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ABSTRACT

Continuous offline reinforcement learning (CORL) combines continuous and of-
fline reinforcement learning, enabling agents to learn multiple tasks from static
datasets without forgetting prior tasks. However, CORL faces challenges in bal-
ancing stability and plasticity. Existing methods, employing Actor-Critic struc-
tures and experience replay (ER), suffer from distribution shifts, low efficiency,
and weak knowledge-sharing. To address these issues, we first compare AC-based
offline algorithms with Decision Transformer (DT) within the CORL framework.
DT offers advantages in learning efficiency, distribution shift mitigation, and zero-
shot generalization but exacerbates the forgetting problem during supervised pa-
rameter updates. We introduce multi-head DT (MH-DT) and low-rank adaptation
DT (LoRA-DT) to mitigate DT’s forgetting problem. MH-DT stores task-specific
knowledge using multiple heads, facilitating knowledge sharing with common
components. It employs distillation and selective rehearsal to enhance current
task learning when a replay buffer is available. In buffer-unavailable scenarios,
LoRA-DT merges less influential weights and fine-tunes DT’s decisive MLP layer
to adapt to the current task. Extensive experiments on MoJuCo and Meta-World
benchmarks demonstrate that our methods outperform SOTA CORL baselines and
showcase enhanced learning capabilities and superior memory efficiency.

1 INTRODUCTION

Continuous offline reinforcement learning (CORL) (Gai et al., 2023) is an innovative paradigm that
merges the principles of continuous learning with offline reinforcement learning. CORL aims to
empower agents to learn multiple tasks from static offline datasets and swiftly adapt to new, unknown
tasks. A central and persistent challenge in CORL is the delicate balance between plasticity and
stability (Khetarpal et al., 2022). On one hand, the reinforcement learning policy must preserve
knowledge and prevent forgetting of historical tasks (stability). On the other hand, it should exhibit
the ability to rapidly adapt to new tasks (plasticity).

Existing methods predominantly integrate offline algorithms based on actor-critic structures with
continual learning techniques (Gai et al., 2023), with rehearsal-based methods (Lopez-Paz & Ran-
zato, 2017; Chaudhry et al., 2018) being the most commonly employed. However, these methods en-
counter several challenges, including multiple distribution shifts, suboptimal learning efficiency, and
limited knowledge-sharing capabilities. These distribution shifts manifest in three forms. Firstly,
there is a distribution shift between the behavior policy and the learning policy inherent to AC-based
offline algorithms. Secondly, distribution shifts occur between the offline data from different tasks,
leading to catastrophic forgetting. Lastly, distribution shifts between the learned policy and the
saved replay buffer which result in performance degradation in previous tasks during the rehearsal
process. Regarding knowledge-sharing capabilities, while the relevance of the Q function in related
tasks has been established (Niekerk et al., 2019), these methods merely introduce behavioral clones
to the actor which shares few knowledge since the actor’s objective is to maximize the Q value.

To solve the above problems, we first rethink the process of CORL by comparing an AC-based
offline RL algorithm with Decision Transformer (DT) (Chen et al., 2021), another offline RL
paradigm. The results underscore several advantages of DT, including heightened learning effi-
ciency, bypassing distribution shift of offline learning, and superior zero-shot generalization capa-
bilities. However, the forgetting issue of DT is more serious, manifested by a rapid decline in perfor-
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mance after switching tasks. This heightened sensitivity to distribution shifts between time-evolving
datasets is attributed to DT’s training using supervised learning and updating all parameters.

In order to retain the advantages of DT and solve the more serious problem of catastrophic forget-
ting, we propose multi-head DT (MH-DT) and low-rank adaptation DT (LoRA-DT). MH-DT uses
multiple heads to store task-specific knowledge and share knowledge with common parts, to avoid
the catastrophic forgetting problem caused by all parameters being changed when the dataset distri-
bution shift occurs. Besides, using the structural characteristics of the transformer and the feature
that DT will benefit from training on close tasks we propose an additional distillation objective and
selective rehearsal module to improve the learning effect of the current task. To solve the CORL
problem when the replay buffer is not allowed – for example, in real-world scenarios where data
privacy matters (Shokri & Shmatikov, 2015), inspired by Lawson & Qureshi (2023) that explored
the similarities and differences of each module in the DT structure under multi-task situations, we
proposed LoRA-DT that merges weights that have little impact for knowledge sharing and fine-
tunes the decisive MLP layer in DT blocks with LoRA to adapt to the current task. This method also
avoids substantial performance deterioration with a smaller buffer size (Cha et al., 2021).

Extensive experiments on MuJoCo (Todorov et al., 2012) and Meta-World (Yu et al., 2020a) bench-
marks demonstrate that our methods outperform SOTA baselines in all CORL metrics. Our DT-
based methods also show other advantages including stronger learning ability and more memory-
efficient. The main contributions of this paper can be summarized as four folds:

• We propose that compared to the offline RL methods employing the Actor-Critic structure, meth-
ods utilizing DT as the foundational model are better suited for addressing the CORL problem
and point out the advantages of DT and problems that need to be solved by rethinking the CORL
process with decision transformer. To the best of our knowledge, we are the first to propose using
DT as an underlying infrastructure in CORL setting.

