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ABSTRACT

Designing mechanisms like auctions or taxation policies can be formulated as a
general-sum game between a principal and a self-interested learning agent. The
principal aims to induce desirable outcomes in such games and may do so, for
example, by dynamically intervening on the agent’s learning objective. The inter-
vention policy should generalize well to agents with unseen learning behaviors;
in the real world, the principal may not know the agent’s learning algorithm nor
its rewards. Moreover, interventions may be costly, e.g., enforcing a tax might
require extra labor; hence, interventions should be few-shot adaptable (only needs
to retrain on few agents at test-time) and cost-efficient (uses few interventions).
Here, we introduce a model-based meta-learning framework to train a principal
that can quickly adapt when facing out-of-distribution agents with different learn-
ing strategies and reward functions. First, in a simple Stackelberg game between
the principal and a greedy agent, we show that meta-learning allows adapting
to the theoretically known and appropriate Stackelberg equilibrium at meta-test
time, with few interactions with the agent. Second, we show empirically that our
approach yields strong meta-test time performance against bandit agents with var-
ious unseen explore-exploit behaviors. Finally, we outperform baselines that sepa-
rately use either meta-learning or agent behavior modeling to learn a cost-effective
intervention policy that is K-shot adaptable with only partial agent information.

1 INTRODUCTION

General-sum games provide a framework to study diverse applications involving a principal that
aims to incentivize an adaptive agent (both are learners) to achieve the principal’s goal, e.g., maxi-
mizing revenue in auctions (Milgrom & Milgrom, 2004), optimizing social welfare with economic
policy (Zheng et al., 2022), or optimizing skill acquisition in personalized education (Maghsudi
et al., 2021). In this work, we focus on a principal that directly intervenes on the rewards of the
agent. For instance, a government may want to incentivize the use of environmentally-friendly
(“clean”) products by levying green taxes, but needs to understand how people (strategically) change
their consumption behavior as taxes change. Here, existing models of human adaptation that assume
rational learning (or use simplified models of bounded rationality) often do not suffice. Hence, in-
teracting with the agents is required to learn (how they change) their behavior, but such interactions
are not “free”. For example, a tax policy may require effort to apply it fairly and to measure its
impact on consumers.

To mitigate the need for costly real-world interactions, we can use simulations with deep reinforce-
ment learning (RL) agents. This is an attractive solution framework: deep neural network behavioral
models are expressive enough to emulate real-world entities and simulations can be run safely and
as often as needed. Moreover, we can use deep RL to learn intervention policies that are effective
even in the face of complex agent behaviors in sequential general-sum games.

However, this approach also faces several challenges. When deploying the learned policies in the
real world, interventions can typically only be applied a few times, due to implementation costs, and
rarely under identical circumstances; in contrast to simulations, we cannot reset the real world. Even
though principals may adapt their policies to new conditions, they cannot realistically know the true
rewards or learning strategy of the agent. Hence, our goal is to learn policies in general-sum games
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that 1) perform well even when agents learn, 2) can be quickly adapted, 3) are robust to distribution
shifts in agent behaviors, and 4) are effective despite having only partial information.

Contributions. To address these challenges, we propose MERMAIDE (Meta-learning for Model-
based Adaptive Incentive Design), a deep RL approach that 1) learns a world model and 2) uses
gradient-based meta-learning to learn a principal policy that can be quickly adapted to perform well
on unseen test agents. We consider two-player general-sum games between a principal and an agent
wherein the principal intervenes at a cost on the agent’s learning process to incentivize the agents
to learn to act to achieve the principal’s objective. We assume that the agent behaves in a first-order
strategic manner and the principal in a second-order strategic manner. Here, the agents optimize
their experienced rewards and minimize their regret, but do not account for their influence on the
principal’s actions. In contrast, the principal intervenes explicitly as to influence the agent’s actions.

We first analyze the one-shot adaptation performance of a meta-learned principal in a matrix game
setting, under both perfect and noisy observations for the agent and the principal. We show that
meta-training reliably finds solutions that one-shot adapt well, and characterize how the principal’s
out-of-distribution performance depends on its observable information about the agent.

We next develop and empirically verify these insights with more adaptive agents and propose MER-
MAIDE which finds well-performing reward intervention policies in the sequential bandit setting.
Here, MERMAIDE performs well against out-of-distribution bandit learners, with test-time perfor-
mance and robustness depending on the agents’ level of exploration and their pessimism in the face
of uncertainty, confirming and extending the analysis and conclusions from the single-round setting.

2 RELATED WORK

Bilevel optimization. Learning a mechanism with agents who also learn is a bilevel optimiza-
tion problem, which is NP-hard (Ben-Ayed & Blair, 1990; Sinha et al., 2017). Possible solution
techniques include branch-and-bound and trust regions (Colson et al., 2007). In particular, solv-
ing bilevel optimization using joint learning of the mechanism and the agents can be unstable, as
the agents continuously adapt their behavior to changes in the mechanism. This can be stabilized
using curriculum learning (Zheng et al., 2020), but generally bilevel problems remain challenging,
especially with nonlinear objectives or constraints.

Meta-learning and distribution shift. In recent years, gradient-based meta-learning has proven
effective in learning initializations for complex policy models that generalize well to unseen tasks
(Finn et al., 2017a; Nagabandi et al., 2018). Luketina et al. (2022) showed that context-conditioned
meta-gradients are effective for adapting in environments with controlled sources of non-stationarity,
but they do not account for non-stationarity from interactions between strategic agents that learn.
Prior works in imitation learning (Argall et al., 2009) and inverse RL (Abbeel & Ng, 2004) as-
sume access to expert demonstrations with a fixed policy that the (RL) agent wants to emulate. In
contrast, our principal aims to learn a policy that can strategically alter the behavior of such demon-
strators (our agents), who are themselves learning during an episode of the demonstration. Recently,
Boutilier et al. (2020) studied meta-learning for bandit policies, while Guo et al. (2021) introduced
the inverse bandit setup for learning from low-regret demonstrators. However, these works do not
consider shifts in the bandit learning algorithm between training and test time.

Modeling agents. A key challenge in multi-agent learning is that each agent experiences a non-
stationary environment if other agents are learning. As such, agents can benefit from having a world
model, e.g., to know what the policy or value function of the other agents are. World models can
stabilize multi-agent RL (Lowe et al., 2017) and enable higher-order learning methods (Foerster
et al., 2018), and can be seen as a form of model-based RL. However, this may require a large
amount of observational data or prior knowledge, which may be hard to acquire.

Adaptive incentive design. Principal-Agent problems (Eisenhardt, 1989) involve design of in-
centive structures, often under information asymmetry, but are usually not concerned with learning
how to learn to incentivize across agents of different types. Pardoe et al. (2006) found that a form of
meta-learning that adapts the learning process itself can design English auctions (sequential bidding)
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that perform better with adaptive bidders who are loss-averse, and is still effective when the distri-
bution of bidder behaviors (slowly) shifts. Our work expands on this theme by explicitly modeling
agents that learn, considering shifts in the learning algorithm of the agents, and using deep RL with
gradient-based meta-learning. The combination of these techniques enable learning incentivization
policies that generalize well across more complex tasks.

