
Embedding game: dimensionality reduction as a two
player zero-sum game

Anonymous Author(s)
Affiliation
Address
email

Abstract

Dimensionality reduction is often formulated as a minimization containing a sparse1

sum of attractive interactions and a dense sum of repulsive interactions
∑

ij f(∥yi−2

yj∥) between embedding vectors. This dense sum is usually subsampled to avoid3

computing all N2 terms. In this paper we provide a novel approximation to the4

repulsive sum by deriving a landmark-based lower bound and then maximizing this5

lower bound with respect to the landmarks. After inserting this approximation into6

the original objective we are left with a minimax problem where the embedding7

vectors minimize the objective by pulling on their neighbors and running away8

from the landmarks while the landmarks maximize the objective by pulling on9

the embedding vectors and running away from other nearby landmarks. We use10

gradient descent ascent to find saddle points and show that our method can produce11

high quality visualizations without ever explicitly computing any pairwise repulsion12

between embedding vectors.13

1 Introduction14

Dimensionality reduction algorithms can be useful in a wide variety of contexts. Reducing the dimen-15

sionality of vectors can reduce the computational burden on downstream tasks such as recognition16

or neighborhood searches. Reducing the dimensionality of inputs can also be a method to filter out17

unwanted variability in the original inputs. In the extreme case of reduction to 2 or 3 dimensions, it18

can be used to produce visualization of the input [14]. This is the case we will be concerned with in19

this paper.20

Recent algorithms have yielded very impressive looking visualizations of complicated datasets21

[13, 8, 12, 11, 1]. Common to each of these algorithms is an objective function containing non-22

linear interactions between all (or nearly all) pairs of embedding vectors. There are a variety of23

approximations that have been proposed to approximate these all-pairs interactions. t-distributed24

Stochastic Neighbor Embedding (T-SNE) has taken inspiration from physical simulation and used25

the Barnes-Hut algorithm to cleverly discretize embedding space in a manner that allows for efficient26

approximation of all-pairs nonlinear interactions [13]. LargeVis and UMAP both use weighted edge27

sampling. At each iteration (or after several iterations), a random subset of interactions are chosen28

(with higher weighted interctions more likely to be chosen) and the subsampled objective is instead29

optimized [8, 12]. PyMDE uses a similar idea, but instead samples negative edges uniformly at30

random and these edges are fixed throughout training [1]. The tractable Latent Variable Model used31

landmarks to approximate the repulsion and relied on a sophisticated coarse graining scheme to32

reduce the number of pairwise interactions [11].33

In this paper we will use a landmark approach for approximating nonlinear all-pairs interactions. We34

will derive a lower bound to a sum of all-pairs interactions which we then maximize with respect to35

the landmarks. We sill show that this requires much fewer landmarks than if we simply randomly36

sampled some fixed set of landmarks. Our algorithm can be interpreted as a two player game where37

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Figure 1: Diagram of our method. Each embedding is attracted to the neighbors we compute in step a
and repelled by all landmarks. There is no direct embedding-embedding repulsion. Landmarks are
attracted to all embedding vectors and repelled from all other embedding vectors. These forces are
derived in Eqs. 4, 5 as the gradients of the objective in Eq. 3.

the embedding vectors minimize the objective by pulling on their neighbors and running away from38

the landmarks while the landmarks maximize the objective by pulling on the embedding vectors39

and running away from other nearby landmarks. We use gradient descent ascent and show that our40

method can produce high quality visualizations.41

2 Embedding Game42

Our starting point closely follows [1] on Minimum Distortion embedding vectors (MDE). We43

assume we have a set of high-dimensional inputs {xi}Ni=1 and we wish to produce a corre-44

sponding set of low-dimensional embedding vectors {yi}Ni=1 which reveal interesting structure45

in the original inputs. To accomplish this we compute a sparse set of neighborhood edges:46

N = {(i, j) : j is a k-nearest neighbor of i}. We define two functions: f(d) will penalize large47

distances between embedding vectors and g(d) will penalize small distances between embedding48

vectors. We wish to find embedding vectors y which minimize:49

min
y

∑
i,j∼N

f(∥yi − yj∥) +
∑
i,j

g(∥yi − yj∥) (1)

