
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

JOINT DISTILLATION FOR FAST LIKELIHOOD EVALU-
ATION AND SAMPLING IN FLOW-BASED MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Log-likelihood evaluation enables important capabilities in generative models, in-
cluding model comparison, certain fine-tuning objectives, and many downstream
applications. Yet paradoxically, some of today’s best generative models – diffu-
sion and flow-based models – still require hundreds to thousands of neural func-
tion evaluations (NFEs) to compute a single likelihood. While recent distillation
methods have successfully accelerated sampling to just a few steps, they achieve
this at the cost of likelihood tractability: existing approaches either abandon like-
lihood computation entirely or still require expensive integration over full trajec-
tories. We present fast flow joint distillation (F2D2), a framework that simulta-
neously reduces the number of NFEs required for both sampling and likelihood
evaluation by two orders of magnitude. Our key insight is that in continuous nor-
malizing flows, the coupled ODEs for sampling and likelihood are computed from
a shared underlying velocity field, allowing us to jointly distill both the sampling
trajectory and cumulative divergence using a single model. F2D2 is modular,
compatible with existing flow-based few-step sampling models, and requires only
an additional divergence prediction head. Experiments demonstrate F2D2’s capa-
bility of achieving accurate log-likelihood with few-step evaluations while main-
taining high sample quality, solving a long-standing computational bottleneck in
flow-based generative models. As an application of our approach, we propose a
lightweight self-guidance method that enables a 2-step MeanFlow model to out-
perform a 1024 step teacher model with only a single additional backward NFE.

1 INTRODUCTION

Log-likelihood evaluation and likelihood-based inference have long been fundamental to statistical
modeling and machine learning, serving as the backbone for parameter estimation (Fisher, 1922),
model selection (Akaike, 1974), and hypothesis testing (Neyman & Pearson, 1933). In the era of
generative AI, the ability to efficiently evaluate log-likelihood (log-density) has become even more
critical, as it directly enables key post-training techniques including reinforcement learning and pref-
erence optimization, where likelihoods are important for methods like PPO, DPO and GRPO (Schul-
man et al., 2017; Ouyang et al., 2022; Rafailov et al., 2023; Shao et al., 2024). Beyond these ap-
plications, optimizing log-likelihood also encourages generative models to capture all modes of the
data distribution, avoiding mode collapse that plagues adversarial approaches (Razavi et al., 2019).

While likelihood evaluation is useful for modern generative modeling, the most successful gen-
erative models for images and video (Rombach et al., 2022; Black Forest Labs, 2025; OpenAI,
2024; Polyak et al., 2024; Google DeepMind, 2025), namely diffusion and flow matching mod-
els, suffer from a critical weakness: computing likelihood requires prohibitively expensive iterative
neural function evaluations (NFEs). In particular, discrete-time diffusion models like DDPM (Ho
et al., 2020; Nichol & Dhariwal, 2021) require summing up variational bounds across all timesteps,
which needs hundreds to thousands of forward passes to compute a single likelihood. Similarly,
continuous-time formulations like score SDE (Song et al., 2020) and flow matching (Lipman et al.,
2022; Albergo & Vanden-Eijnden, 2022; Liu et al., 2022; Albergo et al., 2023) also must inte-
grate the divergence along the learned (probability) flow ODE, which typically requires numerical
integration with 100-1000 NFEs for accurate likelihood evaluation. While advanced solvers can
significantly reduce NFEs (Karras et al., 2022), they fundamentally cannot escape the integration
requirement and produce vastly inaccurate results when restricted to very few steps (≤ 10 NFEs).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

This computational burden makes many likelihood-based finetuning objectives, model comparison,
and downstream applications prohibitively expensive for modern diffusion/flow matching models.

Interestingly, diffusion and flow matching models faced the same NFE bottleneck for sampling when
they were first introduced, where they initially required 1000+ steps to generate a single image.
Research addressing this issue has been remarkably successful, with methods that learn to skip
multiple steps, either through distillation or self-consistency objectives, emerging as particularly
powerful solutions (Salimans & Ho, 2022; Song et al., 2023; Kim et al., 2023; Frans et al., 2024;
Geng et al., 2025; Boffi et al., 2025b;a). However, despite achieving few-step sampling, most of
these methods completely lose the ability to compute likelihoods, and the few methods that preserve
likelihood computation (e.g. Kim et al. (2023)) still require integrating over the entire trajectory with
hundreds of NFEs, making fast likelihood evaluation impossible. Thus, while practitioners have
solutions to fast sampling for diffusion and flow matching models, fast log-likelihood evaluation
remains an unsolved problem. Here, we show that it is possible to achieve both at the same time.

Contributions. Our key insight is that, in flow matching and continuous normalizing flows (CNFs)
in general (Chen et al., 2018), computing exact likelihoods requires solving coupled ODEs: the
sampling trajectory d

dtxt = vθ(xt, t) and the log-density evolution d
dt log pt(xt) = − div(vθ(xt, t)),

both depending on the same learned velocity vθ. Since the divergence term can be viewed as another
output derived from the same velocity model, we can learn to distill both the flow trajectory and its
corresponding divergence computation simultaneously within a single model. By jointly optimizing
for both accurate few-step sampling and log-likelihood evaluation, we can potentially achieve a
model that succeeds at both tasks.

Based on these insights, we propose fast flow joint distillation (F2D2), a simple and modular frame-
work for jointly learning fast sampling and fast log-likelihood evaluation in flow-based models. Our
key idea is to leverage the flow map framework (Boffi et al., 2025a) to train a single model to pre-
dict both the sampling trajectory and cumulative divergence in parallel using a joint self-distillation
objective, ensuring both outputs learn to skip the numerous steps in training. This makes F2D2
plug-and-play with any CNF-based few-step sampling method like shortcut models and MeanFlow,
and requires only a new divergence prediction head alongside the existing velocity prediction. To
our knowledge, F2D2 is the first method to enable accurate few-step log-likelihood evaluation in
diffusion/CNF-based generative models, solving a long-standing limitation of these frameworks.

We demonstrate that our method produces both calibrated likelihoods and high quality samples with
few-step NFEs on image datasets CIFAR-10 (Krizhevsky et al.) and ImageNet 64× 64 (Deng et al.,
2009). We show that our F2D2 are compatible with and can be directly apply to pre-trained shortcut
models, MeanFlow and a new distillation method we propose in this paper.

As an application of our method, we introduce maximum likelihood self-guidance, a lightweight
test-time intervention which uses rapid likelihood evaluation to optimize over generated samples,
requiring only an additional forward and backward pass through the model. Remarkably, we show
that F2D2 with maximum likelihood self-guidance instantiated with 2-step MeanFlow achieves
lower FID than a 1024-step flow matching model of the same size on CIFAR-10. This proof of
concept demonstrates the expanded algorithmic sandbox enabled by rapid likelihood evaluation.

2 BACKGROUND

Let pdata denote the data distribution with samples x ∈ Rd. We consider a time variable t ∈ [0, 1]
where t = 0 corresponds to a simple noise distribution p0 = N (0, I) and t = 1 corresponds to the
data distribution p1 = pdata. We denote the marginal distribution at time t as pt(x).

Flow Matching. Flow matching (Lipman et al., 2022; Albergo & Vanden-Eijnden, 2022; Liu et al.,
2022; Albergo et al., 2023) is a scalable training method for generative modeling that learns a time-
dependent velocity field vθ : Rd× [0, 1]→ Rd to transport samples from a simple noise distribution
p0 to the data distribution p1. Along a straight-line path xt = (1−t)x0+tx1 that linearly interpolates
between a noise sample x0 ∼ p0 and a data sample x1 ∼ p1, it models the evolution dynamic with
the ordinary differential equation ODE:

d

dt
x̂t = vθ(x̂t, t), x0 ∼ p0 (2.1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where x̂t arises from integrating the learned flow model. Since the velocity along this path is simply
x1 − x0, flow matching minimizes the regression objective:

LFM(θ) = Et∼[0,1],x0∼p0,x1∼p1

[
∥vθ(xt, t)− (x1 − x0)∥2

]
(2.2)

This objective encompasses diffusion models as a special case with different interpolation
schemes (Gao et al., 2024). For sampling, it solves the ODE from t = 0 to t = 1 with numeri-
cal solvers like Euler or dopri5, and typically requires 100-1000 NFEs for high quality samples.

