
Under review as a conference paper at ICLR 2021

DYNAMIC PROBABILISTIC PRUNING: TRAINING
SPARSE NETWORKS BASED ON STOCHASTIC AND
DYNAMIC MASKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep Learning (DL) models are known to be heavily over-parametrized, resulting
in a large memory footprint and power consumption. This hampers the use of such
models in hardware-constrained edge technologies such as wearables and mobile
devices. Model compression during training can be achieved by promoting sparse
network structures both through weight regularization and by leveraging dynamic
pruning methods. State-of-the-art pruning methods are however mostly magnitude-
based which impedes their use in e.g. binary settings. Importantly, most of the
pruning methods do not provide a structural sparsity, resulting in inefficient memory
allocation and access for hardware implementations. In this paper, we propose
a novel dynamic pruning solution that we term Dynamic Probabilistic Pruning
(DPP). DPP leverages Gumbel top-K sampling to select subsets of weights during
training, which enables exploring which weights are most relevant. Our approach
allows for setting an explicit per-neuron layer-wise sparsity level and structural
pruning across weights and feature maps, without relying on weight magnitude
heuristics. Relevantly, our method generates a hardware-oriented structural sparsity
for fully-connected and convolutional layers that facilitates memory allocation and
access, in contrast with conventional unstructured pruning. We show that DPP
achieves competitive sparsity levels and classification accuracy on MNIST and
CIFAR-10, CIFAR-100 datasets compared to a state-of-the-art baseline for various
DL architectures while respecting per-neuron sparsity constraints.

1 INTRODUCTION

The evident success of Deep Learning (DL) models is accompanied by a steadfast growth in the
number of hyperparameters and computational cost. This has become a bottleneck for hardware
deployment, which is constrained to certain computational and memory budget. For instance, VGG-
16 architecture with 14.7M weights occupies more than 500 MB of storage and performs 1.6 x 1010

floating-point arithmetic operations (Cheng et al., 2019), (Sze et al., 2017), contrasting FPGA-based
platforms which are constrained to a few thousand computing operations, unsuitable for large DL
model implementations. These constraints have hindered the deployment of DL models in embedded
and portable systems. To circumvent such issues, different solutions have been proposed such as
quantization (Hubara et al., 2016) (and in the extreme case binarization (Courbariaux & Bengio,
2016)), knowledge distillation (Hinton et al., 2015) and weight sharing (Han et al., 2016).

In terms of memory reduction, one attractive solution is model compression by pruning, which
has gained notable attention since their performance yields state-of-the-art results of non-pruned
counterparts. Pruning methods can be subdivided into structured and unstructured pruning. Structured
pruning methods remove structures at the level of e.g. layer, channels, or individual filters (Liu et al.,
2019). Unstructured pruning is a process in which a fraction of weights is set to zero. Coincidentally,
similar behavior is found in biological neurons, based on the fact that a fraction of biological synapses
in the human brain are also removed during human growth (Chechik et al., 1999). Remarkably,
pruning has been shown toprevent overfitting as well (LeCun et al., 1990) (Hanson & Pratt, 1989).
Further, it was actually demonstrated that DL models possess a high level of redundancy (Denil et al.,
2013). This over-parametrization is highly costly in terms of memory and power resources when

1

Under review as a conference paper at ICLR 2021

implementing such a model in hardware. Generally, structured and unstructured pruning offers a
considerable reduction in the number of parameters and model complexity.

However, two disadvantages arise for conventional unstructured sparse weights. The first one is
related to the irregular distribution of their resulting sparse matrices that leads to inefficiencies in
terms of memory access and allocation in current hardware platforms (Zhang et al., 2015) (Zhang
& Li, 2017). This problem may be solved by the use of structured pruning, however structured
pruning generally aims to prune channels and filters, rather than individual weights of fully-connected
layers (which for certain architectures consumes most of the memory). The second disadvantage of
current pruning methodologies is the lack of integration of existing pruning algorithms with other
compression techniques such as quantization and its extreme binarization.

Therefore, we propose a framework that naturally generates a structured sparsity for both, fully-
connected and convolutional layers. The framework is capable of integrating both pruning and
binarization, to benefit from both techniques. The proposed method exploits the notion of Deep
Probabilistic Subsampling (DPS) (Huijben et al., 2020a) to dynamically generate stochastic pruning
masks, which are independent of the magnitude of the weights, allowing for direct applications to
quantized and even binary weight values. The main contributions of this work are the following:

• This framework generates a hardware-oriented sparse structure for fully-connected and
convolutional layers (kernel weights and feature maps), which facilitates memory allocation
and access.