3 LEARNING TO ALIGN AGENTS BY REWARD INCENTIVIZATION

Overview. We model a principal who aims to incentivize an agent to (learn to) execute the prin-
cipal’s preferred action. To do so, the principal can intervene and change the agent’s rewards at a
cost. Without interventions, the agent may learn to prefer an action different than the principal’s.

For example, consider consumers who can use either environmentally “clean” or “dirty” goods.
Indifferent at first, consumers may gradually learn to prefer dirty goods if those are consistently
cheaper than clean ones, whereas the government may want them to prefer clean goods. Here, the
agent’s reward is the negative of the cost of consumption, for instance, and an intervention changes
the price of goods through taxes or subsidies. If we have access to a simulation, the principal can
compute an optimal intervention. However, the simulation might be inaccurate and real-world agents
might behave differently. As an example of such test-time distribution shift, simulated agents may
be fast to change their consumption preferences, while real agents may be slow. A “good” principal
(trained in a simulation) could quickly be fine-tuned to intervene more in the latter case and adapt
quickly if such behavior is observed during deployment.

In particular, we focus on learning a principal policy that needs to be adapted quickly following a
single round of test-time game play (e.g., taxes and subsidies are deployed in the real world), and
that is effective when the agent’s learning algorithm differs from that seen during train-time.

We now formalize this setting. In this work, we focus on agents in a stateless environment for ease
of exposition. For all variables and their meaning, see Tables 2 and 3 in the Appendix.

The agent. The agents are characterized by their action space A and a base reward function r :
A → R. We call it the base reward because the agent experiences an intervened reward

r̃t (at) = r (at) + r′t (at) , (1)

where the intervention r′t is provided externally (by the principal) for the agent action at. We index
time as t = 1, . . . , T . At each time step t, the agent’s policy πt computes a distribution over its
actions based on the observations for the agent up to timestep t and executes at ∼ πt. We assume
that the principal has a preferred action a∗ that the agent should execute, whereas the agent’s optimal
policy can prefer a different action than a∗ without intervention. Finally, at time t, the agent learns
using an update rule f : (πt, at, r̃t) 7→ πt+1 to maximize the agent’s intervened rewards, e.g., under
UCB (Lai et al., 1985), f updates the confidence bounds for the action selected at time t.

The principal. In this work, from the principal’s point of view, the world (environment) consists
of the agent who maximizes r̃. A standard assumption is that agents are rational and they may have
a private state (referred to as its type) which the principal cannot see. Although the agent faces a
stateless problem, the principal faces a stateful problem with partial observability. The full state
s ∈ S includes the principal’s internal state hp

t (e.g., the principal’s belief about the value of the
private agent information), and all information about the agent, including its past actions, reward
function, and policy model; often, the latter two are private.

More formally, the principal can be modeled as a POMDP (S, op, Ap, rp, γ,P). The observation
function op determines what part of a world state s is visible to the principal, Ap is its action space
of interventions, rp is its reward, γ is a discounting factor, and P are the environment dynamics, e.g.,
as caused by the agent’s actions. At time t, the principal samples an action ap

t ∼ πp
(
ap
t |o

p
t−1, h

p
t−1

)
which determines its intervention on each possible agent action a, i.e. ap

t =
[
r′1, . . . , r

′
|A|

]
.

Adaptive intervention policy learning To model distribution shift at test time, we follow the
meta-learning terminology (Finn et al., 2017b) and view each distinct agent as a task τ i. The princi-
pal has access to a meta-train set of agents τ i ∈ Ttrain; i = 1, . . . , ntrain and is evaluated on a meta-test
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set of agents τ i ∈ Ttest; i = 1, . . . , ntest. We emphasize that during a task, both the principal and
agent may learn and adapt, both at meta-train and meta-test time.

Here, we focus on two key challenges: K-shot adaptation and distribution shift. First, the principal
gets only K episodes for fine-tuning for each meta-test task (but can train indefinitely for each meta-
train task). Second, the principal faces two types of distribution shift: 1) across tasks and 2) intra-
task non-stationarity. The meta-train and meta-test tasks may differ (significantly) in their temporal
distribution of actions, e.g., due to different agent updates f or the agent rewards rt being centered
around different values (e.g., average price levels are higher in the real world vs in the simulation).
Within a task, the agent’s learning is affected by the principal’s interventions that change its reward
r̃. This gives rise to non-stationarity in the agent’s environment, as its learning objective may shift
over time. These forms of distribution shift distinguish our adaptive intervention policy learning
setting from most prior work in meta-learning, which often assume stationarity within a task and
also assume similar task distributions at meta-train and meta-test times.

Objectives. The principal’s objective is to maximize how often meta-test-time agents choose a∗

during learning and have them converge to a policy that always chooses a∗. To do so, the principal
aims to maximize the cost-adjusted test-time return Jp

test
(
πp, πi

)
= ETtest

[∑T
t=1 γ

t−1(rpt − αct)
]
,

where the agent executes its (optimal) policy πi [πp] in response to πp:

argmax
πp

Eτ i∈TtestEπpEπi[πp]

[
T∑

t=1

γt−1(rpt − αct)

]
, rpt = 1 [at = a∗] , α > 0, (2)

where the principal incurs a cost ct if it intervenes. A simple cost function is ct = 1 [r′t ̸= 0], i.e., the
cost is constant across non-trivial interventions, where α > 0 is a constant. Note that if intervention
were free (ct = 0), a trivial solution is to always add a large r′ (a∗) ≫ 0 for its preferred action a∗,
such that it always yields the highest reward. Hence, we focus on learning non-trivial strategies when
intervention is costly, which forces the principal to strategically alter the agent’s learning behavior.

During an episode of T time steps, each agent i starts with a uniformly initialized action
probability distribution πi

0 and optimizes πi
t subject to interventions πp to maximize its return:

EπiEπp

[∑T
t=1 r̃

i
t

(
ait, a

p
t

)]
. Here, we assume that T and γ are sufficiently large so the agent con-

verges to its optimal policy under r̃, using its learning algorithm f . That is, we assume that the
objective in Eq. (2) is sufficient to describe the principal’s objective of ensuring the agent converges
to preferring a∗ at some t < T .

In the K-shot adaptation setting, at meta-test time, the principal gets K episodes to interact with
any agent, each episode of length T steps. The principal has a fixed policy during an episode and
it can update its policy at the end of an episode. The agent is reset across episodes, and within
each episode, the agent follows its own learning strategy in response to the principal’s interventions.
On the K + 1th episode, the principal evaluates its K-shot adapted policy on the agent. Note this
assumes that the principal has a separate copy of the meta-test time agent for evaluation.