Continuous Normalizing Flows and Likelihood Computation. A flow-matching model is a spe-
cial case of a continuous normalizing flow (CNF) (Chen et al., 2018), which transports data from
an initial distribution x0 ∼ p0 to an estimated distribution by integrating an ODE. In the case of
flow-based models, this is precisely Eq. (2.1). An advantage of the CNF formalism is the ability to
explicitly compute likelihoods via the coupled system of ODEs:

d

dt

[
x̂t

log pt;θ(x̂t)

]
=

[
vθ(x̂t, t)

−div(vθ(x̂t, t)).

]
(2.3)

Above, div(vθ(x̂t, t)) = Tr(∇x̂t
vθ(x̂t, t)) denotes the divergence of the velocity field vθ, and pt;θ

represents the likelihood of x̂t under Eq. (2.1), which we note depends on model parameter via vθ.
Integrating backwards from t = 1 (data) to t = 0 (noise) with initial conditions [x1, 0]

⊤, we obtain:

log p1(x1) = log p0(x̂0) +

∫ 0

1

div(vθ(x̂t, t))dt = log p0(x̂0)−
∫ 1

0

div(vθ(x̂t, t))dt, (2.4)

where x̂0 and the intermediate x̂t’s are obtained by integrating the flow backward from x1.

Likelihood evaluation is typically expensive, requiring both careful, finely-discretized integration of
an ODE across time steps, and a computation of the divergence term whose exact computation (or
the variance of its randomized estimator (Grathwohl et al., 2018)) scales at least linearly in ambient
dimension d. Thus, likelihood evaluation is far more computationally burdensome than sampling.

Few-Step Flow-based Models. To address the computational expense of multiple ODE integrations
in sampling, recent few-step flow-based models (Kim et al., 2023; Frans et al., 2024; Geng et al.,
2025; Boffi et al., 2025a;b) learn to directly predict the outcome of integrating the ODE in Eq. (2.1)
using only a small number of function evaluations (NFEs). These methods can be viewed as sharing
a common strategy of learning to predict the flow map of the underlying ODE.

Definition 2.1 (Flow Map). Given an ODE dxt = v(xt, t)dt, the flow map Φ : Rd × [0, 1]2 → Rd

is the solution operator that maps any state at time t to its corresponding state at time s:

Φ(xt, t, s) = xt +

∫ s

t

v(xτ , τ)dτ = xs (2.5)

After learning the flow map with network parameter θ, one can directly perform few-step sampling
by discretizing the time interval [0, 1] into K steps with timesteps 0 = t0 < t1 < . . . < tK = 1, and
iteratively applying the learned flow map: x̂ti+1

= Φθ(x̂ti , ti, ti+1) for i = 0, . . . ,K − 1, starting
from x0 ∼ p0. This reduces sampling from hundreds of ODE solver steps to just K NFEs (typically
K < 10), as each application of Φ directly predicts the integrated result over the interval [ti, ti+1]
without explicit numerical integration.

3 METHOD

We propose to jointly accelerate both sampling and likelihood evaluation by learning a flow-map
on the joint ODE system described in in Eq. (2.3). Again, p0 = N (0, I) is the source distribution,
p1 = pdata. pt represents the marginal distribution of the interpolant xt = tx1+(1−t)x0, v denotes
the ground truth velocity and pt;θ is the distribution of x̂t under the learned flow model Eq. (2.1).
Our aim is to design model which supports two key capabilities:

1. Fast sampling: Draw a x̂1 from a trained flow model, using a few number of NFEs,
Ksamp < 10.

2. Fast likelihood evaluation: Evaluate the log likelihood of either model samples x̂1 or data
samples x1 using a few number of NFEs, Kll < 10.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 FAST FLOW JOINT DISTILLATION (F2D2): PARAMETRIZING A JOINT FLOW MAP

Our key insight is that we can apply few-step flow-based models to the ODE in Eq. (2.3) which
jointly parametrizes sampling and likelihood evaluation. Following Boffi et al. (2025a); Frans et al.
(2024); Geng et al. (2025), we adopt a linear parametrization of the flow map:

Φθ(x̂t, t, s) = x̂t + (s− t)uθ(x̂t, t, s) (3.1)

where uθ : Rd × [0, 1]2 → Rd predicts the average velocity that directly transports states from time
t to time s and ideally uθ(xt, t, s) ≈ 1

s−t

∫ s

t
v(xτ , τ)dτ . With this parametrization, we recovers an

estimate of the instantaneous velocity as uθ(xt, t, t) in the s→ t limit, and obtain simple conditions
for valid flow maps.

Proposition 3.1 (Flow Map Conditions (Boffi et al., 2025a)). An operator Φ(x, t, s) = x + (s −
t)u(x, t, s) is a valid flow map if and only if for all (t, s) ∈ [0, 1]2 and for all x ∈ Rd, u(x, t, t) =
v(x, t) and any of the following conditions holds:

(a) Φ solves the Lagrangian equation ∂sΦ(x, t, s) = u(Φ(x, t, s), s, s).

(b) Φ solves the Eulerian equation ∂tΦ(x, t, s) +∇xΦ(x, t, s)u(x, t, t) = 0.

(c) Φ satisfies the semigroup property Φ(Φ(x, t, r), r, s) = Φ(x, t, s) for t < r < s.

Let zt = log pt(xt) ∈ R and ẑt = log pt;θ(x̂t) ∈ R denote the log likelihood, we can then separately
parametrize the flow maps for the two subsystems in Eq. (2.3) as

ΦX;θX (x̂t, t, s) = x̂t + (s− t)uθX (x̂t, t, s),

ΦZ;θZ (x̂t, ẑt, t, s) = ẑt + (s− t)DθZ (x̂t, t, s)
(3.2)

Here uθX (x̂t, t, s) still estimates the average velocity, and DθZ (xt, t, s) approximates the average
divergence DθZ (xt, t, s) ≈ − 1

s−t

∫ s

t
div(v(xτ , τ))dτ along the true trajectory between t and s.

Notice that average divergence depends only on xt, not zt. The fact that xt is sufficient in our
parametrization follows from the joint ODE Eq. (2.3), where the evolution of the likelihood zt is
determined by the divergence of the first flow evaluated at xt.

Therefore, denoting the joint state at time t as yt = (xt, zt)
⊤, we can then parametrize the joint flow

map using shared parameter θ as

ΦY ;θ(ŷt, t, s) =

[
ΦX(x̂t, t, s)

ΦZ(x̂t, ẑt, t, s)

]
= ŷt + (s− t)fθ(x̂t, t, s),

fθ(x̂t, t, s) =

[
uθ(x̂t, t, s)
Dθ(x̂t, t, s)

] (3.3)

Above, the networks for uθ and Dθ share the same backbone with separate prediction heads for their
respective components. The exact architecture is described in Appendix C.

Theoretical Justification. To justify the parameterization Eq. (3.3), we recall a property denoted
the tangent condition by Boffi et al. (2025a), leveraged by Kim et al. (2023); Geng et al. (2025) to
recover the instantaneous velocity and divergence in the s→ t limit:

Lemma 3.2 (Tangent Condition). The flow map ΦY (y, t, s) for the joint system Eq. (2.3) satisfies
limt→s ∂sΦY (y, t, s) = f(x, s, s) = (v(x, t),−div(v(xt, t)))

⊤.

We can then characterize valid joint flow maps under our parametrization as the following:

Proposition 3.3 (Characterization of the Joint Flow Map). Let ΦY (y, t, s) = y + (s − t)f(x, t, s)
satisfy f(x, s, s) = (v(x, t),−div(v(xt, t)))

⊤ denotes the dynamics for the joint sampling and
likelihood system Eq. (2.3). Then, ΦY (y, t, s) is the flow map for the joint system if and only if
∀ (y, t, s) ∈ Rd+1 × [0, 1]2, any of the following conditions are satisfied:

(a) ΦY solves the Lagrangian equation ∂sΦY (y, t, s) = f(ΦY (y, t, s), s, s).

(b) Φ solves the Eulerian equation ∂tΦY (y, t, s) +∇yΦY (y, t, s)f(y, t, t) = 0.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Shortcut-F2D2 Training

1: for each training step do
2: x1 ∼ pdata, x0 ∼ p0, (t, s) ∼ U([0, 1]2) with t < s
3: r ← (t+ s)/2
4: xt ← (1− t)x0 + tx1

5: xr ← xt + (r − t)uθ(xt, t, r)
6: LVM-SC(θ)← ∥uθ(xt, t, t)− (x1 − x0)∥2
7: Lu-SC(θ)← ∥uθ(xt, t, s)− 1

2 sg (uθ(xt, t, r) + uθ(xr, r, s)) ∥2
8: Dt ← sg (div(uθ(xt, t, t)))
9: Ldiv-SC(θ)← ∥Dθ(xt, t, t) +Dt∥2

10: LD-SC(θ)← ∥Dθ(xt, t, s)− 1
2 sg (Dθ(xt, t, r) +Dθ(xr, r, s)) ∥2

11: LSC-F2D2(θ)← LVM-SC(θ) + Lu-SC(θ) + Ldiv-SC(θ) + LD-SC(θ)
12: Update θ w.r.t. LSC-F2D2(θ)
13: end for
14: return θ

(c) Φ satisfies the semigroup property ΦY (y, t, s) = ΦY (ΦY (y, t, r), r, s) for t < r < s.