• When the replay buffer is available, we propose MH-DT to solve the problem of catastrophic
forgetting and avoid the problem of low learning efficiency by distillation and selective rehearsal.

• We proposed LoRA-DT that uses weights merging and low-rank adaptation to avoid catastrophic
forgetting and save memory by saving the fine-tuned updated matrix when buffer is unavailable.

• We experimentally demonstrate that our methods outperform prior CORL methods, perform better
learning capability and are more memory-efficient.

2 RELATED WORK

Offline reinforcement learning. Offline reinforcement learning allows policy learning from data
collected by arbitrary policies, increasing the sample efficiency of RL. The key issues in offline
reinforcement learning are distributional shift and value overestimation. Some prior works pro-
pose to constrain the learned policy towards the behaviour policy by adding KL-divergence (Peng
et al., 2021; Nair et al.; Wang et al., 2020), MSE (Dadashi et al., 2021), or the regularization of
the action selection (Kumar et al., 2019). Other works (Yu et al., 2020b; 2021) propose to train
a dynamic model to predict the values of OOD samples in a supervised learning way. However,
all these methods are based on AC structure, and their final performance depends on the accuracy
of Q-value estimation. These methods cannot achieve good results in offline continuous reinforce-
ment learning since it’s difficult to obtain accurate estimates when distribution shifts and there is
no obvious relationship between the actor-network of different tasks. Recently, Chen et al. (2021)
proposed Decision Transformer(DT) to solve offline reinforcement learning problems by casting
RL problem as conditional sequence modelling. DT demonstrates superior learning efficiency com-
pared to AC-structured algorithms. In this paper, we propose that DT is more suitable for offline
continuous reinforcement learning scenarios, use DT as a backbone network and focus on solving
its catastrophic forgetting problem.

Continual Reinforcement Learning. Continual learning is a challenging and important problem
in machine learning, where the goal is to enable a model to learn from a stream of tasks without
forgetting the previous ones. Generally, continual learning methods can be classified into three
categories (Parisi et al., 2019): regularization-based approaches (Kirkpatrick et al., 2017; Zenke
et al., 2017) add a regularization term to prevent the parameters from far from the value learned
from past tasks; modular approaches (Fernando et al., 2017; Mallya & Lazebnik, 2018) consider
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fixed partial parameters for a dedicated task; and rehearsal-based methods (Chaudhry et al., 2018;
Lopez-Paz & Ranzato, 2017) train an agent by merging the data of previously learned tasks with
that of the current task. These methods mainly considered online reinforcement learning. In CORL
problem setting, Gai et al. (2023) demonstrated that Experience Replay (ER), a rehearsal-based
method, is the most effective. However, ER methods need to consider the stability-plasticity trade-
off. The previous ER method was mainly based on AC structure and focused more on stability. As
a result, there are too many tasks that need to be reviewed later in the learning process, resulting
in failure to achieve good results in subsequent tasks. In this paper, we propose MH-DT, a method
that applies a modular approach and experience replay method to DT, plus distillation objective
and selective rehearsal for better plasticity. Then, considering the characteristics of DT in handling
multi-tasks, we propose a new DT-based continuous learning method referred to as LoRA-DT, that
uses weight merging to share knowledge and saves LoRA matrices to avoid forgetting.

3 RETHINKING CORL WITH DECISION TRANSFORMER

Below, we first review CORL problem setting and Decision Transformer. Then, we rethink the
process of CORL using DT and compare it with offline algorithms using AC structure.

3.1 PRELIMINARY

Continual Offline Reinforcement Learning In this paper, we investigate CORL, which learns
a sequence of RL tasks T = {T1, · · · , TN}. Each task Tn is described as a Markov Decision
Process (MDP) represented by a tuple of {S,A, Pn, ρ0,n, rn, γ}, where S is the state space, A is
the action space, Pn : S × A × S ← [0, 1] is the transition probability, ρ0,n : S is the distribution
of the initial state, rn : S × A ← [−Rmax, Rmax] is the reward function, and γ ∈ (0, 1] is the
discounting factor. We assume that sequential tasks have different Pn, ρ0,n and rn, but share the
same S,A, and γ for simplicity. The return is defined as the sum of discounted future reward
Rt,n =

∑H
i=t γ

(i−t)rn (si, ai), where H is the horizon. In an online RL setting, the experiences
e = (s, a, s′, r) can be obtained through environment interaction. However, in offline RL setting,
the policy πn(a | s) can only be learned from a static dataset Dn =

{
ein

}
, ein =

(
sin, a

i
n, s

′i
n, r

i
n

)
,

which is assumed to be collected by an unknown behavior policy πβ
n(a | s).

