiments, including two classic single-view clustering meth-
ods (KM (K-Means), Ncuts (Normalized Cuts)), two full single-
view clustering methods (AvKM (All-view K-Means), AvNcuts

Table 1: Details about the multi-view datasets

Dataset Type Views Dimensionality

Caltech-2V image 2 40, 254
Caltech-3V image 3 40, 254, 928
Caltech-4V image 4 40, 254, 928, 512
Caltech-5V image 5 40, 254, 928, 512, 1984

CCV video 3 5000, 5000, 4000
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Table 2: Clustering results in terms of ACC and NMI on the multi-view datasets.

Methods Caltech-2V Caltech-3V Caltech-4V Caltech-5V CCV
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

KM 41.6 30.5 46.3 31.3 54.6 46.7 57.4 49.1 19.4 17.6
Ncuts 39.9 31.2 42.6 25.4 67.8 47.6 74.1 58.0 21.6 17.8
AvKM 46.4 31.4 46.9 31.5 44.9 30.6 45.1 30.2 12.4 5.6
AvNcuts 42.8 25.2 43.7 25.5 41.8 24.9 43.3 25.4 18.5 12.3

CoregMVSC (2011) 49.2 39.6 54.4 45.3 64.9 54.5 71.2 61.9 19.0 17.2
RMKMC (2013) 51.4 33.5 59.5 49.4 65.5 60.3 71.1 61.9 20.5 19.0
SwMC (2017) 34.2 26.6 30.2 23.1 43.7 44.2 34.3 34.5 10.7 0.4
ONMSC (2020) 57.4 45.6 58.2 56.8 62.3 66.1 62.4 67.4 12.2 5.8
SMVSC (2021) 49.9 37.1 54.8 43.3 60.1 53.3 68.8 64.6 20.6 16.3

MvSCN (2019) 45.0 35.0 67.7 61.3 56.6 64.3 77.4 78.0 11.1 4.4
EAMC (2020) 41.9 25.6 38.9 21.4 29.6 16.5 31.8 17.3 26.3 26.7

MVC-VAE (2020) 39.9 28.1 70.8 58.5 71.4 61.7 60.6 56.0 10.4 0.04
DEMC (2021) 39.4 22.2 38.7 27.0 48.4 39.7 47.6 35.9 12.5 7.4
SiMVC (2021) 50.8 47.1 56.9 50.4 61.9 53.6 71.9 67.7 14.1 11.6
CoMVC (2021) 46.6 42.6 54.1 50.4 56.8 56.8 70.0 68.7 29.5 28.7
MFLVC (2022) 60.6 52.8 63.1 56.6 73.3 65.2 80.4 70.3 28.1 30.1
SPDMC (2023) 46.9 34.0 51.4 40.5 66.5 60.9 86.0 77.6 10.8 6.0
DIVIDE (2024) 58.2 52.9 60.9 53.8 64.3 57.9 64.6 60.4 16.4 11.1

LUCE-CMC 64.7 53.1 75.6 63.4 80.6 70.0 88.6 82.2 34.3 32.4

(All-view Normalized Cuts)), five traditional multi-view cluster-
ing methods (CoregMVSC [15], RMKMC [1], SwMC [19], ON-
MSC [36], SMVSC [21]), and nine deep multi-view clustering meth-
ods (MvSCN [13],EAMC [35],MVC-VAE [34],DEMC [27], SiMVC
and CoMVC [22],MFLVC [28], SPDMC [2], DIVIDE [18]).

4.4 Implementation Details
Our experimental platform operates on the Windows 10 operating
system, leveraging a robust configuration featuring 24GB of sys-
tem memory and a high-performance NVIDIA GeForce RTX 3090
GPU. The hyperparameters 𝜏1 and 𝜏2 have been meticulously con-
figured with values of 0.1 and 1.0, respectively. We ran 20 runs on
all datasets, and the proposed models all reached convergence after
100 epochs. In order to mitigate the risk of the proposed method
encountering local minima during the training process, a strate-
gic approach was employed. The reported clustering results were
based on the attainment of the lowest clustering loss, serving as
a safeguard against convergence to suboptimal solutions [22, 35].
Our approach includes a transformer module with a multi-head
attention mechanism featuring eight heads. We implemented the
model using PyTorch and optimized it with the Adam optimizer,
using default parameters and a learning rate of 0.001. The archi-
tecture consists of three fully connected layers, each with a ReLU
activation function. The output dimensions of the layers are 512,
512, and 256, respectively.

4.5 Clustering Performance Analysis
Table 2 presents the clustering efficacy of the LUCE-CMC method
across five publicly accessible datasets. For the Caltech dataset,

we generally believe that as the view increases, the clustering ef-
fect should get better. This improvement is because the amount
of information about the target object has increased, which will
theoretically help the clustering process. In short, the more views
we look at things, the more comprehensive information we obtain,
and the accuracy of clustering will naturally increases. Neverthe-
less, such an expected improvement in clustering performance is
conspicuously absent when observing the outcomes of the SwMC
and DEMC methods within the Caltech-5V dataset, in contrast to
the Caltech-4V dataset. This discrepancy underscores the dataset’s
potential in more efficaciously validating the robustness of the
clustering method as the number of viewpoints escalates.

Furthermore, the LUCE-CMC method’s clustering performance
surpasses that of the MVC methodologies reported and compared.
This superiority is indicative of the LUCE-CMC method’s ability to
exploit the enhanced feature-level contrastive learning mechanism
for extracting, to the greatest extent possible, feature represen-
tations between views that benefit downstream clustering tasks.
Additionally, the enhanced cluster-level contrastive learning mech-
anism illustrates the effectiveness of contrastive fusion features and
demonstrates its ability to collect high-quality, multi-view semantic
information. This clustering result highlights the critical role that
the LUCE-CMC approach plays in improving the clustering perfor-
mance through the synergistic application of contrastive learning
concepts to multi-view data processing.

