
WARM: A Weakly (+Semi) Supervised Math Word Problem Solver

Anonymous ACL submission

Abstract
Solving math word problems (MWPs) is an001
important and challenging problem in natu-002
ral language processing. Existing approaches003
to solve MWPs require full supervision in004
the form of intermediate equations. However,005
labeling every MWP with its corresponding006
equations is a time-consuming and expensive007
task. In order to address this challenge of equa-008
tion annotation, we propose a weakly super-009
vised model for solving MWPs by requiring010
only the final answer as supervision. We ap-011
proach this problem by first learning to gen-012
erate the equation using the problem descrip-013
tion and the final answer, which we subse-014
quently use to train a supervised MWP solver.015
We propose and compare various weakly su-016
pervised techniques to learn to generate equa-017
tions directly from the problem description018
and answer. Through extensive experiments,019
we demonstrate that without using equations020
for supervision, our approach achieves accu-021
racy gains of 4.5% and 32% over the state-022
of-the-art weakly supervised approach (Hong023
et al., 2021), on the standard Math23K (Wang024
et al., 2017) and AllArith (Roy and Roth,025
2017) datasets respectively. Additionally, we026
curate and release new datasets of roughly027
10k MWPs each in English and in Hindi (a028
low resource language). These datasets are029
suitable for training weakly supervised mod-030
els. We also present extension of WARM to031
semi-supervised learning and present further032
improvements on results, along with insights.033

1 Introduction034

A Math Word Problem (MWP) is a numerical prob-035

lem expressed in natural language (problem de-036

scription), that can be transformed into an equation037

(solution expression), which can be solved to obtain038

the final answer. In Table 1, we present an example039

MWP. Automatically solving MWPs has recently040

gained lot of research interest in natural language041

processing (NLP). The task of automatically solv-042

ing MWPs is challenging owing to two primary043

Problem: It costs Rs 5.0 to buy 10.0 peppermint candies.
If the candies all have the same price,how much does it
cost to buy 1.0 candy ?
Equation: X=(5.0/10.0)× 1.0

(Under full supervision)
Answer: 0.5 (Under weak supervision)