• We adopt a layer-wise sparsity level that can be selected by the user, which is beneficial in
case of hardware constraints that dictate a maximum memory usage.

• The historical importance of weights is maintained, i.e. our framework allows re-wiring
during training.

• It allows for pruning of quantized or even binary sparse models, producing ultra compressed-
models with low-memory and low-complexity, suitable for further dedicated hardware.

• Leveraging the probabilistic nature of DPP, we propose novel information-theoretic metrics
that capture the confidence and diversity of the pruning masks among neurons.

2 RELATED WORK

2.1 PRUNING TECHNIQUES

Early work (LeCun et al. (1990); Hassibi et al. (1994)) has shown that pruning is an effective
technique to dramatically reduce connections of a neural network, while maintaining state-of-the-art
performance. The conventional pruning methodology is based on a three-stage pipeline: full model
training, pruning, and fine-tuning. For instance Han et al. (2015) proposed a three-stage pipeline
pruning technique, which requires a post fine-tuning of the weights, which further was extended to
Deep compression (Han et al., 2016). Nevertheless, the major drawback of this method is the lack of
simultaneous co-optimization for both weights and sparse topology. Other remarkable works perform
pruning before training has started, identifying structurally important connections (Lee et al.)

Recent works have indeed proposed joint optimization of the network’s parameters network and
its sparse distribution during the training (dynamic pruning), where this joint learning is based on
magnitude-pruning. And Zhu & Gupta (2017) adopts the idea of dynamic pruning based on the
gradual increment of sparsity during training, which was further extended to Recurrent Networks
by Narang et al. (2017). Bellec et al. (2018) is another magnitude-based pruning framework in
which a minimal sparsity value is set, allowing re-wiring during training. More close to a biological
behavior, Mocanu et al. (2018) proposes a random remove-and-add-weights approach (SET or Sparse
Evolutionary Training) based on a fixed sparsity level. Further Mostafa & Wang (2019) proposes a
Dynamic Sparse Reparametrization (DSR) based on loss gradients and sparsity distributed among
layers. Dettmers & Zettlemoyer (2019) proposes a sparse momentum by identifying the layers and
weights which significantly reduced the error (momentum of each layer). A most recent approach (Liu
et al., 2020) provides a method to perform a fine-grain pruning schedule, with filter-wise trainable
thresholds based on a piecewise polynomial function. (Lin et al., 2020) proposes a dynamic allocation
of the sparsity pattern, incorporating a feedback signal to reactivate prematurely pruned weights. An

2

Under review as a conference paper at ICLR 2021

approach that differs from magnitude-based methods was proposed by (Molchanov et al., 2017) in the
form of Sparse Variational Dropout, a modification of Variational Dropout with individual dropout
rates per weight. This leads to highly sparse solutions both in fully connected and convolutional
layers.

2.2 HARDWARE-ORIENTED PRUNING TECHNIQUES

As a complement of weight pruning, other works have explored pruning at the architectural level
such as pruning channels, filters or layers. This approach offers a better solution to handle sparse
arrangements for hardware platforms. In fact, Liu et al. (2019) has experimentally shown that rather
than eliminating weight connections, pruning at the architectural level may offer more benefits
to reduce memory, while retaining state-of-the-art accuracy. For achieving structured pruning,
magnitude-based methods are commonly used, e.g. based on the absolute magnitude of the sum of the
weights (Li et al., 2017). Simultaneously, Wen et al. (2016) proposed the Structured Sparsity Learning
(SSL) method to regularize filter, channel, and depth structures. Different from the magnitude-based
approaches, (Hu et al., 2016) relies on the output of activation layers and calculates an average
percentage of zeros as a weighting for the filter relevance. On the other hand, the structured pruning
approach has not been transferred to fully-connected layers, which for certain architectures consume
the largest percentage of memory. In the case of individual weight pruning, the irregular weight
distribution prevents translating pruned weight into memory reduction in hardware implementations.
There are already several works addressing this issue at hardware level. These works have proposed
compressing coding techniques for sparse weights, however they usually require extra arrays for
pointing the coordinates of the non-zero weights (Lu et al., 2019), (Zhang et al., 2019), (Dey et al.,
2018) (Niu et al., 2019). Since the sparse distribution is typically irregular, this leads to inefficient
memory access.

