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Abstract
Understanding the function of individual units in
a neural network is an important building block
for mechanistic interpretability. This is often done
by generating a simple text explanation of the be-
havior of individual neurons or units. For these
explanations to be useful, we must understand
how reliable and truthful they are. In this work we
unify many existing explanation evaluation meth-
ods under one mathematical framework. This
allows us to compare existing evaluation metrics,
understand the evaluation pipeline with increased
clarity and apply existing statistical methods on
the evaluation. In addition, we propose two sim-
ple sanity checks on the evaluation metrics and
show that many commonly used metrics fail these
tests and do not change their score after massive
changes to the concept labels. Based on our ex-
perimental and theoretical results, we propose
guidelines that future evaluations should follow
and identify a set of reliable evaluation metrics.

1. Introduction
Deep neural networks (DNNs) have achieved great success
on a wide range of tasks, but they are very difficult to un-
derstand and often perceived as black-boxes (Rudin et al.,
2022). To address this challenge, the field of mechanistic
interpretability has recently emerged, aiming to provide a
clearer understanding of the internal mechanisms of DNNs.

Providing natural language explanations for small compo-
nents of a neural network is an important part of mechanistic
interpretability. Classic work in this area includes Network
Dissection (Bau et al., 2017) and other works explaining
individual neurons in deep vision models (Mu & Andreas,
2020; Hernandez et al., 2022; Oikarinen & Weng, 2023;
Bai et al., 2025). Other examples include automated neuron
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explanations (Bills et al., 2023; Lee et al., 2023) for large
language models, as well as explaining features of sparse
autoencoders (Bricken et al., 2023; Templeton et al., 2024).

Despite the introduction of various approaches for gener-
ating neuron explanations, existing papers often use very
different metrics to evaluate how good their descriptions
are, and it is not clear how they compare to each other. In
addition, many evaluation metrics have problems, as shown
by (Huang et al., 2023). To ensure that unit explanations are
reliable and trustworthy, it is crucial to establish a standard-
ized framework for evaluation.

Motivated by the need for a standardized approach, in this
work we unify many existing evaluation methods under a sin-
gle mathematical framework: NeuronEval, which provides
much needed conceptual clarity to the topic of explanation
evaluation. This framework allows us to clearly compare
and contrast current evaluation techniques and provides a
more transparent understanding of the evaluation pipeline.
Inspired by this, we introduce two sanity tests to validate
the metrics, revealing that most commonly used evaluation
metrics fail at least one of these basic tests and should not
be relied on alone. In summary, in this paper we:

• Formalize the task of evaluating individual unit ex-
planations and unify 19 existing methods under the
NeuronEval framework, which lets us apply standard
statistical methods to evaluating neuron explanations.

• Propose two sanity checks for evaluation metrics: Miss-
ing Labels Test and Extra Labels Test. We then test dif-
ferent metrics both theoretically and empirically across
hidden layer and final layer neurons, as well as on
linear probes on both vision and language models.

• Out of the 18 metrics tested only the following pass
the tests: Correlation(Pearson), Cosine Similarity,
AUPRC, IoU and F1-score. In contrast, many com-
monly used evaluations fail these sanity tests, such
as: using biased top-and-random sampling, only eval-
uating on highly activating inputs(Recall), measuring
AUC or mean activation difference MAD, and cannot
be relied on by themselves.

Our code and results are publicly available at
https://github.com/Trustworthy-ML-Lab/Neuron Eval.
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Figure 1. An overview of contributions. We first unify many existing explanation evaluation methods into a single mathematical framework
NeuronEval containing 18 different metrics sM . Next, we perform meta-evaluation via NeuronEval to answer the question: which
evaluation metrics reliably measure how good an explanation is?

2. Definitions
2.1. What is an individual unit in a neural network?

In this paper we are focused on individual unit explanations.
By a unit, we mean a smaller part of a neural network
that can have an independent meaning. The simplest form
of such units is a single neuron, or a single channel of a
Convolutional Neural Network (CNN), but a unit can be any
scalar function of network inputs. Other interesting units
that fit in our framework are linear combinations of neurons
(i.e. directions in activation space), which are considered
to correspond to a specific interpretable concept. These are
used in studies such as TCAV (Kim et al., 2018), Concept
Bottleneck Models (Koh et al., 2020; Yuksekgonul et al.,
2023; Oikarinen et al., 2023; Srivastava et al., 2024), Linear
Probing (Gurnee et al., 2023) or steering vectors (Subramani
et al., 2022). Finally, a unit could be a feature of a Sparse
Autoencoder (Cunningham et al., 2023; Bricken et al., 2023)
trained to disentangle a layer’s activations into interpretable
individual components. In this paper, we focus on units
with scalar activations, excluding larger components e.g.
attention heads.

2.2. Problem Description

Our focus in this paper is explanation1 evaluation. In evalu-
ation, a text explanation t for a neuron k is given, and our
goal is to evaluate how faithfully this explanation describes
the neuron. Below we define evaluation as a function E :

Evaluation (of Explanation t) : E(f0:l
k ,D, t) → R

Here E is a function that takes a probing dataset D, a

1Note: Throughout the paper we use ”explanation”, ”concept”,
and ”description” interchangeably to refer to a text description.

neural network2 f and a text description t, and returns a
scalar score, where a higher score indicates the description
is better i.e. more reliable/faithful. See Figure 1 for an
illustration of the evaluation process.

For explanations to be reliable, evaluating explanations is
very important, but the community has not reached an agree-
ment on which E to use. Currently different papers often
use different E without theoretical justifications. Thus, one
focus of our paper is to perform meta-evaluation and rigor-
ously investigate different evaluation metrics E .

2.3. What are the goals of an explanation?

Neuron explanations are typically generated to improve our
understanding of the model, which can then help improve,
for example, safety and reliability of the models. However,
this goal is vague and hard to measure generally. We believe
a more precise definition of the goals of an explanation is
essential for thinking clearly about how to evaluate them.

In this paper, we focus on Input-based neuron explanations,
which make up the majority of existing explanations. We
argue that the goal of an explanation is to provide a human-
interpretable approximation of the following function:

Input → Unit Activation: x → f0:l
k (x).

A good explanation should be able to describe which inputs
cause a high unit activation, and which do not. Note that
there are other type of explanations being proposed (e.g.
output-based, see App. B.2 for discussion.), which is not
the focus of this work.

2We can write neuron k in layer l of neural network f as a
function f0:l

k (x), where f i:j represents the i through j’th layers
of the neural network f(x). Here we assume the units are neurons
for notational simplicity.
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3. A Unified Evaluation Framework
We start by studying some popular neuron explanation evalu-
ations in Sec. 3.1 and showing they can be formalized under
the same notation. We then take a further step in Sec 3.2 to
show that almost all existing work can be unified under this
evaluation framework, which we call NeuronEval.

3.1. Formalizing Example Evaluations

Example 1: Crowdsourced Highly Activating Inputs
Evaluation. Currently, perhaps the most common way
to evaluate neuron explanations is to show (crowdsourced)
human raters examples of highly activating inputs, and ask
the raters whether these inputs can be described by the
explanation (also known as ‘concept‘) (Zhou et al., 2015;
Bau et al., 2017; Oikarinen & Weng, 2023).

To analyze this approach more rigorously, we describe it
through the following mathematical formulation: Given a
set of probing data D = {xi}, we first define the neuron
activation vector ak for neuron k as:

ak ∈ R|D|, [ak]i = f0:l
k (xi) ∀ i ∈ [1, |D|]. (1)

Here, the i-th entry of ak denotes the neuron activation on i-
th input xi. To represent highly activating inputs, we define
a binarization function B : Rn → {0, 1}n, that takes a real
vector and turns its element into 1 if it is a ”high” activation
and 0 otherwise. In particular, we use the topα binarization
function for neuron activations, where the activations in top
α percentile return 1, and the rest return 0 as this is how
highly activating inputs are typically selected. See Appendix
A.1 for more detailed description.

Next, we describe the human ratings for a presence of text
concept t in the inputs by defining the concept activation
vector ct:

ct ∈ R|D|, [ct]i = P(t|xi) ∀ i ∈ [1, |D|] (2)

Here each element of ct, i.e. [ct]i, represents the fraction of
raters that agreed on concept t being present on that input
xi. Finally, given ak and ct, we denote s as an explanation
score to quantify whether neuron k is well explained by the
concept t. In this evaluation, the fraction of highly activating
inputs that have concept t present is used to represent the
quality of explanations. To formalize this we can define s
in terms of ak and ct as follows:

s := P(concept|neuron is active) =
B(ak) ·B(ct)

||B(ak)||1
(3)

since the number of highly activated inputs can be computed
as ||B(ak)||1 and the number of highly activated inputs that
have concept t present is B(ak) ·B(ct). Note the value of ct
on not highly activating inputs doesn’t affect the score so we

don’t need to evaluate it on all inputs. Here we also binarize
the concept vector ct by rounding to 1 for elements ≥ 0.5
(indicating concept probability ≥ 0.5) and to 0 otherwise.

If we consider the goal of an explanation to be predicting
neuron activations given whether the concept is present, i.e.
simulation, then we can formulate the neuron explanation
as a binary classification problem. Specifically, as we show
in Appendix A.2 that Equation (3) is actually equivalent to
measuring ”Recall”:

sRecall =
TP

TP + FN
=

B(ak) ·B(ct)

||B(ak)||1
(4)

So crowdsourced evaluation of highly activating inputs is
equivalent to only measuring ”Recall”, i.e. we have s = sM
with metric M = Recall.

Example 2: IoU with Labeled Data. In addition to
crowdsourcing, other types of evaluations have been used
for validating neuron explanations. For example, (Bau
et al., 2017) collected a curated labeled dataset to eval-
uate neuron explanations by measuring the Intersection
over Union (IoU, also known as Jaccard index) between
neuron activations and concept labels on the annotated
dataset. This measures P(concept AND neuron is active)
/ P(concept OR neuron is active).

We can also describe this evaluation with the same formal-
ism as in Example 1, but with two main changes. First,
we use a different concept source, where the elements of ct
come from the labeled data instead of crowdsourced ratings.
Second, we set the metric M as IoU, giving us the following
evaluation score:

sIoU =
B(ak) ·B(ct)

||B(ak)||1 + ||B(ct)||1 −B(ak) ·B(ct)
(5)

Example 3: Automated Simulation Evaluation with Lan-
guage Models. More recently, (Bills et al., 2023) evaluate
neuron explanations of large language models by measuring
the correlation between actual neuron activations and activa-
tions predicted by a language model given the explanation.

While in different domains (Examples 1 and 2 are from
vision models), this evaluation can also be formalized in the
same manner as Example 1 and 2. First, the concept source
for ct is now model predicted neuron activations scaled 0-1,
as these are essentially pseudo-labels for the presence of the
concept in the given input. Second, for the metric M , we
now set it to be the Pearson’s Correlation coefficient and
obtain the evaluation score sCorrelation as:

sCorrelation =
1

|D|

∑
i([ak]i − µ(ak)) · ([ct]i − µ(ct))

σ(ak)σ(ct)
(6)

where µ(z) and σ(z) is the mean and standard deviation of
the vector z.

3



Evaluating Neuron Explanations: A Unified Framework with Sanity Checks

NeuronEval: A General Framework to Evaluate Neuron Explanations
Metric M Study Concept Source ct Granularity Domain

Recall (Zhou et al., 2015) Crowdsourced Whole Input Vision

∼Recall
(Bau et al., 2017; Oikarinen & Weng, 2023)
(Oikarinen et al., 2023; Bai et al., 2025) Crowdsourced Whole Input Vision

Precision (Srinivas et al., 2025) Generative Whole Input Vision

F1-score (Huang et al., 2023) Generative + Model Whole Input Language
(Gurnee et al., 2023) Labeled data Per-token Language

IoU
(Bau et al., 2017; Mu & Andreas, 2020)
(La Rosa et al., 2024) Labeled data Per-pixel Vision

Accuracy (Koh et al., 2020) Labeled data Whole Input Vision

∼AUC (Zimmermann et al., 2023) Crowdsourced Whole Input Vision

Inverse AUC (Bykov et al., 2023) Labeled data Whole Input Vision
(Kopf et al., 2024) Generative Whole Input Vision

Correlation(T&R) (Bills et al., 2023) Model Per-token Language
Correlation (Oikarinen & Weng, 2024) Model Whole Input Vision

Spearman
Correlation(T&R) (Bricken et al., 2023; Templeton et al., 2024) Model Per-token Language

∼WPMI (Oikarinen & Weng, 2023) Model Whole Input Vision

MAD (Kopf et al., 2024) Generative Whole Input Vision

∼MAD (Shaham et al., 2024) Generative Whole Input Vision
(Singh et al., 2023) Generative Whole Input Language

Table 1. Summary of evaluations used in existing work. ∼ indicates using a metric with small differences from our definition, while T&R
indicates use of biased top-and-random sampling to evaluate the metric with fewer samples. See Table B.1 for an extended versione.

3.2. Unifying Neuron Explanation Evaluation:
NeuronEval

As we have shown in the previous three examples (Eq (4),
(5) and (6)), evaluations that look extremely different on
the surface, can actually be written as simple functions
of the neuron activation vector ak and concept activation
vector ct. This means the explanation score sM can be
written as a function sM (ak, ct) of ak and ct, that is,
E(D, f0:l

k , t) = sM (ak, ct), where M is the name of the
specific metric chosen. For convenience, we call this the
NeuronEval Framework, showcased in Figure 1. Going fur-
ther, we find that, as we show in Table 1, almost all existing
methods in the literature for evaluation E can be formalized
under this framework.

Notably, NeuronEval is a general framework – as shown in
Table 1, it includes not only the standard statistical metrics
(e.g. Recall, F1-score, Correlation), but also other metrics
such as Mean Activation Difference (MAD), which com-
pares the average neuron activation on inputs where the
concept is present vs those where concept is missing:

sMAD =
B(ct) · ak
||B(ct)||1

− (1−B(ct)) · ak
||1−B(ct)||1

. (7)

Other standard metrics include Precision (Srinivas et al.,
2025), which can be intuitively understood as measuring

P(neuron is active|concept), defined as:

sPrecision =
B(ak) ·B(ct)

||B(ct)||1
(8)

Formalizing metrics under the same framework also high-
lights gaps in existing work, leading us to test standard
statistical metrics that were not explored by previous work,
such as AUPRC (defined in Appendix A.3).