Decision Transformer (DT) for offline RL treats learning a policy as a sequential modeling prob-
lem. It proposes to model trajectories with state st, action at and reward-to-go r̂t tuples collected
at different time steps t. The reward-togo is the cumulative rewards from the current time step
till the end of the episode. Instead of including the one-step reward rt, this novel representation
helps guide action selection towards optimizing the return. At timestep t, Decision Transformer
takes a trajectory sequence τ autoregressively as input which contains the most recent K-step his-
tory τ = (r̂t−K+1, st−K+1, at−K+1, . . . , r̂t, st, at). When training with offline collected data,
r̂t =

∑T
i=t ri. During testing, r̂t = G⋆ −

∑t
i=0 ri where G⋆ is the targeted total return for an

episode. Each trajectory τ corresponds to 3K tokens in the standard Transformer model. To encode
the sequence timestep information, DT concatenates the same timestep embedding to the embed-
dings of st, at and r̂t. DT is trained to predict an action by minimizing mean-squared loss.

3.2 RETHINKING CORL WITH DECISION TRANSFORMER

We conduct experiments in the Cheetal-Vel environment, training Vanilla DT alongside an offline
algorithm TD3+BC (Fujimoto & Gu, 2021) based on the AC structure. We use six tasks and train
30K steps for each task as in Fig.1. We hope to explore the following two questions:

In CORL setting, what are the advantages of DT compared with AC structure algorithm?

• DT’s learning efficiency is higher than that of AC mode algorithms, and it can learn better-
performing policies with the same data quality. This is even more necessary in a continuous
learning setting, because in limited training steps, in addition to learning new tasks, operations
such as distillation also need to be performed to achieve knowledge transfer. Faster single-task
learning efficiency is more conducive to subsequent transfer.
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(a) Decision Transformer (b) TD3+BC

Figure 1: Performance on each task during continuous learning.

• DT exhibits a distinctive capability in task identification. Notably, when there is a shift in the train-
ing dataset, DT demonstrates an immediate adjustment in its performance, corresponding to the
change in tasks. This observation underscores its inherent ability for implicit task identification.
In contrast, offline algorithms tend to exhibit more erratic learning curves.

• The model’s performance can benefit from similar tasks (e.g. Performance on vel-26 keeps im-
proving since the current task is getting closer), which gives us the possibility to review selectively.

• DT has a powerful memory ability and generalization ability in disguise, which is exactly what we
need in the CORL setting. In steps 90K to 120K in Fig.1, DT has better zero-shot generalization
performance in several untrained tasks.

What problems do we need to solve when applying DT to CORL? DT can identify changes in
offline data distribution faster and quickly converge to a better policy under the new task, which
also means that the forgetting problem of DT is more serious. We attribute this to the fact that DT
is trained through supervised learning, and the vanilla DT updates all network parameters during
training. Therefore, DT with history trajectory τ as input can more accurately perceive changes in
the distribution of offline datasets, which are then reflected in changes in action output. In contrast,
AC-structured methods typically follow a two-step process. They initially correct the estimation
of Q value using temporal difference learning and subsequently adjust the parameters of the actor
network to maximize Q. This process renders AC-based methods less susceptible to changes in the
offline data distribution compared to DT. Simultaneously, DT’s superior zero-shot generalization
capability indicates its capacity for shared knowledge between tasks. Our objective, therefore, is to
preserve and harness this shared knowledge across tasks while concurrently updating and preserving
task-specific knowledge. This approach facilitates adaptation and guards against forgetting.

4 METHODOLOGY

Inspired by the above observation and analysis in Sec.3.2, we further propose MH-DT and LoRA-
DT, two new DT-based methods that leverage the strengths and solve DT’s more serious forgetting
problem within CORL setting when the replay buffer is available or not respectively.

4.1 MH-DT: REPLAY BUFFER BASED CORL

Prior rehearsal-based approaches utilize a multi-head policy network π and a Q-network Qn to learn
task Tn, which means, during learning, policy network π has two objectives: on the one hand, the
multi-head policy π is optimized for all current and previous tasks T1 to Tn, for action prediction;
on the other hand, the policy π is also used for updating the current Q-network Qn. This dual role
of the policy network can lead to a significant performance decline in the rehearsal phase. While
Gai et al. (2023) solves the inconsistency between the learning and the review objectives through
the introduction of an intermediate policy µn, it also presents a new challenge. Directly cloning
multiple action distributions into a multi-head policy is meaningless and unexplainable because
there is a correlation between the Q functions of different tasks, but no obvious relationship between
the policy networks, which are designed to maximize Q. Experiments demonstrate that although it
effectively learns a high-performing µn, π struggles to learn a policy that performs well on Tn as

4



Under review as a conference paper at ICLR 2024

review tasks increase. Additionally, the Rehearsal process can lead to performance degradation due
to a distribution shift between the saved trajectory and the learned policy.