4 ANALYSIS IN THE MATRIX GAME SETTING

We first study robust adaptive intervention policy learning with strategic agents using a simple 2-
player game between a principal and an agent. The agent’s actions are “cooperate” and “defect”,
while the principal can choose whether or not to intervene. Assuming the row player is the agent
and the column player is the principal, the 2× 2 payoff matrix is given by

No intervention Intervene( )Cooperate u, 1 u+ 1, 1− c
Defect 1− u, 0 −u,−c

, (3)

where u ∈ (0, 1) and c is the cost of intervention (c < 1). The principal prefers cooperation: it gets 1
if the agent cooperates and 0 if the agent defects (minus the cost c if it intervenes). The agent’s base
payoff u is its type. Notice that an intervention incentivizes the agent to cooperate (u+ 1 > −u).
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(a) (b) (c)

Figure 1: Single round game. REINFORCE (RL) does not adapt to expected Stackelberg equilib-
rium during evaluation. MAML’s adaptability suffers under observation noise.

It is natural to consider the Stackelberg setting where the principal is the leader and acts first (inter-
vene or not), and the agent acts second (Von Stackelberg, 2010). Our goal is to learn an intervention
policy that can adapt to different agent types and find the Stackelberg equilibrium. We now analyze
three scenarios with increasing difficulty:

1. First, we assume that the principal knows u. Here, there is a unique Stackelberg equilibrium
at (Cooperate, No Intervention) when u ≥ 1

2 , and at (Cooperate, Intervene) when u < 1
2 .

2. Second, the principal can observe a noisy version of u. In both these cases, the agent first
observes the principal’s action and plays the best response according to its payoff matrix.

3. Finally, we consider a repeated multi-stage game where the agent cannot observe the princi-
pal’s action. Instead, we assume that the agent keeps a running average for the experienced
payoffs for each of its actions. In a single-round setting this would correspond to the prin-
cipal committing to a mixed action and then the agent choosing its best response. When
u ≥ 1

2 , the Stackelberg equilibrium occurs at (Cooperate, No Intervention). When u < 1
2 ,

at the Stackelberg equilibrium for this game the principal has a mixed action where it
chooses to intervene for 2u+1

2 fraction of times and the agent chooses to always cooperate.

Given this equilibrium analysis, we learn a neural network policy for the principal that predicts
its probability of intervention and compare the behavior of the learned policy when trained using
standard policy gradients (RL) versus meta-learning (MAML, (Finn et al., 2017b)). We set c = 0.75.

With perfect observability. Here, we study whether meta-learning finds a better initialization
θmeta for adaptation on unseen agents. In this setting, we assume that the principal observes an
agent’s exact payoff parameter u. It learns a stochastic policy πp

θ (u) which determines its probability
of intervening in a single-round game with an agent of type u. Given a set of training agents with
different types u ∼ U (0, 1), for each u, the principal learns the optimal policy parameters θ∗ (u) =
argmaxθ Eap∼πp

θ (u)
[rp (ap)], where rp (ap) is the principal’s payoff for action ap with agent u.

The planner then learns θmeta using the meta-learning algorithm in Appendix B and one-shot adapts
on a meta-test set of agents with different us than at training. Note that we’re studying the quality of
the initialization, not the generalization performance of an already trained policy. Fig. 1 shows the
principal’s meta-test time probability of intervening with 3 different agents from the test set, across
training epochs. The principal and agent should be at different Stackelberg equilibria depending on
the type u, as discussed above. We see that a principal trained from scratch on the test agents using
standard policy gradients is unable to adapt to different agents in a single-shot adaptation setting. In
contrast, with meta-learning, the principal learns a better policy that is one-shot adaptable to agents
of different types and converges to the correct Stackelberg equilibrium at meta-test time.

With noisy observations for the principal. Here, we emulate a principal with partial observabil-
ity of the agent, by letting the principal observe u with added i.i.d. Gaussian noise. The agent can
see all payoffs and chooses the best response to achieve a Stackelberg equilibrium. Fig. 1 shows that
with noisy observations, the meta-learned principal policy requires more training time to be one-shot
adaptable to the optimal intervention policy. This empirically indicates the increased difficulty of
learning an adaptive intervention policy due to incomplete information about the agent, especially
under limited adaptation time with unseen agents. It therefore motivates us to adopt a model-based
approach for the principal to better estimate the agent type and learn an adaptive intervention policy.
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(a) (b) (c)

Figure 2: Multi-round game. (a) Principal’s optimization trajectory in the expected payoff land-
scape during training. Axes are PCA directions in the policy parameter space. (b)(c) MAML adapts
(single shot) to Stackelberg equilibrium with a best response agent in a simplified form of MD.

Figure 3: Overview of MERMAIDE. Left: Flow of principal and agent observables, rewards, and
actions. Right: The principal’s world model and intervention policy. Also see Algorithm 1.

Comparing Fig. 1b and Fig. 1c, we also see that when u < 1
2 , the difference in unintervened payoffs

between the principal’s preferred action (u) and the agent’s preferred action (1 − u) also impacts
the one-shot adaptability of the principal receiving noisy observations. This observation informs our
analysis of the bandit setting in Section 6.

Multi-round repeated game with noisy rewards. In this setting, the principal and agent repeat-
edly play an iterated game over T = 100 steps. In each round, the principal observes the agent’s
type u with added i.i.d. Gaussian noise. The agent cannot observe the principal’s actions, and plays
a best response for its current estimate of the action payoffs. Whenever the agent selects an ac-
tion, it receives a noisy observation of the true payoff and updates its estimate. Compared to the
single-round setting, here the agent’s best response behavior may change across rounds in the game
depending on its observed payoffs, giving rise to non-stationarity in the principal’s environment.
The planner, in turn, has to learn to intervene so that the agent’s best response is to cooperate.

Fig. 2a compares the optimization trajectory followed using 1) standard policy gradients and 2)
meta-learning for the principal. Starting from the same initialization, the meta-learned policy’s
parameters lie in a region of the payoff landscape with a higher expected value over the training
agents. Moreover, Fig. 2b and Fig. 2c show the one-shot adaptability of the principal’s policy for two
different agent types at meta-test time. Meta-learning helps learn a better intervention strategy that
is robust to the principal’s observation noise as well as the agent’s evolving best response strategy.

5 MERMAIDE: LEARNING TO ALIGN LEARNERS

Motivated by our findings from Section 4, we now present MERMAIDE (Fig. 3), consisting of:
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Algorithm 1 MERMAIDE (Notations also in Table 3)

1: Initialize principal (θ0, ω0), and hidden states hi
0, h

p
0.

2: for meta-train epoch e = 1, . . . , Etrain do
3: Update world model parameters ω = ωe using Eq. (4).
4: for agents (tasks) i = 1, . . . , ntrain do
5: Initialize agent: (µi, πi

0), task specific principal policy parameter θ
(
τ i0
)
= θe.

6: for k = 1, . . . ,Ktrain do ▷ Inner loop for Ktrain episodes.
7: for time t = 1, . . . , T do ▷ For each episode with T principal-agent interactions
8: Predict âit = argmaxai

t
π̂ω

(
ait|ait−1, a

p
t−1, h

i
t−1

)
using the world model.

9: Intervention: µ̃i = µi + apt , apt ∼ πp

θ(τ i
k)

(
apt |ait−1, a

p
t−1, â

i
t, h

p
t−1

)
.

10: Agent acts: ait ∼ πi
t and receives reward rit ∼ N

(
µ̃i, σ2

)
. πi

t 7→ πi
t+1.