Table 1: Example of a Math Word Problem

reasons: i) The unavailability of large training 044

datasets with problem descriptions, equations as 045

well as corresponding answers – as depicted in Ta- 046

ble 1, equations can provide full supervision, since 047

equations can be solved to obtain the answer, and 048

the answer itself amounts to weak supervision only; 049

ii) Challenges in parsing the problem description 050

and representing it suitably for effective decoding 051

of the equations. Paucity of completely supervised 052

training data can pose a severe challenge in training 053

MWP solvers. Most existing approaches assume 054

the availability of full supervision in the form of 055

both intermediate equations and answers for train- 056

ing. However, annotating MWPs with equations 057

is an expensive and time consuming task. There 058

exists only two sufficiently large datasets (Wang 059

et al., 2017) in Chinese and (Amini et al., 2019) in 060

English consisting of MWPs with annotated inter- 061

mediate equations for supervised training. 062

We propose a novel two-step weakly supervised 063

technique to solve MWPs by making use only of 064

the weak supervision, in the form of answers. In 065

the first step, using only the answer as supervision, 066

we learn to generate equations for questions in the 067

training set. In the second step, we use the gen- 068

erated equations along with answers to train any 069

state-of-the-art supervised model. We illustrate the 070

effectiveness of our weakly supervised approach 071

on our newly curated reasonably large dataset in 072

English and a similarly curated dataset in Hindi - 073

a low resource language. We also perform experi- 074

ments with semi-supervision and demonstrate how 075

our model can benefit from a small amount of com- 076

1



pletely labelled data. Our main contributions are077

as follows:078

1) An approach, WARM, (c.f., Section 4) for gener-079

ating equations from MWPs, given (weak) supervi-080

sion only in the form of the final answer.081

2) An extended semi-supervised training method082

to leverage a small amount of annotated equations083

as strong/complete supervision.084

3) A new and relatively large dataset, EW10K, in085

English (with more than 10k instances), for training086

weakly supervised models for solving MWPs (c.f.,087

Section 3). Given that weak supervision makes it088

possible train MWP solvers even in the absence of089

extensive equation labels, we also present results on090

a similarly crawled dataset, HW10K(with around091

10k instances), in a low resource language, viz.092

Hindi, where we can avoid the additional effort093

required to generate equation annotations.094

4) We empirically show that WARM outperforms095

state-of-the-art models on most of the datasets. Fur-096

ther, we empirically demonstrate the benefits of the097

semi-supervised extension to WARM.098

2 Related Work099

Automatic math word problem solving has recently100

drawn significant interests in the natural language101

processing (NLP) community. Existing MWP solv-102

ing methods can be broadly classified into four103

categories: (a) rule-based methods, (b) statistics-104

based methods, (c) tree-based methods, and (d)105

neural-network-based methods.106

Rule-based systems (Fletcher, 1985; Bakman,107

2007; Yuhui et al., 2010) were amongst the earli-108

est approaches to solve MWPs. They rely heavily109

on hand-engineered rules that might cover a lim-110

ited domain of problems. Statistics-based meth-111

ods (Hosseini et al., 2014; Kushman et al., 2014;112

Sundaram and Khemani, 2015; Mitra and Baral,113

2016; Liang et al., 2016a,b) use predefined logic114

templates and employ traditional machine learning115

models to identify entities, quantities, and opera-116

tors from the problem text and subsequently em-117

ploy simple logical inference to yield the numeric118

answer. (Upadhyay et al., 2016) employ a semi-119

supervised approach by learning to predict tem-120

plates and corresponding alignments using both121

explicit and implicit supervision. Tree-based meth-122

ods (Roy and Roth, 2015; Koncel-Kedziorski et al.,123

2015; Roy et al., 2016; Roy and Roth, 2017, 2018)124

replaced the process of deriving an equation by125

constructing an equivalent tree structure, step by126

step, in a bottom-up manner. 127

More recently, neural network-based MWP solv- 128

ing methods have been proposed (Wang et al., 129

2017, 2018a,b; Huang et al., 2018; Chiang and 130

Chen, 2019; Wang et al., 2019; Liu et al., 2019; 131

Xie and Sun, 2019; Wu et al., 2021; Shen et al., 132

2021). These employ an encoder-decoder archi- 133

tecture and train in an end-to-end manner with- 134

out the need for hand-crafted rules or templates. 135

(Wang et al., 2017) were the first to propose a 136

sequence-to-sequence (Seq2Seq) model, viz., Deep 137

Neural Solver, for solving MWPs. They employ 138

an RNN-based encoder-decoder architecture to di- 139

rectly translate the problem text into equation tem- 140

plates and also release a high-quality large-scale 141

dataset, Math23K, consisting of 23,161 MWPs in 142

Chinese. 143

(Liu et al., 2019) and (Xie and Sun, 2019) pro- 144

pose tree-structured decoding that generates the 145

syntax tree of the equation in a top-down man- 146

ner. In addition to applying tree-structured decod- 147

ing, (Zhang et al., 2020) propose a graph-based 148

encoder to capture relationships and order informa- 149

tion among the quantities. For a more comprehen- 150

sive review on automatic MWP solvers, readers can 151

refer to a recent survey paper (Zhang et al., 2018). 152

Unlike all the previous works that require equa- 153

tions for supervision, (Hong et al., 2021) propose 154

a weakly supervised method for solving MWPs, 155

where the answer alone is required for training. 156

Their approach attempts to generate the equation 157

tree in a rule based manner so that the correct an- 158

swer is reached. They then train their model using 159

the fixed trees. With the same motivation. we also 160

propose a novel weakly supervised model, WARM, 161

(c.f., Section 4) for solving MWPs using only the 162

final answer for supervision. We show how WARM 163

can be extended to semi-supervised joint learning 164

in the presence of weak answer-level supervision in 165

conjunction with some equation-level supervision. 166

Further, we empirically demonstrate that WARM 167

outperforms (Hong et al., 2021) on all the datasets. 168

This paper is organized as follows. In Section 3, 169

we set the premise for our approach by describing 170

the new datasets (EW10K and HW10K) for weak 171

supervision that we release. In Section 4, we de- 172

scribe our weakly supervised approach WARM and 173

its semi-supervised extension WARM-S. In Sec- 174

tion 5, we present the experimental setup whereas 175

in Section 6 we delve into the results and its analy- 176

sis before concluding in Section 7. 177

2



3 Dataset178

Currently, there does not exist any sufficiently179

large English dataset for single and simple equa-180

tion MWPs. While there exists an English181

dataset (Amini et al., 2019) with sufficiently large182

MWPs, the questions in the dataset are meant to183

be evaluated in a multiple choice question (MCQ)184

manner. Also, the equation associated with each185

word problem in this dataset is significantly more186

complex and requires several binary and unary187

operators. On the other hand, Math23K (Wang188

et al., 2017) is in Chinese and Dolphin18k (Huang189

et al., 2016) contains mostly multi-variable word190

problems. To address these gaps, we curate a new191

English MWP dataset, viz., EW10K consisting of192

10227 word problem instances (each associated193

with a single equation) that can be used for train-194

ing MWP solver models in a weakly supervised195

manner.196

We crawled IXL1 to obtain MWPs for grades197

VI until X. These word problems involve a wide198

variety of mathematical computations ranging from199

simple addition-subtraction to much harder mensu-200

ration and probability problems. The dataset con-201

sists of 10 different types of problems, spanning202

3 tiers of difficulty. We also annotate the dataset203

with the target unit. The exact distributions are204

presented in Figure 1.205

We similarly created a MWP dataset in Hindi -206

a low resource language. It consists of 9,896 ques-207

tion answer pairs. To the best of our knowledge,208

this is the first MWP dataset of such size in Hindi.209

Figure 1: Distribution on different types of questions

4 Our Approach: WARM210

We propose a weakly supervised model, WARM2,211

for solving the MWP using only the answer for212

supervision. It is a two-step cascaded approach213

1https://in.ixl.com/
2WARM stands for WeAkly supeRvised Math solver.