Like many dimensionality reduction objectives, this contains a sum over N2 terms. One method50

to avoid this unwieldy sum is simply to sample edges [8, 12, 1]. We proceed in a different fashion51

by defining a set of landmarks {za}La=1 and making a landmark-based approximation to the sum.52

Perhaps the simplest landmark-based approximation is simply to set the landmarks to be randomly53

chosen samples z1 = yi1 , z2 = yi2 , . . . and approximate the all-pairs sum with N
L

∑
ia g(∥yi−za∥).54

This can actually be interpreted as another method of sampling edges. However we show in the55

Experiments section that this idea has several problems when using a small number (< 300) of56

landmarks.57

Fortunately we can make a more powerful landmark-based approximation if g(∥yi − yj∥) defines a58

positive semi-definite kernel function, in other words if the N ×N matrix of pairwise interactions59

defined by g is positive semi-definite for all {yi}. Some examples of g satisfying this property are60

g(d) = exp(−d2) and g(d) = 1/(1 + d2). Unfortunately our bound will not work with g(d) that go61

to infinity as d → 0 which are sometimes used in the literature. However we’ll show that we can62

learn high quality embedding vectors without this “infinite as d goes to zero” property.63

Key inequality: if g(∥yi − yj∥) is a positive semi-definite kernel function, then for any {yi}Ni=1 and64

{za}La=1:65 ∑
i,a

g(∥yi − za∥)

2

≤

∑
ij

g(∥yi − yj∥)

∑
a,b

g(∥za − zb∥)

 (2)

2

We are unaware of this inequality being presented in the literature but we prove it in the Appendix.66

The key to our proof is to replace g(∥yi − yj∥) with the inner product between high dimensional67

vectors ϕi · ϕj . This is allowed because of our assumption that g defines a kernel function. A useful68

property of our inequality is that with at most N landmarks, there exist z which yield equality, rather69

than inequality. This can be seen by simply setting the za = yi when L = N . So long as we70

have enough landmarks, our approximation should yield the same result as the original “all-pairs”71

repulsion objective. Of course we hope that our approximation is useful for L ≪ N .72

To generate our landmark-based approximation to the all-pairs sum in Eq. 1 we divide both sides of73

Eq. 2 by
∑

ab gab and then maximize
∑2

ia /
∑

ab with respect to z. This yields the tightest lower74

bound to the sum
∑

ij g(∥yi − yj∥). We then replace the pairwise sum in Eq. 1 with our tightest75

lower bound to yield the minimax problem we ultimately try to solve:76

min
y

max
z

∑
i,j∼N

f(∥yi − yj∥) +

[∑
i,a g(∥yi − za∥)

]2
∑

a,b g(∥za − zb∥)
(3)

The denominator in the right-hand term contains LN interactions (between all landmark-embedding77

vector pairs) and the numerator contains L2 interactions (between all landmark-landmark pairs).78

2.1 Gradient descent ascent (GDA)-based optimization79

x: input vectors (shape: (n,m))
k,l: num neighbors, num landmarks
f,g: attractive, repulsive penalty functions

edges = knn_edges(x,k) # k nearest neighbors for each input
y = laplacian_eigenmap(edges) # init embedding vectors
z = sample_landmarks(y,l) # init landmarks as randomly chosen embedding
vectors

for i in range(n_iter):
pairwise distances
yy = norm((y[edges[0]] - y[edges[1]],dim=1) # shape: (n*k)
yz = cdist(y,z) # shape: (n,l)
zz = cdist(z,z) # shape: (l,l)

energy
e = f(yy).sum() + (g(yz)**2).sum() / g(zz).sum() # Eq. 3

gradients
e.backward()

updates
y -= eta_y / (y.grad**2).mean().sqrt() * y.grad
z += eta_z / (z.grad**2).mean().sqrt() * z.grad

Algorithm 1: PyTorch-style pseudocode for embedding game

We provide PyTorch-style pseudocode in Alg. 1. We use a rescaled gradient descent-ascent algorithm80

to find saddle points of Eq. 3. This rescaling is helpful as the embedding gradients are much smaller81

than the landmark gradients and the rescaling lets us set ηy, ηz to be similar magnitudes. In principle82

this rescaling could lead to convergence issues, however this was not problem in practice.83