11: Locally update θ
(
τ ik
)
7→ θ

(
τ ik+1

)
. ▷ Using REINFORCE.

12: for t = 1, . . . , T do ▷ Rollout for meta-update; Dmeta
(
τ i
)
= {}

13: Predict âit = argmaxai
t
π̂ω

(
ait|ait−1, a

p
t−1, h

i
t−1

)
using the world model.

14: Intervention: µ̃i = µi + apt , apt ∼ πp

θ
(
τ i
Ktrain

) (apt |ait−1, a
p
t−1, â

i
t, h

p
t−1

)
.

15: Agent acts: ait ∼ πi
t, receives reward rit ∼ N

(
µ̃i, σ2

)
. Updates πi

t 7→ πi
t+1.

16: Collect Dmeta
(
τ i
)
∪
{
ait, a

p
t , π

p

θ
(
τ i
Ktrain

)}
17: Meta-update θe 7→ θe+1 using Dmeta = ∪τ iDmeta

(
τ i
)
. ▷ Using MAML.

• a recurrent world model parameterized by ω that outputs a distribution over an agent i’s
actions at the next time step t: π̂ω

(
ait|ait−1, a

p
t−1, h

i
t−1

)
, conditioned on the planner’s in-

tervention and the observed agent action at t− 1. hi
t−1 is the hidden world model state.

• a recurrent intervention policy which outputs a distribution over interventions
apt ∼ πp

θ

(
apt |ait−1, a

p
t−1, â

i
t, h

p
t−1

)
, conditioned on its previous intervention, the

observed agent action and the world model’s predicted next agent action âit =
maxa π̂ω

(
a|ait−1, a

p
t−1, h

i
t−1

)
. hp

t−1 is the hidden state of the policy network.

We train this using gradient-based meta-learning and RL, see Algorithm 1. Here, the principal
maximizes the meta-train objective Jp

train similar to the objective in Eq. (2). The base RL algorithm
is REINFORCE (Williams, 1992) and the meta-learning update uses MAML (Finn et al., 2017b).
The agent optimizes its cumulative intervened reward, see Section 6 for details. The world model
π̂ω trains by maximizing the log-likelihood of the observed ait, using Adam (Kingma & Ba, 2014):

argmax
ω

Eap∼πpEai∼πi

[
T∑

t=1

log π̂ω

(
ait|ait−1, a

p
t−1, h

i
t−1

)]
. (4)

Note that the principal’s parameters θ are updated after each T -step episode, while the agent contin-
uously learns during each episode. Also, the agent is reset in between episodes. At time 0, the world
model makes a prediction based on zero initialization.We use a single world model for all agents.
At meta-test time, only the intervention policy is updated by one-shot adaptation to a new agent.

6 EXPERIMENTAL VALIDATION IN THE BANDIT SETTING

We now study a sequential general-sum game between the principal and an adaptive no-regret
learner agent, modeled by an |A|-armed bandit instance with action set A having base reward
r =

[
r1, . . . , r|A|

]
. At each time step t, the agent chooses an arm a and gets a reward sampled

from N
(
ra, σ

2
)
. We assume ra ∈ (0, 1) ∀a. The agent aims to maximize its cumulative reward

over a horizon of T steps. The agent can only observe the reward for the chosen action, and hence
faces a explore-exploit dilemma addressed by bandit algorithms like UCB (Lai et al., 1985). We
assume there is a unique arm ã with the highest base reward: ã = argmaxa ra, i.e., the agent’s
preferred action without any intervention.
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Costly interventions. To analyze the effect of the cost of intervention ct on the principal’s
learnt policy, we assume that the principal decides among three different intervention levels |r′| ∈
{0, 0.5, 1} such that ct = |r′|. Across different bandit agent tasks τ i with distinct base rewards ri
and reward gaps δ = maxa∈A ri[a]− ri[a∗], the principal should learn to appropriately incentivize
the agent while minimizing the total cost of intervening. We then define the experienced reward as:

r̃t[a
∗] = ri[a∗] + r′t; r̃t[a] = ri[a]− r′t, ∀a ̸= a∗, (a, a∗ ∈ A). (5)

Note that this ensures the agent always experiences an intervention, no matter which action it
chooses. During each episode, the agent learns but the principal’s policy is fixed; the principal
can update its policy only at the end of each episode (Algorithm 1). Also, we assume that the prin-
cipal can only observe the agent’s actions ait but not its base reward ri or policy update function f i.
We measure the performance of the principal using Eq. (2), with γ = 1.

World model. The world model predicts the agent’s next action (given the principal’s prior ob-
servations) to characterize the agent’s behavior. We do not train the principal’s world model to
estimate the base rewards, because bandit agents with distinct base rewards could still execute the
same sequence of actions, depending on the agent’s explore-exploit algorithm and its observations.

Challenges in the sequential setting. Compared to the simple game setting in Section 4, princi-
pal’s intervention policy learning with sequential (bandit) learners creates additional challenges:

• Bandit agents may follow different strategies for action selection to maximize their expe-
rienced reward. The agent’s rate of exploration may be constant (e.g., ϵ-greedy) or it can
reduce with time (e.g., UCB) within an episode, depending on its observations. This creates
a highly non-stationary environment for the principal wherein its decision to intervene must
adapt to different explore-exploit behaviors for the same agent within an episode. When
the agent explores a larger action space, it further exacerbates the challenges in estimating
the agent’s behavior since the principal only has partial information about the agent.

• Bandit agents are sequential learners and feedback (ait, r̃
i
t) can update the policy πi dif-

ferently at different steps t. The update may depend on how optimistic (e.g., UCB) or
pessimistic (e.g., EXP3) the bandit agents are about their reward estimates. Hence, an in-
tervention ap may not equally incentivize the agent at different t. Since the principal’s
interventions have different costs, a strategic principal must decide when to intervene and
how much (|r′|) depending on its observations of the agent’s actions.

Results. In the following experiments, we use 15 bandit agents for training and 10 bandit agents
for testing, each with different base rewards (both within and across train and test sets). |A| = 10.
We consider two agent learning algorithms (UCB and ϵ-greedy). In each experiment, the train and
test agents use the same algorithm, but with different tendencies for exploration vs exploitation, de-
termined by their exploration coefficients: β ∈ {0.17, 0.27, 0.42, 0.5, 0.67} for UCB (higher β gives
more exploration) and ϵ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} for ϵ-greedy (higher ϵ gives more exploration).
These constants were chosen such that they afford, on the average, the same number of exploratory
actions when following either UCB or ϵ-greedy strategy without any intervention (see Appendix B).

In Table 1, we show the one-shot adapted principal’s score on each test set over T = 200 time steps.
We compare MERMAIDE against 1) model-free baselines (MF-RL using REINFORCE and MF-
MAML using MAML), as well as 2) REINFORCE with world model (WM-RL) (see Appendix B
for details). We also include a “No Intervention” baseline to show how agents behave by default.