for weakly supervised MWP solving. For the first 214

step, we propose a model that predicts the equation, 215

given a problem text and answer. This model uses 216

reinforcement learning to search the space of possi- 217

ble equations, given the question and the correct an- 218

swer only. The answer acts as the goal of the agent 219

and the search is terminated either when the answer 220

is reached or when the equation length exceeds a 221

pre-defined length (this is required, else the search 222

space would be infinitely large). The model is de- 223

signed to be a two layer bidirectional GRU (Cho 224

et al., 2014) encoder and a decoder network with 225

fully connected units (described in Section 4.3). 226

We refer to this model as WARM. Note that this 227

model requires an answer to determine when to 228

stop exploring. Since we ultimately want a model 229

which should only take the problem statement as 230

input and generate the answer (by generating the 231

correct equation), this model alone is insufficient 232

for evaluation. Using this model, we create a noisy 233

equation-annotated dataset from the weakly anno- 234

tated training dataset (the training dataset has an- 235

swers since it is weakly supervised). We use only 236

those instances to create the dataset for which the 237

equation generated by the model yields the correct 238

answer. Note that the equations are noisy, since 239

there is no guarantee that the generated equation 240

will be the shortest or even correct. In the second 241

step, we use this noisy data for supervised training 242

of a state-of-the-art model. The trained supervised 243

model is finally used for evaluation. For simplicity, 244

we provide a summary of notations in Section 1 in 245

supplementary. 246

Figure 2: Inference Illustration

4.1 Equation Generation 247

The first step of our approach is to generate equa- 248

tion given a problem text P and answer A. This 249

is done by using our WARM model. The problem 250

3



Figure 3: Architecture for generating equation tree in
WARM.