3 PROPOSED METHODOLOGY

3.1 NOTATION

We introduce a neural networkM with L layers, each indexed with i. Each layer is parametrised
by a (possibly multi-dimensional) matrixW (i), and a bias vector, which we ignore in our notation
for sake of simplicity. We denote the functionality of each layer with g(i)W (·), where its specific
meaning depends on the layer being e.g. fully-connected or convolutional, and linearly or non-
linearly activated. The output of the ith layer can then be defined as x(i) = g

(i)
W (x(i−1)) , where

x(i−1) is its input with size.

3.2 DYNAMIC MASKING BASED ON PROBABILISTIC SUBSAMPLING

We aim to optimize the parameters of networkM while simultaneously learning to prune this model.
In this section we explain how this joint learning is achieved.

For all layers i ∈ {1, . . . , L}, we introduce a binary maskMΦ(i) ∈ {0, 1}, parametrised by Φ(i). By
means of element-wise multiplication it activates a subset of the elements inW (i) or x(i), effectively
pruningM. Generation of these masksMΦ(i) follows the DPS-topK framework, recently proposed
by Huijben et al. (2020a), on which we will elaborate here.

Huijben et al. (2020a) propose an end-to-end framework for joint learning of a discrete sampling
mask with a downstream task model by introducing DPS; a parametrized generative sampling model:

P (MΦ(i) |Φ(i)). (1)

Parameters Φ(i) ∈ RD×C are defined as the unnormalized log-probabilities of D (≥ 1) independent
multinomial distributions with each C classes. We index the rows and columns of Φ by d, and c
respectively, both starting from 1.

We sample one realization from each of the D distributions, where each realization is defined as a
K-hot vector. A K-hot vector contains K ones at the selected indices, and C −K zeros at the other
positions. Similarly as in Huijben et al. (2020a;b), we adopt Gumbel top-K sampling (Gumbel, 1954;

3

Under review as a conference paper at ICLR 2021

Figure 1: An illustration of the deep probabilistic pruning framework (for layer i) for dynamic
masking of weights W with a stochastic mask M̃Φ(i) . This mask is generated by sampling from a
categorical distribution with probabilities that are jointly learnt with the weights W . The ∗ symbol
indicates element-wise multiplication.

Kool et al., 2019) to create this K-hot vector realization from each dth distribution, parametrised by
φ

(i)
d . For each d in D, this can be formulated as follows:

m̃
φ

(i)
d

= Khot
{

topK
c∈{1...C}

(φ
(i)
d + α · e(i)d)

}
, (2)

where e(i)d ∈ R1×C are i.i.d. Gumbel noise samples from Gumbel(0, 1), scaled with a scalar
0 < α ≤ 1, and Khot(·) creates a K-hot encoded row from the returned indices by topK(·). Scaling
of the added Gumbel noise with α was heuristically found to improve optimization during training.

These D realizations together result in a sampling mask M̃Φ(i) that only activates D × K of its
inputs. We can now interpret each element in Φ(i) as the (unnormalized) log-probability of activating
a candidate element inW (i) or x(i) by our pruning mask.

During backpropagation the Khot ◦ topK operation must be relaxed as it is non-differentiable.
To this end, we can covert it into Kargmax operations that together create a K-hot vector by
sampling without replacement among each sampling action. Each argmax can be relaxed by
replacing it with a temperature (τ)-parameterised softmaxτ (·) function to allow flow of gradients to
Φ(i)∀i ∈ {1, . . . , L} (Maddison et al., 2017; Jang et al., 2016; Xie & Ermon, 2019; Huijben et al.,
2020a;b).

Our proposed incorporation of DPS for model pruning will be referred to as Dynamic Probabilistic
Pruning (DPP) in the rest of this paper. It is important to emphasize the difference in DPP’s behavior
during training the model, and implementing it to generate a final pruned model after convergence.
During training, the unnormalized log-probabilities Φ(i) of the multinomial distribution(s) for layer i
are constantly being updated, therefore causing different masks to be generated for each element in
the mini-batch, allowing the model to explore different combinations of selected candidate elements.
During inference, one mask M̃Φ(i) per layer will be drawn from the trained log-probabilities Φ(i)

that is then used to prune the model (Fig.1).