Overall we have aimed to include all evaluation metrics used
by previous works, as well as standard statistical metrics not
previously explored, for a total of 18 different metrics and
evaluations from 19 studies within the NeuronEval frame-
work, which we compare in our experiments (Section 4
and 5), and the framework can easily include more in the
future. In Appendix A.3 we define all the other metrics
evaluated, such as F1-score, Cosine similarity, AUC and
AUPRC, as well additional details on these metrics.

Existing Work as Special cases of NeuronEval. We
summarize how most existing evaluations fit into our Neu-
ronEval framework in Table 1 (see Appendix B.2 for discus-
sion on few exceptions). This includes not only evaluations
of individual neuron explanations, but also explanations of
SAE features (Bricken et al., 2023), CBM neurons (Koh
et al., 2020), or linear probes (Gurnee et al., 2023). Writing
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diverse evaluations as special cases of the same framework
allows us to more clearly think about each component of an
evaluation in isolation, and can help develop more effective
evaluations by combining the best parts of previous stud-
ies. We classify differences in existing evaluations into four
main components:

(i) Evaluation metric M : This is the main focus of our
paper, to analyze which evaluation metrics are good
choices.

(ii) Source of Concept Vector ct: There are many choices
for the concept vector ct. These include, but are not
limited to: labels from a labeled dataset, using a model
to create pseudo-labels, using a human evaluator, or
generating new inputs and using the prompts as labels.

(iii) Granularity of activation vectors: The simplest case
is full input level activations, i.e. |D| = |ak| = |ct| =
n. These can also be more specific, for example pixel-
level activations as is the case in Network Dissection
(Bau et al., 2020), or token level as is often the case for
language model explanations.

(iv) Probing dataset D: Which inputs are used for the eval-
uation. Typical choices include the training/validation
data of the model, a special labeled dataset designed
for probing, or different datasets for different concepts.
Importantly, the dataset used for evaluation should be
disjoint from the dataset used for explanation genera-
tion to avoid overfitting.

Importantly, regardless of the answer to these questions,
or the application domain (e.g. vision or language), each
evaluation fits under the same mathematical formalism of
NeuronEval.

4. Meta-Evaluation #1: Sanity Checks for
Evaluation Metrics

Now that we have organized previous evaluations under the
NeuronEval framework, we can isolate and perform meta-
evaluation on one particular component of the evaluation:
the choice of metric M . As seen in Table 1, existing work
uses a wide variety of metrics, often without justification.
In order to understand which evaluation metrics are reliable,
we propose two sanity checks: Missing Labels Test and
Extra Labels Test which we describe in detail in this section.
These tests are inspired by (Adebayo et al., 2018), and
passing them is intended to be a necessary (not sufficient)
condition for a reliable evaluation metric.

4.1. A Motivating Example

We start by analyzing a simple failure case of the precision
and recall metrics. Let the probing dataset contain 6 im-

ages of animals xi ordered as {dog, cat, dog, bear, monkey,
flamingo}. Suppose we have a ”pets” neuron that only acti-
vates on pets (i.e. dogs or cats), then we can compute the
neuron activation vector ak as B(ak) = [1, 1, 1, 0, 0, 0]⊤.
We can also compute the concept activation vector ct for
different concepts t based on whether the input image xi

contain the concepts, giving us: cdog = [1, 0, 1, 0, 0, 0]⊤,
ccat = [0, 1, 0, 0, 0, 0]⊤, cpet = [1, 1, 1, 0, 0, 0]⊤, canimal =
[1, 1, 1, 1, 1, 1]⊤. We can then calculate the neuron explana-
tion score sM of this ”pets” neuron with different metrics
M in the following table:

Explanation t sRecall sPrecision sIoU

dog 0.67 1 0.67
cat 0.33 1 0.33
pet (ground truth) 1 1 1
animal 1 0.5 0.5

Table 2. A ”pet” neuron: different metrics M gives different eval-
uation scores sM on explanations t. For the metrics M={Recall,
Precision, IoU}, 1 is the perfect score, and 0 is the worst score.

When comparing different evaluation metrics, we can see
that Recall cannot distinguish between the correct concept
(pet) and a concept that is too generic (animal), as srecall
gives perfect score for both explanations. On the other hand,
Precision favors concepts that are too specific (dog, cat),
as sprecision = 1 for ‘dog‘, ‘cat‘ and ‘pet‘. In contrast, IoU
can unambiguously determine the correct concept ‘pet‘, as
sIoU = 1 only for ‘pet‘. See Figure B.1 for illustration.

4.2. Sanity Test Definitions

Inspired by this example, we propose two general tests to
measure whether a certain metric is too biased towards spe-
cific or generic concepts. These tests are motivated by the
following idea: For a reliable metric, a correct description
for a neuron should get the highest score, while its subset
(too specific) or superset (too general) should score lower.

(I): Missing Labels Test

The missing labels test is a generalized test to measure
whether a metric can differentiate between the correct con-
cept ct and a concept c−t that is too specific (a random
subset of the correct concept). In particular we generate
c−t by randomly replacing half of the elements of ct with 0.
That is we remove half of the concept labels for concept t.
E[||c−t ||1] = ||ct||1/2:

[c−t ]i =

{
[ct]i with probability 0.5

0 with probability 0.5
(9)

We then measure the score difference ∆s, i.e. how much
does the evaluation score change when replacing the original
concept vector ctk with a concept that is too specific, c−t :

∆s(k) = Ec±tk
[sM(ak, c

±
tk
)− sM(ak, ctk)] (10)
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Figure 2. Overview of our theoretical Missing and Extra Labels Tests. We can see the Recall metric fails the extra labels test as it cannot
differentiate between the perfect explanation and an explanation with extra labels. On the other hand Recall clearly passes the missing
labels test as −0.5 ≪ −ϵ = -0.001

For the sanity test, it is not important how much the modified
labels decrease the score. We simply want it to decrease
score by a non-zero amount on all neurons, which leads us
to define our main metric: Decrease Acc.

Decrease Acc =
1

|K|
∑
k∈K

1[∆s(k) < −ϵ] (11)

Here K is the set of neurons looked at and tk is the
best/correct concept for neuron k. Note that we normal-
ized the scores such that maximum of M is 1 and minimum
value is 0 to allow for equal comparison between metrics.
We set ϵ = 0.001 in our experiments to require a small but
noticeable change in scores. We study the sensitivity of
these tests to the choice of ϵ further in Appendix E.4. The
assumption behind this test is that if concept tk is a good
description for neuron k, a random subset of it should be a
worse description.

(II): Extra Labels Test

The extra labels test is essentially the opposite of missing
labels test, where we test whether a metric can differen-
tiate between a correct concept and a concept that is too
generic i.e. a random superset of the concept. In particu-
lar, we create c+t by randomly doubling the size of ct, i.e.
E[(||c+t ||1)] = 2||ct||1. That is:

[c+t ]i =

{
1 if [ct]i = 1, else with probability ||ct||1

n−||ct||1
0 otherwise

(12)

where n is the length of vector ct. Similar to the Missing la-
bels test, to pass the Extra Labels test, a metric should have
a high Decrease Acc as defined in Eq. (11). If concept t is
a good description for neuron k, giving additional positive
concept labels to random inputs should decrease its simi-
larity score. For simplicity, we only apply these tests with
ground truth labels as concept source where ct is binary.

4.3. Test Setup

We perform two versions of these tests, Experimental on
real neurons across diverse settings, and Theoretical on
ideal neurons described below.

Experimental: We experimentally evaluated these metrics
on neurons from 8 different settings across vision and lan-
guage models, covering final layer neurons, hidden layer
neurons, CBM neurons and linear probe outputs. We evalu-
ated vision models across 3 datasets: Imagenet, Places365
and CUB200, while language models were evaluated on a
subset of OpenWebText(Gokaslan et al., 2019). See Ap-
pendix F for detailed description of the evaluation setting
and results on individual datasets. We report the Averaged
results in Table 3.

Theoretical: In addition, we perform theoretical analysis on
the Missing/Extra labels test for hypothetical neurons whose
activations perfectly match a concept, which we discuss in
detail in Appendix C. See Figure 2 for an overview. In this
setting, the missing labels test measures whether a metric
can differentiate a concept that perfectly matches neuron
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Meta-Evaluation #1 (I) Missing Labels Test (II) Extra Labels Test Pass

Experimental Theoretical Experimental Theoretical

Recall 98.66% 100.00% 0.00% 0.00% ×
Precision 45.73% 0.00% 99.81% 100.00% ×
F1-score 93.68% 100.00% 99.82% 100.00% ✓
IoU 93.62% 100.00% 99.81% 100.00% ✓
Accuracy 23.79% 60.00% 70.37% 69.68% ×
Balanced Accuracy 98.65% 100.00% 53.67% 60.00% ×
Inverse Balanced Accuracy 64.18% 60.00% 99.50% 100.00% ×
AUC 94.96% 100.00% 59.18% 60.00% ×
Inverse AUC 52.81% 60.00% 99.99% 100.00% ×
Correlation 99.41% 100.00% 99.92% 100.00% ✓
Correlation (T&R) 87.83% 100.00% 60.26% 43.64% ×
Spearman Correlation 64.05% 67.20% 49.21% 44.08% ×
Spearman Correlation (T&R) 80.04% 100.00% 59.81% 19.68% ×
Cosine 99.45% 100.00% 99.26% 100.00% ✓
WPMI 95.89% 100.00% 58.84% 100.00% ×
MAD 59.81% 60.00% 99.34% 100.00% ×
AUPRC 95.61% 100.00% 99.46% 100.00% ✓
Inverse AUPRC 99.15 % 100.00% 95.58% 89.54% ×

Table 3. Averaged experimental and theoretical results of our missing labels and extra labels test. Experimental results are averaged across
settings like vision and language domain, while theoretical results are averaged over different neuron activation frequencies. (T&R)
indicates the use of top-and-random sampling. We can see most evaluation metrics fail at least one of the tests.

activations ct (Recall=1, Precision=1) from a concept c−t
(with Recall=0.5 and Precision=1). Similarly, the Extra
Labels test measures differentiation between the perfect
concept and c+t (with Recall=1 and Precision=0.5). We
simulate neurons with many different activation frequencies,
and averaged results are reported in Table 3.

Finally, we analytically studied the expected change in
scores for different binary metrics under Missing and Ex-
tra labels test in Appendix D. Our analytical results are
consistent with the empirical findings in Table 3 and Fig. 3.

4.4. Results and Discussion

Results: In Table 3 we report the averaged results of this
test across these two sets of neurons for all different eval-
uation metrics. For simplicity, we say a metric passes if
its Decrease Acc > 90% for all tests. Failing methods are
marked in red color. Overall, our theoretical results closely
match our empirical observations. Based on test results, we
can group the metrics as follows:

• Fail Both: Accuracy and Spearman Correlation per-
form poorly in both tests as their score is largely de-
termined by the majority of inputs that neither activate
the neuron nor have the concept.

• Fail Missing Labels Test: Precision, Inverse Balanced
Accuracy, Inverse AUC and MAD are biased towards
too specific concepts.

• Fail Extra Labels Test: Recall, Balanced Accuracy,

AUC and Correlation(T&R) are biased towards con-
cepts that are too generic.

• Borderline: Our results are inconclusive for the fol-
lowing two metrics: WPMI which passes the tests on
certain hyperparameter choices but not on others, and
Inverse AUPRC fails the theoretical test only on per-
fectly balanced data but passes the empirical tests.

• Passing: F1-score, IoU, Correlation, Cosine similarity
and AUPRC perform well and pass the tests.

Importantly, we think any metric failing these tests should
not be relied on by itself, and encourage the use of pass-
ing metrics. We also perform an Ablation in Appendix
E.1 showing that our findings are not sensitive to specific
parameter choices of the test.

Concept Imbalance Explains Test Failures: In our theo-
retical experiments, we discover that the main reason for a
metric failing one of these tests is poor handling of concept
imbalance. Figure 3 shows an example of this phenomenon.
On balanced neurons/concepts that activate on more than
10% of the inputs, all metrics except for Recall pass the
Extra Labels Test (large |∆s|). However, on neurons that
activate less frequently, the failing metrics such as Accu-
racy and AUC can no longer distinguish between the perfect
concept and an overly generic concept, and the score dif-
ference approaches 0. Therefore, failing the Missing/Extra
Labels test can in most cases be attributed to the metrics
being unable to handle imbalanced data. In this light, our
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Figure 3. The effect of Concept/Neuron Activation frequency on
the score difference in Theoretical Extra Labels test. We can see
that all the metrics that fail the Extra Labels test approach 0 score
difference on neurons/concepts that rarely activate, i.e. where the
concept labels are imbalanced. The passing metrics maintain a
non-zero score difference regardless of how rare the concept is.

results align with previous statistical knowledge, and met-
rics such as Accuracy and AUC which are not great for
imbalanced datasets fail the tests, while metrics designed
for imbalanced data such as F1-score and AUPRC pass the
tests. Since real units in neural network often activate on a
wide range of frequencies, and are sometimes encouraged to
activate very rarely (i.e. Sparse Autoencoders), it is essential
to use evaluation metrics that can handle imbalanced data.

Top-and-random sampling: Following (Bills et al., 2023;
Bricken et al., 2023), we also tested a version of Correlation
and Spearman Correlation that uses top-and-random sam-
pling (T&R), where 50% of the evaluated samples are highly
activating inputs only and the remaining 50% sampled uni-
formly at random. For our T&R experiments we sampled
25 inputs from the top 0.2% highest activating inputs and
25 random inputs. While Correlation passes both tests with
uniform sampling, top-and-random sampling makes it fail
the extra labels test. This is not surprising, as greatly over-
sampling highly activating inputs makes the metric more
similar to Recall that only evaluates on highly activating
inputs. This also explains why (Huang et al., 2023) found
explanations from (Bills et al., 2023) with very high Corre-
lation(T&R) scores to have relatively low F1-scores.

ct from Generative models: We discover that evaluations
based on generating new inputs with generative models are
limited to running evaluations that fail the missing labels
test and are biased towards more specific concepts. This is
because ct based on generative model prompts is inherently
incomplete or missing labels, and as such should not be
solely relied on. See Appendix B.1 for further discussion
on this situation and potential remedies.

5. Meta Evaluation #2: Performance on
Neurons with Known Concepts

In this section we perform an additional comparison be-
tween evaluation metrics by empirically comparing how
well they perform on neurons where we know their ground
truth function, such as neurons in final (classification) layer
of a model.