Based on this analysis, we introduce Multi-Head Decision Transformer (MH-DT). This approach
leverages DT to circumvent the Q-function learning step, mitigating issues associated with inaccu-
rate Q-value estimation in offline settings. By employing supervised learning directly for training,
we eliminate the need to address the distribution shift between the learned policy and saved data.
Consequently, we can readily designate a portion of the prior offline dataset, Dn, as a replay buffer,
denoted as Bn. The schematic diagram of our proposed architecture is given in Fig.2. The inter-
mediate transformer module is used to learn shared environment knowledge, whose parameters are
denoted as θz . Each task possesses its dedicated head hn to store task-specific information whose
parameters are denoted as θn. Each head hn comprises two components: embedding layers and a
layer-norm layer before the common module, plus a linear network responsible for action prediction
following the common module. We denote πn as the network with combined parameters [θz, θn]
specific to task Tn for evaluation. π represents the entire MH-DT.
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Figure 2: Schematic diagram of MH-DT. The left part is the training process. We first learn a
separate policy µn, copy the parameters of the head part to head hn, then calculate the loss in
Eq.(6) through the data in replay buffer B1, . . . , Bn−1 and Dn, and update the corresponding head
and shared parameters. The upper right part is the structure of each head. The front part includes
embedding layers and a layer-norm layer, and the back part includes a linear layer for predicting
actions. The lower right part is the schematic diagram of task selection through cosine similarity.

Specifically, when training task Tn, we first train a DT policy µn separately and copy the parameters
in the head of µn directly to the corresponding head θn. Then, the entire MH-DT is updated by the
three-part objective. The first is the action prediction goal of DT.

Lpredict = Eτ∼Dn
(πn(τ)− atarget)

2 (1)

where τ is a trajectory sequence from Dn and atarget is the last action in τ . Secondly, we use a
distillation objective to force πn to be close to µn to enhance learning ability.

Ldistillation = Eτ∼Dn (πn(τ)− µn(τ))
2
+ Eτ∼Dn (Hπn −Hµn)

2 (2)

where Hπn , Hµn denote the hidden states of πn and µn networks respectively, which consist of
a sequence of hidden vectors. Such additional distillation loss from intermediate states has been
shown to improve results in distilling PLMs (Jiao et al., 2020). The last one is a rehearsal objective,
aiming to clone the previous experience in B1 to Bn−1.

Lrehearsal =
1

n− 1

n−1∑
j=1

Eτ∼Bj
(πj(τ)− a)

2 (3)

To address the decreased learning effect caused by multiple review tasks, we propose a selective
review mechanism, capitalizing on DT’s ability to benefit from training on similar tasks, as discussed
in Section 3.2. The task with the lowest similarity is most susceptible to forgetting during the current
task’s learning process, whereas tasks with greater similarity can benefit from the training on the
current task. Specifically, instead of reviewing all the previous tasks T1 to Tn−1, the similarity
between the previous tasks and the current task is measured, and only the K tasks with the smallest
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similarity [Ts1, . . . , Tsk ] are reviewed. We collect a batch of data from the current training data set
Dn, calculate the cosine similarity of the hidden states of each πj , j = {1, . . . , n − 1} and µn.
These similarities are then sorted, and the indices of the smallest k tasks are compiled into a list, S.

S = argsort([C1, . . . , Cn−1])[0 : K],where Cj = Eτ∼Dn
Cosine Similarity(Hπj

,Hµn
) (4)

K is a hyperparameter that determines the number of tasks that need to be reviewed. Then the
rehearsal objective in Eq.(3) can be written as:

Lrehearsal =
1

k

sk−1∑
j=s0

Eτ∼Bj (πj(τ)− a)
2 (5)

The total loss function for training the whole policy π is then,

Ltotal = Lpredict + λ1Ldistillation + λ2Lrehearsal (6)

where λ1 and λ2 are weights to balance the impact of distilling knowledge about the current task
and reviewing previous tasks.

4.2 LORA-DT: REPLAY BUFFER FREE CORL

In real-world scenarios, sometimes the replay buffer is not available due to reasons such as data
privacy. In order to solve this problem, we propose a method, LoRA-DT, based on the characteristics
of DT that does not require a replay buffer to avoid forgetting.

Lawson & Qureshi (2023) investigated the feasibility of directly merging the weights of Decision
Transformers (DTs) trained for different tasks to create a multi-task model. Their findings suggest
that, for sequential decision-making tasks, DTs rely less on attention and place more emphasis on
MLP layers. Low-Rank Adaptation (LoRA) (Hu et al., 2021) adds pairs of rank-decomposition
weight matrices (called update matrices) to existing weights and only trains those newly added
weights for efficient tuning and avoiding forgetting.
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Figure 3: Model architecture of LoRA-DT. In each block of DT, we first fuse and freeze the weights
of layers except the MLP layer as in Eq.(7), then use LoRA to fine-tune the MLP layer as in
Eq.(9). The rightmost picture is a schematic diagram of LoRA. We fix the original parameter matrix
W0,W1, multiply the two matrices AB to represent the update of the weight matrix, and add it to
the original calculation result.