3.3 CASE-SPECIFIC PRUNING BASED ON DPP

Generally speaking, DPP acts as a selector, producing a mask that connects each output node to K
non-zero input nodes. In this work, experiments with DPP are performed for three scenarios that
differ in the parts of the model that are learned to be pruned:

(a) Weight pruning of fully-connected layers: in this scenario, C is the number of neurons
in layer i− 1 and D is the number of neurons in layer i. DPP operates on C ×D weights,

4

Under review as a conference paper at ICLR 2021

representing the C ×D connections between the fully-connected layers, and learns to select
K connections out of C values for each D (Fig.2a).

(b) Convolutional weight kernel pruning: for this case, D corresponds to the number of
feature maps in layer i− 1, while C corresponds to the number of elements in the kernels of
layer i. In other words, DPP learns to select K weights per kernel to be connected to each
feature map of layer i− 1 (Fig.2b).

(c) Feature map pruning of convolutional layers: this particular scenario considers D=1,
and C is the number of feature maps of layer i. Then DPP learns to select K feature maps
of layer i (Fig.2c). The motivation for this setting is driven by the fact that a higher level of
structured pruning (e.g. pruning channels or feature maps) is more suitable for hardware
implementation than unstructured pruning as described in Section 2.2

Important to notice is that case (a) and (b) also promote a level of structured pruning by attaining
each output node to the same number of input nodes. This contrasts with most of the state of the art
of weight pruning, in which an irregular sparse distribution is generated, which is more inconvenient
for hardware designs.

Figure 2: Visualization of the three scenarios for which we add experiments with DPP. All adopted
values are illustrative. a. Fully-connected weight pruning (example 3 inputs 4 outputs, K = 1), b.
kernel weight pruning (example 2x2 kernel and 3 channels, K = 2), and c. feature map pruning
(example K = 3). The three scenarios offer a level of structured pruning, where black squares denote
selected connections.

3.4 INFORMATION-THEORETIC METRICS ON SPARSITY CONFIDENCE AND DIVERSITY

We are interested in the randomness and diversity of the pruning patterns among the neurons in a
layer, and how these progress during training. The probabilistic nature of DPP enables the use of the
information theoretic measures of entropy and mutual information to evaluate this. We consider the
case of per-neuron weight pruning as described in Section 3.3 for case (a) and (b).

We can measure the average entropy from D pruning distributions over c neurons on the ith-layer
mask marginal probabilities {π(i) ∈ RD×C : 0 ≤ π(i)

d,n ≤ 1,
∑
n π

(i)
d,n = K}. No tractable function

exists to compute marginal probabilities π from the unnormalized log-probabilities in Φ. Instead
we can easily take a Monte Carlo estimate by computing the average of T realizations of the K-hot
masksm(i)

d ∈ {0, 1}1×C :

π(i) ≈ 1

T

T∑
t=1

M̃Φ(i) , M̃Φ(i) ∼ P (MΦ(i) |Φ(i)), (3)

5

Under review as a conference paper at ICLR 2021

which can be effectively estimated in parallel after every epoch for T = 100 at a negligible computa-
tional penalty. It’s trivial to show that the entropy of any Gumbel-top-K distributed variable x can be
computed using the typical Shannon entropy H(x) = −

∑C
i=1 P (i ∈ x) logP (i ∈ x) and is upper

bounded by −K log(K/C). As such, we can compute

AveragePruneEntropy(i) =
1

D

D∑
d=1

[−
C∑
n=1

π
(i)
d,n logπ

(i)
d,n]. (4)

Intuitively, this measures how confident the sparsity patterns are on average for the neurons of layer
i. Furthermore, we can measure the diversity of sparsity patterns among the neurons in a layer by
measuring the mutual information between the neuron-specific mask random variable m(i) and the
output neuron index d, which we call the PruningDiversity metric:

PruningDiversity(i) = I(m(i), d) = H(m(i))−H(m(i)|d) (5)

= EntropyAverageMask(i) −AveragePruneEntropy(i)

(6)

π̃(i) =
1

D

D∑
d=1

π
(i)
d

EntropyAverageMask(i) = −
C∑
n=1

π̃(i)
n log π̃(i)

n . (7)

4 EXPERIMENTS

We first assess DPP for pruning connections between neurons on small convolutional and fully
connected architectures for the MNIST dataset (case (a) and (b) of section 3.3). Additionally, we
will demonstrate the performance in combination with binary weights (Courbariaux et al., 2015).
Across these experiments, we set a K value per layer, which determines the exact number of active
inputs assigned to each output neuron. The classification layer is not pruned and thus remains fully
connected.