We provide the full analysis of the characterization in Appendix A. We refer to the family of al-
gorithms which learns a joint map of this characterization as fast flow joint distillation (F2D2).
Notably, we can derive four separate training objectives – one pair for the sampling subsystem and
the other pair for the likelihood subsystem – and jointly optimizing them yields a valid flow map
for Eq. (2.3). The general F2D2 training objective is:

LF2D2(θ) := LVM(θ) + Lu(θ) + Ldiv(θ) + LD(θ) (3.4)
where the first two terms optimize for the sampling flow map ΦX : LVM enforces the instantaneous
velocity matching (i.e. the tangent condition, which is often enforced by the flow matching loss in
practice), while Lu enforces one of the flow map conditions from Proposition 3.1 for ΦX . Similarly,
the last two terms optimize for the likelihood flow map ΦZ : Ldiv matches the instantaneous diver-
gence, and LD ensures that ΦZ satisfies the conditions needed for the joint flow map ΦY to be valid
according to the conditions in Proposition 3.3.

3.2 INSTANTIATING F2D2 WITH SHORTCUT AND MEANFLOW

Though our method is, in principle, compatible with any flow map-based method, we instantiate
our formulation for Shortcut Models (Frans et al., 2024), based on the semigroup property, and for
MeanFlow (Geng et al., 2025), based on the Eulerian equation.

3.2.1 JOINT SHORTCUT: SHORTCUT-F2D2

Shortcut models (Frans et al., 2024) enforce the semigroup property (Proposition 3.1 (c)) by applying
it to the midpoint between timesteps t and s. This amounts to the shortcut self-consistency loss:

Lu-SC(θ) = Et<s,xt

[
∥uθ(xt, t, s)−

1

2
sg (uθ(xt, t, r) + uθ(ΦX;θ(xt, t, r), r, s)) ∥2

]
(3.5)

where sg (·) denotes stop-gradient. Combined with the tangent condition (at t = s),
vθ(x, t) = uθ(x, t, t), (3.6)

and training with the flow matching loss as LVM,
LVM-SC(θ) := Et∼[0,1],x0∼p0,x1∼p1

[
∥uθ(xt, t, t)− (x1 − x0)∥2

]
(3.7)

this self-consistency loss Lu-SC serves as Lu and yields a valid flow map by enforcing both the
tangent condition and the semigroup property (see Corollary B.1 in Appendix B for details).

We convert this method to a joint self-distillation method by introducing the two additional losses:
Ldiv-SC(θ) := E

[
∥Dθ(xt, t, t) + div(u−

θ (xt, t, t))∥2
]

(3.8)

LD-SC(θ) := Et<s

[
∥Dθ(xt, t, s)−

1

2
sg (Dθ(xt, t, r) +Dθ(ΦX;θ(xt, t, r), r, s)) ∥2

]
(3.9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The first loss proceeds by analogy to Eq. (3.6), where the correct Dθ is precisely the instantaneous
velocity field in the Z-component, and this is precisely div(uθ) by Eq. (2.3). The second loss
simply the enforces the semigroup property on the Z-component. Take then together, we arrive at
the shortcut variant of F2D2, Shortcut-F2D2, obtained by minimizing the loss

LSC-F2D2(θ) := LVM-SC(θ) + Lu-SC(θ) + Ldiv-SC(θ) + LD-SC(θ). (3.10)

We demonstrate the derivation of Shortcut-F2D2 in Appendix A and provide the pseudocode for
Shortcut-F2D2 in Algorithm 1.

3.2.2 JOINT MEANFLOW: MEANFLOW-F2D2

Alternatively, MeanFlow (Geng et al., 2025) learns the time-averaged velocity uθ(x, t, s) by enforc-
ing the so-called MeanFlow identity uθ(xt, s, t) = v(xt, t)+(s−t) d

dtuθ(xt, s, t), which we show in
Corollary B.2 in Appendix B solves the Eulerian equation (Proposition 3.1 (b)). To our knowledge,
this is the first proof of this fact.

For efficiency, d
dtu(x, s, t) can be computed as ∂tu(x, t, s) + ∇xu(x, t, s)v(x, t) obtained via a

Jacobian–vector product (JVP). The training objective is then to enforce this identity by regressing
the model’s prediction to the target implied thereby:

LMF(θ) = Et<s,x0,x1

[
∥uθ(xt, t, s)− sg ((s− t)(∂tu(xt, t, s) +∇xu(xt, t, s)v(xt, t)) + v(xt, t))∥2

]
,

(3.11)
where v(xt, t) = x1 − x0 is the ground truth instantaneous velocity of the interpolant. Importantly,
Eq. (3.11) encapsulates both LVM and Lu since LMF recovers the flow matching loss when s = t.

To extend this this method to the joint system, we introduce the additional loss

Ldiv-MF(θ) = E
[
∥Dθ(xt, t, s)− sg((s− t)(∂tDθ(xt, t, s) (3.12)

+∇xDθ(xt, t, s)v(xt, t))− div(uθ(xt, t, t)))∥2
]
,

By analogy to LMF, Ldiv-MF obviates the need for explicit divergence matching term Ldiv.
MeanFlow-F2D2 then amounts to training the objective

LMF-F2D2(θ) = LMF(θ) + Ldiv-MF(θ). (3.13)

We demonstrate the derivation of MeanFlow-F2D2 in Appendix A.

3.3 PRACTICAL DESIGN CHOICES

While instantaneous velocity supervision for sampling is straightforward to obtain from data, ob-
taining reliable and tractable supervision for the instantaneous divergence presents significant chal-
lenges. We address these through several key practical considerations.

Parameter Sharing. Since both X and Z components of our joint flow map derive from the
same underlying velocity field, learning to predict both components simultaneously is fundamen-
tally learning two transformations of the same underlying dynamics. As a result, we efficiently
parametrize the joint flow map using a shared backbone network with two separate prediction heads.
This parameter sharing architecture ensures both outputs are derived from a consistent representation
of the flow dynamics and reduces the number of parameters compared to training separate models.

Hutchinson Trace Estimator. Computing divergence terms div(v(xt, t)) requires O(d) backward
passes for exact computation, making training prohibitively expensive for high-dimensional data.
Following standard practice (Grathwohl et al., 2018; Lipman et al., 2022; Song et al., 2020), we
employ the Hutchinson trace estimator div(v) ≈ Eϵ∼N (0,I)[ϵ

⊤∇xv · ϵ] which provides unbiased
estimates with only O(1) computational cost per training step.

Staged Training with Warm Start. Since divergence supervision depends on having accurate
velocity predictions, we adopt a staged training approach. In practice, we pre-train the sampling
velocity component uθ alone using existing flow map distillation techniques, which provides a
good initialization for joint training later. Optionally, we can also pre-train a teacher flow matching
model vϕ that serves as a reliable source of divergence supervision, replacing the potentially noisy
div(uθ(xt, t, t)) with the more accurate div(vϕ(xt, t)) during joint distillation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 2 Maximum Likelihood Self-Guidance Sampling with F2D2
1: x0 ∼ p0
2: D ← Dθ(x0, 0, 1)
3: LNLL ← − log p0(x0)−D
4: x0 ← Adam(x0, D) ▷ One step Adam update w.r.t. x0 optimizing LNLL

5: t0, . . . , tKsamp
← linspace(0, 1,Ksamp + 1)

6: for i = 0, . . . ,Ksamp − 1 do
7: u← uθ(xi, ti, ti+1)
8: xi+1 ← xi + (ti+1 − ti)u
9: end for

10: return x1

Shortcut-Distill-F2D2. To further improve training stability and performance, we propose
Shortcut-Distill, a shortcut model variant that combines the semigroup flow map with a learned
teacher instantaneous velocity. Our three-stage pipeline consists of: (1) Teacher pre-training:
Train vϕ using standard flow matching; (2) Shortcut-Distill: Warm start θ with the teacher param-
eters and replace Ldiv-SC with teacher supervision: Et

[
∥uθ(xt, t, t)− vϕ(xt, t)∥2

]
; (3) Joint dis-

tillation: Warm start θ from sampling distillation, add divergence head and train both components
jointly. This approach maintains the semigroup condition while leveraging a pre-trained velocity
field to ensure the joint flow map are well-aligned.