As is standard practice [8, 1, 11], we initialize the embedding vectors using Laplacian eigenmaps [3].84

This method sets y to be the 2nd and 3rd smallest eigenvectors of the normalized graph Laplacian85

defined by the k-nearest neighbor graph. The y are rescaled so each dimension is unit variance.86

In practice we don’t find exact eigenvectors but rather 100 power iterations to approximate these87

eigenvectors. We initialize the landmarks by randomly sampling embedding vectors after laplacian88

initialization.89

3

Figure 2: embedding vectors (color) and landmarks (black) generated by our algorithm on three
datasets.

Both in theory and in practice, choosing the learning rates for GDA problems can be much more90

complicated than for simple gradient descent problems. In the experiments section we explore how91

various learning rate choices impact convergence.92

2.2 Force-based interpretation of the game93

It is useful to consider the forces on each player of the game. The force on each embedding takes the94

form:95

fi = − dE

dyi
= α1

∑
j∼Ni

f ′
ij

yj − yi

∥yj − yi∥
+ α2

∑
a

g′ia
yi − za
∥yi − za∥

(4)

where α1, α2 are non-negative constants. The force has two sources: each embedding feels attraction96

to its neighbors and repulsion from all landmarks. In practice, g′ will decay with distance so the97

repulsion is strongest from nearby landmarks. In simple terms the embedding vectors run towards98

their neighbors and away from the landmarks.99

Because the landmarks are maximing the objective, the force is now the positive gradient. This takes100

the form:101

fa = +
dE

dza
= β1

∑
i

g′ia
yi − za
∥yi − za∥

+ β2

∑
b

za − zb
∥za − zb∥

(5)

where β, β2 are non-negative constants. This force also has two source. Landmarks are attracted to102

the embedding vectors (but prefer close embedding vectors) and repelled by other landmarks. In103

simple terms the landmarks run towards the closest embedding vectors and away from the other104

nearby landmarks.105

3 Visualization results106

We show visualizations produced by our algorithm on three different datasets (i) the classic MNIST107

dataset (ii) a single cell RNA dataset (iii) 25k reddit posts from 25 different subreddits. The resulting108

embedding vectors and landmarks are shown in Fig. 2. The penalty functions we use are:109

f(d) = log(1 + d2) g(d) =
λ

1 + d2
(6)

λ is a hyperparameter which we tune for each dataset. The “log 1-plus” attractive penalty has seen110

successes in previous works so we stick with it [8, 1]. Intuitively this function penalizes large111

distances less than than a more intuitive d2 penalty, which may be important in the presence of noisy112

neighborhood graphs. Our “cauchy” repulsive penalty g is a more unusual choice. Unlike other113

works, g does not approach infinity as the distance goes to zero. This is important as our bound114

does not work when g(0) → ∞. However, this penalty still decays to zero as d → ∞, meaning that115

repulsion is strongest between nearby vectors. We show empirically that we can generate high quality116

visualizations with this class of distortion function.117

For every dataset we adopt the same learning rate schedule. We perform 3k GDA iterations with118

ηy = 0.03, ηz = 0.3. We divide both learning rates by 10 and perform 3k more iterations. There is119

4

Figure 3: Clustering derived by assigning each embedding to the nearest landmark. We show random
subsets of each cluster for the first four clusters in the MNIST dataset and the Reddit25K dataset

no stochasticity in our system as we are doing full batch updates, however the learning rate decay120

still seems helpful for improving the resulting visualization.121

3.1 Datasets122

MNIST The classic MNIST dataset contains 70,000 grayscale images of size 28x28, each containing123

a single handwritten digit. The generated 2D visualization is shown for K = 15 neighbors, L = 50124

landmarks and λ = 0.001.125

scRNA The scRNA dataset contains 40,000 PCA embedding vectors of single cell mRNA transcrip-126

tomes from COVID-19 patients. The input vectors are 30 dimensional. This dataset originates from127

[15] and can be conveniently be download from [1]. We use K = 15, L = 150 and λ = 0.01.128