Out-of-distribution performance. Table 1 shows the principal’s score when evaluated on test
agents having a different exploration constant than train agents. Using meta-learning for the inter-
vention policy (MF-MAML) and using a world model to predict the agent’s behavior (WM-RL) both
have advantages for training a robust and one-shot adaptable intervention policy. A world model is
advantageous when 1) the test agent is more exploratory than the train set (e.g., ϵ = 0.1 at training,
ϵ = 0.4 at test), or 2) the agent explores throughout an episode and is likely to often select actions
other than the one with its current maximum mean reward estimate (e.g., ϵ = 0.5 at training). Be-
cause we evaluate on K = 1, fine-tuning on only a single test-time episode, a trained world model
provides a useful prior belief representation for the principal. Indeed, the MF-RL results show the
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Train on UCB, β = 0.17 Test on β = 0.17 β = 0.27 β = 0.42 β = 0.5 β = 0.67
No intervention 3 (0) 5 (0) 8 (0) 10 (0) 12 (0)
MF-RL 119 (2) 109 (2) 98 (2) 90 (2) 77 (1)
MF-MAML 133 (2) 125 (3) 107 (1) 97 (1) 77 (0)
WM-RL 123 (7) 112 (6) 100 (4) 92 (2) 75 (1)
MERMAIDE (ours) 154 (2) 141 (1) 115 (1) 103 (0) 80 (1)

Train on ϵ-greedy, ϵ = 0.1 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.5
No intervention 3 (0) 4 (1) 7 (0) 9 (1) 11 (0)
MF-RL 115 (5) 94 (4) 54 (19) 39 (6) 22 (9)
MF-MAML 122 (4) 97 (3) 58 (5) 40 (2) 12 (1)
WM-RL 115 (4) 94 (5) 70 (1) 55 (3) 38 (1)
MERMAIDE (ours) 134 (1) 108 (1) 85 (1) 57 (7) 29 (1)

Train on UCB, β = 0.67 β = 0.17 β = 0.27 β = 0.42 β = 0.5 β = 0.67
No intervention 3 (0) 5 (0) 8 (0) 10 (0) 12 (0)
MF-RL 103 (3) 101 (3) 92 (2) 85 (1) 74 (1)
MF-MAML 124 (2) 116 (1) 102 (1) 94 (1) 80 (1)
WM-RL 100 (4) 89 (0) 85 (1) 85 (1) 74 (0)
MERMAIDE (ours) 131 (2) 125 (2) 109 (1) 101 (1) 85 (1)

Train on ϵ-greedy, ϵ = 0.5 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.5
No intervention 3 (0) 4 (1) 7 (0) 9 (1) 11 (0)
MF-RL 4 (5) 2 (3) 5 (0) 11 (5) 7 (1)
MF-MAML 2 (0) 4 (0) 6 (0) 8 (1) 11 (1)
WM-RL 102 (6) 79 (10) 68 (3) 47 (1) 30 (2)
MERMAIDE (ours) 87 (42) 102 (3) 78 (6) 69 (1) 46 (2)

Table 1: Test-time principal mean and standard error scores across 3 random seeds. Left
column: Principal’s algorithm (e.g., MERMAIDE), training agent type (e.g., UCB with β = 0.17).
Other columns: Test-time scores on agents with the same algorithm, but different hyperparameters.

hidden state representation of the model-free principal might be unable to adapt to high environment
non-stationarity without a trained next-agent-action world model.

Compared to an ϵ-greedy agent, the UCB agent explores mostly at the start of an episode, for all
β. Hence, with UCB agents, the principal learns an effective one-shot adaptable intervention pol-
icy using meta-learning (MF-MAML) only (even without a world model), as the agents cause less
distribution shift across different c. It further emphasizes the effectiveness of meta-learning for
adaptive policy learning: unlike MF-MAML, neither the world model nor the intervention policy
is meta-learned in WM-RL. Moreover, it also shows that for the same amount of distribution shift
(characterized in Appendix B), the relative benefit of a world model or meta-learning the principal’s
policy depends on the nature of the agent’s exploration strategy (which is unknown to the principal).

In all, these results show that MERMAIDE combines the best of both techniques: the principal
obtains a higher score across agents with different learning algorithms and explore-exploit behaviors.

Agent exploration vs intervention cost. In order to intervene effectively, the principal should
learn when to intervene and how much to incentivize the agent while minimizing its incurred cost.
This is a challenging learning problem for the principal not just during meta-training, but more
so during one-shot adaptation at meta-test time. Bandit algorithms like EXP3 (Auer et al., 2002)
use pessimism in the face of uncertainty, and encourage continued exploration. This increases the
non-stationarity for the principal. In order to effectively incentivize such agents to prefer a∗, the
principal needs to accurately predict the agent’s policy from its observations; otherwise it can incur
a high cost for intervening ineffectively and lowering its score, and learn to stop intervening. Indeed,
our results when training on ϵ = 0.5-greedy agents show that the MF-RL and MF-MAML principal
stop intervening. In contrast, in that setting, MERMAIDE learns an effective intervention policy that
outperforms all baselines, even under distribution shift between meta-train and meta-test agents.

7 DISCUSSION AND FUTURE WORK

We have shown that MERMAIDE is an effective framework to learn principal intervention policies
that generalize well to agents with unseen learning behavior. Future work could extend MERMAIDE
to settings with multiple learning agents who may coordinate, compete, or a combination thereof.
Moreover, it is interesting to extend MERMAIDE to agents that adapt adversarially to the principal’s
intervention policy, which poses a challenging non-stationary problem for the principal.
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Variable Symbol
Time t
Principal p
Agent i
State s
State vector s
State space S
Agent’s action space A
Principal’s action space Ap

Action sequence a1:T = {a1, a2, . . . , aT }
Agent i’s reward sequence r̃i1:T =

{
r̃i1, . . . , r̃

i
T

}
Principal’s reward sequence rp1:T = {rp1 , . . . , r

p
T }

Transition function P
Agent i’s policy πi

Principal’s intervention policy πp

Agent’s mean estimate of intervened rewards for
action a

µ̃a

Number of adaptation steps K
Number of meta-tasks for the planner N
Principal’s history of interventions and observed
agent actions upto time t

Hp
t =

{
ap1, a

i
1, a

p
2, a

i
2, . . . , a

p
t−1, a

i
t−1

}
Agent’s history of actions taken and rewards ob-
served upto time t

Hi
t =

{
ai1, r̃

i
1, a

i
2, r̃

i
2, . . . , a

i
t−1, r̃

i
t−1

}
Table 2: Overview of notation.

Principal’s policy parameter θ ∈ Θ
Agent i’s learning algorithm f i ∈ F
Agent i’s true action mean rewards µi ∼ U
Agent i’s intervened action mean rewards µ̃i

Principal’s action at time t apt ∼ πp
θ

(
apt |ait−1, a

p
t−1, â

i
t, h

p
t−1

)
Hidden state space of the principal’s recurrent
world model

H

Agent’s action at time t ait ∼ πi
t

(
ait|Hi

t

)
, t = 1, . . . , T

Agent’s reward at time t rit ∼ N
(
µ̃i, σ2

)
Principal’s world model estimate of the agent’s
action probability distribution

π̂i
ω : A×Ap ×H → ∆(A) , π̂i

ω,0 ∈ A

Principal’s world model estimate of the latent
state of the environment

giω : A×Ap ×H → H, giω,0 ∈ ∆(H)

Principal’s world model hidden state embeding
in the LSTM architecture

hi
t = giω

(
ait−1, a

p
t−1, ht−1

)
, t = 2, . . . , T hi

1 =

giω,0

Table 3: Notation for MERMAIDE See Section Section 5 for their use.

