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ABSTRACT

Learning Nash equilibria (NE) in games has garnered significant attention, particularly in
the context of training Generative Adversarial Networks (GANs) and multi-agent Rein-
forcement Learning. The current state-of-the-art in efficiently learning NE in games focuses
on landscapes that meet the (weak) minty property or games characterized by a unique
function, often referred to as potential games. A significant challenge in this domain is that
computing Nash equilibria is a computationally intractable task Daskalakis et al. (2009).
In this paper we focus on bimatrix games (A,B) called rank-1. These are games in which
the sum of the payoff matrices A + B is a rank 1 matrix; note that standard zero-sum
games are rank-0. We show that a modification of optimistic mirror descent converges
to an ϵ-approximate NE after O

(
1
ϵ2 log(

1
ϵ )
)

iterates in rank-1 games. We achieve this by
leveraging structural results about the NE landscape of rank-1 games Adsul et al. (2021).
Notably, our approach bypasses the fact that these games do not satisfy the MVI property.

1 INTRODUCTION

Learning in games has its origins in Blackwell’s influential work on the approachability theorem (Blackwell,
1956; Abernethy et al., 2011), which paved the way for the development of various learning algorithms with
convergence guarantees to different game theoretic solution concepts, including coarse correlated equilibrium
(CCE) and Nash equilibrium (NE). For instance, a well-known result in this context is that if both players in a
zero-sum game employ a no-regret learning algorithm, the empirical averages of their strategies will converge
to a NE. However, the typical guarantees provided by online learning frameworks do not shed light on how
the system stabilizes toward a Nash equilibrium when the underlying two-player game is neither zero-sum
nor a potential game (Anagnostides et al., 2022b). In such cases, one can only argue that the empirical
averages converge to a CCE if both players employ a no-regret learning algorithm. This raises the following
fundamental question:

For which classes of two-player games, beyond zero-sum and potential games, can we design online learning
algorithms that guarantee convergence to a Nash equilibrium?

The work in Kannan & Theobald (2010) introduced a hierarchy of bimatrix games denoted as (A,B), where
the rank of A +B is k. These are referred to as rank-k bimatrix games. Notably, this class encompasses
zero-sum games when k is zero. Intriguingly, it has been demonstrated that even for the case of k = 1, the set
of Nash equilibria can comprise a potentially large number of disconnected components and lacks convexity.
Furthermore, it has been proven that for k ≥ 3, computing an exact Nash equilibria in rank k bimatrix games
is a PPAD-hard problem Mehta (2018). In other words, it is highly unlikely that a polynomial-time algorithm
exists for computing Nash equilibria in such games. On the contrary, rank-1 games have been shown to have
polynomial-time algorithms based on linear programming formulations Adsul et al. (2021; 2011), while the
complexity of rank-2 games remains an open question.

1



Published as a conference paper at ICLR 2024

Our contributions and Technical Overview In this paper, we focus on rank-1 games. First we establish
that there exist rank-1 games that do not satisfy the so-called Minty criterion and as a result optimistic mirror
descent Rakhlin & Sridharan (2013) and extra gradient algorithms Korpelevich (1976) fail to converge to a
Nash equilibrium.

On a positive note, we introduce a decentralized learning algorithm that converges to an ϵ-approximate
Nash equilibrium in O

(
1
ϵ2 log

(
1
ϵ

))
iterations, as proven in Theorem 3.7. Both agents in the game utilize an

optimistic mirror descent algorithm in a parametrized zero-sum game that evolves over time. The key to our
technical analysis lies in how we adapt the underlying parameter, ensuring that when the algorithm terminates,
an approximate Nash equilibrium in the parametrized zero-sum game coincides with an approximate Nash
equilibrium in the rank-1 game. To provide more context, consider a rank-1 bimatrix game represented
as (A,B). We can assume that B = −A + ab⊤ for some vectors a and b. It turns out that a Nash
equilibrium (x,y) of the rank-1 game (A,B) is also a Nash equilibrium of the parametrized zero-sum game
(A− 1λb⊤,−A+ 1λb⊤) for an appropriate choice of the parameter λ, where 1 is the all-ones vector. The
primary technical challenge is formulating a suitable optimization problem to ensure that a Nash equilibrium
in the parameterized translates to a Nash equilibrium in the rank-1 game, as shown in Lemma 3.4.

Our proposed algorithm is based on optimistic mirror descent applied to the parameterized bilinear function
x⊤(A−1λb⊤)y with an additional regularization term (x⊤a−λ)2. Depending on the sign of the difference
(x⊤a − λ), λ is updated appropriately. To prove our claims, we leverage the structural insights of the
Nash equilibrium landscape Adsul et al. (2021) and exploit the stationarity properties of the λ-parameterized
(strongly) concave-convex function fλ(s,y) = x⊤(A−1λb⊤)y− 1

2 (x
⊤a−λ)2. Furthermore, in Appendix C

we provide experimental evaluation supporting our theoretical findings.

2 PRELIMINARIES

2.1 NOTATION AND DEFINITIONS

Notation Let R be the set of real numbers, and [n] be the set {1, 2, . . . , n}. We define ∆n as the probability
simplex, which is the set of n-dimensional probability vectors, i.e., ∆n := {x ∈ Rn : xi ≥ 0,

∑n
i=1 xi = 1}.

We use ei to denote the i-th elementary vector, and to refer to the i-th coordinate of x we use xi. The
superscripts are used to indicate the timestep at which a vector is referring to.

Normal-form Games We primarily focus on two-player normal-form bimatrix game. We are given a pair
of payoff matrices A ∈ Rn×m and B ∈ Rn×m where n and m are the respective pure strategies (actions)
of the row and the column player. After the players choose their action, we denote (ei, ej) the joint action
profile for i ∈ [n] and j ∈ [m]. Then, their respective payoffs are Aij := e⊤i Aej for the row player and
Bij := e⊤i Bej for the column player. Player are also allowed to randomize. A mixed strategy for the row
(resp. column) player is a probability distribution x ∈ ∆n (resp. y ∈ ∆m) over the n rows (resp. m columns).
In this case, the expected utility of the row, column player is expressed as x⊤Ay and x⊤By respectively,
where (x,y) ∈ ∆n ×∆m denotes the joint mixed strategy profile.

Definition 2.1 (ϵ-approximate Nash Equilibrium). A strategy profile (x⋆,y⋆) ∈ ∆n × ∆m is called an
ϵ-approximate Nash equilibrium (NE) if and only if

(x⋆)⊤Ay⋆ ≥ x⊤Ay⋆ − ϵ ∀x ∈ ∆n and (x⋆)⊤By⋆ ≥ (x⋆)⊤By − ϵ ∀y ∈ ∆m

In words, an approximate Nash equilibrium is a strategy profile in which no player can improve their payoff
significantly (more than ϵ) by unilaterally changing their strategy, but the strategy profile may not necessarily
satisfy the definition of an exact (ϵ = 0) Nash equilibrium.
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Remark 2.2. We highlight two special cases of an ϵ-approximate Nash equilibrium. Firstly, when ϵ is
equal to zero, it is referred to as an exact Nash equilibrium. Secondly, when the support of strategies,
supp(x) = {i |xi > 0}, is of size 1, it is called a pure Nash equilibrium.

2.2 RANK-1 GAMES

In this work, we consider bimatrix games (A,B) of fixed rank, and particularly of rank 1. This hierarchy
within two-player games was initially introduced by Kannan & Theobald (2010) in an attempt to offer a
more detailed characterization of games that (may) admit simple polynomial-time algorithms based on the
rank of the matrix (A+B). In a related model, Lipton et al. (2003) investigated games where both payoff
matrices are of fixed rank k, and they proposed a simple (quasi) polynomial-time algorithm for constructing
an ϵ-approximate NE. This seemingly similar model, however, has a significant drawback; not even zero-sum
games, which have polynomial-time algorithms, entirely belong to this class. Motivated by this observation,
Kannan & Theobald (2010) proposed that (A+B) should have fixed rank instead.
Definition 2.3 (Games of fixed rank). The rank of a bimatrix game (A,B) is the rank of matrix A+B.
Remark 2.4. It is apparent that zero-sum games (A,−A) are rank-0 games as A+(−A) = 0. Additionally,
rank-1 games satisfy A+B = ab⊤.
Assumption 2.5. As Nash equilibria remain invariant under the transformations of shifting and scaling of
the payoff matrices, we assume that the elements of a and b are confined within the interval [−1, 1]. This
assumption simplifies our calculations without impacting any of our results.