25K Reddit Posts This dataset contains 25,000 reddit posts from 25 different subreddits (1000 posts129

per subreddit). This is generated by sampling 25 subreddits from the larger 1 million post dataset130

which can be downloaded from Kaggle [6]. To generate feature vector for each post, we use the131

strategy detailed in [2] and create a weighted average of GloVe vectors used in the post. These 300132

dimensional “post vectors” are then fed into our algorithm. We use K = 15, L = 150 and λ = 0.01.133

3.2 Landmark-based clustering134

In each case the landmarks appear to tile the high density regions of embedding space. This suggests135

a method to cluster the data. Assign each embedding to the closest landmark in embedding space:136

ci = argmin
a

∥yi − za∥ (7)

One might expect similar results by running KMeans on the embedding vectors, but a difference is137

that we already have the landmarks (cluster centers) as a result of running our algorithm. In Fig. 3138

we show randomly chosen inputs that are assigned to selected landmarks for the MNIST and Reddit139

post datasets. This a can provide an interesting way to quickly visualize data. Instead of directly140

visualizing the embedding vectors, one can examine clusters derived from the learned landmarks.141

4 Duality and learning rates142

Choosing the learning rates for this problem is non-trivial because we have a non-convex non-concave143

minimax optimization. However we provide a rule of thumb which is to choose the landmark learning144

rate sufficiently large relative to the embedding learning rate. This is motivated by experiment and145

extrapolation from theoretical results on nonconvex-concave optimization.146

Duality In general there is a duality gap for our optimization in Eq. 3. In other words the order of the147

optimization (min-max vs. max-min) is extremely important for this problem. In fact the reversed148

“max-min” problem admits a completely degenerate set of landmarks. For any fixed set of landmarks149

5

Figure 4: Varying the landmark learning rate ηz with the embedding learning rate fixed at ηy = 0.03
(for the MNIST dataset). Too small, and the embedding vectors collapse to a few points (ηz = 0.01).
Too large and the embedding vectors again appear to begin to collapse, although not as extreme here.
There appears to be a window of learning rates where we observe nice clustering.

(z), the embedding vectors (y) can achieve 0 error by: one, setting the first sum in Eq. 3 to zero150

by collapsing to a point yi = yj for all i, j, and two: setting the numerator of the second term in151

Eq. 3 to zero by running off to infinity. So for any fixed z, we have miny e(·, z) = 0 and therefore152

maxz miny e = 0. Ultimately we care about generating useful visualizations of data, so having all153

our embedding vectors collapsed at a single point, infinitely far away from the landmarks, is not good.154

Learning rates Intuitively we should set the landmark learning rate to be relatively fast compared155

to the embedding learning rate. This way, the landmarks can approximately perform maxz e(y, ·)156

before the embedding vectors have a chance to update appreciably. Then the embedding vectors can157

perform approximate gradient descent on the objective maxz e(·, z) and the algorithm is more likely158

to find solutions to the original minmax problem.159

Rigorously justifying this intuition, that setting ηy ≪ ηz will find a solution of miny maxz , is160

rather challenging in the case of nonconvex-nonconcave objective like ours. In the simpler case of a161

nonconvex-concave problem, this intuition (choose a fast learning rate for the inside-maximization)162

can be rigorously shown to be correct [7]. We’ll show via experiment that this intuition seems to be163

useful.164

Experiment We run our algorithm on the MNIST dataset with k = 15, l = 100, and λ = 0.001.165

We’ll fix ηy = 0.03 and vary ηz . Learning curves and visualizations after 2k iterations of Alg. 1 are166

shown in Fig. 4. Too small, and the embedding vectors collapse to a few points (ηz = 0.01). Too167

large and the embedding vectors again appear to begin to collapse, although not as extreme here.168

There appears to be a window of learning rates where we observe nice clustering. This seems to be169

explained by our intuitions on the duality problem.170

When ηz is too small, the embedding vectors can begin to minimize first and perform miny e(·, z),171

which we argued can be 0 when the embedding vectors collapse to a point and move away from172

the landmarks. When ηz is too large, then again the landmarks are not performing the inner loop173

maximization, and the embedding vectors again can perform miny e(·, z), by collapsing to a point.174