A NOTATION

For an overview of all symbols and variables used in this work, see Table 2 and Table 3.
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B ADDITIONAL RESULTS

B.1 DESCRIPTION OF THE BANDIT ALGORITHMS

We provide a brief overview of the learning algorithms referred to in Section 6.

UCB. This is an Upper Confidence Bound based exploration-exploitation algorithm that follows
the principle of optimism in the face of uncertainty. At each time step t, the bandit agent selects an
action

at = argmax
a

µ̃a + β

√
log t

na
(6)

where na is the number of steps until t in which it previously selected the action a, µ̃a is its corre-
sponding mean estimate for the experienced rewards r̃ for action a and β is the exploration constant
that balances the amount of exploration vs. exploitation across a time horizon T . A higher value
of β makes the agent less optimistic and explore its action space more. The UCB agent’s ten-
dency to explore is also affected by the difference in the mean reward estimates of its actions. In
the context of our mechanism design problem formulation, if the UCB agent has a larger value of
δ = maxa ra − ra∗ , without any intervention at the beginning of an episode, its confidence bounds
would quickly converge to exploiting the action argmaxa ra. So a principal that intervenes only
towards the later stages of an episode with this agent would have to provide much more incentives
(higher r′) to alter the agent’s preferred action to be a∗, thus incurring a larger cost c as compared
to a principal that intervenes more at the beginning of an episode when the UCB agent is still ex-
ploring its action space. This is also illustrated in Section 4 with a simpler best response agent in
the single round game setting. As shown in Fig. 1b and Fig. 1c, under observation noise (partial
information), the meta-trained principal has a better one-shot meta-test-time performance when the
agent’s base payoff has a higher difference between the principal’s preferred action and the agent’s
intrinsic preference without any intervention.

ϵ-greedy. A simple exploration-exploitation strategy in the bandit setting is the ϵ-greedy rule (Sut-
ton & Barto, 1998) wherein the agent selects with probability 1−ϵ the action at = argmaxa µ̃a and
with probability ϵ it selects a random action. In our setting, we consider ϵ to be constant during an
episode, which results in a uniform exploration rate throughout. In contrast to the UCB agent, the ϵ-
greedy algorithm simulates a less optimistic, more exploratory agent for which the principal requires
a robust belief representation of the agent’s predicted behavior conditioned on the principal’s past
observations (Table 1). Since there is a uniform exploration rate for the agent, the principal has to
continue intervening intermittently throughout an episode, especially when δ is large and the agent
could obtain a higher reward for an action a ̸= a∗ by exploring its action space when the principal
does not intervene.

EXP3. The Exponential-weight algorithm for Exploration and Exploitation (EXP3) (Auer et al.,
2002) follows a more pessimistic approach to exploration-exploitation in the bandit setting. It main-
tains a set of weights for each agent action a ∈ A which are updated using the experienced rewards
r̃ as follows:

πt(at) =
w

|A|
+ (1− w)

η exp (Sat,t)∑
at∈|A| η exp (Sat,t)

, (7)

where

Sat,t =

t∑
l=1

1 {al = at}
r̃at,l

πl
, η =

w

|A|
. (8)

Here, w is the variable that determines the extent of uniform random exploration in the action space.
This presents a very challenging problem to learn a suitable belief representation for such agents that
can be utilized by a principal to guide its intervention policy. In Section 6, we exclude EXP3 from
Table 1 since it is primarily designed for an adversarial bandit setup, whereas we do not consider an
agent to have such biases under our current problem formulation.
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β UCB ϵ-greedy ϵ

0.17 33 (0) 33 (0) 0.10
0.27 47 (0) 47 (4) 0.20
0.42 70 (0) 68 (9) 0.30
0.50 80 (0) 81 (3) 0.40
0.67 99 (0) 99 (1) 0.50

Table 4: Experiment design choice. Frequency of agent selecting at ̸= argmaxa ra with UCB
and ϵ-greedy algorithms on the same set of base rewards (without any intervention) with a horizon
T = 200, averaged across 3 random seeds.

B.2 CHARACTERIZING THE DISTRIBUTION SHIFT IN OUR EVALUATION SETUP

Bandit agents having the same base reward r make different explore-exploit decisions depending
on their algorithm (eg. UCB, ϵ-greedy) and also their prior observations. In Section 6, we consider
agents with the same set of base rewards, but following different bandit algorithms. Both UCB and
ϵ-greedy have tunable parameters that determine their explore-exploit tradeoff. In order to measure
the robustness of the learnt principal policy to different agent behavior (leading to different levels
of non-stationarity in the principal’s environment between training and test agents), we vary the
amount of exploration performed by the agent by varying the respective parameters: β for the UCB
agent and ϵ for the ϵ-greedy agent. Table 4 shows the average (and standard error) frequency of
exploration by the agents for our choices of β and ϵ in Section 6. We vary β and ϵ such that they are
pairwise comparable in Table 1 and would lead to similar change in exploration frequency for both
UCB and ϵ-greedy agents. In other words, following Table 1, a principal trained with UCB agents
having β = 0.17 when evaluated with UCB agents having β ∈ {0.17, 0.27, 0.42, 0.50, 0.67} will
encounter a similar shift in the agent’s exploration frequency as in the case of training with ϵ-greedy
agents with ϵ = 0.1 and evaluating on ϵ-greedy agents having ϵ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. In that
case, the difference in achieved scores between the UCB and ϵ-greedy agents can be attributed to
the way in which they distribute their exploratory actions: UCB agent being more optimistic focuses
most of its exploration at the beginning of an episode, whereas the ϵ-greedy agent is more stochastic
with uniform random exploration throughout.

B.3 DESCRIPTION OF BASELINES

We now describe the details of our evaluated baselines in Section 6 along with their variations that
assume access to an agent state oracle.

Rule based mechanism with an agent state oracle (RB): Given an oracle that correctly identifies
the action at to be taken by an agent in the next time step, a simple rule based approach is for the
principal to intervene at time t when at ̸= a∗. We assume that the principal always intervenes with
a fixed incentive (r′ = 0.5 or 1) and we compute the principal’s maximum possible score. Note that
this is not a realistic solution for the principal since it is impractical to expect the availability of such
an oracle, especially for out of distribution test agents.

Model-free learning based mechanism: In this framework, we assume that the plan-
ner has a recurrent intervention policy that outputs a distribution over interventions apt ∼
πp
θ

(
apt |ait−1, a

p
t−1, h

p
t−1

)
, conditioned on the planner’s intervention and observed agent action at

t− 1. The policy network is trained using REINFORCE for the MF-RL baseline and using MAML
for the MF-MAML baseline.