The following lemma presents an alternative method for describing a bimatrix game of fixed rank r.
Lemma 2.6 (Lemma 5 Adsul et al. (2021)). An (n×m) bimatrix game (A,B) of positive rank r can be
written as (A,C+ ab⊤) for suitable a ∈ Rn, b ∈ Rm, and a game (A,C) of rank r − 1.

The following lemma, though simple, holds significant importance as it establishes that for a bimatrix game
of fixed rank r, the set of its Nash equilibria is equivalent to the intersection of the set of equilibria of a
parameterized game of rank r − 1 and a hyperplane.
Lemma 2.7 (Lemma 6 Adsul et al. (2021)). Let A,C ∈ Rn×m, x ∈ ∆n, y ∈ ∆m, a ∈ Rn, b ∈ Rm, λ ∈
R. The following are equivalent:

(a) (x,y) is an equilibrium of (A,C+ ab⊤).

(b) (x,y) is an equilibrium of (A,C+ 1λb⊤) and x⊤a = λ.

(c) (x,y) is an equilibrium of (A− 1λb⊤,C+ 1λb⊤) and x⊤a = λ.

Sketch Proof. The equivalence of (a) and (b) holds because the players get in both games the same expected
payoffs for their pure strategies. The games in (b) and (c) are strategically equivalent.

While it may not be immediately evident how this rank reduction can be practically applied, the true
significance of Lemma 2.7 becomes fully apparent in the context of rank-1 games.
Corollary 2.8. Let (A,B) be a bimatrix game of rank 1, i.e. A + B = ab⊤. Then, the following are
equivalent.

(a) (x,y) is an equilibrium of (A,−A+ ab⊤).

(b) (x,y) is an equilibrium of (A− 1λb⊤,−A+ 1λb⊤) and x⊤a = λ.

The proof follows trivially from the equivalence of (a) and (c) in Lemma 2.7.
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Parameterized zero-sum games Corollary 2.8 establishes a connection between rank-1 games and pa-
rameterized zero-sum games. While this link initially appears compelling, it remains uncertain whether an
algorithm can compute, or more importantly learn, a Nash equilibrium (x,y) satisfying x⊤a = λ at the
same time. The primary challenge arises from the fact that optimal strategies vary as the parameter λ changes.
It is well-known, however, that zero-sum games can be efficiently solved using various methods, including
LP-based techniques Adler (2013); von Stengel (2023) and no-regret algorithms Freund & Schapire (1999);
Daskalakis et al. (2011); Syrgkanis et al. (2015); Chen & Peng (2020). Therefore, as long as there is an easy
way of updating λ, the parameterized zero-sum game serves as an intermediary to solve the rank-1 game.

An initial attempt was made in Adsul et al. (2011), where they demonstrated that the set of fully-labeled
points, which captures all Nash equilibria of the game, of specific best-response polytopes contains only a
path that exhibits monotonicity with respect to λ. Additionally, they introduced an algorithm that employs
binary search on the parameter to compute an exact Nash equilibrium for the rank-1 game. However, a
limitation of this method is its inability to handle non-degenerate games. In their subsequent work Adsul et al.
(2021), while retaining their structural insights and building on Adler & Monteiro (1992), they refined their
approach. They proposed a polynomial-time algorithm, similar in spirit to the one in Adsul et al. (2011), to
compute a Nash equilibrium for any rank-1 game.

Definition 2.9. Let N be the set of the Nash equilibria of the parameterized zero-sum game defined as
follows.

N := {(λ,x,y) ∈ R× Rn × Rm | (x,y) is a NE of
(
A− 1λb⊤,−A+ 1λb⊤

)
} (1)

The following key lemma, essential for the algorithm in Adsul et al. (2021), shows that the set N exhibits
monotonicity with respect to λ.

Lemma 2.10 (Lemma 17 Adsul et al. (2021)). Let λ ≤ λ, x,x ∈ ∆n and y,y ∈ ∆m so that for N in (1)

(
λ,x,y

)
∈ N , λ ≤ x⊤a,

(
λ,x,y

)
∈ N , λ ≥ x⊤a.

Then x⊤a = λ for some (λ,x,y) ∈ N with λ ∈ [λ, λ].

This property serves as the invariant maintained by the algorithm outlined in Adsul et al. (2021). The
algorithm essentially employs a binary search with respect to the parameter λ. In brief, at each iteration, it
considers the midpoint, λ = (λ+ λ)/2, and, based on its value, it solves a series of linear programs. These
either return a Nash equilibrium of the zero-sum game

(
A− 1λb⊤,−A+ 1λb⊤

)
for which x⊤a = λ or

indicate that none of the Nash equilibrium strategies satisfy this equation. Importantly, in the latter case,
and due to the monotonic nature with respect to the parameter, the sign of the difference (x⊤a− λ) should
be maintained. Therefore, depending on it, either λ or λ is updated accordingly. For instance, in case
x⊤a− λ < 0 then λ = λ; otherwise, it sets λ = λ 1. According to Lemma 2.10, this step is safe as there
exists a Nash equilibrium (x,y) such that x⊤a = λ and λ ∈ [λ, λ]. In Lemma 3.5, we extend this property
to the case of an approximate Nash equilibrium by leveraging the convexity of Nash equilibria in zero-sum
games.

2.3 BASIC BACKGROUND ON MIN-MAX OPTIMIZATION

After establishing the link between rank-1 games and zero-sum games, as demonstrated in Corollary 2.8, this
section presents a brief background on min-max optimization. A more compact and thorough presentation is
deferred to Appendix B.

1We have intentionally omitted certain technical details of this step that do not impact the core aspects of the algorithm.
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A Nash equilibrium in zero-sum games represents a solution to a saddle point problem which in its general
form (not only for bilinear functions) is

min
x∈X

max
y∈Y

f(x,y) (2)

where X ,Y are convex and compact subsets of an Euclidean n-dimensional (m-dimensional resp.) space,
and f is a continuously differentiable function, i.e. a smooth function.
Remark 2.11. It is widely recognized that two zero-sum games constitute a special case where the function
f(x,y) = x⊤Ay is convex (linear) with respect to x and concave (linear) with respect to y. Then, the
celebrated minimax theorem v. Neumann (1928) asserts that min

x∈Y
max
y∈Y

f(x,y) = max
y∈Y

min
x∈X

f(x,y).

However, in practical scenarios, such as those in Generative Adversarial Networks (GANs) Daskalakis et al.
(2017), the function f does not meet the necessary convex-concave property, and so most optimization
techniques for (2) do not to apply. As a result, a significant amount of research has focused instead on
different notions of local min-max solutions Daskalakis & Panageas (2018b); Jin et al. (2020). The result in
Daskalakis et al. (2021), however, establishes that for general smooth objectives, the computation of even
approximate first-order locally optimal min-max solutions is intractable. In light of this intractability result,
research has shifted its focus to investigate structural properties that circumvent this barrier, enabling the
efficient computation of a solution. This will usually involve imposing some (mild or not) assumptions on the
objective function. An example of such an assumption is the existence of a solution to (MVI), as presented
below.