In Fig. 4 we see the embedding vectors begin to collapse, although its not as extreme as when ηz was175

too large.176

5 Comparison with sample-based techniques177

We’ll compare to two fixed-sample-based methods for approximating the all-pairs sum in Eq. 1. The178

first method is used by [1] and simply samples L edges for each node. The second method randomly179

designates L embedding vectors at the start of training to be the landmarks and replaces the sum using180

the landmarks. This method is not widely used in practice, and as we’ll see it leads to surprisingly181

low quality visualizations. We call these methods “fixed-sample” because these edges/landmarks are182

sampled once at the start of training and then fixed for all subsequent iterations.183

We evaluate each method a) qualitatively by looking at the resulting visualizations and b) quantitatively184

by comparing the value of the “all-pairs” objective (Eq. 1) using the generated embedding vectors.185

We observe that the sampled-edge-based algorithm seems to outperform our algorithm for fixed L,186

while the sample-landmark-based algorithm dramatically underperforms.187

6

Sampled edges At the start of training, we sample L edges (i, j) uniformly at random for each node188

i. We call this set of edges N−. The all-pairs sum
∑

ij is then replaced with a sum over these edges189

and reweighted by a factor N/L. So we optimize the objective:190

min
y

∑
i,j∼N

f(∥yi − yj∥) +
N

L

∑
i,j∼N−

g(∥yi − yj∥) (8)

Sampled landmarks At the start of training, we designate L embedding vectors uniformly at random191

to be landmarks. We call this set of embedding vectors E . We again replace the all-pairs sum in Eq. 1192

with a reweighted sum over landmarks:193

min
y

∑
i,j∼N

f(∥yi − yj∥) +
N

L

∑
i

∑
j∼E

g(∥yi − yj∥) (9)

By defining the set of negative edges N− = {(i, j) : i = 1, 2, ..., N and j ∈ E}, we can rewrite Eq.194

9 to look identical to Eq. 8. In other words the sampled landmark scheme can be interpreted as just195

another method to sample negative edges.196

Averaging over edge or landmark choices, both schemes yield unbiased estimators ⟨NL
∑

ij∼N−⟩ =197 ∑
ij . But because these are chosen once at the start of training and then fixed, these actually yield198

zero variance but biased estimates. In other words both methods generates a biased estimate of
∑

ij199

and its gradients. If our method exactly computed the global maxima with respect to the landmarks200

for a fixed set of embedding vectors, it could as well be regarded as a zero-variance biased estimate201

of the all-pairs sum. However, it does not find the global maxima, so there is some variance in our202

estimates (due to for instance random initialization of the landmarks).203

Experiment training details In all three experiments (sampled edges, sampled landmarks, and204

our method) we use the same hyperparameters. We train on the MNIST dataset. We use the f, g205

described in Eq. 6. We set λ = 0.001. We use K = 15 for the neighborhood graph.We compare206

L ∈ {1, 3, 10, 30, 100, 300}. For the sampled edges and sampled landmarks experiment, we only207

have a learning rate for the embedding vectors. We use the same learning rate schedule for ηy in208

both settings: we perform 2k iterations with ηy = 0.03, then 2k more with ηy = 0.003. For the209

experiment using our method, we have the additional parameter ηz and we set it at ηz = 10ηy .210

5.1 Visualization (qualitative comparison)211

The resulting visualizations are shown in Fig. 5. As the number of landmarks L increase beyond212

30, both the optimized-landmark and sampled-edge algorithms yield nearly identical visualizations.213

This seems reasonable, as L increases each algorithm yields a better and better estimate of the214

all-pairs objective so beyond a certain threshold of L, all algorithms should ultimately yield the215

same visualizations. For L = 1, 10, 30 the optimized landmark algorithm suffers from degeneracies216

not seen in the sampled-edge algorithm. In particular we observe a number of "clusters" appear to217

collapse to single points.218

Intuitively when there are more clusters than landmarks, there is no mechanism for the optimized219

landmark algorithm to prevent some of the clusters from collapsing. In the landmark algorithms220

there is no direct embedding-embedding repulsive forces. If there is no landmark inside a cluster221

of embedding vectors which are attracting each other, there is no outward repulsion preventing this222

cluster from collapsing to a point as we see in the cases L = 1, 3, 10 where there are not very many223

landmarks. The sampled-edge method seems to provide a more robust mechanism for avoiding this224

embedding collapse.225

The sampled-landmark algorithm gave nearly complete embedding collapse for all L we tested226