Learning based mechanism with an agent state oracle: In this setting, the principal learns a
recurrent intervention policy that outputs a distribution over interventions apt ∼ πp

θ

(
apt |ait, h

p
t−1

)
conditioned on the true agent action at time t provided by an oracle. The policy network is trained
using REINFORCE for the SB-RL baseline and MAML for the SB-MAML baseline.

Learning based mechanism with a world model without meta-learning (WM-RL): In this
setting, we use our proposed recurrent world model with a recurrent intervention policy trained
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Train on UCB, β = 0.17 Test on β = 0.17 β = 0.27 β = 0.42 β = 0.5 β = 0.67
No intervention 3 (0) 5 (0) 8 (0) 10 (0) 12 (0)
RB 173 (0) 166 (0) 154 (0) 146 (0) 126 (0)
SB-RL 168 (3) 138 (27) 128 (26) 122 (24) 107 (22)
SB-MAML 169 (3) 169 (1) 155 (2) 148 (1) 128 (2)

Train on ϵ-greedy, ϵ = 0.1 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.5
No intervention 3 (0) 4 (1) 7 (0) 9 (1) 11 (0)
RB 156 (3) 130 (1) 105 (4) 87 (4) 62 (6)
SB-RL 148 (2) 119 (3) 87 (4) 75 (6) 50 (2)
SB-MAML 152 (1) 126 (2) 105 (3) 66 (3) 30 (9)

Train on UCB, β = 0.67 β = 0.17 β = 0.27 β = 0.42 β = 0.5 β = 0.67
No intervention 3 (0) 5 (0) 8 (0) 10 (0) 12 (0)
RB 173 (0) 166 (0) 154 (0) 146 (0) 126 (0)
SB-RL 166 (3) 163 (2) 150 (3) 146 (2) 128 (2)
SB-MAML 173 (1) 170 (0) 159 (0) 152 (0) 133 (0)

Train on ϵ-greedy, ϵ = 0.5 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.5
No intervention 3 (0) 4 (1) 7 (0) 9 (1) 11 (0)
RB 156 (3) 130 (1) 105 (4) 87 (4) 62 (6)
SB-RL 49 (46) 51 (35) 64 (29) 61 (15) 28 (17)
SB-MAML 93 (45) 62 (32) 32 (13) 58 (25) 24 (17)

Table 5: Principal (with oracle agent state input) scores across 3 random seeds. These baselines
are not applicable in practice since they cheat by assuming access to an oracle that always informs
them of the agent’s next action. We include them here as a form of standardization with respect
to a (perfect) system that does not face the challenges of partial observability or out-of-distribution
generalization for mechanism design.

using REINFORCE. Here, the policy network outputs a distribution over interventions apt ∼
πp
θ

(
apt |âit, h

p
t−1

)
where âit = argmaxa π̂ω

(
ait|ait−1, a

p
t−1, h

i
t−1

)
.

We would like to highlight an implementation detail in our baselines indicated ‘RL’ in Section 6.
Since we evaluate our learnt principal policy in the K-shot adaptation setting which is common in
the meta-learning literature, we ensure that the principal policies that are not meta-trained are also
allowed to K-shot adapt at test time. This means that the ‘RL’ policies are also updated at test
time, before evaluation, using K rounds of principal-agent interactions. This is contrast to Section 4
where ‘RL’ was trained from scratch during test time adaptation. It further shows that even with
pre-training (on the same set of train agents as used by ‘MAML’), standard policy gradient update
does not lead to test time K-shot adaptation on test agents.

In Table 5, we compare the test time scores for the principal policy having access to a state based
oracle. We observe that overall, the meta-trained principal policy (SB-MAML) achieves a higher
score even with distribution shift across different bandit algorithms and different levels of explo-
ration, compared to the SB-RL baseline. The rule based baseline also shows strong performance but
we note its scores do not reflect adaptation to distribution shift. However, none of these baselines
that assume the principal has access to an oracle that correctly predicts the agent’s action at the next
time step are realistic. We can only treat the scores in Table 5 as gold standards in a perfect system
that does not account for the challenges faced by a principal in practice.

Training details. In Section 4, the principal policy πp is a fully connected neural network (MLP)
with one hidden layer and ReLU activation. Given an (noisy) observed value of the agent type
as input, it predicts the probability of intervention: πp

t . The principal’s action at time t is apt ∼
Bern (πp

t ).

For the ‘RL’ principal, it is trained on the test agents starting from scratch over K episodes before
evaluation. For the MAML principal, it is meta-trained to learn an initial parameterization with a
different set of training agents and evaluated with K-shot adaptation on the test agents.

In Section 6, the recurrent world model and policy networks are GRUs with 2 layers and hidden
state dimension 128. For meta-training, the inner gradient update loop uses SGD optimizer with a
learning rate of 7 × 10−4 whereas the meta-update step uses Adam with a learning rate of 0.001.
The world model is trained only with the set of training agents, it is not adapted at test time: only
the policy network is K-shot adapted.
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Algorithm 2 MERMAIDE (K-shot Adaptation)

1: Initialize principal with trained parameters (θmeta, ωtrain), and hidden states hi
0, h

p
0.

2: for agents (tasks) i = 1, . . . , ntest do
3: Initialize agent: (µi, πi

0), task specific intervention policy parameter θ
(
τ i0
)
= θmeta.

4: for k = 1, . . . ,K do ▷ Inner loop for K episodes.
5: for time t = 1, . . . , T do ▷ For each episode with T principal-agent interactions
6: Predict âit = argmaxai

t
π̂ωtrain

(
ait|ait−1, a

p
t−1, h

i
t−1

)
using the world model.

7: Intervention: µ̃i = µi + apt , apt ∼ πp

θ(τ i
k)

(
apt |ait−1, a

p
t−1, â

i
t, h

p
t−1

)
.

8: Agent acts: ait ∼ πi
t and receives reward rit ∼ N

(
µ̃i, σ2

)
. πi

t 7→ πi
t+1.

9: Locally update θ
(
τ ik
)
7→ θ

(
τ ik+1

)
. ▷ Using REINFORCE.

10: for t = 1, . . . , T do ▷ Rollout for evaluation
11: Predict âit = argmaxai

t
π̂ωtrain

(
ait|ait−1, a

p
t−1, h

i
t−1

)
using the world model.

12: Intervention: µ̃i = µi + apt , apt ∼ πp

θ(τ i
K)

(
apt |ait−1, a

p
t−1, â

i
t, h

p
t−1

)
.

13: Agent acts: ait ∼ πi
t, receives reward rit ∼ N

(
µ̃i, σ2

)
. Updates πi

t 7→ πi
t+1.

14: Update principal’s score.