3.4 APPLICATION: MAXIMUM LIKELIHOOD SELF-GUIDANCE WITH F2D2

Now that we have access to log-likelihood computation with few NFEs, we can explore various
applications. One particularly interesting one is using the one-step divergence prediction (combined
with the source distribution’s log-likelihood) as a pseudo-likelihood objective for inference-time
optimization. Specifically, we can optimize the initial noise x0 to improve sample quality before
running the sampling procedure. This approach resembles reward-based initial noise optimization
for one-step generation models (Eyring et al., 2024), except we do not require external reward mod-
els. Instead, we obtain the guidance signal from the model’s own likelihood prediction head –
effectively performing self-guidance at inference time to improve sample quality. This maximum
likelihood self-guidance sampling algorithm is described in Algorithm 2.

4 RELATED WORKS

Likelihood computation in diffusion and flow models. While diffusion and flow-based mod-
els excel at sample generation, their likelihood evaluation remains computationally expensive.
Discrete-time diffusion models compute likelihoods through variational bounds requiring hundreds
of NFEs (Ho et al., 2020; Nichol & Dhariwal, 2021). Continuous formulations enable exact likeli-
hood via the probability flow ODE (Song et al., 2020) but require numerical integration with 100-
1000 NFEs. Prior research has explored various techniques to improve likelihood estimation (Grath-
wohl et al., 2018; Song et al., 2021), but they still require many NFEs for accurate evaluation. In
parallel, normalizing flows (Rezende & Mohamed, 2015) offer exact and tractable log-likelihoods
by using specialized network architecture designs and change-of-variables formula. Many recent
efforts (Zhai et al., 2024; Ho et al., 2019; Chen et al., 2019) aim at scaling up the normalizing flow
principles through better dequantization and and advance architectures.

Accelerating sampling in flow-based models. Reducing sampling costs has been a major focus
in diffusion and flow matching research. Advanced ODE solvers (Karras et al., 2022; Lu et al.,
2022) leverage the semi-linear structure of the probability flow ODE to reduce discretization error.
Distillation methods (Salimans & Ho, 2022; Sauer et al., 2024) and self-distillation models (Song
& Dhariwal, 2023; Zhou et al., 2025) provide alternative solutions by training student models to
match teacher trajectories or training to perform self-bootstrapping with fewer steps. In particular,
consistency models (Song et al., 2023) and consistency trajectory models (Kim et al., 2023) learn
direct mappings from any point along the trajectory to data.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: NLL and FID results on CIFAR-10 dataset with different numbers of Euler steps. The flow
matching model here, which achieves BPD 3.12 as the NLL with 1024 steps and FID 2.60 with 200
steps, is also the teacher model we use in our Shortcut-Distill. For NLL, the closer to the teacher
result (3.12 BPD) the better, and for FID, the lower the better. We denote the best results in bold, the
second best with underlines, the overall best results in boxes and invalid predictions in gray color.

Method 8 Steps 4 Steps 2 Steps 1 Step

NLL FID NLL FID NLL FID NLL FID

Flow Matching -9.93 20.63 -24.01 64.27 -52.85 146.24 -111.19 313.54
Shortcut Model -12.07 7.10 -28.03 9.63 -60.01 16.04 -124.15 27.28

Shortcut-Distill (Ours) -11.42 5.01 -26.82 5.41 -57.72 7.13 -119.42 12.75
MeanFlow -12.33 4.34 -22.73 5.14 -47.31 2.84 -97.71 2.80

Shortcut-F2D2 (Ours) 3.07 8.78 3.26 10.21 2.73 15.58 0.20 27.35
Shortcut-Distill-F2D2 (Ours) 3.12 5.68 2.87 5.96 2.38 7.35 1.62 13.76

MeanFlow-F2D2 (Ours) 1.91 3.78 1.31 4.37 1.29 2.59 3.33 3.02

Figure 1: CIFAR-10 generated samples from different models with different numbers of steps.

Flow map-based methods. Flow maps provide a general framework to model the solution op-
erator of ODEs, enabling direct prediction of integrated trajectories (Kim et al., 2023; Boffi et al.,
2025a;b). Recent works exploit this structure for few-step sampling. For example, as we have shown
above, shortcut models (Frans et al., 2024) imposes semigroup property to learn the flow maps while
MeanFlow (Geng et al., 2025) and Align Your Flow (Sabour et al., 2025) enforce Eulerian condi-
tions. While these methods successfully reduce sampling to less than 10 NFEs, they either abandon
likelihood computation entirely or still require full trajectory integration for likelihood evaluation.

5 EXPERIMENTS

5.1 SETUPS

We empirically verify the effectiveness of our method on image datasets CIFAR-10 (Krizhevsky
et al.) and ImageNet 64× 64 (Deng et al., 2009). We evaluate the sample quality using Fréchet In-
ception Distance (FID) (Heusel et al., 2017) on 50K generated images. The negative log-likelihood
(NLL) is measured in bits per dimension (BPD) on the entire test set of CIFAR-10 and a randomly
sampled 10K subset of the ImageNet test set. We compare our method against flow matching (Lip-
man et al., 2022), shortcut models (Frans et al., 2024) and MeanFlow (Geng et al., 2025) as base-
lines, and augment the later two for joint distillation. All models are unconditionally trained on both
datasets. We use 1, 2, 4, 8 Euler steps for sampling and likelihood evaluation in both experiments.
Implementation details about our method and the baselines can be found in Appendix C.

5.2 RESULTS

CIFAR-10 Table 1 and Figure 1 show the quantitative and qualitative comparison on CIFAR-10 re-
spectively. As we can observe, flow matching yields poor FID and invalid NLL estimates in few-step
setting. Shortcut model and MeanFlow achieve significantly better FID and are able to compute NLL
for their ability to recover instantaneous velocity, but their NLL values remain invalid. Incorporat-
ing our proposed F2D2 brings the NLL estimations to a calibrated range close to the teacher’s BPD
across different settings. In particular, both Shortcut-F2D2 and Shortcut-Distill-F2D2 substantially

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Negative log-likelihood (NLL) measured in BPD and FID results on ImageNet 64×64
dataset with different numbers of Euler steps. The flow matching model here, which achieves BPD
3.34 as the NLL with 1024 steps and FID 13.09 with 200 steps, is also the teacher model we use in
our Shortcut-Distill. For NLL, the closer to the teacher result (3.34 BPD) the better, and for FID,
the lower the better. We denote the best results in bold and invalid predictions in gray color.

Method 8 Steps 4 Steps 2 Steps 1 Step

NLL FID NLL FID NLL FID NLL FID

Flow Matching -6.41 31.60 -15.87 68.55 -35.23 170.00 -74.54 363.39
Shortcut-Distill (Ours) -9.03 19.47 -22.30 21.73 -49.01 28.12 -102.07 42.72

Shortcut-Distill-F2D2 (Ours) 3.51 21.91 3.94 24.05 3.97 29.83 1.54 44.02

1 2 3 4 5 6 7 8 9
Forward NFE

2.5

3.0

3.5

4.0

4.5

5.0

FI
D

Meanflow
Meanflow + F2D2
Meanflow + F2D2
+ Self-Guidance
Flow-matching
w/ 1024 NFE

(a) FID comparison across different num-
bers of forward NFEs.

(b) Example samples from various MeanFlow-based models us-
ing different numbers of forward NFEs.

Figure 2: Results of MeanFlow-based methods on CIFAR-10.

improves NLL compared to plain their orignal counterparts while maintaining competitive FID,
indicating that F2D2 can provide reasonable likelihood estimates without sacrificing much sam-
ple quality. Finally, MeanFlow-F2D2 shows FID improvements relative to the original MeanFlow
while simultaneously producing calibrated NLL, demonstrating that F2D2’s potential in providing
complementary training signals that are beneficial to both components.

ImageNet 64× 64 Shown in Table 2, flow matching quickly degenerates under few-step sampling,
with invalid NLL and extremely poor FID. Shortcut-Distill improves the few-step FID but still pro-
duces invalid NLL. By contrast, Shortcut-Distill-F2D2 achieves both competitive FID and mean-
ingful likelihoods close to the teacher’s BPD of 3.34 across all step counts. These results further
confirm F2D2’s ability for simultaneous fast sampling and fast likelihood evaluation.