Nash Gap The goal is to find a point (x⋆,y⋆) ∈ X × Y that is close to the set of Nash equilibria. The
notion of closeness is implied in terms of the best response gap, not the distance to the set of NE 2, and is
defined with respect to the (Nash) gap as

Gap(x⋆,y⋆) := max
y∈Y

f(x⋆,y)− min
x∈X

f(x,y⋆), (Gap)

which is always non-negative and zero if and only if (x⋆,y⋆) is a NE.

Variational inequalities We introduce the set Z = X × Y and the operator F associated with the function
f , defined as F (z) = F ([ xy ]) =

[
∇xf(x,y)
−∇yf(x,y)

]
. It is readily verified that a saddle point problem (2) can

be framed as a variational inequality problem; this unifying treatment enables the application of various
techniques and results drawn from the vast literature of variational inequalities, Facchinei & Pang (2003).
Given the compact convex set Z and an operator F , the Stampacchia Variational Inequality problem consists
in finding z⋆ ∈ Z such that:

⟨F (z⋆), z − z⋆⟩ ≥ 0 for all z ∈ Z (SVI)

In this case, z⋆ is referred to as the strong solution to variational inequality problem corresponding to F .
From a game-theoretic standpoint, z⋆ corresponds to a Nash equilibrium of the underlying game. As the
existence of a Nash equilibrium is always guaranteed to exist Nash Jr (1950), we can safely assume that there
exists a solution to (SVI).

Most of the existing literature on variational inequality problems Facchinei & Pang (2003) has focused on the
monotone case, i.e. f is convex concave. In this context, it is widely acknowledged that every solution to
(SVI) is also a solution to the Minty Variational Inequality problem (MVI).

⟨F (z), z − z⋆⟩ ≥ 0 for all z ∈ Z (MVI)

2This notion of closeness is commonly referred to in the literature as weak, while the closeness in terms of the distance
to a Nash Equilibrium is known as the strong notion Etessami & Yannakakis (2010).
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In settings beyond the monotone case, all that can be said is that the set of solutions for (MVI) is a subset
of the set of solutions for (SVI). An important (Minty) criterion that ensures tractability is the existence
of a solution to (MVI). In Mertikopoulos et al. (2018), they introduced the concept of coherence (refer to
Definition 2.1), which holds true if every saddle point of f (2), and in turn to (SVI), is a solution to (MVI)
and vice versa. In Mertikopoulos et al. (2018); Song et al. (2020); Zhou et al. (2020) (and references therein)
it has been established that if the Minty criterion is satisfied (e.g. bilinear problems, quasi-convex-concave
objectives) then extra gradient Korpelevich (1976) do converge to a solution of saddle point problem. In
recent works, such as Diakonikolas et al. (2021); Pethick et al. (2022), a less stringent criterion, namely the
weak Minty criterion, has been explored, and convergence to a solution of (2) was also ensured. Nevertheless,
as we will demonstrate shortly in the Section 3.1, even relatively simple rank-1 games fail to satisfy the
(weak) Minty criterion.

3 EFFICIENTLY LEARNING NASH EQUILIBRIA IN RANK-1 GAMES

In this section, we sketch our main findings concerning the learning of Nash equilibria in rank-1 games; all
the proofs are deferred to Appendix A. We start by presenting two illustrative examples that highlight the
inherent challenges of these games. Despite their apparent simplicity, conventional first-order methods fail to
converge to a Nash equilibrium. In Section 3.2, we introduce an efficient algorithm for learning a NE, that
uses and extends the structural properties detailed in Section 2.2.

3.1 TECHNICAL CHALLENGES

The rank-reduction method presented in Corollary 2.8 transforms a rank-1 game (A,B) into a parameterized
zero-sum game (A− 1λb⊤,−A+ 1λb⊤). A question that arises is whether the set of approximate Nash
equilibria of the zero-sum game is properly included in the approximate Nash equilibria of the rank-1 game.
Although in the case of an exact NE, we readily verify that it does not hold, the former remains unclear for
approximate NE. In other words, can solving the zero-sum game alone provide a solution for the rank-1
game?

The following example provides a negative answer to this question, even when we have complete knowledge of
a correct value λ⋆-i.e., corresponding to a Nash equilibrium (x⋆,y⋆) of the rank-1 game where (x⋆)⊤a = λ⋆.

Example 3.1 (Full Version in Example A.1). Let A − 1λb⊤ =
[

1 1
1−ϵ 1−ϵ

]
. This game has an exact NE

of the form (x⋆,y⋆) = ((1, 0), (µ, 1− µ)) for any µ ∈ [0, 1]. Additionally, (x̃, ỹ) = (( 12 ,
1
2 ), (

1
2 ,

1
2 )) is an

ϵ
2 -approximate Nash equilibrium of the zero-sum game (A− 1λb⊤,−A+ 1λb⊤)

x⋆⊤
(
A− 1λb⊤

)
y⋆ = 1 and x̃⊤ (

A− 1λb⊤
)
ỹ =

[
1
2

1
2

] [ 1 1
1− ϵ 1− ϵ

] [
1
2
1
2

]
= 1− ϵ

2

We choose a = [1 2]
⊤ and b = [2 1]

⊤, and so x⋆⊤a = 1 = λ.

A =

[
1 1

1− ϵ 1− ϵ

]
+

[
2 1
2 1

]
=

[
3 2

3− ϵ 2− ϵ

]
and B =

[
−1 −1
1 + ϵ ϵ

]
We confirm that (x̃, ỹ) =

((
1
2 ,

1
2

)
,
(
1
2 ,

1
2

))
no longer qualifies as an ϵ

2 -approximate Nash Equilibrium for
the original rank-1 game as the Nash equilibrium condition (inequality) for the column player does not hold.

As described in Section 2.3, there are additional structural properties that enables convergence to a solution
even if the game is no longer monotone. As such, our next goal is to investigate whether the Minty criterion
(MVI) is satisfied rank-1 games. Unfortunately, but importantly for the scope of this work, it fails to hold.
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Algorithm 1: Rank-1 Game Solver

Input: x(0) = 1/n ∈ ∆n, y
(0) = 1/m ∈ ∆m

Output: (x,y) NE of rank-1 (A,B)
1 for k = 1, . . . ,K do
2 (x(k),y(k)) =

OMWU(x(k−1),y(k−1), λ(k−1))

3 if (x(k),y(k)) is NE of (A,B) then
4 return (x(k),y(k))

5 else
6 λ(k) = λ(k−1) − 1

2k
sgn

(
x(k)⊤a− λ

)
/* update λ according to
sign */

7

Algorithm 2: OMWU(x,y, λ)

Input: (x(0),y(0)) ∈ ∆n ×∆m, λ ∈ [0, 1]
Output: (x,y) such that Gap(x,y) ≤ ϵ

1 g
(0)
X = 0

2 g
(0)
Y = 0

3 for t = 1, 2, . . . , T do
4 g

(t)
X = −∇xfλ(x

(t),y(t))

5 g
(t)
Y = −∇yfλ(x

(t),y(t))

6 x
(t+1)
i =

x
(t)
i exp(−ηX2g

(t)
X,i−ηXg

(t−1)
X,i )

n∑
i=1

x
(t)
i exp(−ηX2g

(t)
X,i−ηXg

(t−1)
X,i )

y
(t+1)
j =

y
(t)
j exp(−ηY 2g

(t)
Y,j−ηY g

(t−1)
Y,j )

m∑
j=1

y
(t)
j exp(−ηY 2g

(t)
Y,j−ηXg

(t−1)
Y,j )

7 return (x(T ),y(T ))

Example 3.2 (Full Version in Example A.2). Let z⋆ = (x⋆,y⋆) be a NE of the bimatrix rank-1 game
(A,B) = (A,−A + ab⊤). We show that there exists a game such that the Minty variational inequality
(MVI) is not satisfied.

(MVI) ⟨F (z), z − z⋆⟩ ≥ 0 ∀z =

[
x
y

]
where F (z) =

[
−Ay
−B⊤x

]
We examine solutions z⋆ = (x⋆,y⋆) that correspond to the Nash equilibrium of the selected game.