5.1. Method: AUPRC between scores of correct and
incorrect explanations

The idea of this test is to directly measure how good specific
evaluation metrics are. To do this, we have a concept set C
that includes the correct explanation for each neuron k ∈ K,
as well as some incorrect explanations. K is the set of
neurons evaluated such as all neurons in a layer. We then
score all |K||C| (neuron, explanation) pairs and measure
whether the metric consistently assigns higher scores to
pairs with correct explanations over incorrect ones.

In particular, we measure the AUPRC (area under precision-
recall curve) since this is a very imbalanced task with
most (neuron, explanation) pairs being incorrect. Math-
ematically, we can write the predictions ŶM as: ŶM =
{sM (ak, ct) ∀ k ∈ K, t ∈ C}, while the labels Y are
Y = {1[t = t∗k]) ∀ k ∈ K, t ∈ C}, where t∗k is the
correct explanation for that neuron. Our meta-AUPRC eval-
uation can then be defined as:

meta-AUPRC(M) = AUPRC(ŶM , Y ) (13)

A metric reaches perfect meta-AUPRC of 1 if all correct
(neuron, explanation) pairs get a higher score than all incor-
rect pairs, while random guess performance is ∼ 0.

Experimental Setup. Similar to section 4, we ran these
test on 10 different setups, consisting of 5 separate models,
4 datasets, vision and language domains and both ground
truth labels and pseudo-labels as concept source for ct. See
Appendix F for detailed description of experimental setup
and details on individual models.

For all experiments we split a random 5% of the neurons
into validation set. For metrics that require hyperparameters
such as α, we use the hyperparameters that performed the
best in terms of Meta-AUPRC on the validation split for
each setting. We then report performance on the remaining
95% of neurons. In Table 4, we report the average scores
and average ranks (i.e. the best metric for each setup gets
1, the worst gets 17) of the metrics across the four setups
for both tasks. See Appendix F for detailed breakdown of
results.

We can see that in general the metrics that passed our tests in
Section 4 perform better than those that didn’t, with the top
performance going to Correlation, followed by Cosine simi-
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Avg. Avg.
Method AUPRC Rank
Recall 0.6722 11.30
Precision 0.8039 7.90
F1-score/IoU 0.8140 6.70
Accuracy 0.7215 10.80
Balanced Accuracy 0.7979 7.30
Inverse Balanced Acc. 0.8087 7.10
AUC 0.7652 11.00
Inverse AUC 0.7569 10.90
Correlation 0.8765 1.60
Correlation(T&R) 0.6606 10.70
Spearman Correlation 0.0853 16.20
Spearman Correlation(T&R) 0.3418 15.40
Cosine 0.8666 2.30
WPMI 0.7999 7.30
MAD 0.6952 8.80
AUPRC 0.8406 3.90
Inverse AUPRC 0.6904 9.30

Table 4. Comparison of different evaluation metrics on neurons
with known concepts, averaged across 8 settings. Lower rank
means better performance. Best performing metric in bold, and
second best underlined.

larity then AUPRC and F1-score/IoU. 3 Overall we notice
continuous metrics perform somewhat better than binary
ones. This is likely because binarizing neuron activations
loses valuable information, and it is hard to find one bina-
rization threshold α that works well for all neurons. Despite
good performance here, the Cosine metric is very sensitive
to the average activation of a neuron as we show in E.2,
which raises some concerns regarding relying on it.

6. Discussion
6.1. Relevance of our tests to Realistic Failure modes

While our sanity test definition in Section 4 is relatively
abstract, we think that most real world explanation failures
are closely connected to one of two failure modes, and that
these failure modes are directly captured by our tests:

• FM-A) Explanation too generic: This means the ex-
planation concept is a superset of the “true” neuron
concept, e.g. describing a neuron as “animals” when it
only activates on dogs. Our Extra Labels Test captures
whether a metric can detect this failure mode.

• FM-B) Explanation too specific: Explanation concept
is a subset of real neuron activations, i.e. describing
a neuron as “black cat” when it activates on all cats.
Our Missing Labels Test captures whether a metric can
detect this failure mode.

3Note we combined F1-score and IoU into same element in
this table as they always return the same ordering between pairs
leading to identical AUPRC, see Appendix A.4 for proof.

Since our idea of a “concept” is very general, it can include
any text-based description. This means a single concept
could be highly specific (e.g. “flying bird”), or a composi-
tion of simpler concepts (e.g. “water OR river”). Below we
show how common explanation failures relate to our tests.

• Polysemanticity: A popular model of polysemanticity
is to model neuron activations as an OR of different
concepts. If the explanation only captures one of these
concepts, this means the explanation is too specific
(FM-B).

• Context specific activations: A context specific neu-
ron activation such as flying bird means the neuron’s
“true” concept is a subset of the non-context specific
concept i.e. bird. If the explanation is not context-
specific, the explanation is too generic (FM-A).

• Non activating inputs still contain the concept: This
is a common explanation failure case also known as
spurious correlations, where all the highly activating
inputs share a concept, but not all inputs with this
concept make the neuron activate. This means that the
explanation concept is too generic i.e. a superset of the
“true” concept (FM-A).

Finally, in Appendix E.3 we conducted a test using real
semantic superclasses of the concept as c+ instead of our
random superset, and found that the results are essentially
identical, highlighting the relevance of our tests to real world
settings.

6.2. Conclusions

In this paper, we have created the NeuronEval framework for
unifying different evaluations under the same mathematical
formalism, clarifying the definitions of around evaluating
unit explanations. We have also proposed new sanity tests
which lead to our main finding: Neuron Explanation Eval-
uations should use metrics that pass the Missing and
Extra Labels Tests – We identified Correlation, Cosine,
AUPRC, F1-score and IoU as solid passing metrics in our
study of 18 different metrics. Popular evaluation metrics
used in the literature such as Recall and AUC as well as
using top-and-random sampling do not pass these tests, and
should not be relied on by themselves. With evaluation on
neurons with ground truth explanation available (e.g. final
layer neuron), we identified that the top-performing met-
rics overall are Correlation, Cosine and AUPRC. The final
choice of metric may be further affected by considerations
such as labeling cost discussed in B.2 or other failure modes
such as Cosine’s sensitivity to average activation showcased
in E.2.
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A. Metric Definition & Details
A.1. Binarization

Many popular metrics in the literature require inputs to be binary such as (Bau et al., 2017; Huang et al., 2023). Since
neuron activations and concept activations from some sources are continuous, we need to binarize these vectors. We denote
this with the binarization function B : Rn → {0, 1}n.

Typically for neuron activation ak, following previous work we use B = topα, where we take top α fraction of activations
to be 1, and others to be 0. We formalize this as topα(z):

[topα(z)]i =

{
1 if zi ≥ bα;

0 otherwise
(A.1)

where bα satisfies
∑n

i=1
1[zi≥bα]

n = α, and z ∈ Rn. For example, if α = 0.05, then topα has 1’s for inputs with activations
in top-5%, and 0 for others. Note α is a hyperparameter needed for all binary similarity functions. We typically select α
independently for each metric by finding the value that performs the best on a small validation split of neurons. For concept
vectors ct, we usually binarize simply by rounding, denoted as B = r, where:

[r(z)]i =

{
1 if zi ≥ 0.5

0 if zi < 0.5
(A.2)

A.2. Simulation vs Classification Framing

Simulation: In our definitions in section 3 we use the neuron activation ak as the ground truth, and concept presence ct as
our prediction. This corresponds to framing the evaluation as simulation, i.e. trying to predict neuron activation based on
concept value. Given this, we can express the Binary Classification Confusion Matrix elements (True Positive (TP), False
Positive (FP), False Negative (FN) and True Negative (TN)) in terms of the vectors ak and ct as:

TP = B(ak) ·B(ct), FP = B(ak) ·B(ct),

FN = B(ak) ·B(ct), TN = B(ak) ·B(ct),

where B(·) represents element-wise NOT operation on the binary vector (equivalent to 1−B(·) where 1 is a vector of all
1’s.)

This corresponds to seeing the explanation from a simulation point of view, i.e. our goal is to predict how the neuron
activates, based on the neuron’s explanation and current inputs. This gives us binary classification metric definitions that are
aligned with those of (Huang et al., 2023).

Classification: However this is an arbitrary choice, and we could just as well define ct as the ground truth and ak as the
prediction. This corresponds to a classification view, where our goal is to use neuron k as a classifier for concept t. In terms
of metrics, this doesn’t change the definitions for True Positive (TP) or True Negative (TN), but it switches the places of
False Positive and False Negative, i.e.

TPcls = B(ak) ·B(ct) = TPsim

FPcls = B(ak) ·B(ct) = FNsim

FNcls = B(ak) ·B(ct) = FPsim

TNcls = B(ak) ·B(ct) = TNsim

This change in framing also affects for metrics which are not symmetric in terms of False Positives and False Negatives. For
example, Recall(simulation) = Precision(classification), and Precision(simulation) = Recall(classification).

Recall(simulation) =
TPsim

TPsim + FNsim
=

TPcls

TPcls + FPcls
= Precision(classification)
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The other binary metric that is sensitive to this framing is balanced accuracy. The metric we call Balanced Accuracy in
Appendix A.3 corresponds to the simulation version of Balanced Accuracy, so for completeness sake we also include Inverse
Balanced Accuracy (Appendix A.3), which is the classification version.

Of the non-binary metrics, AUC and AUPRC are sensitive to this framing, and the standard versions AUC and AUPRC we
define in Appendix A.3 are AUC(simulation) and AUPRC(simulation), while we also include classification versions of these
metrics labeled as Inverse AUC/AUPRC.

We note that some related works use the simulation framing, while others such as (Zhou et al., 2015) use the classification
framing, which leads to conflicting definitions of Precision and other metrics.

A.3. Additional Metric Definitions

1. Accuracy: Standard binary accuracy. Percentage of time the neuron activation matches concept activation.

sAcc =
TP + TN

TP + FP + FN + TN
=

B(ak) ·B(ct) + (1−B(ak)) · (1−B(ct))

n
(A.3)

2. F1-score: F1-score is the harmonic mean of precision and recall, and can be expressed as:

sF1 =
2 ·B(ak) ·B(ct)

||B(ak)||1 + ||B(ct)||1
(A.4)

3. Balanced Accuracy: A version of accuracy designed for imbalanced datasets that averages the accuracy on positive
and negative inputs.

sBA =
B(ak) ·B(ct)

2||B(ak)||1
+

(1−B(ak)) · (1−B(ct))

2||(1−B(ak))||1
(A.5)

4. Inverse Balanced Accuracy: Balanced accuracy but we consider ak to be the prediction and ct to be the ground truth.

sIBA =
B(ak) ·B(ct)

2||B(ct)||1
+

(1−B(ak)) · (1−B(ct))

2||(1−B(ct))||1
(A.6)

5. AUC: Area under ROC curve also known as AUROC, can be efficiently calculated as:

sAUC =

∑
i|B(ak)i=0

∑
j|B(ak)j=1 1[cti < ctj ] + 0.5 · 1[cti = ctj ]

||B(ak)||1||1−B(ak)||1
(A.7)

6. Inverse AUC: Area under receiving-operating-characteristics(AUROC) curve, where we consider ak to be the predic-
tion and ct to be the ground truth(classification framing).

sIAUC =

∑
i|B(ct)i=0

∑
j|B(ct)j=1 1[aki < akj ] + 0.5 · 1[aki = akj ]

||B(ct)||1||1−B(ct)||1
(A.8)

7. Spearman Correlation: The Spearman correlation is equivalent to the Pearson Correlation between the ranks of
elements.

sSpear =
1

n

(R(ak)− µ(R(ak))) · (R(ct)− µ(R(ct)))

σ(R(ak))σ(R(ct))
(A.9)

Here R is a function that elementwise returns the ranks of each element.

8. Cosine similarity: The standard cosine similarity between two vectors.

scos =
ak · ct

||ak||2||ct||2
(A.10)
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9. WPMI: Weighted pointwise-mutual information. A version of this objective is used by (Hernandez et al., 2022) and
(Oikarinen & Weng, 2023) to generate explanations, and by (Oikarinen & Weng, 2023) to evaluate said explanations.

sWPMI =
∑

i|B(ak)i=1

[log(cti)− λ log(µ(ct))] (A.11)

In the above equations n is the length of ak and ct, µ calculates the mean of the vector and σ its standard deviation.
λ is a hyperparameter and R is the rank operator, which transforms each element to its rank, with smallest element
becoming 1 and largest n.

10. AUPRC: Area Under Precision-Recall Curve(AUPRC) is a popular metric for measuring classification performance, in
particular for imbalanced data. While we are not aware of a closed form solution, it can be calculated as:

(a) Calculate precision and recall at each threshold τi, where threshold contains distinct values of ct. Recall
Ri =

B(ak)1(ct≥τi)
∥B(ak)∥1

, precision Pi =
B(ak)1(ct≥τi)
∥1(ct≥τi)∥1

.

(b) Calculate area under precision-recall curve using numerical integral:

sAUPRC =
∑
n

(Ri −Ri−1)Pi

AUPRC outputs values in [0, 1] range.

11. Inverse AUPRC: Same as AUPRC, but with a differenct framing so we flip ct and ak in the calculations.

See Tables A.1 and A.2 for additional details on our metrics.

A.4. Equivalences

During our analysis we also notice that certain separate metrics are equivalent or very similar to each other.

Correlation and Cosine similarity: Calculating correlation between two vectors is equal to normalizing each vector to
have mean 0 and then taking their cosine similarity, as shown below:

Let x̂ = x− µ(x) for any vector x. Then

Cosine(âk, ĉt) =
âk · ĉt

||âk||2||ĉt||2
=

(ak − µ(ak)) · (ct − µ(ct))√
nσ(ak)

√
nσ(ct)

=

1

n

(ak − µ(ak)) · (ct − µ(ct))

σ(ak)σ(ct)
= Correlation(ak, ct) (A.12)

This explains why the two perform very similarly in our evaluations.

IoU and F1-score: Below we show that IoU and F1-score are very closely related. In fact, F1-score can be written as
a monotonously increasing function of IoU. This means that for any vectors x1, y1, x2, y2, IoU(x1, y1) < IoU(x2, y2) →
F1(x1, y1) < F1(x2, y2), so for the purposes of comparing similarites they behave identically, and the choice of which one
to use doesn’t matter. As their performance was exactly the same in all tasks, we report them in the same row in Table 4.