Finally, we test DPP for feature map pruning in deep convolutional networks (case (c) of section 3.3).
For this case, we use K as a selector of the number of feature maps that must remain active in each
layer, while for fully-connected layers, K selects the number of active inputs assigned to each output
neuron.

For all experiments, we use the categorical cross-entropy as loss function, and we penalize the
unnormalized log-probabilities with the entropy penalty function used by Huijben et al. (2020a). In
addition, we train all our models from scratch, without using any pre-trained model. Finally, the
parameter α (scaling factor for Gumbel noise) is heuristically tuned, since the latter technique is
empirically observed to improve the performance of our sparse models for values α < 1.

4.1 LENET ON MNIST

We evaluate DPP first on MNIST benchmark dataset consisting of a total of 70,000 grayscale images
of handwritten digits having a size of 28 × 28 pixels. We use 60,000 images for training and 10,000
images for testing. We evaluate the performance on 2 architectures. First, we use LeNet 300-100
(Lecun et al., 1998), which consists of two fully-connected layers of 300 and 100 units, respectively.
For this experiment, we use case (a) of section 3.3.

Second, we use LeNet-5 Caffe, which consists on two convolutional layers (20 and 50 filters
respectively) followed by one fully-connected layer and a classification layer (Lecun et al., 1998).
For this experiment, we use case (b) for the convolutional part, and section (a) for the fully-connected
stage. We compare our experiments with the recent work of Liu et al. (2020), which proposes a
similar approach based on dynamic masking, but with an unfixed sparsity. Results are shown in Table
1. Training was done with a learning rate of 0.001 using the Adam optimizer, and a batch size of 8 for
LeNet 300-100 and 16 for LeNet-5. All weights are initialized based on Xavier uniform initialization.
In both cases, LeNet300-100 and LeNet5 Caffe, we obtain competitive accuracies in comparison with
our baselines, with higher sparsity levels.

6

Under review as a conference paper at ICLR 2021

Table 1: Experimental results of DPP for MNIST dataset using LeNet architectures

Network Model Remaining parameters (%) Accuracy (%)

DPP (This work) 1.95 97.90
LeNet300-100 (Liu et al., 2020) 2.24 98.03

Non-pruned baseline 100 98.16

DPP (This work) 1.51 99.07
LeNet5-Caffe (Liu et al., 2020) 1.68 98.94

Non-pruned baseline 100 99.18

4.2 VGG-16 AND MOBILENET V1 ON CIFAR-10 AND CIFAR-100

We evaluate DPP for structured pruning feature maps and the fully-connected layers on VGG-16
(Simonyan & Zisserman, 2015), which consists of 13 convolutional layers. Additionally, we use two
fully-connected layers. For this experiment, we use case (c) for the convolutional stage, and case (a)
for the fully-connected stage (Table 2).

Training details for CIFAR-10 and CIFAR-100 include a learning rate schedule, which is decreased
by half every 40 epochs. SGD optimizer is used with momentum=0.9. Data augmentation is used
for this experiment. All weights are initialized based on He normal initialization. We compare our
experiments with the recent work of (Liu et al., 2020), and with a magnitude-based pruning method
(TensorFlow Model Optimization toolkit) with fixed sparsity.

Table 2: Experimental results of DPP for CIFAR-10 and CIFAR-100 datasets using VGG-16 and
MobileNet v1 architectures

Dataset Network Model Remain.(%) Accuracy(%) Fixed
Sparsity

CIFAR-10
VGG-16 DPP (This work) 12.14 93.36 Yes

(Liu et al., 2020) 8.82 93.93 No
Magnitude-based 10 88.59 Yes
Non-pruned baseline 100 93.75 -

MobileNet v1 DPP (This work) 36.95 93.14 Yes
Magnitude-based 37 92.7 Yes
Non-pruned baseline 100 93.67 -

CIFAR-100
VGG-16 DPP (This work) 18.8 70.32 Yes

Magnitude-based 19 68.9 Yes
Non-pruned baseline 100 70.40 -

MobileNet v1 DPP (This work) 40 72.35 Yes
Magnitude-based 40 70.19 Yes
Non-pruned baseline 100 72.50 -

4.3 SPARSE BINARIZATION ON MNIST

We then turn to assess the performance of DPP for networks with binary parameters. Note that this is
possible with DPP since it does not rely on the magnitude of the weights for sparsification.