(note that at some point, for sufficiently large L all three methods should yield the same result). All227

embedding vectors which were not designated as landmarks simply collapsed towards a single point228

while the landmark vectors were repelled to an exterior ring around the origin. It may seem surprising229

how different this result is from the sampled edges experiment, given that it can be interpreted as230

another way to generate negative edges. This result shows the importance of the exact method used231

to approximate the all-pairs repulsive sum.232

7

Figure 5: Comparing our optimized landmark method for approximating the all-pairs repulsion in
Eq. 1 to simple edge-sampling and landmark-sampling methods. Black dots indicated landmarks
(not relevant/present in sampled edges figures). The edge sampling method seems to outperform
our method for a fixed L. When we don’t have enough landmarks (L=1,3,10) we see clusters of
embedding collapse to points. However our method is much better than a simple random sampling of
landmarks. When we randomly sample and fix landmarks, nearly all the embedding vectors which
were not designated as landmarks collapse to a single point, while the landmark vectors repel from
each other and other embedding vectors.

5.2 Quantitative Results233

We also compare the sampled-edge and the optimized-landmark algorithms quantitatively in Fig. 6.234

We don’t show the sampled-landmark method as it is far worse than the sampled-edge or optimized-235

landmark methods. All curves in this Figure are for L = 10.236

In (a) we show the energy we are actually optimizing (Eq. 3) for optimized-landmarks and Eq. 8 for237

sampled-edges). This indicates that both algorithms are at least optimizing the approximations, and238

the degeneracies we observed in Fig. 5 are not a failure of the optimization routine. In (b) we show239

an unbiased approximation to the "true" energy at each iteration (Eq. 1). This is done by randomly240

sampling a large number of edges from the all pairs sum, and these edges are chosen i.i.d. at each241

iteration242

For both orange and blue, the energy we optimize is less than the all-pairs energy, and this difference243

can be regarded as analogous to a generalization gap. Each algorithm ”overfits” to the energy we244

optimize, but this “overfitting” appears worse for our method than the sampled edge method.245

We observe that the sampled-edge algorithms yields a lower all-pairs energy (the energy we truly246

wish to optimize). This is in agreement with the fact that the sampled edge method yields the highest247

quality visualizations with a small number of sampled edges (Fig. 5). In (c) we plot the root-mean-248

squared error between the gradients of the approximate energy and gradients of the estimated true249

energy. Our method produces a more faithful gradient estimate at nearly all times in training. This is250

extremely surprising as the final true energy, after many gradient updates is lower for the sampled251

edge method which gives a worse gradient estimate in terms of mean squared error. This result shows252

how the exact details used to approximate the sum can be very important.253

8

Figure 6: Quantitative comparison between our method (optimized landmarks) and sampled edge
method. The left figure show the energy each method actually optimizes. The middle figure shows
the “all-pairs” energy (Eq. 1).

6 Related Work254

Landmark methods Instead of dealing with N2 nonlinear pairwise interactions, landmark based255

approaches instead designate a small set of n landmarks, and instead work a smaller set with nN256

iterations. Unlike our method where individual landmarks do not correspond to any particular257

sample, most landmark approaches use sampling to designate certain samples as landmarks. For258

dimensionality reduction, landmark approaches have been applied ISOMAP by [4], and to stochastic259

neighbor embedding vectors by [10]. Finally more sophisticated landmark sampling schemes have260

been used by [11].261

Perhaps the most well-known class of landmark methods is the Nyström method [16], which is used262

to approximate N × N kernel similarity matrices g(xi,xj) with two smaller N × n and n × n263

matrices. Our method actually can be understood from the kernel perspective. The heart of our264

method is approximating the sum over all pairs of interactions
∑

ij g(xi,xj) which we can interpret265

as the inner product of the vector of all ones and the kernel similarity matrix 1⊤G1.266

Game formulations of learning This work falls into a category of works formulating well-established267

algorithms like multidimensional scaling, principle components analysis, and whitening as a game268