Intersection over Union (IoU) also known as Jaccard index is defined as

IoU =
TP

TP + FP + FN
(A.13)

while F1-score also known as Dice-score is defined as:

F1 =
2TP

2TP + FP + FN
(A.14)
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Now

F1 =
2TP

2TP + FP + FN
=

2TP

TP + FP + FN
· TP + FP + FN

2TP + FP + FN
(A.15)

= 2IoU ·
(
2TP + FP + FN

TP + FP + FN

)−1

=
2 · IoU

IoU + 1
(A.16)

Which is monotonously increasing for 0 ≤ IoU ≤ 1. So using either metric gives the same comparative results.

Metric Definition Range

Recall TP / (TP + FN) [0, 1]

Precision TP / (TP + FP) [0, 1]

F1-score 2TP / (2TP + FP + FN) [0, 1]

IoU TP / (TP + FP + FN) [0, 1]

Accuracy (TP + TN) / (TP + FP + TN + FN) [0, 1]

Balanced accuracy [TP / (TP + FN) + TN / (TN + FP)] / 2 [0, 1]

Inverse balanced accuracy (classification version
of balanced accuracy (see App. A.2)) [TP / (TP + FP) + TN / (TN + FN)] [0, 1]

Table A.1. Definition of commonly-used binary classification metrics. Here, TP, FP, TN, FN refer to true positive, false positive, true
negative and false negative, respectively.

Metric Definition Range

AUC (swap x and y
to get inverse AUC)

∑
yi=1

∑
yj=0[1{xi > xj}+ 0.5 ∗ 1{xi = xj}]

|y = 1||y = 0| [0, 1]

Correlation

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
[−1, 1]

Spearman correlation Replace x, y to corresponding rank R(x), R(y) in correlation [−1, 1]

Cosine

∑
xiyi

∥x∥2∥y∥2
[−1, 1]

WPMI log p(x | y)− λ log(p(x)) (−∞,∞)

MAD

∑
yi=1 xi

|yi = 1|
−

∑
yi=0 xi

|yi = 0| (−∞,∞)

Table A.2. Definition of other commonly-used metrics. Here, x, y ∈ RN are two real vectors, x̄, ȳ refer to the mean of x, y.
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B. Discussion
B.1. Generative Model based Evaluation and missing labels test

ct from Generative Models: Evaluation methods that use generative models to generate new data (Kopf et al., 2024;
Shaham et al., 2024; Singh et al., 2023) effectively define the concept vector [ct]i = 1 if xi was generated with prompt t,
and 0 otherwise. However, this concept vector is incomplete, as some of ”negative” examples that were not generated with
that prompt may still contain the concept. In effect, the concept vector ct is actually naturally missing labels similar to c−t
from our missing labels test. This is because the generated inputs serve as positive labels for ct, but the negative inputs are
often taken to just be all inputs from a dataset, even though some of actually do have the concept t. So the ct we get from
generative models is actually randomly missing a potentially large portion of the labels. Because of this, most evaluation
methods using generative ct in Table 1 use methods that fail the missing labels test such as Inverse AUC and MAD. In fact,
this is desirable with this concept source, as the missing labels in ct do not affect the explanation score with these metrics.
However, these metrics alone should not be relied for evaluation.

Potential Solutions and Future Directions: The best way to use generative models in evaluation might be to combine them
with another evaluation that doesn’t fail the missing labels test, as is done by (Huang et al., 2023) who measure Precision
using generated data, and measure Recall on existing data with model based pseudo-labels and combine these results into
F1-score. A useful evaluation in this vein could also be using a crowdsourced evaluation to measure Recall, and combining
that with generative model based evaluation of Precision. Another option would be to not use the ct derived from prompt
directly, but instead use another model to estimate ct on all inputs, not just generated ones which would avoid the missing
labels problem. Finally an interesting direction would be to look into combinations of other metrics, for example could AUC
and Inverse AUC be combined similarly to how Recall and Precision combine into F1-score. We explore these combination
metrics further in Appendix E.6.

B.2. Limitations

Framework Limitations:

Not every evaluation of neuron descriptions can fit into our framework. Below we split these into few separate cases and
discuss whether each case represents a limitation of the framework or not:

• Evaluating Multiple Inputs at once: Our evaluation framework assumes that the presence of a concept is estimated
separately for each input. Many human study based evaluations (e.g. (Bau et al., 2017), (Oikarinen & Weng, 2023))
instead evaluate a group of inputs at once, asking questions like ”How well does concept match this group of images?”.
However we believe this is simply a less precise/less objective way of asking whether the concept matches each input
separately and does not in general represent a significant limitation for the framework.

• Comparing similarity to ”correct” explanation: Another approach to evaluate neuron descriptions is to compare how
close they are to a ”correct” description, typically in a text-embedding space. For example, this is the main evaluation
used by MILAN (Hernandez et al., 2022), where they generate ”correct” explanation by asking Mechanical Turk
workers to describe neurons based on their most highly activating inputs. We do not think this a very reliable way to
evaluate explanations, because it relies on the assumption that there exists a single ”correct” text-based explanation for
each neuron (and that we have some way of finding it), and we do not think this is the case for many real neurons because
of issues like polysemanticity and non-verbal concepts like specific graphical patterns. For these hard-to-interpret
neurons it is better to just measure how well our explanation matches the neuron like the metrics in our framework do.

• Non-text based explanations: While we focus on text based concepts t in our paper, the framework works on
non-textual concepts just as well, as long as we have some way of generating a concept vector ct for that concept. For
example, the evaluation of (Zimmermann et al., 2023) uses a group of highly activating inputs as the concept, and then
asks workers whether a new input is similar to those inputs or not. Despite this difference, it can be described neatly
within our framework.

• Output Based Neuron Explanations:
For clarity, it is useful to divide the neural network f(x) into two parts, f0:l and f l+1:L, where 0 corresponds to the
input layer, f i:j represents the i through j’th layers of the neural network f(x), l is the layer of the neuron we are
interested in and L is the total number of layers in the network. Then:
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f(x) = f l+1:L(f0:l
k (x), f0:l

¬k(x)), (B.1)

where f0:l
k (x) is the activation of neuron of interest k in layer l, while f0:l

¬k(x) is the activations of all the other neurons
in layer l.

Alternatively to Input-based neuron explanations we define in section 2.3, a neuron explanation could instead be
Output-based, that is an interpretable approximation of the following function:

– Unit Activation → Output: z → f l+1:L(z, f0:l
¬k(x))

Where z is a real number (e.g. intervened value). This function describes how changes in the unit activation change the
final network output, as has been the focus of a few recent papers on neuron explanations (Gandelsman et al., 2024;
Gur-Arieh et al., 2025).

As we can see from the above notations, output and input-based explanations are different problems, and may require
different methods to solve and evaluate. In our paper, we focus on evaluating explanations of Input-based, i.e. the
function x → f0:l

k (x), as this is more common in existing evaluations and can be applied more generally, for example
to explain linear combinations of neurons that don’t have a direct effect on the output such as TCAV (Kim et al., 2018)
vectors. While evaluating Output-based explanations is also important, this may require different methods and is
outside the scope of our current work.

This may be the most significant limitations of our framework, as we believe measuring Output based explanations
is equally important, and an ideal neuron explanation should describe both functions(potentially with different
explanations). However, improving the evaluation of Input-based explanations is already a significant contribution
towards better evaluation practices. In addition, while currently our framework is meant for Input based evaluation only,
we believe many of the ideas and metrics we discussed could be useful in evaluating output based explanations. For
example, in a generative models we could use the same metrics to measure similarity between unit activation and the
presence of a specific concept in the output. However in output-based evaluations there are additional considerations
such as measuring difference in outputs when changing the unit activation that may be more important. We believe
extending this framework or creating a similar one for output-based evaluations is an important direction for future
work.

Experimental Result Limitations:

Overall we are quite confident in the generality of our results on the missing/extra labels test (Table 3) as they are consistent
across final/hidden layer neurons and different datasets, and we showed theoretically that they are caused by poor metric
performance on imbalanced data. Importantly, this theoretical result is independent of the data domain, type of concepts or
the type of unit in question.

However, it is good to note that passing these sanity checks does not guarantee that the metric is a good metric, but failing
them does indicate a metric should not be relied on. This is similar to sanity checks proposed by (Adebayo et al., 2018),
which have been quite influential in the field of saliency maps/input importance estimation.

On the other hand, our comparison results in Table 4 are mostly focused on final layer neurons or other units where we have
ground truth available such a concept neurons inside a CBM. While they consistently prefer certain metrics, it is possible
that these final layer neurons are systematically different from other units we are interested in such as hidden layer neurons,
and these results should not be relied on too strongly.

Labeling Cost:

One of the main reasons existing crowd-sourced evaluations only measure Recall is it’s lower evaluation cost, as we only
need to only evaluate ct on highly activating inputs, i.e. where B(ak) = 1, because the values of ct on other inputs do
not affect the score. In contrast, evaluating most other metrics requires knowledge of the full ct. Similar cost issues are
also faced when using an expensive LLM based simulation pipeline to predict ct as done by (Bills et al., 2023), causing
evaluation metrics to often be evaluated on a small subset instead.

Crowd-sourced evaluation of the entire ct will likely give noisy results as most inputs do not contain the concept. To avoid
this, another approach is to oversample highly activating inputs similarly to Top-and-random sampling, though more effective
sampling strategies likely exist. This can be done without failing the extra labels test if the proper sampling correction
is applied to correct for the bias introduced by the non-uniform sampling. As our paper is focused on the correctness of
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different metrics, not the ease of measuring them, and the effective sampling/user study design for non-recall metrics is a
rather large and complex topic that does not fit within the scope of the current paper, but it is a promising direction for future
work.

An alternative way to reduce labeling costs is to use a combination of metrics, for example evaluating F1-score by combining
a crowd-sourced evaluation of Recall with a generative model based evaluation of Precision.

B.3. Motivating Example for Sanity Checks

Here, we illustrate the motivating example discussed in Section 4.1 in the following Figure. Figure B.1 displays an example
neuron that only activates on images containing pets to highlight how similarity scores are calculated. We can see that only
measuring Recall gives a perfect score to explanations that are too generic (animal), while only measuring precision favors
explanations that are too specific(dog, cat).

Figure B.1. A hypothetical neuron that only activates on pets (dogs or cats). When comparing different evaluation metrics, we can see
recall cannot distinguish between the correct concept (Pet) and a concept that is too generic (Animal), while precision favors concepts that
are too specific (Dog, Cat). IoU can unambiguously determine the correct concept.

20



Evaluating Neuron Explanations: A Unified Framework with Sanity Checks

B.4. Additional Related Works

Evaluation of individual neuron explanations. Table B.1 shows an expanded version of our comparison table (Table 1
in the main text section 4) of existing evaluation methods. It can be seen in Table B.1 that prior work (Bau et al., 2017;
Oikarinen & Weng, 2023; Oikarinen et al., 2023; Bai et al., 2025; Huang et al., 2023; Gurnee et al., 2023; Mu & Andreas,
2020; La Rosa et al., 2024; Koh et al., 2020; Zimmermann et al., 2023; Bykov et al., 2023; Kopf et al., 2024; Bills et al.,
2023; Oikarinen & Weng, 2024; Bricken et al., 2023; Templeton et al., 2024; Oikarinen et al., 2023; Oikarinen & Weng,
2023; Shaham et al., 2024; Singh et al., 2023) only use 1-2 metrics for evaluation and typically did not discuss or justify
why the metric should be used. Among all the prior work in Table B.1, we believe that the most similar work to ours is
(Huang et al., 2023), which has focused on evaluating individual neuron explanations in language models. In particular, they
discover a discrepancy between the evaluation metrics, i.e. neurons with very high Correlation(top-and-random) score can
still have relatively low F1-scores. However, different from our work their scope is much more specific and they do not
provide analysis comparing different evaluation metrics or justification on why they use F1-score specifically. Their findings
are in line with ours, as we found that Correlation(top-and-random) fails the extra labels test, while F1-score passes our
sanity checks.

Overall we find many evaluations in previous works to be lacking, either due to using poor metrics that fail our sanity
checks, or using very small sample sizes. In addition, some popular methods like TCAV (Kim et al., 2018) completely
lack evaluation of whether the concept directions they learn are good. To our best knowledge, no human-study has been
conducted using metrics that pass our sanity checks, instead most existing human-studies only measure Recall or a similar
metric, and running such a study would be valuable for better understanding of unit interpreability and/or explanation
methods.

Known Concept Evaluation: Similar to our experiments in Section 5, many previous works such as (Oikarinen & Weng,
2023; Schwettmann et al., 2023; Moakhar et al., 2024; Shaham et al., 2024) have utilized neurons or units with known
concepts to evaluate explanation quality. However, these papers typically focus on evaluating explanation methods or
individual explanations, while our focus is on meta-evaluation to understand which metrics are best to use for evaluation,
meaning our methods and motivations for the evaluation are noticeably different from these previous works.

Interpretability Illusions: (Bolukbasi et al., 2021) discovered an interpretability illusion for BERT-models, which shows
that neurons that look interpretable when only looking at their most highly activating inputs on one probing dataset D, seem
to be doing something completely different when analyzed on another dataset. This highlights the importance of good
choice of probing dataset, or confirming explanations on multiple datasets. However, we believe there is another reason for
these illusions, namely that the authors only look at highly activating inputs (equivalent to Recall in our framework), which
is not a reliable metric. Overall, our goal is to reduce such interpretability illusions, i.e. the appearance of interpretability
when something is really not interpretable, by encouraging more rigorous evaluation.

Sanity Checks. The sanity checks proposed in this paper (Missing and Extra Labels test) are inspired by the sanity checks
(Adebayo et al., 2018) proposed for saliency maps, which has had a large impact in guiding that field towards more faithful
explanations. However the topic is very different, since (Adebayo et al., 2018) focus on local input-importance instead
of global neuron explanations in our paper. Similarly, the specific tests proposed by (Adebayo et al., 2018) are also very
different from ours.