Inspired by the weight property of DT and saved LoRA matrices can be used to avoid catastrophic
forgetting, we proposed LoRA-DT to fine-tune the MLP layer in each block of DT through Low-
rank adaptation and save the LoRA matrices AB of each task. The schematic diagram of our
proposed architecture is given in Fig.3. When rank r is small enough, saving the AB matrices is
significantly more memory efficient than saving the replay buffer, and has better ability to prevent
catastrophic forgetting. Specifically, when training the first task T1, we train a DT model π and
update all parameters in it. Then, when training Tn, n > 1, we first train a DT model µn separately,
and fuse all parameters except the MLP layer in each block with the current model π through:

θπ = (1− λ)θπ + λθµn (7)

where θ represents all parameters in DT except the MLP parameters of each block and λ is a weight
to balance the impact of the merge. Then, we fine-tune MLP layers using LoRA. The form of the
original MLP layer is:

MLP (X) = W1(RELU(W0X + b0)) + b1 (8)
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where W0 ∈ Rd×h and W1 ∈ Rh×d represent the weight of two linear layers, b is bias and X ∈
Rl×h is the input of MLP layer. h, d, l respectively represent the hidden dim of the transformer, the
inner dim of the MLP layer and the input token length. The form of fine-tuning using LoRA is as
follows:

MLP (X) = (W1 +B1A1)RELU((W0 +B0A0)X + b0) + b1 (9)
A0 ∈ Rr×h, B0 ∈ Rd×r, A1 ∈ Rr×d and B ∈ Rh×r are update matrices in which r is the
rank of LoRA and r << min(d, h). After training, we save the updated matrices Mn = k ∗
[A0,B0,A1,B1] for task Tn, where k is the number of blocks in DT. The space occupied by saving
update matrices for each task is 2 ∗ k ∗ r ∗ (h+ d). We only need to change the update matrices to
the corresponding Mi when evaluating task Ti.

5 EXPERIMENTS

5.1 SETUP

Baselines In our experiments, we mainly compare the current SOTA method OER and some DT
variants. Our baselines are as follows:

• OER (Gai et al., 2023): Use a trained model to select experience and a new dual behavior cloning
(DBC) architecture to avoid the disturbance of behavior-cloning loss on the Q-learning process. It
currently stands as the most proficient method within CORL setting.

• PDT (Prompt Decision transformer) (Xu et al.): A multi-task method based on DT. The multi-task
learning setting can obtain datasets on all tasks simultaneously so that does not suffer from the
catastrophic forgetting problem and can be seen as superior.

• Vanilla DT (Cha et al., 2021): We directly apply vanilla DT to the CORL setting for comparison,
in order to prove that our method can indeed reduce catastrophic forgetting.

Offline Sequential Datasets We consider four sets of tasks from widely-used continuous control
environments as in Gai et al. (2023) and Mitchell et al. (2020): Ant-Dir, Walker-Par, Cheetah-Vel
and Meta-World reach-v2. For each environment, we randomly sample six tasks to form sequential
tasks T1 to T6. To consider different data quality, we selected different time periods in the online
training buffer and obtained expert-quality data and middle-quality data as in Mitchell et al. (2020).

Metrics Following Lopez-Paz & Ranzato (2017), we adopt the average performance (PER), the
backward transfer (BWT) and forward transfer (FWT) as evaluation metrics,

PER =
1

N

N∑
n=1

aN,n,BWT =
1

N − 1

N−1∑
n=1

an,n − aN,n,FWT =
1

N − 1

N∑
n=2

an−1,n − b̄n (10)

where ai,j means the final cumulative rewards of task j after learning task i and b̄n means the test
performance for each task at random initialization. For PER, higher is better; for BWT, lower is
better; for FWT, higher is better. Lower BWT and higher FWT are preferred when similar PER.

See more details for datasets and metrics in Appendix.B.

5.2 OVERALL RESULTS

In this section, we list the performance metrics of all methods under four environments and two data
qualities in Table 1. In addition, we also drew the learning curve of each method to more intuitively
observe the learning efficiency and forgetting degree in Fig. 4. Due to space limitations, we show
the training curve of Walker Par in the text. See Appendix.C for all experiment results.

Consistently across tasks and data quality, MH-DT outperforms other algorithms for most test exper-
iments in metrics of PER and FWT while LoRA-DT performs outstandingly on the BWT, showing
its strong ability to avoid forgetting. Specifically, we can draw the following conclusions.

For the DT structure, all DT-based methods have higher FWT than AC-based method OER, indi-
cating that the DT structure has stronger zero-shot generalization ability when dealing with similar
tasks. In some environments such as Ant-Dir, Vanilla DT has a similar PER with OER, while having
significantly larger BWT, indicating a better learning effect and more serious catastrophic forgetting.
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Table 1: Performance of MH-DT and LoRA-DT compared with baselines

Dataset Quality Methods Ant-Dir Walker-Par Cheetah-Vel Meta-World reach-v2
PER BWT FWT PER BWT FWT PER BWT FWT PER BWT FWT

Middle

PDT 347.9 - - 540.2 - - -39.3 - - - - -
OER 193.6 125.6 -111.8 56.0 132.9 97.3 -113.8 43.8 85.1 - - -

Vanilla DT 146.7 248.7 102.2 380.9 166.1 331.9 -118.8 99.5 154.1 - - -
MH-DT 326.5 38.3 110.5 510.8 -32.0 314.2 -35.4 3.4 144.6 - - -