text is passed through the encoder of the WARM251

model to get its encoded representation which is252

then fed to the decoder. At each time step, the de-253

coder generates an operator and its two operands254

from the operator and operand vocabulary list. The255

operation is then executed to obtain a new quantity.256

This quantity is checked against the ground truth257

and if it matches the ground truth, the decoding is258

terminated and a reward of +1 is assigned. Else259

we assign a reward of -1 and the generated quan-260

tity is added to the operand vocabulary list and the261

decoding continues. The working of the WARM262

model and architecture are illustrated in Figure 2263

and Figure 3 respectively. In the following few264

subsections, we describe the architecture as well as265

the training in details.266

4.2 Encoder267

The encoder takes as input, the MWP represented268

as a sequence of tokens P = x1x2x3...xn. We269

replace each number in the question with a special270

token < num_j > to obtain this sequence where j271

denotes the index of number in the operand vocab272

for that question. Each word token xi is first trans-273

formed into the corresponding word embedding xxxi274

by looking up an embedding matrix MMMw. Next,275

a binary feature is appended to the embedding to276

indicate whether the token is a word or a number.277

As depicted in the lower half of Figure 3, this ap-278

pended embedding vector is then passed through279

a 2 layer bidirectional GRU (Cho et al., 2014) and280

the outputs from both directions of the final layer281

are summed to get the encoded representation of282

the text. This representation is then passed on to283

the decoder.284

4.3 Decoder 285

The decoder consists of 3 fully connected networks 286

for generating operator, left operand and the right 287

operand. As illustrated in the upper half of Figure 3, 288

the decoder takes as input the previous decoded 289

operand and the last decoder hidden state and out- 290

puts the operator, left operand, right operand and 291

hidden state at the current time step. We initialize 292

the decoder hidden state with the last state of the 293

encoder: 294

opt , o
l
t, o

r
t , h

d
t = DecoderFCN(opt−1, h

d
t−1) 295

Here, hdt is the decoder hidden state at the tth 296

time step. opt , olt and ort are probability distributions 297

over operators, left and right operands respectively. 298

4.3.1 Operator generation 299

Inside our decoder, we learn an operator embedding 300

matrix Emop(opt−1), where opt−1 is the operator 301

sampled in the last time step. We generate the op- 302

erator hidden state hopt using a gating mechanism. 303

gopt = σ(W 1
op[Emop(opt−1);hdt−1] + b1op) 304

305
hopt = gopt ∗tanh(W 2

op[Emop(opt−1);hdt−1]+b
2
op) 306

307
opt = softmax(W 3

oph
op
t + b3op) 308

Here σ() denotes the sigmoid function and ∗ de- 309

notes elementwise multiplication. We sample oper- 310

ator opt from the probability distribution opt . 311

4.3.2 Left Operand Generation 312

We use the embedding of the current operator 313

Em(opt) and the operator hidden state hopt to ob- 314

tain a probability distribution over the operands. 315

We employ a similar gating mechanism as used for 316

generating operator. 317

golt = σ(W 1
ol[Emop(opt);h

op
t ] + b1ol) 318

319
holt = golt ∗ tanh(W 2

ol[Emop(opt);h
op
t ] + b2ol) 320

321
olt = softmax(W 3

olh
ol
t + b3ol) 322

We sample the left operand olt from the probability 323

distribution olt. 324

4.3.3 Right Operand Generation 325

For generating the right operand, we use the addi- 326

tional context information that is already available 327

from the generated left operand. Thus, in addition 328

to the operator embedding Emop(opt) and opera- 329

tor hidden state hopt we also use the left operand 330

4



hidden state to get the right operand hidden state331

hort .332

gort = σ(W 1
or[Emop(opt);h

op
t ;holt ] + b1or)333

334
hort = gort ∗tanh(W 2

or[Emop(opt);h
op
t ;holt ]+b

2
or)335

336
ort = softmax(W 3

orh
or
t + b3or)337

We sample the right operand ort from the probabil-338

ity distribution olt. The hidden state hort is returned339

as the current decoder state hdt .340

4.3.4 Bottom-up Equation Construction341

For each training instance, we maintain a dictio-342

nary of possible operands OpDict. Initially, this343

dictionary contains the numeric values from the344

instance, i.e., the number tokens we have replaced345

with < num_j > during encoding. At the tth346

decoding step, we sample an operator opt, left347

operand olt and right operand ort. We get an inter-348

mediate result by using the operator corresponding349

to opt on the operands olt and ort. This intermedi-350

ate result is added to OpDict which enables us to351

reuse the results of previous computations in future352

decoding steps. Thus, OpDict acts as a dynamic353

dictionary of operands and we use it to progress354

towards the final answer in a bottom-up manner.355

4.4 Rewards and Loss356

We use the REINFORCE (Williams, 1992) algo-357

rithm for training the model using just the final358

answer as the ground truth. We model the reward359

as +1 if the predicted answer matches the ground360

truth and−1 if the predicted answer does not equal361

the ground truth.362

Let Rt be defined as the reward obtained after363

generating yt = (opt, ol, or). The probability Pt364

of generating the tuple yt is specified by pθ(yt) =365
t∏
i=1

opi × oli × ori . The loss is specified as L =366

−∑
i
Epθ(yi)[Ri] and the corresponding gradient is367

∇θL =
∑
i

∑
yi

pθ(yi)Ri∇θ log pθ(yi).368

Since the space of yi makes it infeasible to com-369

pute the exact gradient, we use the standardized370

technique of sampling yi from pθ(yi) to obtain an371

estimate of the gradient.372

4.5 Beam Exploration in Training373

Since the reward space for our problem is very374

sparse, we observe that during model training, the375

gradients go to zero. Our model converges too376

quickly to some local optima and consequently,377

the training accuracy saturates to some fixed value 378

despite performing training for a large number of 379

epochs. In order to counter this problem, we em- 380

ploy beam exploration in the training procedure. 381