Concept extraction. Extracting interpretable concepts from a learned representation is a common challenge and relevant
for finding individual units to evaluate in our framework. This can either be supervised as proposed by (Kim et al., 2018)
where the concepts are specified by human and labels are provided. This approach is also used by linear probing based
work such as (Gurnee et al., 2023). Later, a series of works(Ghorbani et al., 2019; Zhang et al., 2021; Fel et al., 2023) was
proposed to automatically extract concepts from model activations, without human supervision, i.e. unsupervised. (Fel et al.,
2024) claimed that concept extraction could be regarded as a dictionary learning problem. Recently Sparse Autoencoders
(Cunningham et al., 2023; Templeton et al., 2024) have also gained popularity as an unsupervised concept extraction method.
Note that most unsupervised concept extraction methods are discovering ”units” defined in our work that are not directly
understandable to humans, and require an explanation method to provide human-understandable explanations. Our work
focuses on the evaluation of the explanations of those concepts.
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Metric M Study Concept
Source ct

Granularity Probing
Dataset D Domain Target

Recall Human Eval (Zhou et al., 2015) Crowdsourced ∼ Whole Input Specific eval
dataset Vision Neurons

∼Recall Human Eval (Bau et al., 2017) Crowdsourced ∼Whole Input Specific eval
dataset Vision Neurons

∼Recall Human Eval (Oikarinen & Weng, 2023)
(Bai et al., 2025; Srinivas et al., 2025) Crowdsourced Whole Input Validation data Vision Neurons

∼Recall Human Eval (Oikarinen et al., 2023) Crowdsourced Whole Input Validation Data Vision CBM neurons

Precision Automated Eval (Srinivas et al., 2025) Generative Whole Input Generated+
Validation data Vision Neurons

F1-score Observation based
(Huang et al., 2023)

Generative
+ model Whole Input Generated +

Training data Language Neurons

F1-score Sparse probes (Gurnee et al., 2023) Labeled data Per-token Specific eval
dataset Language Linear comb.

of neurons
F1-score CBM - Concept Error (Fig. 2)

(Koh et al., 2020) Labeled data Whole Input Validation Data Vision CBM neurons

IoU Broden IoU (Bau et al., 2017)
(Mu & Andreas, 2020; La Rosa et al., 2024) Labeled data Per-pixel Specific eval

dataset Vision Neurons

Accuracy CBM - Concept Error (Koh et al., 2020) Labeled data Whole Input Validation Data Vision CBM neurons

∼AUC Comparative Human Study
(Zimmermann et al., 2023) Crowdsourced Whole Input Training data Vision Neurons

Inverse AUC INVERT (Bykov et al., 2023) Labeled data Whole Input Validation data Vision Neurons
Inverse AUC CoSy AUC (Kopf et al., 2024) Generative Whole Input Generated+

Validation data Vision Neurons

Correlation(T&R) Simulation - Correlation Score
(Bills et al., 2023) Model Per-token Training data Language Neurons

Correlation Simulation - Correlation Score
(Oikarinen & Weng, 2024) Model Whole Input Validation data Vision Neurons

Correlation CBM - Concept Error (Fig. 2)
(Koh et al., 2020) Labeled data Whole Input Validation Data Vision CBM neurons

Spearman
Correlation(T&R)

SAE Auto Interp
(Bricken et al., 2023; Templeton et al., 2024) Model Per-token Training data Language SAE features

∼WPMI CLIP-Dissect - Similarity
(Oikarinen & Weng, 2023) Model Whole Input Validation data Vision Neurons

MAD CoSy MAD (Kopf et al., 2024) Generative Whole Input Generated+
Validation data Vision Neurons

∼MAD MAIA (Shaham et al., 2024) Generative Whole Input Generated Vision Neurons
∼MAD Explanation Score (Singh et al., 2023) Generative Whole Input Generated Language Transformer

factors

Table B.1. Extended Table (of Table 1 in the main text section 4) comparing related work. Note (Zhou et al., 2015) call their evaluation
Precision, as they use the classification framing. This is equivalent to Recall in our framing as shown in Section A.2.

Human-centered evaluation on concept-based models. Human-centered evaluation of model explanation(Kim et al.,
2024; Boyd-Graber et al., 2022) has drawn attention from the XAI community. Recently, (Kazmierczak et al., 2024)
collected human evaluation of XAI explanations as a benchmark for explanation methods. These works provide important
techniques and inspiration for evaluating explainability, but almost all existing work is focus on local feature importance
explanations, which is very different from our work on global neuron-level explanations.

Evaluation Metrics for Input-Improtance Explanations The field of input-importance explanations has seen an evolution
in the evaluation metrics used, with initial focus on finding the features that humans think are important. Later metrics such
as deletion and insertion proposed by (Petsiuk et al., 2018) allow for more principled evaluation of the explanation fidelity,
i.e. whether it actually matches what the model in vision models, and (Fel et al., 2021) extends the deletion metric to natural
language settings. (Hooker et al., 2019) proposes the Remove And Retrain (ROAR) framework as an alternative method
for evaluating the quality of input-importance explanations by evaluating whether a model retrained on data without the
most important pixels can still solve the task. (Bhatt et al., 2020) propose additional checks, such as measuring whether an
explanation method has high sensitivity, with the intuition that similar inputs should have similar explanations. While this
line of work focuses on a different topic (local input importance explanations) instead of global neuron-level explanations,
and mostly proposes new metrics without significant meta-evaluation, it highlights the importance of good evaluation
mnetrics in explainable AI.
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C. Theoretical Missing/Extra Labels Test and Concept Imbalance
In this section we analyze the effects of missing/extra labels test on a simpler toy setting, where neuron k’s activations
ak perfectly match the concept labels of concept tk, i.e. ak = ctk . In this setting, we assume binary neuron and concept
activations, i.e. the neuron’s activation is 1 if concept is present on the input, and 0 if its not. Consequently, we do not need
to perform additional binarization of concept activations with top α like we did in previous sections.

In this simplified setting, our missing and extra labels tests correspond to being able to differentiate between three concepts
as defined in section 4:

1. ctk : The perfect predictor for neuron ak, with precision=1 and recall=1.

2. c−tk : (Missing labels) This concept has Precision=1 since whenever a concept is present, the neuron is also active, and
Recall of 0.5 since only half to inputs where the neuron activate now have the concept.

3. c+tk : (Extra labels) Inverse from above, this concept has Precision=0.5 and Recall=1.

We then measure the average score difference ∆s across neurons:

• Missing labels test: ∆s(k) = Ec−tk
[sM (ak, c

−
tk
)− sM (ak, ctk)]

• Extra labels test: ∆s(k) = Ec+tk
[sM (ak, c

+
tk
)− sM (ak, ctk)]

A good metric should be able to reliably differentiate between these concepts. Interestingly we find that the ability of most
metrics to differentiate greatly depends on whether the data is balanced or not.

Since the neuron activations perfectly align with concept t and are binary, the only parameter that can effect the results of
our missing and extra labels test is the activation frequency of concept t, i.e. what fraction of inputs x ∈ D contain concept t.
Following the notation in section D, we denote this fraction as γ. Note technically it should be γ + η, but η = 0 in this case
with perfect match between concept and neuron. We then test whether a metric passes the test on different values of γ, using
simulated data on tables C.3 and C.4. Each number is the average result from 1000 evaluations with 500,000 datapoints
each. In addition, in Section D, we derived a closed form solution to the binary metrics under missing or extra labels as
a function of γ and other parameters. This simplifies nicely when we consider an ideal neuron with ak = ct, and we can
derive the expected result of missing/extra labels test as a simple function of γ alone in Table D.2. These theoretical results
perfectly agree with our simulated results.

C.1. Results

In Tables C.1 and C.2 we report the Decrease Acc defined in Equation 11 on different activation frequencies γ in our
simulated neuron. We say a metric as passing the Theoretical test if it has Decrease Acc > 90% on every frequency. In
tables C.3 and C.4 (visualized in Fig. 3) we report the average ∆s on the same set of different activation sparsities. We have
highlighted metrics with ∆s > −0.01 in red to highlight metrics approaching 0 difference.

We can see most metrics (expect from recall and precision) perform well on balanced data (γ = 0.499 and γ = 0.1).
However, their performance often starts to drop with score difference ∆s approaching 0 as the data becomes more and
more unbalanced. We can see that practically all the metrics that failed our experimental missing/extra labels tests cannot
differentiate between perfect and modified concept specifically on imbalanced data, highlighting that likely the root cause
of the failure on these test is that the metrics performs poorly on imbalanced data. This is also aligned with conventional
knowledge that metrics such as accuracy and AUC are a poor choice to rely on when your data is heavily imbalanced. On
the other hand, metrics that passed the tests are insensitive to activation frequency γ and converge to a nonzero constant as γ
decreases.

The results in terms of passing are almost identical to our experimental results in section 4. The only differences were
WPMI which passes the theoretical extra labels test but fails the experimental one. We believe this has to do with
hyperparameter(α, λ) choices and that WPMI can in principle pass the test but with poor hyperparameters(small λ) it
will not, leading us to overall recommend against using it in practice as hyperparameter choice is challenging in the real
world. An interesting case is Inverse AUPRC. This metric is designed for imbalanced data and works well in that domain,
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but actually performs worse when the data is balanced. In particular Inverse AUPRC fails the test when data is perfectly
balanced. This indicates caution should be used if relying on it, in case you have some neurons with extremely common
concepts.

We argue that being able to pass these tests regardless of activation frequency is important for any evaluation metric to
be used, as we typically do not know what frequency each neuron will have in advance, in many cases the interesting
neurons/concept might activate very sparsely, for example in Sparse Autoencoders.

Theoretical Missing Labels Test, Decrease Acc

Activation Frequency γ: 0.499 0.1 0.01 0.001 0.0001 Pass

Recall 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Precision 0.00% 0.00% 0.00% 0.00% 0.00% ×
F1-score 100.00% 100.00% 100.00% 100.00% 100.00% ✓
IoU 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Accuracy 100.00% 100.00% 100.00% 0.00% 0.00% ×
Balanced Acc. 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Inverse Balanced Acc. 100.00% 100.00% 100.00% 0.00% 0.00% ×
AUC 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Inverse AUC 100.00% 100.00% 100.00% 0.00% 0.00% ×
Correlation 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Correlation(T&R) 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Spearman Correlation 100.00% 100.00% 100.00% 22.70% 13.30% ×
Spearman Correlation(T&R) 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Cosine 100.00% 100.00% 100.00% 100.00% 100.00% ✓
WPMI 100.00% 100.00% 100.00% 100.00% 100.00% ✓
MAD 100.00% 100.00% 100.00% 0.00% 0.00% ×
AUPRC 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Inverse AUPRC 100.00% 100.00% 100.00% 100.00% 100.00% ✓

Table C.1. Average Decrease Accuracy on Theoretical Missing labels Test. A metric fails if it has low decrease accuracy on any concept
frequency γ.
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Theoretical Extra Labels Test, Decrease Acc

Activation Frequency γ: 0.499 0.1 0.01 0.001 0.0001 Pass

Recall 0.00% 0.00% 0.00% 0.00% 0.00% ×
Precision 100.00% 100.00% 100.00% 100.00% 100.00% ✓
F1-score 100.00% 100.00% 100.00% 100.00% 100.00% ✓
IoU 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Accuracy 100.00% 100.00% 100.00% 48.40% 0.00% ×
Balanced Acc. 100.00% 100.00% 100.00% 0.00% 0.00% ×
Inverse Balanced Acc. 100.00% 100.00% 100.00% 100.00% 100.00% ✓

AUC 100.00% 100.00% 100.00% 0.00% 0.00% ×
Inverse AUC 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Correlation 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Correlation(T&R) 100.00% 92.80% 22.60% 2.70% 0.10% ×
Spearman Correlation 100.00% 100.00% 5.60% 3.20% 11.60% ×
Spearman Correlation(T&R) 0.20% 8.60% 20.60% 63.70% 5.30% ×
Cosine 100.00% 100.00% 100.00% 100.00% 100.00% ✓
WPMI 100.00% 100.00% 100.00% 100.00% 100.00% ✓
MAD 100.00% 100.00% 100.00% 100.00% 100.00% ✓
AUPRC 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Inverse AUPRC 47.70% 100.00% 100.00% 100.00% 100.00% ×

Table C.2. Average Decrease Accuracy on Theoretical Extra labels Test. A metric fails if it has low decrease accuracy on any concept
frequency γ.

Theoretical Missing Labels Test, Average ∆s

Activation Frequency γ: 0.499 0.1 0.01 0.001 0.0001 limγ→0

Recall -0.5000 -0.4999 -0.5002 -0.5007 -0.5025 -0.5000
Precision 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
F1-score -0.3334 -0.3333 -0.3335 -0.3341 -0.3352 -0.3333
IoU -0.5000 -0.5002 -0.4998 -0.5005 -0.5032 -0.5000
Accuracy -0.2495 -0.0500 -0.0050 -0.0005 0.0000 0.0000
Balanced Acc. -0.2500 -0.2500 -0.2501 -0.2500 -0.2500 -0.2500
Inverse Balanced Acc. -0.1662 -0.0263 -0.0025 -0.0002 0.0000 0.0000

AUC -0.2500 -0.2500 -0.2500 -0.2493 -0.2508 -
Inverse AUC -0.1662 -0.0263 -0.0025 -0.0003 0.0000 -
Correlation -0.2111 -0.1559 -0.1474 -0.1466 -0.1479 -
Correlation(T&R) -0.4965 -0.4894 -0.4649 -0.3928 -0.2449 -
Spearman Correlation -0.2000 -0.0686 -0.0079 -0.0006 -0.0018 -
Spearman Correlation(T&R) -0.1005 -0.1009 -0.1066 -0.0902 -0.2006 -
Cosine -0.1464 -0.1465 -0.1465 -0.1464 -0.1474 -
WPMI -0.3590 -0.3591 -0.3589 -0.3587 -0.3602 -
MAD -0.2210 -0.0350 -0.0033 -0.0003 0.0000 -
AUPRC -0.2505 -0.4499 -0.4953 -0.5003 -0.4964 -
Inverse AUPRC -0.5000 -0.4999 -0.5002 -0.4988 -0.4996 -

Table C.3. Simulation results missing labels test on idealized neuron with perfect correspondence to a concept activation. We can see most
metrics pass when the data is relatively balanced, but several start to struggle on inbalanced data (low γ). In contrast, passing metrics
maintain a clearly nonzero ∆s regardless of activation frequency. The limγ→0 column is analytical solution from D.2.
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Theoretical Extra Labels Test, Average ∆s

Activation Frequency γ: 0.499 0.1 0.01 0.001 0.0001 limγ→0

Recall 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Precision -0.5000 -0.5001 -0.4999 -0.4993 -0.4963 -0.5000
F1-score -0.3333 -0.3334 -0.3334 -0.3336 -0.3333 -0.3333
IoU -0.5000 -0.5000 -0.5001 -0.4997 -0.4970 -0.5000
Accuracy -0.4990 -0.1000 -0.0100 -0.0010 -0.0001 0.0000
Balanced Acc. -0.4980 -0.0556 -0.0051 -0.0005 0.0000 0.0000
Inverse Balanced Acc. -0.2500 -0.2500 -0.2500 -0.2500 -0.2483 -0.2500