LoRA-DT 230.3 5.1 98.4 424.6 -2.5 321.1 -57.8 3.6 150.4 - - -

Expert

PDT 528.8 - - 537.2 - - -17.5 - - 532.3 - -
OER 126.0 260.7 -126.5 74.0 117.5 28.3 -201.9 35.1 -32.4 0.6 0.4 0.4

Vanilla DT 141.7 459.7 153.8 387.4 252.2 333.1 -119.8 130.9 183.8 90.0 541.1 2.3
MH-DT 437.8 90.8 155.2 505.4 50.4 250.8 -21.9 12.9 206.3 441.6 124.5 1.0

LoRA-DT 355.1 6.4 150.9 418.6 7.1 273.2 -37.3 11.5 211.3 150.2 248.9 2.0

For MH-DT, while keeping the FWT value almost the same as Vanilla DT, MH-DT significantly
reduces BWT and thus improves the PER metric, indicating that MH-DT retains the generaliza-
tion ability of DT and solves catastrophic forgetting by dividing all models into common parts and
task-specific parts. In the most difficult Meta-World environment, MH-DT can also learn better-
performing strategies, while OER cannot learn any usable strategies at all. It is also exciting to find
that MH-DT can achieve comparable PER to the upper bound PDT.

(a) Vanilla DT (b) OER (c) MH-DT (d) LoRA-DT

Figure 4: Process of learning six sequential tasks in Walker Param, where our methods MH-DT and
LoRA-DT are compared with two baselines Vanilla DT and OER. Every 30K steps on one task.

For LoRA-DT, as in Fig. 4d, the performance of LoRA-DT in previous tasks after the training phase
is completely unchanged except for a small fluctuation in the merge phase at the beginning of each
new task. However, even though LoRA-DT demonstrates the highest BWT level, indicating its
exceptional ability to prevent forgetting, its performance in PER does not surpass that of MH-DT.
This can be attributed to the fact that the fine-tuning method, merge+LoRA, is still not on par with
the approach of updating all parameters. It’s also worth noting that in an environment where the
FWT is larger, signifying greater task similarity, the performance of LoRA-DT is not much behind
that of MH-DT as in Walker Par and Cheetah Vel, but relatively larger in other environments.

5.3 ABLATION STUDY

5.3.1 DISTILLATION OBJECTIVE AND SELECTIVELY REHEARSAL IN MH-DT

In MH-DT, we propose an additional distillation objective and selective rehearsal to make the current
policy πn closer to our learned teacher policy µn, which also means getting better performance
on the current task. In order to verify the effectiveness of the two modules, distillation objective
(DO) and selective rehearsal (SR), we do ablation studies by comparing MH-DT with OER and
three variants: MH-DT without distillation objective (MH-DT w/o DO), MH-DT without selective
rehearsal (MH-DT w/o DO), MH-DT without distillation objective and selective rehearsal (MH-DT
w/o DO w/o SR) on distillation gap (DG), a new metric to measure the gap between the task-specific
policy µn that is trained separately and the current policy πn after training process on task Tn.

DG =
1

N

N∑
n=1

tn − an,n (11)

where tn is the final cumulative reward of µn, and an,n is the performance of task n after learning
task n. A smaller DG indicates a smaller gap and a stronger ability to learn the current task.
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Table 2: Ablation on distillation objective (DO) and selective rehearsal (SR) in MH-DT

Methods Ant-Dir Walker-Par Cheetah-Vel
PER DG PER DG PER DG

OER 193.6 53.3 56.0 417.9 -113.8 26.5
MMH-DT w/o DO w/o SR 223.9 41.1 374.8 231.7 -86.1 9.8

MH-DT w/o DO 310.3 30.3 456.2 90.5 -54.7 -4.1
MH-DT w/o SR 302.5 37.3 423.0 125.2 -64.1 0.3

MH-DT 326.5 -4.0 510.8 54.1 -35.4 -21.6

From Table 2, we can observe that: 1)DO and SR can both improve MH-DT’s ability to learn current
tasks. 2) The DT-based method works better than the AC-based method When using action cloning
to transfer knowledge. 3)By correctly selecting reviewed tasks, the performance of the current task
can even exceed that of the teacher policy µn as in Cheetah Vel.

5.3.2 RANK R AND BUFFER SIZE

We compare the space occupied performance and metrics performance of OER, MH-DT and LoRA-
DT under different rank r and different sizes of replay buffer. In this section, we change the buffer
size to 1K, 3K, and 10K and rank r to 4, 16, 64. In order to intuitively compare the size of the
occupied space, we take the space of 10K sample buffer as the benchmark and record it as 100%.
It is worth noting that because different environments have different state-action dimensions, the
proportion of memory occupied by LoRA-DT is also different.