Instead of sampling operator opt, left operand olt 382

and right operand ort only once in each decoding 383

step, we sample w triplets (opt, olt, ort) without re- 384

placement from the joint probability space in each 385

decoding step. Here w is the beam width. This 386

helps in exploring w different paths each epoch, 387

thus increasing the exploration capabilities and re- 388

duce the problem of cold start. In order to select 389

beams from all possible candidates, we have tried 390

multiple heuristics by inspecting the probability 391

and reward values. We have observed empirically 392

that selecting the beam that gives a positive reward 393

at the earliest decoding step yields the best perfor- 394

mance. This enables our model to explore more 395

and mitigates the above problem significantly. 396

4.6 WARM-S: Adding Semi-supervision 397

While it is expensive to completely label large 398

MWP datasets with equations, it is relatively easier 399

to annotate a small percentage of that data. We 400

argue that addition of this small amount of semi- 401

supervision can improve the model training signifi- 402

cantly. 403

We, therefore, consider a model that benefits 404

from a relatively small amount of strong supervi- 405

sion in the form of equation annotated data: Ds, 406

in addition to a potentially larger sized math prob- 407

lem datasets with only weak supervision Dw. For 408

a data instance d: d.p, d.e, and d.a represent 409

its problem statement, equation, and answer re- 410

spectively. Ds consists of instances of the form 411

(d.p, d.e, d.a) while Dw contains instances of the 412

form (d.p, d.a). We extend the WARM model to 413

include a Cross-Entropy loss component for in- 414

stances belonging to Ds. The net loss is the sum of 415

the REINFORCE (RLWARM) and Cross-Entropy 416

losses shown below:- 417

Loss 1:
∑

d∈Dw
RLWARM(d.p, d.a) 418

Loss 2:
∑
d∈Ds

Cross_Entropy(d.e,WARM(d.p, d.a)) 419

Thus, we facilitate semi-supervision through 420

Loss 2. That is, we jointly use the equations pre- 421

dicted (by WARM) for datapoints belonging to Dw 422

and the ground truth equations for instances be- 423

longing to Ds, for training any state-of-the-art su- 424

pervised MWP solver. 425

5



5 Experimental Setup426

In this section, we report details of the experiments427

on four datasets to examine the performance of the428

proposed weakly supervised model WARM and its429

semi-supervised extension WARM-S. We present430

comparisons with various baselines as well as with431

fully supervised models.432

5.1 Datasets433

We perform all our experiments on the publicly434

available AllArith (Roy and Roth, 2017) and435

Math23K (Wang et al., 2017) datasets and also on436

our EW10K and HW10K datasets.For each dataset,437

we have used a 80 : 20 train-test split.438

AllArith contains 831 MWPs, annotated with equa-439

tions and answers. It is populated by collecting440

problems from smaller datasets, viz., AI2 (Hosseini441

et al., 2014), IL (Roy and Roth, 2015), CC (Roy442

and Roth, 2015) and SingleEQ (Koncel-Kedziorski443

et al., 2015). All mentions of quantities are nor-444

malized to digits. Further, near-duplicate problems445

(with over 80% match of unigrams and bigrams)446

are filtered out.447

Math23K (Wang et al., 2017) contains 23,161448

MWPs in Chinese with 2187 templates, annotated449

with equations and answers, for elementary school450

students and is crawled from multiple online edu-451

cation websites. It is the largest publicly available452

dataset for the task of automatic MWP solving.453

EW10K (c.f., Section 3) contains 10,227 MWPs454

in English and HW10K contains 9,896 in Hindi455

for classes VI to X. We employ a 80 : 20 train-test456

split in each case.457

5.2 Dataset Preprocessing458

We replace every number token in the problem text459

with a special word token < num_j > before pro-460

viding it as input to the encoder. We also define461

a set of numerical constants Vconst to solve those462

problems which might require special numeric val-463

ues that may not be present in the problem text.464

For example, consider the problem “The radius of465

a circle is 2.5, what is its area?”, the solution is466

“π x 2.5 x 2.5”, but the constant quantity π cannot467

be found in the text. As our model does not use468

equations as supervision, we cannot know precisely469

what extra numeric values might be required for a470

problem, so we fix Vconst = {1, π}. Finally, the471

operand dictionary for every problem is initialised472

as OpDict = nP ∪ Vconst where nP is the set of473

numeric values present in the problem text.474

5.3 Implementation Details 475

We implement3 all our models in PyTorch (Paszke 476

et al., 2019). We set the dimension of the word 477

embedding layer to 128, and the dimension of 478

the hidden states for other layers to 512. We use 479

the REINFORCE (Williams, 1992) algorithm and 480

Adam (Kingma and Ba, 2014) to optimize the pa- 481

rameters. The initial value of the learning rate is 482

set to 0.001, and the learning rate is multiplied by 483

0.7 every 75 epochs. We also set the dropout prob- 484

ability to 0.5 and weight decay to 1e-5 to avoid 485

over-fitting. Finally, we set the beam width to 5 486

in beam exploration.We train our model for 200 487

epochs with the batch size set to 256. 488

5.4 Models 489

We compare the MWP solving accuracy of our 490

weakly supervised models with beam exploration 491

on the following set of baseline and fully super- 492

vised models: 493

WARM is the proposed weakly supervised ap- 494

proach to equation generation (described from Sec- 495

tion 4.1 until 4.4) by employing beam exploration 496

(c.f., Section 4.5). WARM w/o Beam Exploration 497

is WARM without beam exploration while decod- 498

ing. 499

WARM-S is the semi-supervised extension to 500

WARM (c.f., Section 4.6) using beam exploration 501

(Section 4.5). 502

WARM-S w/o Beam Exploration is the same as 503

WARM-S but does not use beam exploration while 504

decoding. 505

Random Equation Sampling consists of a ran- 506

dom search over k parallel paths of length d. For 507

each path, an operator and its two operands are 508