⟨F (z), z − z⋆⟩ =
[
−Ay,−B⊤x

] [x− x⋆

y − y⋆

]
= −⟨x− x⋆,Ay⟩ − ⟨y − y⋆,B⊤x⟩

Let A =
[
1 0
0 1

]
and B =

[
1 −2
−1 0

]
. This game has the two pure equilibria (x1,y1) = ((1, 0), (1, 0)) and

(x2,y2) = ((0, 1), (0, 1)), and the mixed equilibrium (x3,y3) = (( 14 ,
3
4 ), (

1
2 ,

1
2 )). However, none of these

equilibria satisfy the Minty criterion.

3.2 MAIN RESULTS

In this section, we introduce our method, and sketch the main ingredients required for the proof of Theorem 3.7.
To facilitate the presentation, we break it down into three main steps. The first step consists of showing that
only specific approximate Nash equilibria of the parameterized zero-sum correspond to approximate Nash
equilibria of the underlying rank-1 game. Then, we formulate a suitable min-max optimization problem
whose stationary points are extendable –under conditions– to NE. Finally, we present an efficient algorithm
for solving the optimization problem.

The following lemma relies on the correspondence established in Corollary 2.8. Although this appears to be
applicable solely to exact Nash equilibria, we demonstrate that by relaxing both conditions, it also extends to
approximate Nash equilibria.

Lemma 3.3. Let (x,y) be an ϵ-approximate Nash equilibrium of the zero sum game with payoff (A−1λb⊤)
and |x⊤a − λ| ≤ ϵ. Then (x,y) is an (3ϵ)-approximate Nash equilibrium of the rank-1 game (A,−A +
1λb⊤).
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A study of Lemma 3.3leads us to the following observation: to compute an approximate Nash equilibrium of
the rank-1 game, we should seek a NE of the parameterized zero-sum game which simultaneously minimizes
the distance (x⊤a− λ). By virtue of this observation, we formulate the following min-max optimization
problem; its full proof is deferred to Appendix A.
Lemma 3.4. Consider the function fλ(x,y) := x⊤ (

A− 1λb⊤
)
y − 1

2 (x
⊤a − λ)2. f is concave with

respect to x and convex (linear) with respect to y. Moreover, assume that the corresponding zero-sum game
has a ϵ-approximate Nash equilibrium (x⋆,y⋆) with |x∗⊤a− λ| ≤ ϵ. Then, any ϵ-approximate stationary
point (x̃, ỹ) of f must satisfy the following.

1. |x̃⊤a− λ| ≤
√
5ϵ.

2. (x̃, ỹ) must be an (6
√
ϵ)-NE of the zero-sum game (A− 1λb⊤,−A+ 1λb⊤).

Sketch Proof. Given that (x̃, ỹ) is an ϵ-approximate stationary point of f , it satisfies the following variational
inequalities (VI).

VI (1) ⟨∇xfλ(x̃, ỹ),x
′ − x̃⟩ = ⟨

(
A− 1λb⊤

)
ỹ −

(
x⊤a− λ

)
a,x′ − x̃⟩ ≤ ϵ ∀x′ ∈ ∆n

VI (2) ⟨∇yfλ(x̃, ỹ),y
′ − ỹ⟩ = ⟨

(
A− 1λb⊤

)⊤
x̃,y′ − ỹ⟩ ≥ −ϵ ∀y′ ∈ ∆m

First, we use the fact that f(·,y) is a concave function for any y, which implies that it satisfies the inequality
fλ(x

′, ỹ) ≤ fλ(x̃, ỹ) + ⟨∇xfλ(x̃, ỹ),x
′ − x̃⟩. Therefore, when setting x′ = x⋆ and from VI (1) and the

fact |x⋆⊤a− λ| ≤ ϵ we obtain the following.

x⋆⊤
(
A− 1λb⊤

)
ỹ ≤ x̃⊤ (

A− 1λb⊤
)
ỹ − 1

2

(
x̃⊤a− λ

)2

+ 2ϵ

Furthermore, fλ(x, ·) is linear,for any x, which implies that it satisfies the equality fλ(x̃,y′) = fλ(x̃, ỹ) +
⟨∇yfλ(x̃, ỹ),y

′ − ỹ⟩ for any y′ ∈ ∆m. Therefore, when setting y′ = y⋆ and from VI (2) we obtain the
following.

x̃⊤ (
A− 1λb⊤

)
y⋆ ≥ x̃⊤ (

A− 1λb⊤
)
ỹ − ϵ

The last two inequalities follow from the approximate NE definition of (x⋆,y⋆), with x representing the
maximizer and y representing the minimizer.

x⋆⊤
(
A− 1λb⊤

)
y⋆ ≥ x̃⊤ (

A− 1λb⊤
)
y⋆ − ϵ

x⋆⊤
(
A− 1λb⊤

)
y⋆ ≤ x⋆⊤

(
A− 1λb⊤

)
ỹ + ϵ

By combining the above four inequalities, we prove the first claim: |x̃⊤a− λ| ≤
√
5ϵ. The second claim–

(x̃, ỹ) is a Nash Equilibrium (NE) of the parameterized zero-sum–follows from the VI (1), VI (2) alongside
the inequalities we showed.

So far, we have verified that any stationary point (x̃, ỹ) of fλ constitutes a Nash equilibrium for the rank-1
game under the condition that a NE does exists for that particular λ. In other words, Lemma 3.4 holds true
only in the case where the parameter attains the correct value λ⋆–i.e., corresponding to a Nash equilibrium
(x⋆,y⋆) of the rank-1 game where (x⋆)⊤a = λ⋆. This raises the question of how we can determine the
correct value of λ. Hopefully, the following simple but important lemma answers this question.
Lemma 3.5 (Approximate Nash equilibria maintain sign). Let (x̃, ỹ) and (x⋆,y⋆) be ϵ-approximate Nash
equilibria of the parameterized zero-sum game (A− 1λb⊤,−A+ 1λb⊤), so that x̃⊤a > λ and x⋆⊤a < λ.
Then, there exists (x,y) that is ϵ-approximate NE with x⊤a = λ.

8
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The lemma above answers our question in the following way: whenever a stationary point (x⋆,y⋆) of fλ(·, ·)
fails to be an ϵ-approximate Nash equilibria for the zero-sum and |x⊤a− λ| be less than or equal to ϵ, this
necessarily means that there does not exist any NE that satisfies that equation for that particular λ; otherwise,
any stationary point of fλ would suffice. More importantly, it implies that x⊤a− λ must maintain its sign
for any ϵ-approximate Nash equilibrium in the zero-sum game for that particular λ. In other words, if there
were a pair of Nash equilibria where (x⊤a− λ) has opposite signs, then according to Lemma 3.5, it would
guarantee the existence of a third solution where this difference equals zero.

In a similar spirit to Lemma 2.10, Lemma 3.5 serves as an invariant in our approach. Algorithm 1 performs
binary search to parameter λ. At each iteration, it employs Algorithm 2 to obtain an ϵ-approximate stationary
point of fλ. This solution either constitutes a Nash equilibrium of the rank-1 game (A,B) or indicates that
no Nash equilibrium exists for that particular λ and the specified precision ϵ. In the latter case, the sign of the
difference (x⊤a− λ) determines the next value of λ. For instance, if x⊤a− λ < −ϵ, then λ is updated as
λ = λ− 1

2k
; otherwise, if x⊤a− λ > +ϵ, then λ is set as λ+ 1

2k
.

In the final part, we introduce an efficient method for obtaining an ϵ-approximate stationary point of fλ
for a specific λ. Leveraging the structure of fλ, we utilize an Optimistic Multiplicative Weights Update
(OMWU), as detailed in Daskalakis & Panageas (2018a). This method offers two key advantages: it does
not require a projection step, which can be computationally expensive, and it achieves faster convergence
rates by incorporating optimism. A more comprehensive presentation of optimistic methods is deferred to
Appendix B. Lemma 3.6 provides us with a specific number of iterations required.