[9, 5]. This work is formulating a certain class of nonlinear embedding problems as a game.269

7 Discussion270

This paper presents a novel method for approximately the all-pairs repulsive term present in many271

manifold learning algorithms. When the nonlinear repulsion terms are described by a kernel function,272

we can derive a lower bound for the all-pairs sum which we then maximize to find the tightest lower273

bound. We show that this optimization requires much fewer landmarks than would be required274

if we instead just randomly designated embedding vectors to be landmarks. However, compared275

to sampling edges randomly this scheme still requires more computation to achieve comparable276

visualizations.277

To make this method more useful, future work should find automated schemes for performing the278

minimax optimization, so a user does not have to specify learning rates. This might me much more279

challenging here than for a minimization problem because in general there is no guarantee that280

an increase or decrease in the objective means we are getting closer to a saddle point. In practice281

however, we observed success by setting larger learning rates for ηz and smaller for ηy. This might282

suggest that finding a quick and robust inner loop maximization, with outer loop gradient steps could283

be a promising direction.284

It would be interesting to apply our method to other regimes. In particular finding high dimensional285

embedding vectors. Additionally, exploring the behavior of this method in the online setting is286

promising, as our method for approximating a sum of all-pairs pairwise interactions does not actually287

require any pairwise distances between embedding vectors to be computed.288

9

References289

[1] Akshay Agrawal, Alnur Ali, and Stephen P. Boyd. Minimum-distortion embedding. CoRR,290

abs/2103.02559, 2021.291

[2] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sentence292

embeddings. In International conference on learning representations, 2017.293

[3] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data294

representation. Neural computation, 15(6):1373–1396, 2003.295

[4] Vin De Silva and Joshua B Tenenbaum. Global versus local methods in nonlinear dimensionality296

reduction. In NIPS, volume 15, pages 705–712, 2002.297

[5] Ian Gemp, Brian McWilliams, Claire Vernade, and Thore Graepel. Eigengame: Pca as a nash298

equilibrium. arXiv preprint arXiv:2010.00554, 2020.299

[6] Mike Swarbrick Jones. Reddit self posts dataset.300

https://www.kaggle.com/mswarbrickjones/reddit-selfposts.301

[7] Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave302

minimax problems. In International Conference on Machine Learning, pages 6083–6093.303

PMLR, 2020.304

[8] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation305

and projection for dimension reduction, 2020.306

[9] Cengiz Pehlevan, Anirvan M Sengupta, and Dmitri B Chklovskii. Why do similarity matching307

objectives lead to hebbian/anti-hebbian networks? Neural computation, 30(1):84–124, 2017.308

[10] Nicola Pezzotti, Thomas Höllt, B Lelieveldt, Elmar Eisemann, and Anna Vilanova. Hierarchical309

stochastic neighbor embedding. In Computer Graphics Forum, volume 35, pages 21–30. Wiley310

Online Library, 2016.311

[11] Lawrence K. Saul. A tractable latent variable model for nonlinear dimensionality reduction.312

Proceedings of the National Academy of Sciences, 117(27):15403–15408, 2020.313

[12] Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing large-scale and high-314

dimensional data. Republic and Canton of Geneva, CHE, 2016. International World Wide Web315

Conferences Steering Committee.316

[13] Laurens van der Maaten. Accelerating t-sne using tree-based algorithms. Journal of Machine317

Learning Research, 15(93):3221–3245, 2014.318

[14] Laurens Van Der Maaten, Eric Postma, Jaap Van den Herik, et al. Dimensionality reduction: a319

comparative. J Mach Learn Res, 10(66-71):13, 2009.320

[15] Aaron J Wilk, Arjun Rustagi, Nancy Q Zhao, Jonasel Roque, Giovanny J Martínez-Colón,321

Julia L McKechnie, Geoffrey T Ivison, Thanmayi Ranganath, Rosemary Vergara, Taylor Hollis,322

et al. A single-cell atlas of the peripheral immune response in patients with severe covid-19.323

Nature medicine, 26(7):1070–1076, 2020.324

[16] Christopher Williams and Matthias Seeger. Using the nyström method to speed up kernel325

machines. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural Information326