Table 3: Performance when buffer size and rank change

Methods Ant-Dir Walker-Par Cheetah-Vel Meta-World reach-v2
PER BWT Memory PER BWT Memory PER BWT Memory PER BWT Memory

OER(1K) 126.0 260.7 10% 74.0 117.5 10% -201.9 35.1 10% 0.6 0.4 10%
OER(3K) 150.2 234.2 30% 80.5 114.3 30% -184.2 31.1 30% 0.6 0.4 30%

OER(10K) 187.3 198.5 100% 96.2 110.5 100% -169.1 24.2 100% 0.6 0.4 100%
MH-DT(1K) 437.8 90.8 10% 505.4 50.4 10% -21.9 12.9 10% 441.6 124.5 10%
MH-DT(3K) 454.1 74.3 30% 515.7 32.1 30% -18.4 6.3 30% 463.8 100.2 30%

MH-DT(10K) 490.6 43.2 100% 537.2 12.5 100% -16.3 2.2 100% 500.3 88.1 100%
LoRA-DT(r=4) 355.1 6.4 1.6% 418.6 7.1 2.4% -37.3 11.5 2.2% 150.2 148.9 1.3%

LoRA-DT(r=16) 387.4 6.7 6.6% 427.3 6.9 9.8% -30.5 10.3 8.7% 162.8 132.2 5.4%
LoRA-DT(r=64) 407.54 5.8 26.5% 469.2 7.1 39.3% -33.4 11.3 35.1% 168.5 149.5 21.8%

The results in Table 3 demonstrate the memory efficiency of LoRA-DT, it can achieve performance
that exceeds OER and is close to MH-DT while using nearly one-tenth of the space used by them.
In addition, for methods that are based on ER, a larger buffer size can significantly reduce the BWT
value, thereby improving performance. When the size of the replay buffer approaches the training
dataset, it will become a multi-task problem. On the contrary, LoRA-DT’s forgetting metric BWT is
not sensitive to the rank r. However increasing r can increase the plasticity of the LoRA-DT model,
allowing it to obtain better-performing policies through fine-tuning. When r increases to the inner
dim of the MLP, the tuning effect is equivalent to directly fine-tuning the MLP layer.

6 CONCLUSION

In this work, we rethink the CORL problem through Decision Transformer (DT), highlighting the
advantages of DT over AC-structured algorithms and focusing on addressing the more severe forget-
ting issue. Subsequently, we introduce MH-DT which employs multiple heads to store task-specific
knowledge, facilitates knowledge sharing with a common component, and incorporates distillation
and selective rehearsal modules to enhance learning capacity. When replay buffers are unavailable,
we propose LoRA-DT, which merges impactful weights for knowledge sharing and fine-tunes the
crucial MLP layer within DT blocks using LoRA. Experiments and analysis show that our DT-based
methods outperform SOTA baselines on various continuous control tasks.
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A ADDITIONAL ALGORITHM DESCRIPTIONS

A.1 PSEUDO-CODE

We present the algorithms for MH-DT training in Sec.A.1.1 and for LoRA-DT in Sec.A.1.2

A.1.1 MH-DT

Algorithm 1 MH-DT training
Input: Number of task N; Number of select task K; Number of select frequency T; Dataset Di of
each task Ti, i ∈ [1, . . . , N ]; Initial the policy π.

1: for Tasks Tn in [1, . . . , N ] do
2: Get dataset Dn; Get replay buffers for previous task B1, . . . , Bn−1; Initial the replay buffer

Bn = ∅; Initial new head hn for π; Initial DT policy µn; Initial select set S = [1, . . . , N −1].

3: for step i in range(max steps) do
4: Update µn via minimizing mean-squared loss.
5: Copy the parameters in head of µn to head hn.
6: if i mod T == 0 then
7: Select K tasks and add them to S via Eq.(4).
8: end if
9: Sample a batch from Dn.

10: Calculate Lpredict with mean-squared loss.
11: Calculate Ldistillation via Eq.(2).
12: for j in S do
13: Sample a batch from Bj .
14: Calculate Lrehearsal with corresponding πj as in Eq.(5).
15: end for
16: Update π with Ltotal in Eq.(6).
17: end for
18: Randomly select trajectories in Dn and add them to Bn.
19: end for
Output: Policy π.

A.1.2 LORA-DT

Algorithm 2 LoRA-DT training
Input: Number of task N; Number of blocks k; Dataset Di of each task Ti, i ∈ [1, . . . , N ]; Initial
the policy π.

1: for Tasks Tn in [1, . . . , N ] do
2: Get dataset Dn; Get replay buffers for previous task B1, . . . , Bn−1; Initial the replay buffer

Bn = ∅; Initial DT policy µn; Initial update matrices AB; Initial Mn = ∅.
3: if n == 1 then
4: Update π via minimizing mean-squared loss.
5: else
6: Update µn via minimizing mean-squared loss.
7: Merge the parameters in µn to π except for the MLP layers of each block as in Eq.(7).
8: Update matrices AB with LoRA as in Eq.(9)
9: end if

10: Randomly select trajectories in Dn and add them to Bn.
11: Save Mn = k ∗ [A0,B0,A1,B1] for Tn

12: end for
Output: Policy π.
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A.2 HYPERPARAMETERS

We show the common hyperparameters of DT in Table.4 and specific hyperparameters of our MH-
DT and LoRA-DT in Table.5 and Table.6.