5.3 MAXIMUM LIKELIHOOD SELF-GUIDANCE WITH MEANFLOW-F2D2

Figure 2 shows the FID and qualitative comparison among different methods built upon MeanFlow
using the number of forward NFE on CIFAR-10. As we can observe, our F2D2 improves the
model’s inference time scaling ability. With additional self-guidance, the model not only surpasses
the baseline MeanFlow performance but also outperforms a 1024-step flow matching model of the
same size, demonstrating the effectiveness its own likelihood predictions as valid signals to guide
the sampling process toward higher-quality generations.

5.4 2D CHECKERBOARD

In this section, we present a set of comparison of log-likelihood evaluation results on 2D checker-
board, a synthetic dataset with analytically tractable ground truth log-likelihood. As we can observe
in Figure 3, without F2D2, both flow matching and shorcut model catastrophically fail at few-step
log-likelihood estimation. On the other hand, our Shortcut-F2D2 is able to accurately recover the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

4 2 0 2 4
x1

4

2

0

2

4

x2

Target log p(x)

4 2 0 2 4
x1

4

2

0

2

4

x2

Flow-matching (Hutch), 1 step

4 2 0 2 4
x1

4

2

0

2

4

x2

Shortcut (Hutch), 1 step

4 2 0 2 4
x1

4

2

0

2

4

x2

Shortcut-F2D2, 1 step

4 2 0 2 4
x1

4

2

0

2

4

x2

Flow-matching (Hutch), 4 steps

4 2 0 2 4
x1

4

2

0

2

4

x2

Shortcut (Hutch), 4 steps

4 2 0 2 4
x1

4

2

0

2

4

x2

Shortcut-F2D2, 4 steps

4.4

4.2

4.0

3.8

3.6

3.4

3.2

4.4

4.2

4.0

3.8

3.6

3.4

3.2

4.4

4.2

4.0

3.8

3.6

3.4

3.2

4.4

4.2

4.0

3.8

3.6

3.4

3.2

4.4

4.2

4.0

3.8

3.6

3.4

3.2

4.4

4.2

4.0

3.8

3.6

3.4

3.2

4.4

4.2

4.0

3.8

3.6

3.4

3.2

Figure 3: Log-likelihood comparison on 2D checkerboard dataset among different models.

target density distribution even with only 1 NFE, preserving both spatial structure and density val-
ues. This directly validates that, while traditional methods fail at few-step likelihood evaluation,
F2D2 enables accurate likelihood via joint flow map distillation.

6 CONCLUSION

We present fast flow joint distillation (F2D2), a simple and modular framework that enables both
fast sampling and fast likelihood evaluation in flow-based generative models. By jointly distilling
the sampling trajectory and divergence computation into a unified flow map, our method simul-
taneously achieves accurate likelihood evaluation and high sample quality with just a few NFEs.
Our experiments on CIFAR-10 and ImageNet 64 × 64 demonstrate that F2D2 maintains accurate
likelihood estimates while preserving sample quality when applied to existing few-step methods in-
cluding shortcut models and MeanFlow. The efficiency gains from F2D2 enable new algorithmic
possibilities, as illustrated by our maximum likelihood self-guidance method, which enables a 2-step
MeanFlow model to outperform a 1024-step flow matching model of the same size on CIFAR-10.
As flow-based models continue to scale, we believe that efficient likelihood evaluation alongside fast
sampling will become increasingly important for enabling new training objectives, model analysis
techniques, and downstream applications that require both capabilities.

REPRODUCIBILITY STATEMENT

We provide proofs to our theoretical results in Appendix A and B. We also provide the implementa-
tion details to reproduce our algorithm and experimental results in Section 5 and Appendi C.

REFERENCES

Hirotugu Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic
Control, 19(6):716–723, 1974.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint arXiv:2209.15571, 2022.

Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A uni-
fying framework for flows and diffusions, 2023. URL https://arxiv.org/abs/2303.
08797.

Black Forest Labs. Flux.1 kontext: Flow matching for in-context image generation and editing
in latent space. arXiv preprint arXiv:2506.15742, 2025. URL https://arxiv.org/abs/
2506.15742.

10

https://arxiv.org/abs/2303.08797
https://arxiv.org/abs/2303.08797
https://arxiv.org/abs/2506.15742
https://arxiv.org/abs/2506.15742

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nicholas M. Boffi, Michael S. Albergo, and Eric Vanden-Eijnden. How to build a consistency
model: Learning flow maps via self-distillation, 2025a. URL https://arxiv.org/abs/
2505.18825.

Nicholas M. Boffi, Michael S. Albergo, and Eric Vanden-Eijnden. Flow map matching with stochas-
tic interpolants: A mathematical framework for consistency models, 2025b. URL https:
//arxiv.org/abs/2406.07507.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for
invertible generative modeling. Advances in neural information processing systems, 32, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Luca Eyring, Shyamgopal Karthik, Karsten Roth, Alexey Dosovitskiy, and Zeynep Akata. Reno:
Enhancing one-step text-to-image models through reward-based noise optimization. Advances in
Neural Information Processing Systems, 37:125487–125519, 2024.

Ronald A. Fisher. On the mathematical foundations of theoretical statistics. Philosophical Transac-
tions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical
Character, 222:309–368, 1922.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. arXiv preprint arXiv:2410.12557, 2024.

Ruiqi Gao, Emiel Hoogeboom, Jonathan Heek, Valentin De Bortoli, Kevin P. Murphy, and Tim
Salimans. Diffusion meets flow matching: Two sides of the same coin. 2024. URL https:
//diffusionflow.github.io/.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Google DeepMind. Veo 3: High-fidelity text- and image-to-video generation with audio.
Model card, Google DeepMind, may 2025. URL https://storage.googleapis.com/
deepmind-media/Model-Cards/Veo-3-Model-Card.pdf. Accessed 2025-09-21.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367, 2018.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving flow-
based generative models with variational dequantization and architecture design. In International
conference on machine learning, pp. 2722–2730. PMLR, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

11

https://arxiv.org/abs/2505.18825
https://arxiv.org/abs/2505.18825
https://arxiv.org/abs/2406.07507
https://arxiv.org/abs/2406.07507
https://diffusionflow.github.io/
https://diffusionflow.github.io/
https://storage.googleapis.com/deepmind-media/Model-Cards/Veo-3-Model-Card.pdf
https://storage.googleapis.com/deepmind-media/Model-Cards/Veo-3-Model-Card.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). URL http://www.cs.toronto.edu/~kriz/cifar.html.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in neural
information processing systems, 35:5775–5787, 2022.

Jerzy Neyman and Egon S. Pearson. On the problem of the most efficient tests of statistical hypothe-
ses. Philosophical Transactions of the Royal Society A, 231:289–337, 1933.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

OpenAI. Sora: Video generation models as world simulators. Tech-
nical Report, OpenAI, 2024. URL https://openai.com/index/
video-generation-models-as-world-simulators/. Accessed: 2024-02-15.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv
Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang
Wang, Geet Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Ja-
gadeesh, Kunpeng Li, Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu,
Mitesh Kumar Singh, Peizhao Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sum-
baly, Sai Saketh Rambhatla, Sam Tsai, Samaneh Azadi, Samyak Datta, Sanyuan Chen, Sean
Bell, Sharadh Ramaswamy, Shelly Sheynin, Siddharth Bhattacharya, Simran Motwani, Tao Xu,
Tianhe Li, Tingbo Hou, Wei-Ning Hsu, Xi Yin, Xiaoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-
Cheng Liu, Yi-Chiao Wu, Yue Zhao, Yuval Kirstain, Zecheng He, Zijian He, Albert Pumarola,
Ali Thabet, Artsiom Sanakoyeu, Arun Mallya, Baishan Guo, Boris Araya, Breena Kerr, Car-
leigh Wood, Ce Liu, Cen Peng, Dimitry Vengertsev, Edgar Schonfeld, Elliot Blanchard, Felix
Juefei-Xu, Fraylie Nord, Jeff Liang, John Hoffman, Jonas Kohler, Kaolin Fire, Karthik Sivaku-
mar, Lawrence Chen, Licheng Yu, Luya Gao, Markos Georgopoulos, Rashel Moritz, Sara K.
Sampson, Shikai Li, Simone Parmeggiani, Steve Fine, Tara Fowler, Vladan Petrovic, and Yuming
Du. Movie gen: A cast of media foundation models. arXiv preprint arXiv:2410.13720, 2024.
URL https://arxiv.org/abs/2410.13720. Submitted October 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. Advances in neural information processing systems, 32, 2019.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional conference on machine learning, pp. 1530–1538. PMLR, 2015.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your flow: Scaling continuous-time
flow map distillation. arXiv preprint arXiv:2506.14603, 2025.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

12

http://www.cs.toronto.edu/~kriz/cifar.html
https://openai.com/index/video-generation-models-as-world-simulators/
https://openai.com/index/video-generation-models-as-world-simulators/
https://arxiv.org/abs/2410.13720

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
tillation. In European Conference on Computer Vision, pp. 87–103. Springer, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in neural information processing systems, 34:1415–
1428, 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Shuangfei Zhai, Ruixiang Zhang, Preetum Nakkiran, David Berthelot, Jiatao Gu, Huangjie Zheng,
Tianrong Chen, Miguel Angel Bautista, Navdeep Jaitly, and Josh Susskind. Normalizing flows
are capable generative models. arXiv preprint arXiv:2412.06329, 2024.

Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. arXiv preprint
arXiv:2503.07565, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A CHARACTERIZATION OF THE JOINT FLOW MAP

In this section, we provide an analytical characterization of the joint flow map for the combined
sampling and likelihood dynamics Eq. (2.3). For the simplicity of notations, we define the joint
system

d

dt
xt = v(xt, t), x(0) = x0 ∼ N (0, I)

d

dt
zt = −div(v(xt, t)), z0 = log p0(x0)

(A.1)

where we will use the shorthand zt for log pt(xt). Moreover, we define the right-hand side
of Eq. (A.1) as g(y, t)⊤ = (v(x, t),−div(v(xt, t)))

⊤ where y = (x, z)⊤.

We then define the flow maps for the two subsystems in Eq. (A.1) as

ΦX(x, t, s) = x+ (s− t)u(x, t, s),

ΦZ(x, z, t, s) = z + (s− t)D(x, t, s)
(A.2)

In Eq. (A.2), we note that the hierarchical structure in Eq. (A.1) is explicit, and that the function D
only depends on x and not on z. We then define the joint flow map as

ΦY (y, t, s) =

[
ΦX(x, t, s)
ΦZ(x, z, t, s)

]
= y + (s− t)f(x, t, s),

f(x, t, s) =

[
u(x, t, s)
D(x, t, s)

] (A.3)

We first recall the simple tangent identity denoted the tangent condition by Boffi et al. (2025a), also
leveraged by (Kim et al., 2023; Frans et al., 2024; Geng et al., 2025), which allows us to recover the
instantaneous velocity and divergence in the s→ t limit:

Lemma A.1 (Tangent Condition). The flow map ΦY (y, t, s) for the joint system Eq. (A.1) satisfies
limt→s ∂sΦY (y, t, s) = g(y, s) = f(x, s, s). In particular, u(x, s, s) = v(x, t) and D(x, s, s) =
−div(v(x, s)).

Proof. The proof follows by application of Lemma 2.1 from Boffi et al. (2025a).

Now, given Eq. (A.3), we may now state the following proposition, which is based on an identity
similar to Lemma A.1 in reverse.

Proposition A.2 (Characterization of the Joint Flow Map). Let ΦY (y, t, s) = y + (s − t)f(x, t, s)
satisfy f(x, s, s) = g(y, s) where g(y, t)⊤ = (v(x, t),−div(v(xt, t)))

⊤ denotes the dynamics for
the joint sampling and likelihood system Eq. (A.1). Then, ΦY (y, t, s) is the flow map for the joint
system if and only if any of the following conditions are satisfied:

1. (Lagrangian condition) Zs,t satisfies the Lagrangian equation

∂sΦY (y, t, s) = f(ΦY (y, t, s), s, s) ∀ (y, t, s) ∈ Rd+1 × [0, 1]2. (A.4)

2. (Eulerian condition) ΦY (y, t, s) satisfies the Eulerian equation

∂tΦY (y, t, s) +∇yΦY (y, t, s)f(y, t, t) = 0, ∀ (y, t, s) ∈ Rd+1 × [0, 1]2. (A.5)

3. (Semigroup condition) Zs,t satisfies the semigroup property

ΦY (y, t, s) = ΦY (ΦY (y, t, r), r, s), ∀ (y, t, r, s) ∈ Rd+1× [0, 1]3, t < r < s. (A.6)

Proof. The proof follows by application of Proposition 2.2 from Boffi et al. (2025a) applied to the
joint system.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proposition A.2 gives three characterizations of the joint flow map that may be used to devise few-
step flow-based training algorithms. In each case, by definition of Eq. (A.3), the X block reduces
to the flow map characterizations introduced in Boffi et al. (2025b;a) for the sampling system. The
second block for the likelihood dynamics is new, which we focus on now to instantiate the resulting
equations.

Lagrangian likelihood equation. By inspection, Eq. (A.4) leads to the equation

D(x, t, s) = −div(v(ΦX(x, t, s), s))− (s− t)∂sD(ΦX(x, t, s), t, s). (A.7)

Squaring the residual leads to the objective function

L(D̂) = E
[
∥D̂(xt, t, s)− (−div(v(ΦX(xt, t, s), s))− (s− t)∂sD(ΦX(xt, t, s), t, s)) ∥2

]
(A.8)

At training time, because we don’t have access to the true −div(v) or the true sampling flow map
ΦX(x, t, s), we may replace them by their self-consistent estimates,

L(θ) = E
[
∥Dθ(xt, t, s)− sg (−div(uθ(ΦX;θ(xt, t, s), s))− (s− t)∂sDθ(ΦX;θ(xt, t, s), t, s)) ∥2

]
(A.9)

where we have also placed a stopgrad operator to avoid backpropagation through Jacobian-vector
products and to control the flow of information from the teacher to the student. This gives the
Lagrangian likelihood self-distillation algorithm.

Eulerian likelihood equation. To derive our Eulerian schemes, we first note that

∇yΦY (y, t, s) =

[
∇xΦX(x, s, t) 0
∇xΦZ(x, z, t, s) ∇zΦZ(x, z, t, s)

]
. (A.10)

Hence to compute the second component of the Eulerian equation, we must collect some simple
algebraic identities,

∂tΦZ(x, z, t, s) = −D(x, t, s) + (s− t)∂tD(x, t, s),

∇xΦZ(x, z, t, s) = (s− t)∇xD(x, t, s),

∇zΦZ(x, z, t, s) = I.

(A.11)

Using the above, we find that the Eulerian relation for Y becomes

−D(x, t, s) + (s− t)∂tD(x, t, s) + (s− t)∇xD(x, t, s)v(x, t)− div(v(x, t)) = 0. (A.12)

We may enforce this equation by minimizing the square residual,

L(D̂) = E
[
∥D(xt, t, s)− ((s− t)∂tD(xt, t, s) + (s− t)∇xD(xt, t, s)v(x, t)− div(v(xt, t))) ∥2

]
.

(A.13)

At training time, we again place a sg (·) operator to avoid backpropagating through the derivatives,

L(θ) = E
[
∥Dθ(xt, t, s)− sg ((s− t)∂tDθ(xt, t, s) + (s− t)∇xDθ(xt, t, s)v(x, t)− div(v(xt, t))) ∥2

]
.

(A.14)
In the above, we do not have access to the ideal v(xt, t) nor −div(v(xt, t). However, we observe
that because of the placement of sg (·), resulting gradient will be linear in v(xt, t), so that we may
replace it by its Monte Carlo estimate. In practice, this reduces to conditional-OT flow matching.
Second, we replace −div(v(xt, t) by the self-consistent estimate −div(uθ(xt, t, t), leading to

L(θ) = E
[
∥Dθ(xt, t, s)− sg ((s− t)∂tDθ(xt, t, s) + (s− t)∇xDθ(xt, t, s)(x1 − x0)− div(uθ(xt, t, t))) ∥2

]
.

(A.15)
This gives the MeanFlow-F2D2 algorithm.

Semigroup property. Last, we consider the semigroup approach. The second block is given by,

Ys,t(z) = Yu,t(Ys,u(z)). (A.16)

ΦY (y, t, s) = ΦY (ΦY (y, t, r), r, s) (A.17)
Writing this out using Eq. (A.3), we find that

z + (s− t)D(t, s) = ΦZ(x, z, t, r) + (s− r)D(ΦZ(x, z, t, r), r, s),

⇐⇒ z + (s− t)D(x, t, s) = z + (r − t)D(x, t, r) + (s− r)D(ΦX(x, t, r), r, s),
(A.18)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Setting r = 1
2 (t+s) recovers a continuous limit of shortcut models, as shown in Boffi et al. (2025a).