AUC -0.7562 -0.0844 -0.0077 -0.0008 -0.0001 -
Inverse AUC -0.2500 -0.2500 -0.2501 -0.2500 -0.2491 -
Correlation -0.4777 -0.1667 -0.1483 -0.1465 -0.1461 -
Correlation(T&R) -0.4929 -0.0293 -0.0027 -0.0002 0.0000 -
Spearman Correlation -0.5672 -0.0238 -0.0007 -0.0002 -0.0018 -
Spearman Correlation(T&R) 0.0002 0.0000 -0.0036 0.0307 -0.0064 -
Cosine -0.1464 -0.1464 -0.1463 -0.1464 0.1456 -
WPMI -0.0292 -0.0292 -0.0292 -0.0293 -0.0292 -
MAD -0.3324 -0.3324 -0.3324 -0.3321 -0.3298 -
AUPRC -0.5000 -0.5000 -0.4999 -0.4998 -0.4974 -
Inverse AUPRC -0.0010 -0.4000 -0.4899 -0.4984 -0.4957 -

Table C.4. Simulation results extra labels test on idealized neuron with perfect correspondence to a concept activation. We can see most
metrics pass when the data is relatively balanced, but several start to struggle on inbalanced data (low γ). In contrast, passing metrics
maintain a clearly nonzero ∆s regardless of activation frequency. The limγ→0 column is analytical solution from D.2.
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D. Analytical solution for Missing/Extra Labels Test
In this section, we provide a theoratical analysis for missing label and extra label test for binary classification metrics. For
simplicity of symbols, in this section we analyze the population statistics. Suppose we have following confusion matrix:

c=1 c=0
a=1 γ b
a=0 η d

Here, we use a to denote neuron activation and c to denote concept activation. In missing labels test, consider a general case
where we randomly flip c = 1 into c = 0 with probability p. Thus, the resulting confusion matrix is:

c=1 c=0
a=1 (1− p)γ b+ pγ
a=0 (1− p)η d+ pη

In extra labels test, similarly, we turn c = 0 into c = 1 with probability q = p(γ+η)
b+d , the resulting confusion matrix is

c=1 c=0
a=1 γ + qb (1− q)b
a=0 η + qd (1− q)d

With these, we could plug in corresponding TP/FP/TN/FN into metrics to calculate metric value in these two tests.

1. Recall:

sM (ak, ct) =
B(ak) ·B(ct)

||B(ak)||1
=

γ

b+ γ
. (D.1)

In extra label test:

sM (ak, c
+
t ) =

γ + qb

b+ γ
≥ sM (ak, ct). (D.2)

In missing label test:

sM (ak, c
−
t ) =

γ − pγ

b+ γ
≤ sM (ak, ct). (D.3)

From the derivation above, we could see that increasing labels only raises recall metric while reducing labels always
leads to a drop in recall as we found in our experiments.

2. Precision:

sM (ak, ct) =
B(ak) ·B(ct)

||B(ct)||1
=

γ

γ + η
(D.4)

In extra label test:

sM (ak, c
+
t ) =

γ + qb

γ + qb+ η + qd
. (D.5)

Precision will increase if b
b+d > γ

γ+η .

In missing label test:

sM (ak, c
−
t ) =

(1− p)γ

(1− p)γ + (1− p)η
= sM (ak, ct). (D.6)

Thus, the precision does not change in the missing labels test.
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3. F1-score:
sM (ak, ct) =

2γ

2γ + η + b
(D.7)

In extra label test:

sM (ak, c
+
t ) =

2γ + 2qb

2γ + qb+ η + qd+ b
. (D.8)

F1-score increases if 2b
b+d > 2γ

2γ+η+b .

In missing label test:

sM (ak, c
−
t ) =

2(1− p)γ

2(1− p)γ + (1− p)η + b+ pγ
=

2γ − 2pγ

2γ + (1− p)η + b− pγ
. (D.9)

F1-score decreases in missing label test.

4. IoU:
sM (ak, ct) =

B(ak) ·B(ct)

||B(ak)||1 + ||B(ct)||1 −B(ak) ·B(ct)
=

γ

γ + η + b
. (D.10)

In extra label test:

sM (ak, c
+
t ) =

γ + qb

γ + η + qd+ b
. (D.11)

IoU increases if b
d > γ

γ+η+b .

In missing label test:

sM (ak, c
−
t ) =

(1− p)γ

(1− p)γ + (1− p)η + b+ pγ
=

γ − pγ

γ + (1− p)η + b
. (D.12)

Thus, IoU decreases in missing label test.

5. Accuracy:

sM (ak, ct) =
B(ak) ·B(ct) + (1−B(ak)) · (1−B(ct))

n
= γ + d. (D.13)

In extra label test:
sM (ak, c

+
t ) = γ + qb+ d− qd. (D.14)

accuracy increases if b > d.

In missing label test:
sM (ak, c

−
t ) = γ − pγ + d+ pη. (D.15)

Accuracy increases if η > γ.

6. Balanced Accuracy:

sM (ak, ct) =
B(ak) ·B(ct)

2||B(ak)||1
+

(1−B(ak)) · (1−B(ct))

2||(1−B(ak))||1
=

γ

2γ + 2b
+

d

2η + 2d
. (D.16)

In extra label test:

sM (ak, c
+
t ) =

γ + qb

2γ + 2b
+

d− qd

2η + 2d
. (D.17)

balanced accuracy increases if b
2γ+2b > d

2η+2d .

In missing label test:

sM (ak, c
−
t ) =

γ − pγ

2γ + 2b
+

d+ pη

2η + 2d
. (D.18)

balanced accuracy increases if γ
2γ+2b < η

2η+2d .
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7. Inverse Balanced Accuracy:

sM (ak, ct) =
B(ak) ·B(ct)

2||B(ct)||1
+

(1−B(ak)) · (1−B(ct))

2||(1−B(ct))||1
=

γ

2γ + 2η
+

d

2b+ 2d
. (D.19)

In extra label test:
sM (ak, c

+
t ) =

γ + qb

2γ + 2η + 2qb+ 2qd
+

d− qd

2b+ 2d− 2qd− 2qb
. (D.20)

In missing label test:

sM (ak, c
−
t ) =

γ − pγ

2γ + 2η − 2pγ − 2pη
+

d+ pη

2b+ 2d+ 2pγ + 2pη
. (D.21)

Metric Missing label: sM (ak, c
−
t ) Extra label: sM (ak, c

+
t )

Recall 1− p 1
Precision 1 1

1+p

F1-score 2−2p
2−p

2
2+p

IoU 1− p 1
1+p

Accuracy 1− pγ 1− γp
Balanced Accuracy 1− p

2 1− pγ
2(1−γ)

Inverse Balanced Accuracy (1−γ)
2(1−γ)+2pγ + 1

2
2+p

2(1+p)

Table D.1. The evaluation scores for different metrics under missing and extra label tests on an ideal neuron whose activations perfectly
match the presence of our concept.

D.1. Special case - Theoretical Test

In this section, we consider a special case where the neuron activations perfectly match the concept, i.e. c ≡ a. In this case,
we have η = b = 0, d = 1− γ. Plugging in those variables, we get the equations for metric scores under sanity test settings
in Table D.1. Further simplifying this by plugging in the p values we typically use we get the simple form for score diff in
Table D.2.

Missing labels test(p = 0.5): Extra labels test(p = 1):
Metric sM (ak, c

−
t )− sM (ak, ct) sM (ak, c

+
t )− sM (ak, ct)

Recall −0.5 0
Precision 0 −0.5
F1-score − 1

3 − 1
3

IoU −0.5 −0.5
Accuracy −γ

2 −γ
Balanced Accuracy −0.25 − γ

2(1−γ)

Inverse Balanced Accuracy − γ
2(2−γ) −0.25

Table D.2. Further simplifying from Table D.1 by plugging in p values we typically use in our tests, and sM (ak, ct) = 1, we can calculate
the theoretical score diff after running our tests for different binary metrics on ideal neurons.
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E. Ablations and Extra checks
E.1. Increase/decrease Fraction in Missing/Extra labels test

In our standard missing labels we reduce the fraction of positive labels by half, i.e.

r− =
||c−t ||1
||ct||

= 0.5

r+ =
||c+t ||1
||ct||1

= 2

In this section we run an ablation on the importance of these specific values by running the test on two other combinations
of values: r− = 0.75 and r+ = 1.33 (smaller change) and r− = 0.33 and r+ = 3 (larger change). We report the results
on final layer neurons (including superclasses) of ViT-B-16 (trained on ImageNet) in Table E.1. We used ground turth ct.
Overall we can see that these parameters do not impact our qualitative observations, i.e. which metric passes vs which
doesn’t. While larger changes to r typically increases Decrease Acc, it doesn’t affect which metrics approach zero score diff
vs which do not, which is what we’re mostly interested in. Overall this shows our sanity test is not sensitive to the specific
parameter choice but instead reflects overall trends of the metric.

Missing Labels Test Extra Labels Test

r− = 0.33 r− = 0.5 r− = 0.75 r+ = 1.33 r+ = 2.0 r+ = 3.0

Recall 99.55% 95.94% 75.34% 0.00% 0.00% 0.00%
Precision 48.20% 46.09% 49.62% 99.32% 99.62% 99.62%
F1-score 97.07% 95.64% 92.78% 99.62% 99.70% 99.70%
IoU 96.84% 95.34% 92.41% 99.32% 99.62% 99.62%
Accuracy 0.00% 0.00% 0.00% 16.24% 63.08% 99.92%
Balanced Acc. 99.47% 95.86% 75.19% 9.17% 23.98% 63.61%
Inverse Balanced Acc. 48.05% 45.56% 48.35% 99.17% 99.62% 99.92%

AUC 98.65% 95.34% 76.32% 16.99% 30.23% 59.32%
Inverse AUC 24.51% 21.35% 16.47% 99.92% 99.92% 99.92%
Correlation 99.92% 99.92% 99.77% 99.92% 99.92% 99.92%
Correlation(T&R) 99.40% 98.12% 90.68% 43.76% 44.96% 48.12%
Spearman Correlation 57.29% 53.91% 46.92% 37.07% 38.05% 37.67%
Spearman Correlation(T&R) 97.14% 93.61% 82.63% 49.92% 50.75% 52.26%
Cosine 100.00% 100.00% 99.85% 99.85% 99.85% 99.85%
WPMI 99.55% 95.94% 75.34% 99.77% 99.70% 99.77%
MAD 50.83% 49.47% 49.02% 99.70% 99.70% 99.70%
AUPRC 99.47% 99.25% 98.27% 99.32% 99.62% 99.62%
Inverse AUPRC 100.00% 100.00% 99.85% 99.70% 99.62% 99.32%

Table E.1. Ablation study on sanity checks varying the magnitude of change in labels. We can see overall our results are consistent and
not heavily dependent on the choice of r
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E.2. Failure case of cosine: Adding a constant activation

In this section we discuss a failure case of cosine similarity as an evaluation metric. The main idea is that cosine similarity
outputs are not independent of the mean of the neuron’s activation, while all other evaluation metrics are. This causes it
to associate neurons with large average activation values with very generic concepts that are almost always active. As an
example, we added a constant (1) to all activations of concept neurons in a Concept Bottleneck Model (Koh et al., 2020)
trained on CUB200, and ran our meta-AUPRC test(Sec 5). All other evaluation metrics are invariant to this change, but the
AUPRC of Cosine drops from 99.07% to 0.93% with this small change, as shown in Table E.2. We believe this is a flaw that
points against using cosine similarity, as the average activation of a hidden layer neuron is not functionally important, and
could be absorbed into biases of the next layer. Instead we recommend using Pearson correlation which is identical to cosine
similarity after normalizing to mean 0, as we show in Section A.4.

CUB200 - CBM concept neurons

Original ak a′k = ak + 1

Metric AUPRC AUPRC ∆ AUPRC

Recall 0.3958 0.3958 0.0000
Precision 0.6803 0.6803 0.0000
F1-score/IoU 0.6386 0.6386 0.0000
Accuracy 0.5853 0.5853 0.0000
Balanced Acc. 0.7165 0.7165 0.0000
Inverse Balanced Acc. 0.6628 0.6628 0.0000
AUC 0.7045 0.7045 0.0000
Inverse AUC 0.8956 0.8956 0.0000
Correlation 0.8883 0.8883 0.0000
Correlation(T&R) 0.7170 0.7170 0.0000
Spearman Correlation 0.4233 0.4233 0.0000
Spearman Correlation(T&R) 0.4243 0.4243 0.0000
Cosine 0.8985 0.0443 -0.8542
WPMI 0.7323 0.7323 0.0000
MAD 0.7760 0.7760 0.0000
AUPRC 0.6712 0.6712 0.0000
Inverse AUPRC 0.3975 0.3975 0.0000

Table E.2. Adding a constant to the activation values of all neurons causes the cosine similarity to perform very poorly, while other metrics
are unchanged.
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E.3. Random vs Semantic subsets

Our missing/extra labels tests are a mathematical model of semantic sub/superclasses that can be run without knowledge of
the semantics or relationships between concepts. To test this mathematical model, we conducted a version of extra labels test
on the ImageNet dataset where instead of randomly sampling c+, we used the smallest superclass of the concept according
to WordNet hierarchy as c+, and a version of missing labels test where we used the largest subclass of the concept as c−.
As shown in new Table G.5, the results are essentially identical to using random sub/supersets, showcasing our random
sub/superset is a good model of real semantic relationships for our purposes.