We train our binary weights using the BinaryConect method (Courbariaux et al., 2015). Results using
DPP are shown in Table 3. To the best of our knowledge, there is no existing method that integrates
pruning and binarization for LeNet on MNIST, therefore, DPP is compared with its non-pruned
baseline. For both architectures, very competitive test accuracies are obtained, and in the case of
LeNet-5, the sparse model outperforms its non-pruned counterpart.

For binary LeNet300-100, we use a learning rate of 0.001 with the Adam optimizer (momentum=0.9),
and batch size of 16. For binary LeNet-5, we use a learning rate of 0.01 and a batch size of 512.

7

Under review as a conference paper at ICLR 2021

While the attainable sparsity for these binary networks is reduced compared to its full-precision
counterparts, the combination of both model compression techniques (pruning + binarization) could
be used to deploy models at hardware level with lower memory.

Table 3: Experimental results of DPP for MNIST dataset using binary LeNet architectures

Network Model Remaining parameters (%) Accuracy (%)

LeNet300-100 DPP (This work) 21 96.81
Non-pruned baseline 100 97.9

LeNet5-Caffe DPP (This work) 4.1 98.36
Non-pruned baseline 100 98.1

4.4 ANALYSIS OF SPARSITY BELIEF OVER TIME

We visualize the metrics in figure 3, normalized by the upper bound of the entropy to faciliate
straightforward comparison between layers. Recall that high entropy of the average mask indicates
diversity among the neurons in a layer, low conditional entropy indicates confidence in a specific
pattern and high mutual information indicates both diversity and confidence.

We find an interesting dynamic where each of the neurons quickly learns a pattern with high
confidence, but then reduces confidence again. Finally, the patterns slowly converge to a more
confident distribution. This might facilitate quickly reaching an optimum followed by some additional
exploration.

Figure 3: PruningDiversity metrics for both the first layer, I(m(1), d), and the second I(m(2), d), of
LeNet300-100 on MNIST. The AveragePruneEntropy and EntropyAverageMas are also shown
for both layers.

5 DISCUSSION

In this paper, we propose dynamic probabilistic pruning (DPP), an algorithm that enables training
sparse networks based on stochastic and dynamic masking. DPP learns to prune by selecting a set
amount of connections between input and output nodes. Remarkably, DPP enables structured pruning
for fully-connected and convolutional layers, suitable for hardware implementations. Leveraging its
probabilistic nature, we showed how one can assess the confidence and diversity of pruning masks
among neurons by monitoring proposed information-theoretic metrics. Since DPP does not rely on
magnitudes for determining the relevance of weights, it can be straightforwardly integrated with
weight binarization. We test its performance for three benchmark datasets and obtain competitive
accuracies for different architectures. In concussion, our method generates ultra-compressed models,
allowing the integration of binarization and pruning, while providing a level of structured sparsity,
enabling a more efficient implementation on existing hardware platforms. Further, integration of DPP
and quantization should be explored, and an evaluation of the trade-off between accuracy, sparsity
and quantization level should be performed.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert A. Legenstein. Deep rewiring:
Training very sparse deep networks. 2018.

G. Chechik, I. Meilijson, and E. Ruppin. Neuronal regulation: A mechanism for synaptic
pruning during brain maturation. 11(8):2061–2080, 1999. ISSN 0899-7667. doi: 10.1162/
089976699300016089.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A Survey of Model Compression and Acceleration
for Deep Neural Networks. arXiv:1710.09282 [cs], September 2019. URL http://arxiv.
org/abs/1710.09282. arXiv: 1710.09282.

Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neural networks with weights
and activations constrained to +1 or -1. CoRR, abs/1602.02830, 2016. URL http://arxiv.
org/abs/1602.02830.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. CoRR, abs/1511.00363, 2015. URL
http://arxiv.org/abs/1511.00363.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc{\textbackslash}textquotesingle Aurelio Ranzato,
and Nando de Freitas. Predicting parameters in deep learning. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger (eds.), Advances in Neural Information
Processing Systems 26, pp. 2148–2156. Curran Associates, Inc., 2013. URL http://papers.
nips.cc/paper/5025-predicting-parameters-in-deep-learning.pdf.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. 2019. URL http://arxiv.org/abs/1907.04840.