In this case, Eq. (A.18) becomes

D(x, t, s) =
1

2
(D(x, t, r) +D(ΦX(x, t, r), r, s)) , (A.19)

Squaring the residual gives

L(D̂) = E
[
∥D̂(xt, t, s)−

1

2
(D(xt, t, r) +D(ΦX(xt, t, r), r, s)) ∥2

]
, (A.20)

where as in the above Eulerian and Lagrangian approaches, we have replaced the ideal flow map X
by the self-consistent estimate. Again, to control the flow of information we may place a stopgrad,

L(θ) = E
[
∥Dθ(xt, t, s)−

1

2
sg (Dθ(xt, t, r) +Dθ(ΦX;θ(xt, t, r), r, s)) ∥2

]
, (A.21)

which gives our Shortcut-F2D2 algorithm.

B ADDITIONAL THEORETICAL ANALYSIS

Corollary B.1. Shortcut models enforce semigroup property with their self-consistency loss.

Proof. The same proof as the semigroup property for ΦY holds for ΦX .

Corollary B.2. MeanFlow (Geng et al., 2025) directly enforces the Eulerian condition with Mean-
FLow identity.

Proof. Since u(xt, t, t) = v(xt, t) is implied by the linear parametrization in Equation 3.1, we can
have

∂tΦ(xt, t, s) +∇xt
Φ(xt, t, s)u(xt, t, t) = 0

∂t(xt + (s− t)u(xt, t, s)) +∇xt
(xt + (s− t)u(xt, t, s))v(xt, t) = 0

−u(xt, t, s) + (s− t)∂tu(xt, t, s) + (I + (s− t)∇xtu(xt, t, s))v(xt, t) = 0

(s− t) (∂tu(xt, t, s) +∇xt
u(xt, t, s)v(xt, t)) + v(xt, t) = u(xt, t, s)

(s− t)
d

dt
u(xt, t, s) + v(xt, t) = u(xt, t, s)

which is exactly MeanFlow identity.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Unconditional CIFAR-10 ImageNet-64× 64

Noise embedding Positional Positional
Channels 128 192
Channels multiple 1,2,2,2 1,2,3,4
Attention resolution 16 32,16,8
Residual blocks per resolution 4 3
Dropout 0.13 0.1
Batch size 512 1024
GPUs 8 L40S 8 L40S
Iterations 150k 125k
Learning Rate 1e-4 (constant) 1e-4 (constant)
Warmup Steps 30k (linear warmup) 60k (linear warmup)
Precision float32 float32
Optimizer RAdam RAdam
EMA rate 0.9999 0.9999

Table 3: Training hyperparameters for flow-matching.

C IMPLEMENTATION DETAILS

Flow-matching. We use linear interpolation to generate training targets. Flow-matching models are
trained on both unconditional CIFAR-10 and ImageNet-64× 64 using the configurations in Table 3,
with 200 standard Euler steps for sampling. This model serves as the teacher model for the second
distillation stage.

Shortcut Model. We reimplement the shortcut model (Frans et al. (2024)) for CIFAR-10. Fol-
lowing their method, we use discrete timesteps and set 1/128 as the smallest unit of time for ap-
proximating the ODE. We consider 8 possible shortcut lengths ranging from (1, 1/2, . . . , 1/128).
Similarly, we divide the batch into 3/4 for flow-matching training and 1/4 for self-consistency train-
ing. However, instead of DiT, we use a U-Net backbone with configurations in Table 3. We train for
100k iterations on CIFAR-10 and sample with 1, 2, 4, and 8 standard Euler steps. Additionally, we
follow the original paper and parametrize the model to take xt, t and s− t as inputs.

Shortcut-Distill. We use the velocity predicted by the flow-matching model as the target for the
flow-matching loss, instead of xdata − xnoise. All other configurations remain the same as in the
Shortcut Model.

MeanFlow. We directly use the pre-trained model weights and parametrization provided by the
official PyTorch repository to conduct the CIFAR-10 MeanFlow experiments. The provided pre-
trained MeanFlow model has the same size as all other models we implement for CIFAR-10.

Log-likelihood estimation with vanilla flow map models. Since Flow maps can recover instanta-
neous velocity through their tangent condition uθ(xt, t, t) ≈ v(xt, t), flow map models trained only
for sampling can, in principle, evaluate likelihood by computing div(uθ(xt, t, t)) and solving for Eq
2.3 and 2.4. As a result, we use Euler solver with this formuation to produce the NLL estimation of
the baseline Shorcut, Shortcut-Distill and MeanFlow models.

F2D2 for Shortcut Model and Shortcut-Distill. For F2D2 training, we add a scalar head after
the UNet decoder. The scalar head is implemented as an MLP: the decoder’s final feature map is
first flattened, then passed through two fully connected layers with SiLU activations, and finally
projected to a single scalar. This head maps the spatial feature representation into a scalar value,
which we use to predict divergence.

For CIFAR-10, the hidden sizes are 128 and 64, while for ImageNet-64×64 they are 64 and 16. We
linearly warm-start the model with teacher weights and train it using the flow-matching loss, with the
teacher model taken from either the Shortcut Model or the Shortcut Model-Distill. We also adopt
the same discrete timesteps as in the Shortcut Model. To balance the four losses, we scale down

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Sampling speed (wall-clock time and per-image latency) for different NFEs.

Dataset Hardware 8 NFE 4 NFE 2 NFE 1 NFE

CIFAR-10 4×L40S 146 s (2.92 ms/img) 83 s (1.66 ms/img) 51 s (1.02 ms/img) 40 s (0.80 ms/img)
ImageNet-64×64 8×L40S 289 s (5.78 ms/img) 160 s (3.20 ms/img) 95 s (1.90 ms/img) 63 s (1.26 ms/img)

the divergence distillation targets by a factor of 20,000 for CIFAR-10 and 300,000 for ImageNet-
64×64. We train Shortcut-Distill-F2D2 for 10k iterations on CIFAR-10, 10k iterations on ImageNet-
64 × 64. We also train Shortcut-F2D2 for 10k iterations on CIFAR-10. We stop the training when
the calibrated value of bpd is reached. All other configurations remain the same. Although our
derivation matches −div(v), our implementation parametrizes to predict div(v), which yields an
equivalent formulation as long as the training loss and the sampling process as the appropriate signs.

F2D2 for MeanFlow. We use the same scalar head for CIFAR-10 with Shortcut-Distill-F2D2 and
train for an additional 50 epochs using the same configurations as in the original PyTorch imple-
mentation. We use the pre-trained flow matching model to provide the instantaneous divergence
supervision.

Maximum Likelihood Self-Guidance with F2D2. We first predict the negative likelihood using
randomly sampled noise with 1-step divergence prediction and take this negative likelihood as the
loss. We then update the noise with one step of Adam, using a learning rate of 1 × 10−3 for 1-step
sampling and 5 × 10−3 for 2-, 4-, and 8-step sampling. We then evaluate FID using 1, 2, 4, and 8
standard Euler steps for sampling.

BPD. We use the same method as Lipman et al. (2022) to compute the BPD. To compute BPD with
F2D2 models, we discretize the interval from 1 to 0 into equal segments, while the uniform step size
serves as the second time input.

2D Checkerboard. We follow the experimental setup of Boffi et al. (2025a). The model is a 4-layer
MLP with 512 hidden units per layer and GELU activations. Both the flow-matching baseline and
the Shortcut model are trained for 150k iterations with a batch size of 100k and an initial learning
rate of 10−3, using a square-root decay schedule after 35k steps. For the Shortcut model, each
batch is divided in a 3 : 1 ratio between the flow-matching loss and the self-distillation loss. For
Shortcut-F2D2, we extend the output layer with an additional dimension and initialize training from
the pretrained Shortcut model, running an extra 27k iterations.

Computation Cost and Runtime. We conduct all our training on an 8-GPU L40S node. To train
a typical F2D2 CIFAR10 model, it takes around 1 day for the Flow-matching teacher, 1 day for the
vanilla Shortcut or Shortcut-Distill baselines, and 5 hours for the F2D2 finetuning on top of it. For
ImageNet64x64 models, it takes around 8 days for the flow matching teacher, 6 days for the vanilla
shortcut or shortcut-distill model, and 5 hours for the F2D2 finetuning. For inference run time, we
provide the wall-clock time to generate 50k samples for each dataset using different numbers of
NFEs in Table 4.

D ADDITIONAL ABLATIONS

In this section, we present additional ablation study to further investigate the bevavior of our F2D2
models.

With variance around 1.8×106 each time step, the Hutchinson estimator does produce values that are
significantly larger in magnitude than the sampling range. Therefore, as we have mentioned in the
Appendix C, we follow common deep learning practices and apply a 5× 10−5 scaling factor to the
divergence target in order for the neural network to better learn the prediction. Here in Table 5, we
present an ablation study on the divergence scaling factor to validate this choice of hyperparameter.
As we can observe, appropriate scaling enables simultaneous calibrated likelihood prediction and
high sample quality, while scaling too strong can produce invalid NLL and scaling too weak can
degrade overall performance.