uniformly sampled from the given vocabulary and 509

the result is added to the operand vocabulary (sim- 510

ilar to WARM). The equation is terminated once 511

the correct answer is reached. We set k = 5 and 512

d = 40 for a fair comparison with our model in 513

terms of the number of search operations. 514

Seq2Seq Baseline is a GRU (Cho et al., 2014) 515

based seq2seq encoder-decoder model. REIN- 516

FORCE (Williams, 1992) is used to train the model. 517

Beam exploration is also employed to mitigates is- 518

sues mentioned in Section 4.5. 519

LBF (Hong et al., 2021) is a weakly supervised 520

model which uses only answer as supervision by 521

fixing incorrect equation parse trees in each iter- 522

ation. It subsequently performs training with the 523

3Source code is attached as supplementary material

6



fixed trees.524

Hybrid model w/ SNI (Wang et al., 2017) is a525

combination of the retrieval and the RNN-based526

Seq2Seq models with significant number identifi-527

cation (SNI).528

Ensemble model w/ EN (Wang et al., 2018a) is an529

ensemble model that selects the result according to530

generation probability across Bi-LSTM, ConvS2S531

and Transformer Seq2Seq models with equation532

normalization (EN).533

Semantically-Aligned (Chiang and Chen, 2019)534

is a Seq2Seq model with an encoder designed to535

understand the semantics of the problem text and a536

decoder equipped with a stack to facilitate tracking537

the semantic meanings of the operands.538

T-RNN + Retrieval (Wang et al., 2019) is a combi-539

nation of the retrieval model and the T-RNN model540

comprising a structure prediction module that pre-541

dicts the template with unknown operators and an542

answer generation module that predicts the opera-543

tors.544

Seq2Tree (Liu et al., 2019) is a Seq2Tree model545

with a Bi-LSTM encoder and a top-down hierarchi-546

cal tree-structured decoder consisting of an LSTM547

that makes use of the parent and sibling information548

fed as the input.549

GTS (Xie and Sun, 2019) is a tree-structured neural550

model that generates the expression tree in a goal-551

driven manner.552

Graph2Tree (Zhang et al., 2020) consists of a553

graph-based encoder which captures the relation-554

ships and order information among the quantities.555

It also employs a tree-based decoder that generates556

the expression tree in a goal-driven manner.557

As described earlier in Section 4, we use our558

weakly supervised models (WARM and WARM-S)559

to generate labelled data (i.e., equations) which560

we then use to train a supervised model. We have561

performed experiments using GTS (Xie and Sun,562

2019) and Graph2Tree (Zhang et al., 2020) as the563

supervised models since they are the current state-564

of-the-art.565

6 Results and Analysis566

6.1 Analyzing WARM567

In Table 2, we observe that our model WARM568

yields far higher accuracy than random baselines569

with the accuracy values close to 100% on AllArith570

and EW10K. Thus we are able to more accurately571

generate equations for a given problem and answer572

which can then be used to train supervised models.573

Weakly Supervised Models AllArith Math23K EW10K HW10K
WARM w/o Beam Exploration 42.1 14.5 57.5 67.3
WARM 97.4 93.8 99.3 99.5
Baselines AllArith Math23K EW10K HW10K
Random Equation Sampling 53.4 17.6 46.3 66.6
Seq2Seq Baseline 67.0 7.1 77.6 75.8

Table 2: Equation generation accuracies of WARM
based models compared to baselines. All models are
trained using ground truth answers on the training set.
WARM outperforms all the remaining models by as sig-
nificant margin on all the datasets. Evidently, beam ex-
ploration significantly improves performance.

Weakly Supervised Models AllArith Math23K EW10K HW10K
WARM w/o Beam Exploration(GTS) 36.1 12.8 52.6 54.1
WARM (GTS) 66.9 55.3 86.9 81.5
WARM w/o Beam Exploration(Graph2Tree) 48.2 13.5 49.8 58.3
WARM (Graph2Tree) 68.7 56.0 87.2 82.9
LBF ‡ 51.8 53.6 81.3 75.8
Fully Supervised Models AllArith Math23K EW10K HW10K
Graph2Tree‡ 71.9 75.5 NA NA
GTS‡ 70.5 73.6 NA NA
Seq2Tree – 69.0 NA NA
T-RNN + Retrieval – 68.7 NA NA
Semantically-Aligned† – 65.8 NA NA
Ensemble model w/ EN – 68.4 NA NA
Hybrid model w/ SNI† – 64.7 NA NA

Table 3: MWP solving accuracy of WARM-based mod-
els compared to various supervised models on AllArith
and Math23K datasets. † denotes that result was re-
ported on 5-fold cross validation. All other models are
tested on the test set. ‡ denotes that the result is on the
same train-test split as ours. “–” denotes code unavail-
ability/reproducibility issues. NA is not applicable.

Please note that, in Table 2, we report equation gen- 574

eration accuracies on the training set by training 575

the weakly supervised and baseline models using 576

ground truth answers on the training set. 577

As has been discussed earlier in Section 4.5, our 578

model WARM w/o Beam Exploration suffers from 579

the problem of converging to local optima because 580

of the sparsity of the reward signal. Training our 581

weakly supervised models with beam exploration 582

alleviates the issue to a large extent as we explore 583

the solution space much more extensively and thus 584

Problem: Ariel already has 4.0 flowers in her garden, and
she can also grow 3.0 flowers with every seed packet she
uses. With 2.0 seed packets, how many total flowers can
Ariel have in her garden ?
Answer: 10.0
Equation Generated: X=(4.0+(2.0*3.0)) (Correct)

Problem: Celine took a total of 6.0 quizzes over the
course of 3.0 weeks. After attending 7.0 weeks of school
this quarter, how many quizzes will Celine have taken in
total ? Assume the relationship is directly proportional.
Answer: 14.0
Equation Generated: X=(7.0+7.0) (Incorrect)

Table 4: Equation Generated by WARM model

7



Problem: Latrell ordered a set of yellow and purple pins.
He received 72.0 yellow pins and 8.0 purple pins. What
percentage of the pins were yellow?
Equation Generated by WARM (G2T):
X=(72.0*(100.0/(72.0+8.0)))(Correct)
Equation Generated by LBF: X=(1.0+(1.0+72.0)) (In-
correct)

Problem: A square barn has a perimeter of 28.0 metres.
How long is each side of the barn ?
Equation Generated by WARM(G2T):
X=((28.0/2.0)/2.0) (Correct)
Equation Generated by LBF: X=((28.0+28.0)/28.0) (In-
correct)