Lemma 3.6. Let (x(0),y(0)) be initialized as uniform vectors (1/n,1/m). Suppose that both players employ

OMWU for T = Ω
(

(lnn+lnm)
ϵ

)
with learning rates ηX = ηY = 1

16
√
2max{∥A∥2,∥a∥2}

and fixed λ. Then,

Algorithm 2 returns a pair of strategies
(
x(T ),y(T )

)
that guarantees the following.

Gap
(
x(T ),y(T )

)
= max

x∈∆n

fλ

(
x,y(T )

)
− min

y∈∆m

fλ

(
x(T ),y

)
≤ ϵ.

Also, it holds that
(
x(T ),y(T )

)
is an ϵ-approximate stationary point of fλ.

We are now prepared to present the main technical theorem that integrates all the components established
thus far into a concise statement

Theorem 3.7 (Main Result). Let (A,B) be a rank-1 game. Suppose that both players employ OMWU for

T = Ω
(

(logn+logm)
ϵ2 log( 1ϵ )

)
. Then, Algorithm 1 returns a pair of strategies (x⋆,y⋆) that constitutes an

18ϵ-approximate Nash equilibrium of the rank-1 game.

4 CONCLUSION

In this work, we examined the structural properties, as well as challenges, of rank-1 games, an important class
the generalizes over the well-understood zero-sum games. We introduced a decentralized learning procedure
that provable converges to a Nash equilibrium of the game. Nevertheless, a number of important questions
remain open. Proving a matching lower bound will certify the optimality of our solution. However, given
that our approach hinges on the idea of reducing a rank-1 game into a zero-sum game and then optimizing a
carefully crafted minmax problem, we presume that, unless an entirely different methodology or accelerated
methods are considered, our solution remains optimal. Furthermore, a fundamental question is whether our
approach, or one similar to it, can be extended further for rank-2 games.
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A APPENDIX

A.1 TWO-EXAMPLES OF SECTION 3.1

Example A.1. In this example, we demonstrate that an approximate Nash equilibrium of the zero-sum game
(A− 1λb⊤,−A+ 1λb⊤) does not constitute an approximate Nash Equilibrium of the rank-1 game, even
when we know a correct value of λ.

Let A− 1λb⊤ =
[

1 1
1−ϵ 1−ϵ

]
. This game has an exact NE of the form (x⋆,y⋆) = ((1, 0), (µ, 1− µ)) for any

µ ∈ [0, 1]. Additionally, (x̃, ỹ) = (( 12 ,
1
2 ), (

1
2 ,

1
2 )) is an ϵ

2 -approximate Nash equilibrium of the zero-sum
game (A− 1λb⊤,−A+ 1λb⊤)

x⋆⊤
(
A− 1λb⊤

)
y⋆ = 1 and x̃⊤ (

A− 1λb⊤
)
ỹ =

[
1
2

1
2

] [ 1 1
1− ϵ 1− ϵ

] [
1
2
1
2

]
= 1− ϵ

2

We now choose a = [1 2]
⊤ and b = [2 1]

⊤. Thus, setting λ = 1
(
:= x⋆⊤a

)
the rank-1 game is defined

as follows.

A =

[
1 1

1− ϵ 1− ϵ

]
+

[
2 1
2 1

]
=

[
3 2

3− ϵ 2− ϵ

]
and B =

[
−1 −1
1 + ϵ ϵ

]
We confirm that (x̃, ỹ) =

((
1
2 ,

1
2

)
,
(
1
2 ,

1
2

))
no longer qualifies as an ϵ

2 -approximate Nash equilibrium for the
original rank-1 game as the condition for the column player does not hold.

x̃⊤Bỹ − x̃⊤B

[
1
0

]
=

(
−1

4
+
ϵ

2

)
−

( ϵ
2

)
= −1

4

Specifically, this example highlights that irrespective of our knowledge of λ, an approximate NE of the
zero-sum game that does not satisfy x⊤a ≈ λ, cannot be a Nash Equilibrium in the original rank-1 game.
Example A.2. Let z⋆ = (x⋆,y⋆) be a NE of the bimatrix rank-1 game (A,B) = (A,−A + ab⊤). We
introduce the operator F ,

F (z) = F

([
x
y

])
= F

[
−Ay
−B⊤x

]
,

i.e. the gradient operator with respect to the underlying rank 1 game. We note that as both players aim to
maximize their payoff, the considered gradients come with a negative sign.

As described in Section 2.3, a recent literature line investigates structural properties of games that enable
learning procedure to converge to a Nash equilibrium, beyond the case of a monotone operator F . An example
of compelling criterion that guarantees convergence is the existence of solution to the Minty variational
inequality (MVI) problem Mertikopoulos et al. (2018) or the weak MVI problem Diakonikolas et al. (2021).
In this example, we show that there exists a game such that neither of those criterion does not hold.

(MVI) ⟨F (z), z − z⋆⟩ ≥ 0 for all z =

[
x
y

]
(weak MVI) ⟨F (z), z − z⋆⟩ ≥ −ρ

2
∥F (z)∥22 for all z =

[
x
y

]
where ρ ∈

[
0,

1

4L

)
13
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The parameter L is the Lipschitz constant of the operator F with respect to the ℓ2 norm: ∥F (z)−F (z′)∥2 ≤
L∥z − z′∥2. Now, as the set of solutions to the (weak) MVI is a subset to the solutions set of (SVI), we only
have to examine z⋆ = (x⋆,y⋆) that correspond to the Nash equilibrium of the following game.

A =

[
1 0
0 1

]
B =

[
1 −2
−1 0

]

⟨F (z), z − z⋆⟩ =
[
−Ay,−B⊤x

] [x− x⋆

y − y⋆

]
= −⟨x− x⋆,Ay⟩ − ⟨y − y⋆,B⊤x⟩

To calculate the Lipschitz constant, we can simply find the spectral norm of the block matrix C =
[

0 −A

−B⊤ 0

]
;

that is, L = ∥C∥2 = 2.288. This game has the two pure equilibria (x1,y1) = ((1, 0), (1, 0)) and (x2,y2) =
((0, 1), (0, 1)), and the mixed equilibrium (x3,y3) = (( 14 ,

3
4 ), (

1
2 ,

1
2 )). It is important to note that when

setting z = (x,y) to be another NE, the inequality must necessarily be less than or equal to zero (≤), as the
constituent terms (without the minus sign) are greater than or equal to zero (≥) by the definition of NE.

- (x⋆,y⋆) = (x1,y1) and (x,y) = (x2,y2).

⟨x2 − x1,Ay2⟩ = [−1 1]

[
0
1

]
= 1 > 0

- (x⋆,y⋆) = (x2,y2) and (x,y) = (x1,y1).

⟨x1 − x2,Ay1⟩ = [1 −1]

[
1
0

]
= 1 > 0

- (x⋆,y⋆) = (x3,y3) and (x,y) = (x1,y1).

⟨x1 − x3,Ay1⟩ =
[
3
4 − 3

4

] [1
0

]
=

3

4
> 0

Repeating the same procedure for the second term ⟨y − y⋆,B⊤x⟩, we get that ⟨F (z2), z2 − z1⟩ =
−2, ⟨F (z1), z1 − z2⟩ = −4, ⟨F (z1), z1 − z3⟩ = −9/4. Furthermore, it is relative straightforward to
verify that ∥F (z1)∥22 = 6, ∥F (z2)∥22 = 2, ∥F (z3)∥22 = 1. We readily conclude that neither the Minty or
weak Minty criterion is satisfied.

A.2 PROOF OF LEMMA 3.3

Lemma A.3 (Proof of Lemma 3.3). Let (x,y) be an ϵ-approximate Nash equilibrium of the zero sum game
with payoff (A− 1λb⊤) and |x⊤a− λ| ≤ ϵ. Then (x,y) is an (3ϵ)-approximate Nash equilibrium of the
rank-1 game (A,−A+ 1λb⊤).