S. Dey, D. Chen, Z. Li, S. Kundu, K. Huang, K. M. Chugg, and P. A. Beerel. A highly parallel
fpga implementation of sparse neural network training. In 2018 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), pp. 1–4, 2018.

E. J. Gumbel. Statistical theory of extreme values and some practical applications. NBS Applied
Mathematics Series, 33, 1954.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks. CoRR, abs/1506.02626, 2015. URL http://arxiv.org/abs/
1506.02626.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. 2016. URL http://arxiv.org/
abs/1510.00149.

Stephen Jose Hanson and Lorien Y. Pratt. Comparing biases for minimal network construction with
back-propagation. In D. S. Touretzky (ed.), Advances in Neural Information Processing Sys-
tems 1, pp. 177–185. Morgan-Kaufmann, 1989. URL http://papers.nips.cc/paper/
156-comparing-biases-for-minimal-network-construction-with-back-propagation.
pdf.

Babak Hassibi, David G. Stork, and Gregory Wolff. Optimal brain surgeon: Ex-
tensions and performance comparisons. In J. D. Cowan, G. Tesauro, and J. Al-
spector (eds.), Advances in Neural Information Processing Systems 6, pp. 263–
270. Morgan-Kaufmann, 1994. URL http://papers.nips.cc/paper/
749-optimal-brain-surgeon-extensions-and-performance-comparisons.
pdf.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learning Workshop, 2015. URL http://arxiv.
org/abs/1503.02531.

9

http://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1511.00363
http://papers.nips.cc/paper/5025-predicting-parameters-in-deep-learning.pdf
http://papers.nips.cc/paper/5025-predicting-parameters-in-deep-learning.pdf
http://arxiv.org/abs/1907.04840
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://papers.nips.cc/paper/156-comparing-biases-for-minimal-network-construction-with-back-propagation.pdf
http://papers.nips.cc/paper/156-comparing-biases-for-minimal-network-construction-with-back-propagation.pdf
http://papers.nips.cc/paper/156-comparing-biases-for-minimal-network-construction-with-back-propagation.pdf
http://papers.nips.cc/paper/749-optimal-brain-surgeon-extensions-and-performance-comparisons.pdf
http://papers.nips.cc/paper/749-optimal-brain-surgeon-extensions-and-performance-comparisons.pdf
http://papers.nips.cc/paper/749-optimal-brain-surgeon-extensions-and-performance-comparisons.pdf
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531

Under review as a conference paper at ICLR 2021

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. CoRR, abs/1607.03250, 2016. URL
http://arxiv.org/abs/1607.03250.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Y. Bengio. Quantized neural
networks: Training neural networks with low precision weights and activations. Journal of Machine
Learning Research, 18, 09 2016.

Iris A.M. Huijben, Bastiaan S. Veeling, and Ruud J.G. van Sloun. Deep probabilistic subsampling
for task-adaptive compressed sensing. In International Conference on Learning Representations,
2020a. URL https://openreview.net/forum?id=SJeq9JBFvH.

Iris AM Huijben, Bastiaan S Veeling, and Ruud JG van Sloun. Learning sampling and model-based
signal recovery for compressed sensing mri. In ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 8906–8910. IEEE, 2020b.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel-Softmax. 5th
International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings,
11 2016. URL http://arxiv.org/abs/1611.01144.

W. Kool, H. Van Hoof, and M. Welling. Stochastic beams and where to find them: The gumbel-top-k
trick for sampling sequences without replacement. arXiv preprint arXiv:1903.06059, 2019.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In D. S. Touretzky (ed.),
Advances in Neural Information Processing Systems 2, pp. 598–605. Morgan-Kaufmann, 1990.
URL http://papers.nips.cc/paper/250-optimal-brain-damage.pdf.

Yann Lecun, Leon Bottou, Y. Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86:2278 – 2324, 12 1998. doi: 10.1109/5.726791.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. SNIP: Single-shot network pruning
based on connection sensitivity. URL http://arxiv.org/abs/1810.02340.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning Filters for
Efficient ConvNets. arXiv:1608.08710 [cs], March 2017. URL http://arxiv.org/abs/
1608.08710. arXiv: 1608.08710.

Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model
pruning with feedback. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SJem8lSFwB.