Table 5: Comparing WARM and LBF model predicted
equations

partly circumventing the sparsity issue. We observe585

vast improvement in the training accuracy by intro-586

duction of beam exploration. The model WARM587

yields training accuracy significantly higher than its588

non-beam-explore counterpart. WARM yields the589

best training accuracy overall. Since the equation590

generation accuracies of the baselines reported in591

Table 2 are far worse,the MWP solving accuracies592

turn out to be significantly worse - around 8-10%,593

and hence we do not report them.594

We also observe that WARM yields results com-595

parable to the various supervised models with-596

out requiring any supervision from gold equa-597

tions. On AllArith, WARM achieves an accuracy598

of 66.9% and 68.7% using GTS and Graph2Tree599

as the supervised models respectively. The state-600

of-the-art supervised model Graph2Tree yields601

71.9%. On Math23k, the difference between602

WARM and the supervised models is more pro-603

nounced. WARM’s performance is comparable to604

that of LBF on Math23k but significantly better605

on AllArith, EW10Kand HW10K, as evident in606

Table 3607

In Table 4, we present some predictions. As can608

be seen, the model is capable of producing long609

complex equations as well. Sometimes, it may610

reach the correct answer but through an incorrect611

equation. E.g.: In the last example, the correct612

equation would have been X = 7.0 ∗ 6.0/3.0, but613

the model predicted X = 7.0 + 7.0.614

6.2 Analysing Semi-supervision through615

WARM-S616

For analyzing semi-supervision, we combined Al-617

lArith (831) with EW10K (10227). We randomly618

sampled 80% of this data (8846) as our train-set.619

In retrospect, our train-set consists of 560 instances620

from AllArith that are completely labelled (amount-621

ing to 6.3% of the train-set). We compare our semi- 622

supervised approach against the weakly supervised 623

approach, wherein the entire training data is treated 624

as having only answer labels. 625

In Table 6 we observe that with less than 10% 626

of fully annotated data, our equation exploration 627

accuracy increases from 56.7% to 92.0% without 628

beam exploration and 99.0% to 99.2% with beam 629

exploration. We also observe a similar trend while 630

training the supervised models; our final MWP 631

solving accuracy increases from 51.2% to 87.4% 632

for WARM w/o Beam Exploration and Graph2Tree 633

as the supervised model. We also study thethere 634

effect of varying amount of complete supervision 635

in Supplementary Section:2. 636

Weakly Supervised Models AllArith +EW10K
WARM w/o Beam Exploration 56.7
WARM 99.0
Semi Supervised Models AllArith+EW10K
WARM-S w/o Beam Exploration 92.0
WARM-S 99.2

Table 6: Equation generation accuracy of WARM-S
compared to weakly supervised models and baselines.

Weakly Supervised Models AllArith +EW10K
WARM w/o Beam Exploration(GTS) 50.2
WARM (GTS) 87.2
WARM w/o Beam Exploration(Graph2Tree) 51.2
WARM (Graph2Tree) 87.8
Semi Supervised Models AllArith+EW10K
WARM-S w/o Beam Exploration(GTS) 87.2
WARM-S (GTS) 92.1
WARM-S w/o Beam Exploration(Graph2Tree) 87.4
WARM-S (Graph2Tree) 93.6

Table 7: MWP solving accuracy of WARM-S compared
to WARM. With semi-supervision, there is a significant
increase in accuracy for WARM w/o Beam Exploration,
bringing its performance closer to WARM.

7 Conclusion 637

We have proposed a two step approach to solving 638

math word problems, using only the final answer 639

for supervision. Our weakly supervised approach, 640

WARM, achieves a reasonable accuracy of 56.0 on 641

the standard Math23K dataset even without lever- 642

aging equations for supervision. We also curate 643

and release large scale MWP datasets, EW10K, in 644

English and HW10K, in Hindi. We observed that 645

the results are encouraging for simpler MWPs. We 646

also present the benefits of incorporating a semi- 647

supervised extension to WARM. 648

8



References649

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-650
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.651
2019. Mathqa: Towards interpretable math word652
problem solving with operation-based formalisms.653
arXiv preprint arXiv:1905.13319.654

Yefim Bakman. 2007. Robust understanding of655
word problems with extraneous information. arXiv656
preprint math/0701393.657

Ting-Rui Chiang and Yun-Nung Chen. 2019.658
Semantically-aligned equation generation for659
solving and reasoning math word problems.660
In Proceedings of the 2019 Conference of the661
North American Chapter of the Association for662
Computational Linguistics: Human Language663
Technologies. ACL.664

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-665
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger666
Schwenk, and Yoshua Bengio. 2014. Learning667
phrase representations using RNN encoder–decoder668
for statistical machine translation. In Proceedings669
of the 2014 Conference on Empirical Methods670
in Natural Language Processing (EMNLP), pages671
1724–1734, Doha, Qatar. Association for Computa-672
tional Linguistics.673

Charles R. Fletcher. 1985. Understanding and solving674
arithmetic word problems: A computer simulation.675
Behavior Research Methods, 17:565–571.676

Yining Hong, Qing Li, Daniel Ciao, Siyuan Haung, and677
Song-Chun Zhu. 2021. Learning by fixing: Solving678
math word problems with weak supervision.679

Mohammad Javad Hosseini, Hannaneh Hajishirzi,680
Oren Etzioni, and Nate Kushman. 2014. Learning681
to solve arithmetic word problems with verb catego-682
rization. In Proceedings of the 2014 Conference on683
Empirical Methods in Natural Language Processing684
(EMNLP), pages 523–533. ACL.685