Proof. From the definition of the Nash equilibrium for the row player, it holds that

14
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x⊤ (
A− 1λb⊤

)
y ≥ x′⊤ (

A− 1λb⊤
)
y − ϵ for every x′ ∈ ∆n

Since any x ∈ ∆n satisfies x⊤
1 = 1, it follows that x⊤

1(λb⊤) = (x⊤
1)(λb⊤) = (λb⊤).

x⊤Ay ≥ x′⊤Ay − ϵ for every x′ ∈ ∆n (3)

Thus, Equation (3) satisfies the Nash equilibrium condition of row player for the rank-1 game (A,−A+ab⊤);
hence they play approximate best response. Similarly, the Nash equilibrium condition for the column player
yields the following.

x⊤ (
A− 1λb⊤

)
y ≤ x⊤ (

A− 1λb⊤
)
y′ + ϵ

⇒ x⊤Ay ≤ x⊤Ay′ − λb⊤(y − y′) + ϵ

⇒ x⊤Ay ≤ x⊤Ay′ +
(
−x⊤a+ ϵ

)
b⊤(y − y′) + ϵ

⇒ x⊤Ay ≤ x⊤Ay′ − x⊤ab⊤(y − y′) + ϵ b⊤(y − y′) + ϵ

⇒ x⊤ (
A− ab⊤

)
y ≤ x⊤ (

A− ab⊤
)
y′ + 3 ϵ (4)

The last inequality follows from application the Cauchy-Schwarz 3 inequality and the triangle inequality:
⟨b,y−y′⟩ ≤ ∥b∥∞∥y−y′∥1 ≤ maxj∈[m]|bj | (∥y∥1 + ∥y′∥1) = 2. Equations (3) and (4) prove that (x,y)
satisfy the NE conditions of the game (A,−A+ ab⊤). Thus, (x,y) is an (3ϵ)-approximate NE.

A.3 PROOF OF LEMMA 3.4

Lemma A.4 (Proof of Lemma 3.4). Consider the function fλ(x,y) := x⊤ (
A− 1λb⊤

)
y − 1

2 (x
⊤a− λ)2.

f is concave with respect to x and convex (linear) with respect to y. Moreover, assume that the corresponding
zero-sum game has a ϵ-approximate Nash equilibrium (x⋆,y⋆) with |x∗⊤a−λ| ≤ ϵ. Then, any ϵ-approximate
stationary point (x̃, ỹ) of f must satisfy the following.

1. |x̃⊤a− λ| ≤
√
5ϵ.

2. (x̃, ỹ) must be an (6
√
ϵ)-NE of the zero-sum game (A− 1λb⊤,−A+ 1λb⊤).

Proof. Given that (x̃, ỹ) is an ϵ-approximate stationary point of f , it satisfies the following variational
inequalities (VI).

VI (1) ⟨∇xfλ(x̃, ỹ),x
′ − x̃⟩ = ⟨

(
A− 1λb⊤

)
ỹ −

(
x⊤a− λ

)
a,x′ − x̃⟩ ≤ ϵ ∀x′ ∈ ∆n

VI (2) ⟨∇yfλ(x̃, ỹ),y
′ − ỹ⟩ = ⟨

(
A− 1λb⊤

)⊤
x̃,y′ − ỹ⟩ ≥ −ϵ ∀y′ ∈ ∆m

First, we leverage the fact that f(·,y) is a concave function for any y, which implies that it satisfies the
inequality fλ(x′, ỹ) ≤ fλ(x̃, ỹ) + ⟨∇xfλ(x̃, ỹ),x

′ − x̃⟩. Therefore, when setting x′ = x⋆ and from VI (1)
and the fact |x⋆⊤a− λ| ≤ ϵ we obtain the following.

x⋆⊤
(
A− 1λb⊤

)
ỹ − 1

2

(
x⋆⊤a− λ

)2 ≤ x̃⊤ (
A− 1λb⊤

)
ỹ − 1

2

(
x̃⊤a− λ

)2

+ ϵ

3In its general form, the Cauchy-Schwarz inequality states |⟨a, b⟩| ≤ ∥a∥∥b∥∗, where ∥·∥ is any norm and ∥·∥∗ its
dual.
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x⋆⊤
(
A− 1λb⊤

)
ỹ − ϵ2

2
≤ x̃⊤ (

A− 1λb⊤
)
ỹ − 1

2

(
x̃⊤a− λ

)2

+ ϵ

x⋆⊤
(
A− 1λb⊤

)
ỹ ≤ x̃⊤ (

A− 1λb⊤
)
ỹ − 1

2

(
x̃⊤a− λ

)2

+ 2ϵ (5)

Furthermore, fλ(x, ·) is linear,for any x, which implies that it satisfies the equality fλ(x̃,y′) = fλ(x̃, ỹ) +
⟨∇yfλ(x̃, ỹ),y

′ − ỹ⟩ for any y′ ∈ ∆m. Therefore, when setting y′ = y⋆ and from VI (2) we obtain the
following.

x̃⊤ (
A− 1λb⊤

)
y⋆ − 1

2

(
x̃⊤a− λ

)2 ≥ x̃⊤ (
A− 1λb⊤

)
ỹ − 1

2

(
x̃⊤a− λ

)2

− ϵ

⇒ x̃⊤ (
A− 1λb⊤

)
y⋆ ≥ x̃⊤ (

A− 1λb⊤
)
ỹ − ϵ (6)

The last two inequalities follow from the approximate NE definition of (x⋆,y⋆), with x representing the
maximizer and y representing the minimizer.

x⋆⊤
(
A− 1λb⊤

)
y⋆ ≥ x̃⊤ (

A− 1λb⊤
)
y⋆ − ϵ (7)

x⋆⊤
(
A− 1λb⊤

)
y⋆ ≤ x⋆⊤

(
A− 1λb⊤

)
ỹ + ϵ (8)

We now have to combine appropriately the above four inequalities to prove the claim.

⇒ (6) x̃⊤ (
A− 1λb⊤

)
ỹ ≤ x̃⊤ (

A− 1λb⊤
)
y⋆ + ϵ

⇒ (7) ≤ x⋆⊤
(
A− 1λb⊤

)
y⋆ + 2ϵ

⇒ (8) ≤ x⋆⊤
(
A− 1λb⊤

)
ỹ + 3ϵ

⇒ (5) ≤ x̃⊤ (
A− 1λb⊤

)
ỹ − 1

2

(
x̃⊤a− λ

)2

+ 5ϵ

⇒ x̃⊤ (
A− 1λb⊤

)
ỹ ≤ x̃⊤ (

A− 1λb⊤
)
ỹ − 1

2

(
x̃⊤a− λ

)2

+ 5ϵ

⇒ |x̃⊤a− λ| ≤
√
5ϵ

The fact that (x̃, ỹ) constitutes a Nash Equilibrium (NE) of the parameterized zero-sum arises from the VI
(1), VI (2) in conjunction with the inequality we have just established.

VI (2) ⟨
(
A− 1λb⊤

)⊤
x̃,y′ − ỹ⟩ ≥ −ϵ⇒ x̃

(
A− 1λb⊤

)
ỹ ≤ x̃

(
A− 1λb⊤

)
y′ + ϵ

VI (1) ⟨
(
A− 1λb⊤

)
ỹ −

(
x̃⊤a− λ

)
a,x′ − x̃⟩ ≤ ϵ

⇒ x̃⊤ (
A− 1λb⊤

)
ỹ ≥ x′⊤ (

A− 1λb⊤
)
ỹ − (x̃⊤a− λ)⟨a,x′ − x̃⟩ − ϵ

⇒ x̃⊤ (
A− 1λb⊤

)
ỹ ≥ x′⊤ (

A− 1λb⊤
)
ỹ − 2

√
5ϵ− ϵ (9)

⇒ x̃⊤ (
A− 1λb⊤

)
ỹ ≥ x′⊤ (

A− 1λb⊤
)
ỹ − 6

√
ϵ

Equation (9) follows again from the Cauchy-Schwarz inequality along with the fact that |x⊤a− λ| ≤
√
5ϵ.