B.4 OVERVIEW OF K-SHOT ADAPTATION WITH MERMAIDE:

Algorithm 2 outlines our framework for K-shot adaptation of the meta-trained principal to test
agents. In our experiments, K = 1.
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Train on UCB, β = 0.17 Test on β = 0.17 β = 0.27 β = 0.42 β = 0.5 β = 0.67
No intervention 3 (0) 5 (0) 8 (0) 10 (0) 12 (0)
MF-RL 119 (2) 109 (2) 98 (2) 90 (2) 77 (1)
MF-MAML 133 (2) 125 (3) 107 (1) 97 (1) 77 (0)
WM-RL 123 (7) 112 (6) 100 (4) 92 (2) 75 (1)
MERMAIDE (ours) 154 (2) 141 (1) 115 (1) 103 (0) 80 (1)
MERMAIDE (ours) - 2nd set 144 (3) 133 (3) 122 (2) 108 (2) 81 (2)
MERMAIDE (K = 0) 148 (2) 138(1) 120(1) 103(2) 89(1)
WM-RL (K = 0) - 109 (1) 92 (-) - -

Train on ϵ-greedy, ϵ = 0.1 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.5
No intervention 3 (0) 4 (1) 7 (0) 9 (1) 11 (0)
MF-RL 115 (5) 94 (4) 54 (19) 39 (6) 22 (9)
MF-MAML 122 (4) 97 (3) 58 (5) 40 (2) 12 (1)
WM-RL 115 (4) 94 (5) 70 (1) 55 (3) 38 (1)
MERMAIDE (ours) 134 (1) 108 (1) 85 (1) 57 (7) 29 (1)
MERMAIDE (ours) - 2nd set 132 (3) 111 (3) 89 (1) 68 (1) 45 (1)
MERMAIDE (K = 0) 133 (2) 109 (3) 86 (2) 65 (3) 37 (1)

Train on UCB, β = 0.67 β = 0.17 β = 0.27 β = 0.42 β = 0.5 β = 0.67
No intervention 3 (0) 5 (0) 8 (0) 10 (0) 12 (0)
MF-RL 103 (3) 101 (3) 92 (2) 85 (1) 74 (1)
MF-MAML 124 (2) 116 (1) 102 (1) 94 (1) 80 (1)
WM-RL 100 (4) 89 (0) 85 (1) 85 (1) 74 (0)
MERMAIDE (ours) 131 (2) 125 (2) 109 (1) 101 (1) 85 (1)
MERMAIDE (ours) - 2nd set 119 (7) 118 (5) 110 (3) 104 (3) 87 (2)
MERMAIDE (K = 0) 115 (3) 114 (3) 103 (4) 100 (3) 89 (3)
WM-RL (K = 0) 104 (8) 90 (-) - 69 (1) -

Train on ϵ-greedy, ϵ = 0.5 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.5
No intervention 3 (0) 4 (1) 7 (0) 9 (1) 11 (0)
MF-RL 4 (5) 2 (3) 5 (0) 11 (5) 7 (1)
MF-MAML 2 (0) 4 (0) 6 (0) 8 (1) 11 (1)
WM-RL 102 (6) 79 (10) 68 (3) 47 (1) 30 (2)
MERMAIDE (ours) 87 (42) 102 (3) 78 (6) 69 (1) 46 (2)
MERMAIDE (ours) - 2nd set - 89 (17) 65 (12) 47 (20) 20 (15)
MERMAIDE (K = 0) 113 (20) 85 (15) 71 (16) 48 (14) 21 (15)

Table 6: Test-time principal mean and standard error scores. Left column: Principal’s algorithm
(e.g., MERMAIDE), training agent type (e.g., UCB with β = 0.17). Other columns: Test-time
scores on agents with the same algorithm, but different hyperparameters. Gold-colored values rep-
resent testing with a principal that is not updated during test-time, i.e., K = 0-shot generalization.
We see that the principal can perform on par when trained on β = 0.17 and ϵ = 0.1, but that
0-shot generalization does not work so well when the principal was trained on more exploratory
hyperparameter values, i.e., β = 0.67 and ϵ = 0.5. To compare the levels of exploration between
different hyperparameter settings, please refer to Appendix B.2 and Table 4. All results are based
on 3 random seeds. Note that the results in blue use 3 random seeds with the same settings as the
rows above; as such, there are two sets of 3 random seeds for MERMAIDE. We see that the results
are similar between the two sets of 3 random seeds.

C ADDITIONAL EXPERIMENTAL RESULTS WITH BANDIT AGENTS

Additional seeds for Table 1. We ran the same set of experiments for MERMAIDE from Section 6
with 3 additional results. At the time of the rebuttal deadline, some of the runs have not converged
so we are reporting these additional results in the row marked in blue in Table 7. We will update
these with final converged values and more seeds if requested for the camera ready version if the
paper is accepted. On the basis of our current results, we do not expect a significant variation from
the values originally reported in Table 1 even with more seeds.

Zero-shot evaluation results with MERMAIDE. As requested by reviewer 4J8Y, we evaluated
MERMAIDE in the zero-shot setting i.e. the policy is not updated at meta-test time (K = 0).
Table 7 shows the preliminary results for these experiments in gold. Some of these experiments
have not coverged yet, but we do not expect a lot of improvement compared to the reported scores.
We see that the principal can perform on par when trained on β = 0.17 and ϵ = 0.1, but that
0-shot generalization does not work so well when the principal was trained on more exploratory
hyperparameter values, i.e., β = 0.67 and ϵ = 0.5. To compare the levels of exploration between
different hyperparameter settings, please refer to Appendix B.2 and Table 4.
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Train on UCB, β = 0.42 Test on ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.5
No intervention 3 (0) 4 (1) 7 (0) 9 (1) 11 (0)
WM-RL 91 (4) 62 (8) 68 (1) 28 (4) -
MERMAIDE (ours) 103 (1) 67 (2) 30 (2) 8 (1) -

Train on ϵ-greedy, ϵ = 0.3 Test on β = 0.17 β = 0.27 β = 0.42 β = 0.5 β = 0.67
No intervention 3 (0) 5 (0) 8 (0) 10 (0) 12 (0)
WM-RL 127 (7) 95 (2) 80 (5) 80 (5) 61 (4)
MERMAIDE (ours) 138 (2) 102 (6) 116 (2) 96 (5) 77 (2)

Table 7: Test-time principal mean and standard error scores across 3 random seeds, K = 0.
Left column: Principal’s algorithm (e.g., MERMAIDE), training agent type (e.g., UCB with
β = 0.42). Other columns: Test-time scores on agents with different algorithm and different hy-
perparameters. We see that MERMAIDE generalizes well when tested on agents that explore the
same amount or less than the train-time agents. For clarity, note that higher β and ϵ lead to more
exploration. More generally, a principal that is trained on a stochastic agent generalizes well to an
equal or less stochastic agent, e.g., training on ϵ = 0.3 and testing on UCB with β = 0.5, 0.67; note
that the behavior of UCB is less stochastic than ϵ-greedy.

Cross algorithm evaluation. Table 7 indicates the mean and standard error scores for evalua-
tion in the K = 0-shot generalization setting when the training agent and test agents are of dif-
ferent types. Note that the behavior of UCB agents is less stochastic than ϵ-greedy agents. We
observe that when trained with UCB agents, MERMAIDE outperforms WM-RL for generalizing to
ϵ-greedy agents that have a lower exploration coefficient ϵ = 0.1 or 0.2. In contrast, when trained
with ϵ-greedy agents, MERMAIDE outperforms WM-RL for generalizing to UCB agents with both
higher and lower levels of exploration. More generally, a meta-learning principal that is trained on
a stochastic agent generalizes well to an equal or less stochastic agent in the zero shot setting.
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