Figure 4 shows the self-guidance sampling algorithm with multi-step Adam optimization. As we
can observe, while adding optimization steps does not further improve the FID, the performance

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Ablation study on the divergence scaling factor.

Scaling 8 Steps 4 Steps 2 Steps 1 Step

NLL FID NLL FID NLL FID NLL FID

5× 10−4 3.27 5.16 2.43 6.31 1.26 7.06 -2.92 13.16
5× 10−5 3.12 5.68 2.87 5.96 2.38 7.35 1.62 13.76
5× 10−6 5.38 15.57 5.44 25.20 5.50 10.96 5.60 23.18

1 2 4 8
Forward NFE

2.5

3.0

3.5

4.0

FI
D

Self-Guidance step = 1
Self-Guidance steps = 2
Self-Guidance steps = 3
Self-Guidance steps = 4

Figure 4: FID results of multi-step self-guidance sampling on CIFAR10.

also does not collapse. We are interested in other variants of our self-guidance algorithm to better
improve the performance as exciting future work directions.

Finally, we conduct additional study on the effect that different loss components have on the sample
quality as well as likelihood estimation accuracy. In particular, we slightly modify Equation 3.10 to
add an additional weighting scalar λ to Ldiv-SC +LD-SC and compare the performance under various
weighting.

LSC-F2D2(θ) := LVM-SC(θ) + Lu-SC(θ) + λ(Ldiv-SC(θ) + LD-SC(θ)) (D.1)
Table 6 shows the Shortcut-Distill-F2D2 results with λ = 0.01, 0.1, 1, 10, with λ = 1 equivalent
to our original setting and the performance of Shortcut-Distill without F2D2 as reference. As we
can observe, adding an additional loss weighting can potentially help F2D2 achieve a better sweet
spot in balancing sample quality and likelihood estimation: While our original equal weighting loss
(λ = 1) obtains the most calibrated likelihood, it slightly penalizes the FID scores. Similarly, sig-
nificantly down-weighting (λ = 0.01) further improves FID but loses the ability to produce accurate
likelihood. However, when choosing an appropriate λ (in particular when λ = 0.1), this additional
weighting can enable the model to produce both FID scores that match or even slightly improve the
original Shortcut-Distill performance, and relatively calibrated log-likelihood estimation.

The experiment in Table 6 opens the door to many intriguing future research directions that can po-
tentially further improve the performance. These include more fine-grained loss weighting scheme
and developing training schedules similar to the ones proposed in Frans et al. (2024) and Geng
et al. (2025), where the flow matching objective and the self-consistency objective are optimized in
separate portions of the training.

Table 6: Ablation study on different loss weighting on Ldiv-SC + LD-SC in Shortcut-Distill-F2D2.

Scaling 8 Steps 4 Steps 2 Steps 1 Step

NLL FID NLL FID NLL FID NLL FID

Shortcut-Distill -11.42 5.01 -26.82 5.41 -57.72 7.13 -119.42 12.75

10 1.47 11.66 0.82 11.23 -0.07 10.11 -2.19 18.27
1 3.12 5.68 2.87 5.96 2.38 7.35 1.92 13.76

0.1 2.59 5.01 2.00 5.33 1.78 7.01 0.68 13.04
0.01 2.04 4.87 1.51 5.28 0.59 6.76 -1.68 12.70

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E ADDITIONAL RESULTS

In this section, we present additional experimental results. Specifically, in Table 7 we showcase the
NLL per sample error w.r.t. the teacher prediction on CIFAR10. As we can observe, the F2D2 vari-
ants lower the error by 7-171× in comparison to the baselines. This evaluation directly verifies that
our F2D2 can produce sample-level calibrated likelihood estimations that are suitable for practical
applications, not merely matching the summary statistics.

Figure 5 demonstrate the training dynamics of our Shortcut-Distill-F2D2 model with the training
loss curve, where we can observe stable training with expected small fluctuations native to uniformly
random timestep selection at each iteration.

We also provide additional qualitative results in Figure 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20.
All images shown in this section are non-cherry picked results.

Table 7: NLL Mean absolute per sample error w.r.t the teacher’s prediction in BPD on CIFAR10. It
shows that the F2D2 variants lower the error by 7-171× in comparison to the baselines.

Method 8 steps 4 steps 2 steps 1 step

Shortcut 15.11 30.97 62.85 126.58
Shortcut-Distill 14.47 29.79 60.61 121.99

Meanflow 12.04 24.20 49.42 100.99

Shortcut-F2D2 0.52 0.55 1.01 3.08
Shortcut-Distill-F2D2 0.41 0.50 0.90 1.69

MeanFlow-F2D2 1.62 1.78 1.79 0.59

2200 4200 6200 8200
Iteration

0.2

0.3

0.4

0.5

0.6

L_
F2

D2

L_F2D2
L_F2D2

2200 4200 6200 8200
Iteration

0.0015

0.0020

0.0025

0.0030

0.0035

L_
VM

L_VM
L_VM

2200 4200 6200 8200
Iteration

0.0013

0.0014

0.0015

0.0016

L_
di

v

L_div
L_div

2200 4200 6200 8200
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

L_
u

L_u
L_u

2200 4200 6200 8200
Iteration

0.15

0.20

0.25

0.30

L_
D

L_D
L_D

Figure 5: The Shortcut-Distill-F2D2 loss curve on CIFAR10.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 6: Imagenet 64× 64 unconditional generation.

Figure 7: 8-step unconditional ImageNet 64× 64 generation with our Shortcut-Distill.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 8: 2-step unconditional ImageNet 64× 64 generation with our Shortcut-Distill.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 9: 8-step unconditional ImageNet 64× 64 generation with our Shortcut-Distill-F2D2.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 10: 2-step unconditional ImageNet 64× 64 generation with our Shortcut-Distill-F2D2.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 11: 8-step unconditional CIFAR-10 generation with our Shortcut-Distill.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 12: 2-step unconditional CIFAR-10 generation with our Shortcut-Distill.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 13: 8-step unconditional CIFAR-10 generation with our Shortcut-Distill-F2D2.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 14: 2-step unconditional CIFAR-10 generation with our Shortcut-Distill-F2D2.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 15: 8-step unconditional CIFAR-10 generation with our Shortcut-F2D2.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 16: 2-step unconditional CIFAR-10 generation with our Shortcut-F2D2.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 17: 2-step unconditional CIFAR-10 generation with MeanFlow-F2D2 (Ours).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 18: 1-step unconditional CIFAR-10 generation with MeanFlow-F2D2 (Ours).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 19: 2-step unconditional CIFAR-10 generation with our MeanFlow-F2D2-Self-Guidance.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 20: 1-step unconditional CIFAR-10 generation with our MeanFlow-F2D2-Self-Guidance.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

F LIMITATIONS AND FUTURE WORKS

In this section, we discuss the limitations and future works of our method. First, F2D2 train-
ing requires careful early stopping: once the calibrated BPD value is reached, further training can
potentially lead to overfitting or degraded likelihood estimation. Future work could address this
through improved network architecture and auxiliary regularization. Second, on the ImageNet-
64× 64 dataset, due to computational resources constraints, we only train with reduced model size
and insufficient training iterations rather than an ideal large-scale configuration. We expect training
with longer duration and larger models can further improve the performance. We also restrict our-
selves to unconditional generation, which is substantially more challenging than conditional setups.
Finally, the performance of our method is sensitive to divergence target scaling and its practical
effectiveness in other architectures or modalities remains to be fully validated in future works.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use Large Language Models (LLMs) to refine and polish the manuscript. LLMs also support
our code debugging, but they are not involved in developing the algorithms or conducting the exper-
iments. The authors take full responsibility for the content of manuscript.

35

	Introduction
	Background
	Method
	fast flow joint distillation (F2D2): Parametrizing a Joint Flow Map
	Instantiating F2D2 with Shortcut and MeanFlow
	Joint Shortcut: Shortcut-F2D2
	Joint MeanFlow: MeanFlow-F2D2

	Practical Design Choices
	Application: Maximum Likelihood Self-Guidance with F2D2

	Related works
	Experiments
	Setups
	Results
	Maximum Likelihood Self-guidance with MeanFlow-F2D2
	2D Checkerboard

	Conclusion
	Characterization of the joint flow map
	Additional Theoretical Analysis
	Implementation Details
	Additional Ablations
	Additional Results
	Limitations and Future Works
	The Use of Large Language Models (LLMs)