ViT-B-16 superclass neurons ViT-B-16 single class neurons

Missing Labels Test Extra Labels Test

Metric Random Subsets Semantic Subsets Random Supersets Semantic Supersets

Recall 96.32% 92.89% 0.00% 0.00%
Precision 44.21% 43.68% 100.00% 99.79%
F1-score 97.37% 91.84% 100.00% 99.79%
IoU 96.84% 91.58% 100.00% 99.79%
Accuracy 44.74% 31.32% 46.11% 71.37%
Balanced Acc. 99.47% 97.37% 0.00% 64.53%
Inverse Balanced Acc. 28.95% 37.37% 100.00% 99.79%
AUC 99.21% 97.11% 17.47% 52.11%
Inverse AUC 51.58% 54.47% 100.00% 96.00%
Correlation 100.00% 100.00% 100.00% 99.58%
Correlation(T&R) 100.00% 99.21% 47.47% 70.11%
Spearman Correlation 70.53% 75.26% 37.37% 20.63%
Spearman Correlation(T&R) 98.42% 97.63% 51.05% 35.16%
Cosine 100.00% 100.00% 100.00% 99.58%
WPMI 100.00% 100.00% 0.00% 0.00%
MAD 58.42% 51.58% 100.00% 100.00%
AUPRC 99.21% 96.84% 100.00% 99.37%
Inverse AUPRC 100.00% 100.00% 100.00% 99.37%

Table E.3. Comparison of c−t derived as a random subclass of ct vs a real semantic subclass of ct derived from the WordNet hierarchy.
The missing labels test was evaluated on all 400 superclass neurons created in the final layer, while the extra labels test was conducted on
all 1000 individual class neurons. We can see that from the point of view of passing our tests the random subclass behaves almost exactly
as a real semantic subclass.
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E.4. Epsilon ablation

In this section we study the effect of the choice of ϵ in Equation 10 on our experimental missing/extra labels test. Overall we
can see in Table E.4 that while changing ϵ by changes results for some metrics, for the most part it does not affect which
metrics pass or do not pass the test despite 2 orders of magnitude change in ϵ, showing our tests are not very sensitive to this
choice.

Prehaps more importantly, theoretically we do not think the ϵ choice is important. An alternative and perhaps more
fundamental definition for our theoretical tests could be as follows: A metric passes the test if

∃ϵ > 0 s.t. ∀γ > 0,∆s < −ϵ (E.1)

where ∆s is calculated with the theoretical missing labels test defined in Appendix C and γ is the concept/neuron activation
frequency. This definition is purely a mathematical property of the metric without any hyperparameters or ties to any setting,
and as far as we know matches our theoretical test results of Table C.1 and Table C.2 that use a fixed ϵ = 0.001.

The issue with this alternative definition is that, we can only prove a metric passes this version of the test if we have an
analytical solution, which we have for binary classification metrics in Table D.2. This makes this definition hard to use
in practice. We can see for example accuracy fails this test as limγ→0 ∆s = 0, so no matter what ϵ we choose, ∃γ s.t.
∆s > −ϵ. On the other hand, for F1-score will pass the theoretical tests for any ϵ < 1/3 regardless of γ. From this we can
see that if we decrease ϵ in the current theoretical test, more metrics would pass, but the same metrics would fail again if we
expand Table C.1/C.2 to the right by including smaller values, while current passing metrics would not fail regardless of
how many additional γ values we test.

Setting 1: ViT-B-16 Final Layer neurons

Missing Labels Test - Decrease Acc Extra Labels Test - Decrease Acc

ϵ = 0.0001 ϵ = 0.001 ϵ = 0.01 ϵ = 0.0001 ϵ = 0.001 ϵ = 0.01

Recall 97.07% 97.07% 97.07% 0.00% 0.00% 0.00%
Precision 48.65% 47.14% 37.74% 99.70% 99.20% 97.89%
F1-score 96.48% 95.79% 93.38% 99.77% 99.70% 98.72%
IoU 96.69% 95.41% 92.48% 99.70% 99.62% 97.89%
Accuracy 66.09% 0.00% 0.00% 99.92% 61.50% 6.32%
Balanced Acc. 97.07% 97.07% 97.07% 99.77% 23.08% 3.76%
Inverse Balanced Acc. 51.95% 46.54% 31.35% 99.92% 99.62% 96.77%

AUC 96.17% 95.86% 95.19% 84.81% 29.25% 11.58%
Inverse AUC 78.35% 21.43% 3.68% 99.92% 99.92% 99.92%
Correlation 100.00% 100.00% 99.92% 99.92% 99.92% 99.92%
Correlation(T&R) 97.52% 97.29% 96.47% 48.42% 46.02% 37.07%
Spearman Correlation 63.68% 53.91% 5.94% 48.87% 37.07% 1.28%
Spearman Correlation(T&R) 93.91% 93.76% 92.56% 51.73% 50.90% 44.36%
Cosine 100.00% 100.00% 100.00% 99.92% 99.85% 99.70%
WPMI 97.07% 97.07% 97.07% 99.77% 99.70% 99.55%
MAD 52.78% 50.75% 26.32% 99.70% 99.70% 99.70%
AUPRC 99.77% 99.40% 97.59% 99.70% 99.62% 97.89%
Inverse AUPRC 100.00% 100.00% 100.00% 99.62% 99.62% 99.62%

Table E.4. An Ablation study on the effect of ϵ choice on our results. While the exact percentages vary, we can see that changing ϵ by
orders of magnitude mostly does not change which metrics pass the tests, highlighting robustness to this hyperparameter choice.
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E.5. Number of samples for c±t

Most of our results only use one sample of c±t to reduce computational cost, even though our equations are defined in terms
of its expectation. In Table E.5 we test whether using more samples of c±t affects our results. As we can see, the number of
samples has very little effect on our results likely because they are already averages over many neurons and large datasets.

Setting 1: ViT-B-16 Final Layer neurons

Missing Labels Test Extra Labels Test

c±t samples per neuron: 1 3 10 100 1 3 10 100

Recall 97.07% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00%
Precision 47.14% 45.04% 44.29% 38.80% 99.20% 99.62% 99.62% 99.62%
F1-score 95.79% 96.77% 97.29% 97.74% 99.70% 99.70% 99.70% 99.70%
IoU 95.41% 96.02% 96.62% 97.22% 99.62% 99.62% 99.62% 99.62%
Accuracy 0.00% 0.00% 0.00% 0.00% 61.50% 61.88% 64.66% 66.54%
Balanced Acc. 97.07% 99.92% 99.77% 99.85% 23.08% 22.48% 23.31% 22.18%
Inverse Balanced Acc. 46.54% 43.83% 42.41% 34.44% 99.62% 99.62% 99.62% 99.62%
AUC 95.86% 99.25% 99.70% 99.77% 29.25% 26.84% 27.59% 28.35%
Inverse AUC 21.43% 19.17% 16.32% 14.21% 99.92% 99.92% 99.92% 99.92%
Correlation 100.00% 100.00% 99.92% 99.92% 99.92% 99.92% 99.92% 99.92%
Correlation(T&R) 97.29% 99.32% 99.85% 99.77% 46.02% 52.48% 54.51% 55.19%
Spearman Correlation 53.91% 54.14% 54.59% 55.64% 37.07% 34.96% 35.86% 35.04%
Spearman Correlation(T&R) 93.76% 96.39% 97.67% 98.65% 50.90% 57.97% 51.95% 53.83%
Cosine 100.00% 100.00% 100.00% 100.00% 99.85% 99.85% 99.85% 99.85%
WPMI 97.07% 100.00% 100.00% 100.00% 99.70% 99.77% 99.77% 99.85%
MAD 50.75% 48.95% 49.40% 39.17% 99.70% 99.70% 99.70% 99.70%
AUPRC 99.40% 99.32% 99.32% 99.32% 99.62% 99.62% 99.62% 99.62%
Inverse AUPRC 100.00% 100.00% 100.00% 100.00% 99.62% 99.62% 99.62% 99.62%

Table E.5. A study measuring whether our test results are sensitive to sampling c±t only once per neuron. We see this randomness has no
effect on our results in terms of which metrics pass and do not pass the test, likely because the results are already averaged over hundreds
or thousands of neurons.
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E.6. Combination Metrics

In addition to individual metrics we studied in the main paper, we also explore whether combinations of different metrics
could serve as good evaluation metrics. This investigation is inspired by the success of F1-score, which is the harmonic
mean of the Recall and Precision metrics.

sF1 =
2

1/sRecall + 1/sPrecision
=

2sRecallsPrecision

sRecall + sPrecision
(E.2)

In this section we investigated using the harmonic mean of other metrics as our metric. The missing and extra labels test
results are reported in Tables E.6, E.7 and E.8. We can see multiple combinations perform well and now pass the theoretical
missing/extra labels tests. In general, our initial results indicate that combining a metric that passes the extra labels test with
a metric that passes the missing labels test will pass both tests most of the time. Conversely, combining two metrics that fail
the same test, such as Recall and AUC will still fail that test. In table E.6, we also measure the AUPRC (Sec 5) performance
of these new metrics on a subset of our settings, and show that many combination metrics are competitive with top standard
metrics. In particular the harmonic mean of Balanced Acc and Inverse Balanced Acc performed well. Overall this shows the
promise of using novel combinations of concepts, but a more throughout study is needed to confirm their reliability.

Theoretical Missing Labels Test, Decrease Acc

Activation Frequency γ: 0.499 0.1 0.01 0.001 0.0001 Pass

AUC + Inverse AUC 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Balanced Acc + Inverse Balanced Acc 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Recall + AUC 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Recall + Inverse AUC 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Precision + Balanced Acc 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Precision + Inverse Balanced Acc 100.00% 100.00% 100.00% 0.00% 0.00% ×
F1-score 100.00% 100.00% 100.00% 100.00% 100.00% ✓

Table E.6. Theoretical Missing Labels test on combination metrics.

Theoretical Extra Labels Test, Decrease Acc

Activation Frequency γ: 0.499 0.1 0.01 0.001 0.0001 Pass

AUC + Inverse AUC 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Balanced Acc + Inverse Balanced Acc 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Recall + AUC 100.00% 100.00% 100.00% 0.00% 0.00% ×
Recall + Inverse AUC 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Precision + Balanced Acc 100.00% 100.00% 100.00% 100.00% 100.00% ✓
Precision + Inverse Balanced Acc 100.00% 100.00% 100.00% 100.00% 100.00% ✓
F1-score 100.00% 100.00% 100.00% 100.00% 100.00% ✓

Table E.7. Theoretical Extra Labels Test for combination metrics.
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Setting 1: ViT-B-16 final layer neuron Setting 2: Resnet-50 layer4 neurons

Missing Labels Test Extra Labels Test Missing Labels Test Extra Labels Test

Combination Metric Decrease acc Decrease acc Decrease acc Decrease acc

AUC + Inverse AUC 95.64% 99.77% 89.05% 99.90%
Balanced Acc +
Inverse Balanced Acc 99.85% 99.92% 90.75% 100.00%

Recall + AUC 96.99% 19.77% 100.00% 17.32%
Recall + Inverse AUC 96.92% 99.92% 100.00% 87.00%
Precision + Balanced Acc 91.80% 99.70% 64.39% 100.00%
Precision +
Inverse Balanced Acc 48.87% 99.92% 47.38% 100.00%

F1-score 95.86% 99.70% 100.00% 100.00%

Table E.8. Experimental Missing and Extra Labels Test with new combination metrics.

Setting 3: gt ct Setting 4: SigLIP ct

ViT-B-16(ImageNet) ViT-B-16(ImageNet)

New metrics: AUPRC Rank AUPRC Rank

AUC + Inverse AUC 0.8977 3 0.6551 10
Balanced Acc + Inverse Balanced Acc 0.8885 5 0.7041 3
Recall + AUC 0.7081 17 0.6129 15
Recall + Inverse AUC 0.8892 4 0.0077 22
Precision + Balanced Acc 0.8679 8 0.7141 2
Precision + Inverse Balanced Acc 0.8610 9 0.6468 12

Old metrics:

Recall 0.0832 22 0.5758 17
Precision 0.8592 11 0.6428 13
F1-score/IoU 0.8759 7 0.6992 5
Accuracy 0.7858 13 0.5853 16
Balanced Accuracy 0.7463 15 0.6158 14
Inverse Balanced Acc. 0.8610 9 0.6474 11
AUC 0.7139 16 0.6933 7
Inverse AUC 0.8120 12 0.5439 18
Correlation 0.9399 1 0.7027 4
Correlation(T&R) 0.4365 18 0.4906 19
Spearman Correlation 0.0125 23 0.0047 23
Spearman Correlation(T&R) 0.1783 20 0.2395 20
Cosine 0.9037 2 0.6948 6
WPMI 0.7570 14 0.6881 8
MAD 0.1866 19 0.1268 21
AUPRC 0.8839 6 0.7511 1
Inverse AUPRC 0.1131 21 0.6688 9

Table E.9. Performance of new combination on the meta-AUPRC evaluation introduced in section 5. We can see some combination
metrics such as Balanced Acc + Inverse Balanced Acc perform well.
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F. Detailed results
F.1. Missing and Extra Labels Test:

Experimental Setup Details: We evaluate our experimental results across 8 settings:

• Setting 1: Dataset D=ImageNet, ViT-B-16 (Dosovitskiy et al., 2021) trained on imagenet, 1400 final layer neurons(and
superclass neurons), Table F.1

• Setting 2: Dataset D=ImageNet, ResNet-50 trained on imagenet, 2048 layer4 neurons, Table F.1

• Setting 3: Dataset D=Places365, ResNet-18 trained on Places365, 365 final layer neurons, Table F.2

• Setting 4: Dataset D=Places365, ResNet-18 trained on Places365, 512 layer4 neurons, Table F.2

• Setting 5: Dataset D=CUB200, CBM trained on CUB200, 112 concept neurons, Table F.3

• Setting 6: Dataset D=CUB200, CLIP ViT-B-32 image encoder, linear probe trained to detect CUB-concepts, 112
concepts, Table F.3

• Setting 7: Dataset D=OpenWebText(subset), GPT-2-small, final(prediction) layer neurons corresponding to 500 most
common tokens, Table F.4

• Setting 8: Dataset D=OpenWebText(subset), GPT-2-XL, final(prediction) layer neurons corresponding to 500 most
common tokens, Table F.4

For all settings we used the ground truth labels from the dataset as ct. The ImageNet (Deng et al., 2009), Places (Zhou
et al., 2017) and GPT-2 (Radford et al., 2019) models were pretrained. For CUB-CBM we trained our own model using the
code released by (Koh et al., 2020). Our CBM reached 96.75% concept accuracy on the test set which is in line with their
reported results. For CLIP, we used the pretrained model from (Radford et al., 2021), and then learned a linear probe on top
of frozen image embeddings to minimize binary cross-entropy loss on the training split of CUB200(Wah et al., 2011), with
early stopping using validation data. Our linear probe reached 89.76% concept accuracy. The CUB dataset is a small bird
species classification dataset that contains detailed annotations for lower level concepts, such as wing color. Following (Koh
et al., 2020), we only used the 112 concepts that are present on at least 5% of the inputs and our CLIP linear probe was
trained to predict these concepts, not the final class of inputs.