Therefore, we conclude that (x̃, ỹ) is an (6
√
ϵ)-approximate NE of the zero-sum game (A− 1λb⊤,−A+

1λb⊤).
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A.4 PROOF OF LEMMA 3.5

Lemma A.5 (Proof of Lemma 3.5). Let (x̃, ỹ) and (x⋆,y⋆) be ϵ-approximate Nash equilibria of the
parameterized zero-sum game (A − 1λb⊤,−A + 1λb⊤), so that x̃⊤a > λ and x⋆⊤a < λ. Then, there
exists (x,y) that is ϵ-approximate NE with x⊤a = λ.

Proof. It is a well-established fact that the set of (approximate) Nash equilibria (NE) in a zero-sum game
forms a convex set. In other words, any convex combination µ(x̃, ỹ)+(1−µ)(x⋆,y⋆), where µ ∈ [0, 1], also
constitutes a NE. Consequently, we consider a combination denoted as x, with the property that x⊤a = λ.
As explained earlier, this corresponding convex combination qualifies as an ϵ-NE.

A.5 PROOF OF MAIN RESULT

Theorem A.6 (Proof of Theorem 3.7). Let (A,B) be a rank-1 game. Suppose that both players employ

OMWU for T = Ω
(

(logn+logm)
ϵ2 log( 1ϵ )

)
. Then, Algorithm 1 returns a pair of strategies (x⋆,y⋆) that

constitutes an 18ϵ-approximate Nash equilibrium of the rank-1 game.

Proof. For a specific λ, we consider two cases. First, assuming that λ is correct, meaning that there exists an
O(ϵ)-approximate Nash equilibrium for the rank-1 game, if we run Algorithm 2 for T ≥ O

(
(logn+logm)

ϵ2

)
iterations, we obtain a pair (x̃, ỹ) that is an ϵ2-approximate point of fλ. By combining Lemma 3.4 and
Lemma 3.3, this pair constitutes a 18ϵ-approximate Nash equilibrium of the rank-1 game.

Conversely, if the value of λ is incorrect, it must be updated. Considering the sign of the difference (x⊤a−λ),
the parameter is updated according to the rule in Algorithm 1. Since Algorithm 1 needs at most K = log

(
1
ϵ

)
binary search steps, we conclude the aforementioned complexity.

B MIN-MAX OPTIMIZATION

B.1 BASIC BACKGROUND

In this section, we provide a concise overview of how online learning, particularly regret minimization, can
be employed to solve a saddle point problem. Most of the results described here can be referenced in Orabona
(2019). We examine the general saddle point problem, as defined in Section 2.3.

Definition B.1 (Saddle point problem). Let X ⊆ Rn and X ⊆ Rm and f : X × Y → R. A point
(x⋆,y⋆) ∈ X × Y is a saddle-point of f in X × Y if

f(x⋆,y) ≤ f(x⋆,y⋆) ≤ f(x,y⋆), ∀x ∈ X,y ∈ Y

We first describe the scenario where f is a convex-concave function, meaning that f(·,y) is convex for any
y ∈ Y , and f(x, ·) is concave for any x ∈ X . In this case, the minimax theorem v. Neumann (1928); Sion
(1958) states that:

Theorem B.2 (Minimax theorem v. Neumann (1928); Sion (1958)). Let X and Y be compact, convex subsets
of Rn and Rm respectively. Let f : X × Y → R a continuous, convex-concave function. Then, we have that

min
x∈X

max
y∈Y

f(x,y) = max
y∈Y

min
x∈X

f(x,y)
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Online Learning The saddle point problem can be reformulated as a regret minimization problem as
follows. We focus on the first player, whose goal is to minimize the function f(x) = maxy∈Y f(x,y), and
Player 2, whose objective is to maximize the function f(y) = minx∈X f(x,y).

Then the standard suboptimality gap, that describes the improvent of Player 1 over time, is

f(x(t))− min
x∈X

f(x) = max
y∈Y

f(x(t),y)− min
x∈X

max
y∈Y

f(x,y) (GapX )

Similarly, for Player 2, the corresponding measure would be:

max
y∈X

f(x,y)− f(y(t)) = max
y∈Y

min
x∈X

f(x,y)− min
x∈X

f(x,y(t)) (GapY )

By adding these two measures and combining them with Sion’s minimax theorem, we obtain the suboptimality
(Nash) gap.

max
y∈Y

f(x(t),y)−min
x∈X

max
y∈Y

f(x,y)+max
y∈Y

min
x∈X

f(x,y)−min
x∈X

f(x,y(t)) = max
y∈Y

f(x(t),y)−min
x∈X

f(x,y(t))

(Gap)

Regret We describe the process from the perspective of Player 1. In an online learning framework, the
learner chooses a strategy x(t) ∈ X at every round t ∈ [T ]. Then, the learner receives a linear loss function
ℓ
(t)
X (x). Based on the feedback received thus far, they update their strategy for the next round. The standard

objective is to minimize the cumulative external regret, defined as follows.

Regret(T )
X (x) :=

T∑
τ=1

ℓ
(τ)
X (x)−

T∑
τ=1

ℓ
(τ)
X (x(τ)),

where t ∈ [T ] is the time horizon. In other words, performance is evaluated based on the optimal fixed
strategy in hindsight. To provide further precision, it’s worth noting that regret is typically defined with
respect to the strategy x that maximizes Regret(T )

X (x). Nevertheless, for the sake of clarity in our explanation,
we will retain the previously stated definition.

Optimistic Regret Minimization Indeed, it is widely acknowledged that a wide range of online learning
algorithms, including Follow-The-Regularized-Leader (FTRL) Abernethy et al. (2008); Hazan & Kale (2010)
and Mirror Descent Nemirovskij & Yudin (1983), can guarantee O(

√
T ) regret under any sequence of

bounded utilities. However, when dealing with more predictable utilities, one can achieve even stronger
convergence guarantees. In recent years, several studies have explored this direction Chiang et al. (2012);
Rakhlin & Sridharan (2013); Syrgkanis et al. (2015). In our work, we focus on the optimistic mirror descent
algorithm, as detailed in Rakhlin & Sridharan (2013).

Optimistic Mirror Descent Suppose now that each player employs optimistic mirror descent. The feedback
that Player 1 receives in each round is set to ℓ(t)(x) = ⟨g(t)

X ,x⟩ where g
(t)
X = ∇xf(x

(t),y(t)), while Player
2 receives ℓ(t)(y) = ⟨g(t)

Y ,y⟩ where g(t)
Y = −∇yf(x

(t),y(t)). As usual, we consider the "one-recency bias"
prediction Syrgkanis et al. (2015), wherein g̃(t) = g(t−1).
Assumption B.3. Assume that f : X × Y → R is smooth in an open interval containing its domain, in the
sense that for any x,x′ ∈ X and any y,y′ ∈ Y , we have the following.

∥∇xf(x,y)−∇xf(x
′,y)∥X,∗ ≤ LXX∥x− x′∥X

∥∇xf(x,y)−∇xf(x,y
′)∥X,∗ ≤ LXY ∥y − y′∥Y

∥∇yf(x,y)−∇yf(x
′,y)∥Y,∗ ≤ LXY ∥x− x′∥X
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Algorithm 3: Solving Saddle Point Problem with Optimistic OMD Orabona (2022)
1 Require: λX > 0, λY > 0,x1 ∈ X,y1 ∈ Y

2 g
(0)
X = 0, g

(0)
Y = 0

3 for t = 1, · · · , T do
4 g

(t)
X = ∇xf(x

(t),y(t))

5 g
(t)
Y = −∇yf(x

(t),y(t))

6 x(t+1) ∈ argminx∈X⟨2g(t)
X − g

(t−1)
X ,x⟩+ λXBψX

(x;x(t))

7 y(t+1) ∈ argminy∈Y ⟨2g
(t)
Y − g

(t−1)
Y ,y⟩+ λYBψY

(y;y(t))

8 return x(T ) = 1
T

T∑
t=1

x(t),y(T ) = 1
T

T∑
t=1

y(t)

∥∇yf(x,y)−∇yf(x,y
′)∥Y,∗ ≤ LY Y ∥y − y′∥Y

where ∇x and ∇y denote the gradients with respect to x and y respectively. We denote by (∥·∥X , ∥·∥)X,∗
and (∥·∥Y , ∥·∥)Y,∗ the pair of dual norms in X and Y .