Junjie Liu, Zhe Xu, Runbin Shi, Ray C. C. Cheung, and Hayden Kwok-Hay So. Dynamic sparse
training: Find efficient sparse network from scratch with trainable masked layers. In ICLR, 2020.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value
of network pruning. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJlnB3C5Ym.

L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang. An efficient hardware accelerator for sparse
convolutional neural networks on fpgas. In 2019 IEEE 27th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 17–25, 2019.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. In International Conference on Machine Learning, 2017.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H. Nguyen, Madeleine Gibescu, and
Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity in-
spired by network science. 9(1):2383, 2018. ISSN 2041-1723. doi: 10.1038/s41467-018-04316-3.
URL https://www.nature.com/articles/s41467-018-04316-3. Number: 1
Publisher: Nature Publishing Group.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational Dropout Sparsifies Deep Neural
Networks. arXiv:1701.05369 [cs, stat], June 2017. URL http://arxiv.org/abs/1701.
05369. arXiv: 1701.05369.

10

http://arxiv.org/abs/1607.03250
https://openreview.net/forum?id=SJeq9JBFvH
http://arxiv.org/abs/1611.01144
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf
http://arxiv.org/abs/1810.02340
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1608.08710
https://openreview.net/forum?id=SJem8lSFwB
https://openreview.net/forum?id=rJlnB3C5Ym
https://www.nature.com/articles/s41467-018-04316-3
http://arxiv.org/abs/1701.05369
http://arxiv.org/abs/1701.05369

Under review as a conference paper at ICLR 2021

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks by
dynamic sparse reparameterization. 2019. URL http://arxiv.org/abs/1902.05967.

Sharan Narang, Gregory F. Diamos, Shubho Sengupta, and Erich Elsen. Exploring sparsity in
recurrent neural networks. CoRR, abs/1704.05119, 2017. URL http://arxiv.org/abs/
1704.05119.

Yue Niu, Hanqing Zeng, Ajitesh Srivastava, Kartik Lakhotia, Rajgopal Kannan, Yanzhi Wang, and
Viktor K. Prasanna. Spec2: Spectral sparse cnn accelerator on fpgas. 2019 IEEE 26th International
Conference on High Performance Computing, Data, and Analytics (HiPC), pp. 195–204, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2015.

Vivienne Sze, Yu-Hsin Chen, Joel Emer, Amr Suleiman, and Zhengdong Zhang. Hardware
for Machine Learning: Challenges and Opportunities. 2017 IEEE Custom Integrated Cir-
cuits Conference (CICC), pp. 1–8, April 2017. doi: 10.1109/CICC.2017.7993626. URL
http://arxiv.org/abs/1612.07625. arXiv: 1612.07625.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning Structured Sparsity
in Deep Neural Networks. arXiv:1608.03665 [cs, stat], October 2016. URL http://arxiv.
org/abs/1608.03665. arXiv: 1608.03665.

S.M. Xie and S. Ermon. Reparameterizable subset sampling via continuous relaxations. In Interna-
tional Joint Conference on Artificial Intelligence, 2019.

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimizing
fpga-based accelerator design for deep convolutional neural networks. In Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 161?170.
Association for Computing Machinery, 2015.

Jialiang Zhang and Jing Li. Improving the performance of opencl-based fpga accelerator for convo-
lutional neural network. In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 25?34. Association for Computing Machinery, 2017.

Min Zhang, Linpeng Li, Hai Wang, Yan Liu, Hongbo Qin, and Wei Zhao. Optimized compression
for implementing convolutional neural networks on fpga. Electronics, 8:295, 2019.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. 2017.

11

http://arxiv.org/abs/1902.05967
http://arxiv.org/abs/1704.05119
http://arxiv.org/abs/1704.05119
http://arxiv.org/abs/1612.07625
http://arxiv.org/abs/1608.03665
http://arxiv.org/abs/1608.03665

	Introduction
	Related work
	Pruning techniques
	Hardware-oriented pruning techniques

	Proposed methodology
	Notation
	Dynamic masking based on probabilistic subsampling
	Case-specific pruning based on DPP
	Information-theoretic metrics on sparsity confidence and diversity

	Experiments
	LeNet on MNIST
	VGG-16 and MobileNet v1 on CIFAR-10 and CIFAR-100
	Sparse Binarization on MNIST
	Analysis of sparsity belief over time

	Discussion