4.6 T-SNE Visualization Analysis
Figure 2 illustrates the superior clustering efficacy of our proposed
methodology through a comparative analysis with the optimal out-
comes derived from a total of 18 baseline methodologies, notably
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Figure 2: The visualization of features learned by the proposed method in the CCV dataset. The upper is CoMVC (second best)
method and the lower is LUCE-CMC method.
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Figure 3: The convergence curves on multi-view datasets.

CoMVC, alongside the LUCE-CMC, within the CCV dataset. This
visualization elucidates that the LUCE-CMC technique not only

augments the intra-cluster compactness, thereby enhancing homo-
geneity within clusters, but also significantly amplifies the inter-
cluster separation, thus ensuring a distinct demarcation between
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Table 3: Ablation study on the multi-view datasets.

L𝐷𝐷𝐶 L𝐸𝑛−𝐹𝑒𝑎𝐶𝐿 L𝐸𝑛−𝐶𝑙𝑢𝐶𝐿 Caltech-2V Caltech-3V Caltech-4V Caltech-5V CCV
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

✓ 28.6 18.6 32.4 27.7 30.5 20.1 32.7 24.6 12.6 9.2
✓ ✓ 48.9 45.1 64.8 51.0 48.9 44.1 63.1 55.1 17.7 14.0
✓ ✓ 63.2 51.7 65.0 60.0 77.1 66.0 75.2 67.3 29.9 28.3
✓ ✓ ✓ 64.7 53.1 75.6 63.4 80.6 70.0 88.6 82.2 34.3 32.4

dissimilar clusters. This dual enhancementmechanism facilitated by
the LUCE-CMC approach underscores its robustness in achieving
a more precise and efficient clustering performance.

4.7 Ablation Study
Table 3 substantiates the efficacy of individual components within
the LUCE-CMC. Initially, employing solely the DDC clustering
module yields limited success in fully exploiting the feature repre-
sentations across different views. This limitation is attributed to the
DDC module’s intrinsic focus on single-view clustering dynamics,
which does not fully leverage the comprehensive and diverse per-
spectives offered by multi-view data. However, the subsequent inte-
gration of the En-FeaCL and En-CluCL modules marks a significant
enhancement in clustering performance. The holistic optimization
of these components culminates in a substantial improvement in
clustering efficacy.

4.8 Convergence Analysis
Figure 3 describes the convergence trajectories for the overall loss
function, ACC and NMI metrics across diverse dataset configura-
tions, including Caltech-2V, Caltech-3V, Caltech-4V, Caltech-5V,
and CCV dataset. The graphical representation clearly demonstrates
that the convergence for all three metrics stabilizes post the 60-
epoch threshold. This observation underscores the efficacy of the
algorithmic iterations in reaching a balancing state, thereby indi-
cating a robust model training process that ensures consistency in
performance metrics across multiple dataset variations.

4.9 Parameter Analysis
To examine the sensitivity of the hyperparameter𝛼 , Figure 4 presents
a detailed analysis through a curve progression illustration on the
typical Caltech-5V and CCV dataset due to space limit. Notably,
the curve elucidates a distinct apex, signifying the maximum value
point of hyperparameter 𝛼 . This critical juncture is indicative of
the optimal balance between various components of the model, har-
monizing their contributions to the overall clustering performance.
Consequently, the hyperparameter value corresponding to this
pinnacle is selected as the optimal choice for our model. This selec-
tion process exemplifies a data-driven approach to hyperparameter
optimization as existing deep multi-view clustering methods do.
Additionally, it is clearly seen that for the two datasets it is simple
to select a satisfactory result with a wide range of hyperparameters,
i.e., [0.1, 0.4].
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Figure 4: Clustering performance on ACC and NMI values
of the proposed LUCE-CMCmethodwith different values of
hyperparameter 𝛼 , i.e., {0.1, 0.2, 0.4, 0.6, 0.8, 0.9}, on the typical
multi-view Caltech-5V and CCV dataset.

5 CONCLUSION
In this paper, we introduce a novel approach by Learning dUal
enhanCed rEpresentation for Contrastive Multi-view Clustering
(LUCE-CMC), which effectively explores and mines potential infor-
mation between multi-view data that is inherently beneficial for
clustering tasks. Our proposed model includes feature-level with
enhanced latent feature representation via feature alignment and
reconstitution, and cluster-level with enhanced clustering structure
via shared representation. First, we note that feature-level CL is con-
strained by noise in data, leading to inadequate mining of potential
features affecting the feature space. The newly-designed En-FeaCL
aims to significantly improve feature representation quality, align-
ing with the objectives of effective clustering. Second, we introduce
a new enhanced cluster-level CL model, leveraging high-level fea-
ture fusion to accurately identify similarities and differences among
data points across views. By exploiting the above data relationships,
LUCE-CMCmethod achieves refined and effective clustering perfor-
mance. Extensive experiments show that LUCE-CMC significantly
outperforms existing traditional and deep MVC methods. These
results highlight our framework’s potential into more multi-modal
applications.

In the future work, we plan to focus on more challenging con-
trastive multi-view clustering problem, particularly the partial (i.e.,
missing or damaged data samples across different views), unpaired
(unaligned data samples in multiple views), or trusted (reliable
clustering results with different trustworthy scores) contrastive
multi-view clustering. These problems raised in various practical
scenarios in more recent years, and play important roles in the
multi-view/modal processing community. Additionally, we will at-
tempt to address more practical applications, such as multi-modal
medical analysis, multi-modal human action recognition, multi-
view visual analysis and cross-media sentimental analysis.
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