The following theorem, originally proven in Rakhlin & Sridharan (2013), has been cited from Orabona
(2022).
Theorem B.4. Orabona (2022) Let f : X × Y → R a convex-concave function satisfying the Assump-
tion B.3. For a fixed α > 0, let λX ≥ 2

√
2(LXX + LXY /α) and λY ≥ 2

√
2(LY Y + LXY /α). Let

ψX : X → R be 1-strongly convex w.r.t. ∥·∥X and ψY : Y → R be 1-strongly convex w.r.t. ∥·∥Y . Assume
argmaxy∈Y f(x

(T ),y) and argminx∈X f(x,y
(T )) are non-empty. Then, we have

max
y∈Y

f(x(T ),y)− min
x∈X

f(x,y(T )) ≤
BψX

(x(T );x(1)) +BψY
(y(T );y(1)) +

∥g(1)
X ∥2

X,∗
λX

+
∥g(1)

Y ∥2
Y,∗

λY

T

where x(T ) = 1
T

T∑
t=1

x(t),y(T ) = 1
T

T∑
t=1

y(t).

Lemma B.5 (Lemma 16 Shalev-Shwartz (2007)). ψ(x) =
n∑
i=1

xi lnxi is 1-strongly convex with respect to

the L1 norm over the simplex ∆n := {x ∈ Rn : xi ≥ 0, ∥x∥1 = 1}.

B.2 PROOF OF LEMMA 3.6

In the proof of the lemma, we consider the function fλ(x,y) = x⊤(A− 1λb⊤)y − 1
2 (x

⊤a− λ)2, where
x is the maximizer and y is the minimizer in our context, and we define X := ∆n and Y := ∆m. Due to
this, we select the negative entropy as the regularizer for both X and Y , that is, ψX(x) =

∑n
i=1 xi lnxi.

According to Lemma B.5, this choice ensures that the regularizer is 1-strongly convex concerning the L1

norm, satisfying some of the conditions outlined in Theorem B.4.

Next, we examine whether Assumption B.3 are satisfied. Instead of deriving each constant individually,
we utilize Proposition B.6. The Hessian matrix of fλ is a block matrix composed of four blocks, Hfλ =(

aa⊤ A
A⊤ 0

)
. Therefore, we can readily bound each constant LXX , LXY , LY Y by 4 max{∥A∥2, ∥a∥2}.

Proposition B.6 (Claim C.2 Leonardos et al. (2021)). Consider a symmetric block matrix C with n × n
matrices so that ∥Cij∥2 ≤ L. Then, it holds that ∥C∥2 ≤ nL. In other words, if all block matrices have
spectral norm at most L, then C has spectral norm at most nL.

19



Published as a conference paper at ICLR 2024

Regarding the initial Bregman divergences BψX
(x(T );x(1)) and BψY

(y(T );y(1)), it’s worth noting that
when x(1) and y(1) are initialized to the uniform distribution, they are both upper-bounded by lnn and lnm,
respectively:

BψX
(u;x) =

n∑
i=1

ui lnui + lnn ≤ lnn and BψY
(u;y) =

m∑
j=1

uj lnuj + lnm ≤ lnm

Lastly, we will bound the dual norm of the gradients vector. For the sake of completeness, we will present the
upper bound for ∥g(1)

X ∥2X,∗.

∥g(1)
X ∥X,∗ = ∥g(1)

X ∥∞ ≤ ∥(A− 1λb⊤)y∥∞ + |x⊤a− λ|∥a∥∞
≤ max

i∈[n]
{(A− 1λb⊤)iy}+ 3∥a∥∞ ≤ (Amax + 1) + 3

∥g(1)
Y ∥Y,∗ = ∥g(1)

Y ∥∞ ≤ ∥(A− 1λb⊤)⊤x∥∞ ≤ (Amax + 1)

Lemma B.7 (Proof of Lemma 3.6). Let (x(0),y(0)) be initialized as uniform vectors (1/n,1/m). Sup-

pose that both players employ OMWU for T = Ω
(

(lnn+lnm)
ϵ

)
with learning rates ηX = ηY =

1
16

√
2max{∥A∥2,∥a∥2}

and fixed λ. Then, Algorithm 2 returns a pair of strategies
(
x(T ),y(T )

)
that guarantees

the following.

Gap
(
x(T ),y(T )

)
= max

x∈∆n

fλ

(
x,y(T )

)
− min

y∈∆m

fλ

(
x(T ),y

)
≤ ϵ.

Also, it holds that
(
x(T ),y(T )

)
is an ϵ-approximate stationary point of fλ.

Proof. As mentioned previously, all the assumptions and required conditions of Theorem B.4 have been
satisfied. By setting α = 1, λX = λY = 16

√
2 max{∥A∥2, ∥a∥2}, bounding ∥g(1)

X ∥2X,∞, ∥g(1)
Y ∥2Y,∞ by

(Amax + 4) and T ≥ O( lnn+lnm
ϵ ), we obtain the following results from Theorem B.4.

max
x∈∆n

fλ(x,y
(T ))− min

y∈∆m

fλ(x,y
(T )) ≤ ϵ

The fact that (x(T ),y(T )) is an ϵ-stationary point can be deduced from the definition of the Nash Gap, the
non-negativity of both terms, and the definition of a convex-concave function for fλ.

C EXPERIMENTS

In this section, we provide experimental evaluation supporting our theoretical finding. Here we restrict to a
single example, while we also provide an anonymous repository containing multiple rank-1 games of multiple
sizes

A =


−0.10 0.50 0.50 −0.00 −0.30
0.00 −0.10 −0.30 0.10 −0.20
−0.10 −0.20 −0.30 0.00 −0.30
−0.30 0.20 −0.10 −0.20 0.00
−0.40 −0.20 −0.30 0.40 −0.30

 a =


0.60
0.80
0.80
0.00
0.10

 b =


0.30
1.00
0.50
0.60
0.10
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(a)

(b)

Figure 1: In Figure 1a, we observe how the strategies of the players evolve over time when they employ vanilla OGA,
alongside with the Nash gap–as defined in (Gap). In Figure 1b, we plot the respective trajectories on the simplex signifying
that OGA enter a limit cycle.

We constructed a random 6× 6 game defined by the matrix A, and the vectors a, b. Then, the payoff matrix
of the second player is derived as usual: B = −A+ab⊤. Our solution delineated in Section 3.2 is compared
against a (vanilla) optimistic variant of mirror descent. More specifically, our tests were performed with
(optimistc) gradient ascent (OGA) instead of multiplicative weights to avoid any numerical imprecision that
might arise due to exponentiation.

In Figure 1, we (experimentally) verify that OGA enters a limit cycle, whereas our solution Figure 2 reaches
a Nash equilibrium. While this game may not have a natural interpretation initially, given their random
construction, it is worth noting that constructing random games where OGA provably enters a limit cycle is
rather challenging. This difficulty is further explained by the recent work Anagnostides et al. (2022a).
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(a)

(b)

Figure 2: In Figure 2a, we observe how the strategies of the players evolve over time when they employ Algorithm 1,
alongside with the Nash gap–as defined in (Gap). In Figure 2b, we plot the respective trajectories on the simplex as well.
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