Table 4: Common Hyperparameters of all Decision Transformer

Hyperparameters Value
K (length of context τ ) 20

number of evaluation episodes for each task 10
learning rate 1e− 4

learning rate decay weight 1e− 4
number of layers 3

number of attention heads 1
embedding dimension 128

activation ReLU

Table 5: Specific Hyperparameters of MH-DT

Hyperparameters Value
number of select task K 2

select frequency T 10
replay buffer size 1K

weight of distillation λ1 0.5
weight of distillation λ2 1.0

Table 6: Specific Hyperparameters of LoRA-DT

Hyperparameters Value
rank r 4

inner dim of the MLP layer 128
weight of merge λ 0.2

B EXPERIMENT DETAILS

We present the detail of offline sequential datasets in Sec.B.1, details of metrics in Sec.B.2 and
implement details in Sec.B.3.

B.1 OFFLINE SEQUENTIAL DATASETS

We consider four sets of tasks from widely-used continuous control environments as in Gai et al.
(2023) and Mitchell et al. (2020):

• Ant-2D Direction (Ant-Dir): train a simulated ant with 8 articulated joints to run in a 2D direction

• Walker-2D Params (Walker-Par): train a simulated agent to move forward, where different tasks
have different parameters. Specifically, different tasks require the agent to move at different speeds

• Half-Cheetah Velocity (Cheetah-Vel): train a cheetah to run at a random velocity. Cheetah-vel is
unique in that as the ’vel’ number increases the task becomes more challenging.

• Meta-World reach-v2. Tasks are to control a Sawyer robot’s end-effector to reach different target
positions in 3D space. The agent directly controls the XYZ location of the end-effector.

For Ant-Dir, Walker-Par and Meta-World reach-v2, we randomly sample six tasks to form sequential
tasks T1 to T6. For Cheetah-Vel, we fixedly select the six tasks of vel=3, 6, 9, 12, 15, 18 and train
them in order. The difficulty of the six tasks increases in sequence.
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To consider different data quality, we selected different time periods in the online training buffer and
obtained expert-quality data and middle-quality data as in Mitchell et al. (2020). For Meta-World
reach-v2, we use the expert dataset because only expert script policies are available.

B.2 METRICS

use evaluation metrics to evaluate the continuous learning ability of the algorithm as in Lopez-Paz
& Ranzato (2017). More specifically, we would like to measure:

• Average Performance (PER), which measures average performance on all tasks after training.

PER =
1

N

N∑
n=1

aN,n (12)

• Backward transfer (BWT), which is the influence that learning a task t has on the performance
on a previous task k ≺ t. On the one hand, there exists positive backward transfer when learning
about some task t increases the performance on some preceding task k. On the other hand, there
exists negative backward transfer when learning about some task t decreases the performance on
some preceding task k. Large negative backward transfer is also known as catastrophic forgetting.

BWT =
1

N − 1

N−1∑
n=1

an,n − aN,n (13)

• Forward transfer (FWT), which is the influence that learning a task t has on the performance on
a future task k ≻ t. In particular, positive forward transfer is possible when the model is able to
perform ”zero-shot” learning, perhaps by exploiting the structure available in the task descriptors.

FWT =
1

N − 1

N∑
n=2

an−1,n − b̄n (14)

where ai,j means the final cumulative rewards of task j after learning task i and b̄n means the test
performance for each task at random initialization. For PER, higher is better; for BWT, lower is
better; for FWT, higher is better. If two models have similar PER, the most preferable one is the one
with lower BWT and higher FWT.

B.3 IMPLEMENT DETIALS

For each evaluation step, we test all strategies on the corresponding tasks 10 times and report the
average.

For LoRA-DT, the MLP layer in each block in the original DT implementation is composed of two
Cov1D layers plus an intermediate activation layer. In our implementation, we replace the Cov1D
layer with a liner class 1 which contains a LoRA Layer and a Linear layer. Update the parameters of
the Linear layer when training the first task T1, and then only fine-tune the LoRA matrix AB and
save it after training each task.

C ADDITIONAL RESULTS

We present the training curves for all environments and dataset qualities in this section.

C.1 TRAING CURVES

1https://github.com/microsoft/LoRA
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(a) PDT (b) Vanilla DT (c) OER

(d) MH-DT (e) LoRA-DT

Figure 5: Walker Param (middle)

(a) PDT (b) Vanilla DT (c) OER

(d) MH-DT (e) LoRA-DT

Figure 6: Walker Param (expert)
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(a) PDT (b) Vanilla DT (c) OER

(d) MH-DT (e) LoRA-DT

Figure 7: Ant Dir (middle)

(a) PDT (b) Vanilla DT (c) OER

(d) MH-DT (e) LoRA-DT

Figure 8: Ant Dir (expert)
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(a) PDT (b) Vanilla DT (c) OER

(d) MH-DT (e) LoRA-DT

Figure 9: Cheetah Vel (middle)

(a) PDT (b) Vanilla DT (c) OER

(d) MH-DT (e) LoRA-DT

Figure 10: Cheetah Vel (expert)
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(a) PDT (b) Vanilla DT (c) OER

(d) MH-DT (e) LoRA-DT

Figure 11: ML1-pick-place-v2
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