For the final layer neurons as well as CUB neurons we let ”correct” concept tk be the ground truth concept for that neuron.
We choose the hyperparameter α that maximizes AUPRC(Sec 5) performance on validation neurons, and run the tests on
test neurons. For all evaluations we used neuron activations after the activation function (i.e. softmax/sigmoid).

For the Language Model evaluations we used a subset of 204,800 tokens from OpenWebText (Gokaslan et al., 2019) as D.
We evaluated final layer neurons that directly predict next-token, so their explanation was a specific token, which allowed us
the extract ground truth ct directly from the text. We focused on the neurons predicting 500 most common tokens to reduce
computational cost and to make sure we focus on concepts where there are enough positive labels available for statistical
significance.

For layer4(after avg pool) neurons we defined the ”correct” concept tk as the concept that maximizes IoU with α = 0.005
similar to (Bau et al., 2017), using the class(and superclass) labels of the dataset as ct. For these layers we fixed α = 0.005
for all metrics as that was used to determine the ”ground truth”.

Interestingly, we find that more methods pass the tests on the CUB dataset than the other datasets we looked at, but the
trends in terms of which metrics perform worse are still similar. We believe this is caused by data imbalance, as the concepts
in CUB are relatively balanced (following (Koh et al., 2020) we only keep concepts that are present on at least 5% of the
inputs), while for example ImageNet classes are much more imbalanced (each class is positive on 0.1% of the inputs). This
is confirmed by our theoretical observations in Section C, which show that poor metrics are much more likely to fail the test
when the concepts are imbalanced.
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Setting 1: ViT-B-16 final layer neurons Setting 2: Resnet-50 layer4 neurons

Missing Labels Test Extra Labels Test Missing Labels Test Extra Labels Test

Metric Decrease Acc Decrease Acc Decrease Acc Decrease Acc

Recall 95.94% 0.00% 100.00% 0.00%
Precision 46.09% 99.62% 47.33% 100.00%
F1-score 95.64% 99.70% 100.00% 100.00%
IoU 95.34% 99.62% 100.00% 100.00%
Accuracy 0.00% 63.08% 0.00% 71.07%
Balanced Acc. 95.86% 23.98% 100.00% 21.12%
Inverse Balanced Acc. 45.56% 99.62% 46.35% 100.00%
AUC 95.34% 30.23% 87.41% 49.02%
Inverse AUC 21.35% 99.92% 46.61% 100.00%
Correlation 99.92% 99.92% 100.00% 100.00%
Correlation(T&R) 98.12% 44.96% 85.05% 50.51%
Spearman Correlation 53.91% 38.05% 56.89% 38.08%
Spearman Correlation(T&R) 93.61% 50.75% 67.47% 48.72%
Cosine 100.00% 99.85% 100.00% 97.84%
WPMI 95.94% 99.70% 86.64% 100.00%
MAD 49.47% 99.70% 46.30% 100.00%
AUPRC 99.25% 99.62% 99.23% 100.00%
Inverse AUPRC 100.00% 99.62% 98.05% 98.05%

Table F.1. Detailed results of Missing/Extra Labels test on Setting 1 and 2.

Setting 3: RN18(Places365) final layer Setting 4: RN18(Places365) layer4

Missing Labels Test Extra Labels Test Missing Labels Test Extra Labels Test

Metric Decrease Acc Decrease Acc Decrease Acc Decrease Acc

Recall 95.68% 0.00% 100.00% 0.00%
Precision 48.13% 98.85% 45.38% 100.00%
F1-score 56.77% 98.85% 99.79% 100.00%
IoU 56.77% 98.85% 99.79% 100.00%
Accuracy 0.00% 100.00% 0.00% 100.00%
Balanced Acc. 95.68% 99.42% 100.00% 65.71%
Inverse Balanced Acc. 44.67% 98.85% 45.17% 100.00%
AUC 99.14% 59.37% 87.89% 51.33%
Inverse AUC 41.50% 100.00% 50.31% 100.00%
Correlation 99.14% 99.42% 100.00% 100.00%
Correlation(T&R) 95.10% 48.70% 83.16% 51.33%
Spearman Correlation 60.23% 37.46% 64.07% 44.76%
Spearman Correlation(T&R) 89.91% 51.59% 70.43% 50.51%
Cosine 99.42% 99.42% 100.00% 99.79%
WPMI 95.68% 0.00% 91.17% 100.00%
MAD 46.97% 99.71% 45.38% 100.00%
AUPRC 84.44% 97.98% 97.13% 100.00%
Inverse AUPRC 100.00% 99.71% 99.18% 100.00%

Table F.2. Detailed results of Missing/Extra Labels test on Setting 3 and 4.
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Setting 5: CUB200 CBM neurons Setting 6: CUB200 Linear Probe

Missing Labels Test Extra Labels Test Missing Labels Test Extra Labels Test

Metric Decrease Acc Decrease Acc Decrease Acc Decrease Acc

Recall 100.00% 0.00% 100.00% 0.00%
Precision 38.32% 100.00% 43.93% 100.00%
F1-score 100.00% 100.00% 100.00% 100.00%
IoU 100.00% 100.00% 100.00% 100.00%
Accuracy 86.92% 100.00% 100.00% 95.33%
Balanced Acc. 100.00% 100.00% 100.00% 100.00%
Inverse Balanced Acc. 100.00% 100.00% 98.13% 100.00%
AUC 100.00% 100.00% 100.00% 90.65%
Inverse AUC 100.00% 100.00% 100.00% 100.00%
Correlation 100.00% 100.00% 100.00% 100.00%
Correlation(T&R) 99.07% 93.46% 98.13% 94.39%
Spearman Correlation 100.00% 90.65% 100.00% 87.85%
Spearman Correlation(T&R) 93.46% 89.72% 95.33% 85.05%
Cosine 100.00% 100.00% 100.00% 97.20%
WPMI 100.00% 91.59% 100.00% 79.44%
MAD 95.33% 99.07% 96.26% 96.26%
AUPRC 100.00% 100.00% 100.00% 100.00%
Inverse AUPRC 100.00% 93.46% 100.00% 73.83%

Table F.3. Detailed results of Missing/Extra Labels test on Setting 5 and 6.

Setting 7: GPT-2-small final layer Setting 8: GPT-2-XL final layer

Missing Labels Test Extra Labels Test Missing Labels Test Extra Labels Test

Metric Decrease Acc Decrease Acc Decrease Acc Decrease Acc

Recall 98.11% 0.00% 99.58% 0.00%
Precision 47.16% 100.00% 49.47% 100.00%
F1-score 99.37% 100.00% 97.89% 100.00%
IoU 99.16% 100.00% 97.89% 100.00%
Accuracy 1.47% 16.63% 1.89% 16.84%
Balanced Acc. 98.11% 9.68% 99.58% 9.47%
Inverse Balanced Acc. 45.47% 100.00% 48.84% 99.16%
AUC 93.89% 43.79% 96.00% 49.05%
Inverse AUC 34.11% 100.00% 28.63% 100.00%
Correlation 97.47% 100.00% 98.74% 100.00%
Correlation(T&R) 69.26% 48.00% 74.74% 50.74%
Spearman Correlation 38.53% 26.95% 38.74% 29.89%
Spearman Correlation(T&R) 65.05% 52.21% 65.05% 49.89%
Cosine 97.47% 100.00% 98.74% 100.00%
WPMI 98.11% 0.00% 99.58% 0.00%
MAD 49.68% 100.00% 49.05% 100.00%
AUPRC 91.16% 98.32% 93.68% 99.79%
Inverse AUPRC 97.68% 100.00% 98.32% 100.00%

Table F.4. Detailed results of Missing/Extra Labels test on Setting 7 and 8.
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F.2. Meta-AUPRC evaluation:

Experimental Setup Details: We evaluate our meta-AUPRC test described in Section 5 on 10 different settings:

• Setting 1: Dataset D=ImageNet, ViT-B-16(ImageNet), 1000 final layer neurons, ground truth ct

• Setting 2: Dataset D=ImageNet, ViT-B-16(ImageNet), 1000 final layer neurons, SigLIP ct

• Setting 3: Dataset D=ImageNet, ViT-B-16(ImageNet), 1400 final layer neurons+superclass neurons, ground truth ct

• Setting 4: Dataset D=ImageNet, ViT-B-16(ImageNet), 1400 final layer neurons+superclass neurons, SigLIP ct

• Setting 5: Dataset D=Places365, ResNet-18(Places365), 365 final layer neurons, ground truth ct

• Setting 6: Dataset D=Places365, ResNet-18(Places365), 365 final layer neurons, SigLIP ct

• Setting 7: Dataset D=CUB200, CBM trained on CUB200, 112 concept neurons, ground truth ct

• Setting 8: Dataset D=CUB200, CLIP ViT-B-32 image encoder, linear probe trained to detect 112 CUB-concepts,
ground truth ct

• Setting 9: Dataset D=OpenWebText(subset), GPT-2-small, final(prediction) layer neurons corresponding to 500 most
common tokens.

• Setting 10: Dataset D=OpenWebText(subset), GPT-2-XL, final(prediction) layer neurons corresponding to 500 most
common tokens.

SigLIP ct indicates we used Pseudo-labels generated from SigLIP (ViT-SO400M-14-SigLIP-384) (Zhai et al., 2023) as done
by (Oikarinen & Weng, 2024). For all metrics and evaluations we choose hyperparameters such as α by finding the one with
best performance on validation neurons (random subset of 5% of the neurons), and use those hyperparameters to evaluate on
test neurons.

Tables F.5, F.6 and F.7 show the detailed results of our AUPRC evaluation experiment. While there is some differences
on which metrics perform well on different setups, the overall trends are quite consistent, with Correlation and Cosine
outperforming others on almost all settings, and AUPRC being the third best. Spearman Correlation also consistently
performed the worst.
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Setting 1: gt ct Setting 2: SigLIP ct Setting 3: gt ct Setting 4: SigLIP ct

original original original+superclass original+superclass
K and C K and C K and C K and C

Metric AUPRC Rank AUPRC Rank AUPRC Rank AUPRC Rank

Recall 0.9989 6 0.8638 12 0.0832 16 0.5758 12
Precision 0.9989 6 0.9640 6 0.8592 6 0.6428 9
F1-score/IoU 0.9989 6 0.9477 7 0.8759 4 0.6992 3
Accuracy 0.9989 6 0.8497 13 0.7858 8 0.5853 11
Balanced Acc. 0.9989 6 0.9032 11 0.7463 10 0.6158 10
Inverse Balanced Acc. 0.9989 6 0.9664 5 0.8610 5 0.6474 8

AUC 0.9974 14 0.9438 8 0.7139 11 0.6933 5
Inverse AUC 0.9415 15 0.8452 14 0.8120 7 0.5439 13
Correlation 0.9998 2 0.9739 2 0.9399 1 0.7027 2
Correlation(T&R) 0.9993 5 0.7257 15 0.4365 12 0.4906 14
Spearman Correlation 0.0023 17 0.0213 17 0.0125 17 0.0047 17
Spearman Correlation(T&R) 0.6533 16 0.4100 16 0.1783 14 0.2395 15
Cosine 0.9998 2 0.9733 3 0.9037 2 0.6948 4
WPMI 0.9989 6 0.9211 9 0.7570 9 0.6881 6
MAD 0.9994 4 0.9716 4 0.1866 13 0.1268 16
AUPRC 0.9989 6 0.9866 1 0.8839 3 0.7511 1
Inverse AUPRC 0.9999 1 0.9203 10 0.1131 15 0.6688 7

Table F.5. Meta-AUPRC evaluation results on ImageNet Settings(1-4).

Setting 5: gt ct Setting 6: SigLIP ct Setting 7: gt ct Setting 8: SigLIP ct

Resnet-18(Places) Resnet-18(Places) CBM(CUB200) Linear Probe(CUB200)

Metric AUPRC Rank AUPRC Rank AUPRC Rank AUPRC Rank

Recall 0.9639 12 0.7623 9 0.3958 17 0.1078 17
Precision 0.9640 6 0.7771 8 0.6803 9 0.2095 12
F1-score/IoU 0.9640 6 0.7916 6 0.6386 12 0.2792 7
Accuracy 0.9640 6 0.6490 14 0.5853 13 0.2239 10
Balanced Acc. 0.9640 6 0.7340 11 0.7165 7 0.3186 4
Inverse Balanced Acc. 0.9640 6 0.7813 7 0.6628 11 0.2608 8

AUC 0.9418 14 0.7205 12 0.7045 8 0.2031 14
Inverse AUC 0.8927 15 0.6877 13 0.8956 2 0.3745 3
Correlation 0.9693 1 0.8326 2 0.8883 3 0.4683 1
Correlation(T&R) 0.9662 4 0.5326 15 0.7170 6 0.2976 6
Spearman Correlation 0.0213 17 0.1214 17 0.4233 15 0.2185 11
Spearman Correlation(T&R) 0.7424 16 0.4005 16 0.4243 14 0.1607 15
Cosine 0.9693 1 0.8304 4 0.8985 1 0.4067 2
WPMI 0.9655 5 0.7539 10 0.7323 5 0.2089 13
MAD 0.9590 13 0.8321 3 0.7760 4 0.2432 9
AUPRC 0.9640 6 0.8669 1 0.6712 10 0.2981 5
Inverse AUPRC 0.9678 3 0.8006 5 0.3975 16 0.1302 16

Table F.6. Meta-AUPRC evaluation results on Places and CUB models Settings(5-8).
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Setting 9: gt ct Setting 10: gt ct
GPT2-small GPT2-XL

Metric AUPRC Rank AUPRC Rank

Recall 0.9754 6 0.9951 6
Precision 0.9655 8 0.9780 9
F1-score/IoU 0.9569 9 0.9875 7
Accuracy 0.7395 13 0.8334 14
Balanced Acc. 0.9842 4 0.9973 4
Inverse Balanced Acc. 0.9658 7 0.9782 8

AUC 0.8139 12 0.9194 12
Inverse AUC 0.7282 14 0.8481 13
Correlation 0.9918 1 0.9986 1
Correlation(T&R) 0.6705 15 0.7695 15
Spearman Correlation 0.0137 17 0.0142 17
Spearman Correlation(T&R) 0.0917 16 0.1168 16
Cosine 0.9912 2 0.9985 2
WPMI 0.9773 5 0.9958 5
MAD 0.9014 11 0.9557 11
AUPRC 0.9880 3 0.9951 6
Inverse AUPRC 0.9314 10 0.9780 9

Table F.7. Meta-AUPRC evaluation results on Language Models Settings(9-10).
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