Processing Systems, volume 13. MIT Press, 2001.327

Checklist328

1. For all authors...329

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s330

contributions and scope? [Yes] We provide a game theoretic objective in Eq. 3 and331

show visualizations in Figure 2332

(b) Did you describe the limitations of your work? [Yes] See discussion333

10

(c) Did you discuss any potential negative societal impacts of your work? [No]334

(d) Have you read the ethics review guidelines and ensured that your paper conforms to335

them? [Yes]336

2. If you are including theoretical results...337

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We state the338

assumptions in section 2339

(b) Did you include complete proofs of all theoretical results? [Yes] In the appendix, we340

prove our main theoretical result, that we can bound the sum of pairwise interactions341

3. If you ran experiments...342

(a) Did you include the code, data, and instructions needed to reproduce the main exper-343

imental results (either in the supplemental material or as a URL)? [No] We provide344

PyTorch style pseudo-code in the main text to run our algorithm.345

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they346

were chosen)? [Yes] In section 3 and 5 we provide these details347

(c) Did you report error bars (e.g., with respect to the random seed after running experi-348

ments multiple times)? [No]349

(d) Did you include the total amount of compute and the type of resources used (e.g., type350

of GPUs, internal cluster, or cloud provider)? [No] These are small scale experiments,351

taking no more than a minute on a single GPU to complete352

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...353

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite mnist, scRNA,354

and Reddit posts dataset355

(b) Did you mention the license of the assets? [No]356

(c) Did you include any new assets either in the supplemental material or as a URL? [No]357

(d) Did you discuss whether and how consent was obtained from people whose data you’re358

using/curating? [No] We are using publicly available datasets359

(e) Did you discuss whether the data you are using/curating contains personally identifiable360

information or offensive content? [No] We are using publicly available datasets361

5. If you used crowdsourcing or conducted research with human subjects...362

(a) Did you include the full text of instructions given to participants and screenshots, if363

applicable? [N/A]364

(b) Did you describe any potential participant risks, with links to Institutional Review365

Board (IRB) approvals, if applicable? [N/A]366

(c) Did you include the estimated hourly wage paid to participants and the total amount367

spent on participant compensation? [N/A]368

Proof of Inequality in Eq. 2369

We restate the claim first. If g(∥yi − yj∥) is a positive semi-definite kernel function, then for any370

{yi}Ni=1 and {za}La=1:371 ∑
i,a

g(∥yi − za∥)

2

≤

∑
ij

g(∥yi − yj∥)

∑
a,b

g(∥za − zb∥)

 (10)

Proof: Because we have assumed that g is a kernel, Mercer’s theorem allows us to replace all the g(·)372

with inner products between high dimensional vectors. Specifically for any {yi}Ni=1 and {za}La=1373

there exist {ϕi}Ni=1 and {ψa}La=1 such that374

g(∥yi − za∥) = ϕi ·ψa g(∥yi − yj∥) = ϕi · ϕj g(∥za − zb∥) = ψa ·ψb (11)

Now proof of Eq. 10 is a simple matter of proving vector inequalities. First we define the sums375

ϕ̄ :=
∑

i ϕi and ψ̄ :=
∑

aψa. We can replace the sums of g with our vectors. So the left hand side376

is377 [∑
ia

g(∥yi − za∥)

]2

= (ϕ̄ · ψ̄)2 = ∥ϕ̄∥2∥ψ̄∥2Cos[ϕ̄, ψ̄]2 (12)

11

And the right hand side of Eq. 10 is:378 ∑
ij

g(∥yi − yj∥)

∑
a,b

g(∥za − zb∥)

 = ∥ϕ̄∥2∥ψ̄∥2 (13)

Because Cos2 ≤ 1, the left hand side is always less than the ride hand side so we have therefore379

proved Eq. 10.380

12

	Introduction
	Embedding Game
	Gradient descent ascent (GDA)-based optimization
	Force-based interpretation of the game

	Visualization results
	Datasets
	Landmark-based clustering

	Duality and learning rates
	Comparison with sample-based techniques
	Visualization (qualitative comparison)
	Quantitative Results

	Related Work
	Discussion