Danqing Huang, Jing Liu, Chin-Yew Lin, and Jian686
Yin. 2018. Neural math word problem solver687
with reinforcement learning. In Proceedings of688
the 27th International Conference on Computational689
Linguistics, pages 213–223. ACL.690

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian691
Yin, and Wei-Ying Ma. 2016. How well do com-692
puters solve math word problems? large-scale693
dataset construction and evaluation. In Proceedings694
of the 54th Annual Meeting of the Association695
for Computational Linguistics (Volume 1: Long696
Papers), pages 887–896, Berlin, Germany. Associ-697
ation for Computational Linguistics.698

Diederik Kingma and Jimmy Ba. 2014. Adam: A699
method for stochastic optimization. International700
Conference on Learning Representations.701

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish702
Sabharwal, Oren Etzioni, and Siena Dumas Ang.703

2015. Parsing algebraic word problems into 704
equations. Transactions of the Association for 705
Computational Linguistics, 3:585–597. 706

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and 707
Regina Barzilay. 2014. Learning to automatically 708
solve algebra word problems. In Proceedings 709
of the 52nd Annual Meeting of the Association 710
for Computational Linguistics (Volume 1: Long 711
Papers), pages 271–281. Association for Computa- 712
tional Linguistics. 713

Chao-Chun Liang, Kuang-Yi Hsu, Chien-Tsung 714
Huang, Chung-Min Li, Shen-Yu Miao, and Keh-Yih 715
Su. 2016a. A tag-based english math word problem 716
solver with understanding, reasoning and explana- 717
tion. In Proceedings of the Demonstrations Session, 718
NAACL HLT 2016, pages 67–71. The Association 719
for Computational Linguistics. 720

Chao-Chun Liang, Kuang-Yi Hsu, Chien-Tsung 721
Huang, Chung-Min Li, Shen-Yu Miao, and Keh- 722
Yih Su. 2016b. A tag-based statistical english 723
math word problem solver with understanding, 724
reasoning and explanation. In Proceedings of 725
the Twenty-Fifth International Joint Conference on 726
Artificial Intelligence, IJCAI’16, page 4254–4255. 727
AAAI Press. 728

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke 729
Kawahara. 2019. Tree-structured decoding for solv- 730
ing math word problems. In Proceedings of the 731
2019 Conference on Empirical Methods in Natural 732
Language Processing and the 9th International 733
Joint Conference on Natural Language Processing 734
(EMNLP-IJCNLP), pages 2370–2379. 735

Arindam Mitra and Chitta Baral. 2016. Learning to 736
use formulas to solve simple arithmetic problems. 737
In Proceedings of the 54th Annual Meeting of the 738
Association for Computational Linguistics (Volume 739
1: Long Papers), pages 2144–2153. Association for 740
Computational Linguistics. 741

Adam Paszke, Sam Gross, Francisco Massa, Adam 742
Lerer, James Bradbury, Gregory Chanan, Trevor 743
Killeen, Zeming Lin, Natalia Gimelshein, Luca 744
Antiga, Alban Desmaison, Andreas Köpf, Edward 745
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, 746
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun- 747
jie Bai, and Soumith Chintala. 2019. Pytorch: An 748
imperative style, high-performance deep learning li- 749
brary. 750

Subhro Roy and Dan Roth. 2015. Solving general 751
arithmetic word problems. In Proceedings of the 752
2015 Conference on Empirical Methods in Natural 753
Language Processing, pages 1743–1752. ACL. 754

Subhro Roy and Dan Roth. 2017. Unit dependency 755
graph and its application to arithmetic word prob- 756
lem solving. In Proceedings of the Thirty-First 757
AAAI Conference on Artificial Intelligence, page 758
3082–3088. AAAI Press. 759

9



Subhro Roy and Dan Roth. 2018. Mapping to declar-760
ative knowledge for word problem solving. Trans.761
Assoc. Comput. Linguistics, 6:159–172.762

Subhro Roy, Shyam Upadhyay, and Dan Roth.763
2016. Equation parsing : Mapping sentences764
to grounded equations. In Proceedings of the765
2016 Conference on Empirical Methods in Natural766
Language Processing, EMNLP 2016, pages 1088–767
1097. The Association for Computational Linguis-768
tics.769

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin770
Jiang, Ming Zhang, and Qun Liu. 2021. Generate &771
rank: A multi-task framework for math word prob-772
lems. arXiv preprint arXiv:2109.03034.773

Sowmya S Sundaram and Deepak Khemani. 2015. Nat-774
ural language processing for solving simple word775
problems. In Proceedings of the 12th International776
Conference on Natural Language Processing, pages777
394–402. NLP Association of India.778

Shyam Upadhyay, Ming-Wei Chang, Kai-Wei Chang,779
and Wen-tau Yih. 2016. Learning from explicit and780
implicit supervision jointly for algebra word prob-781
lems. In Proceedings of the 2016 Conference on782
Empirical Methods in Natural Language Processing,783
pages 297–306.784

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,785
and Xiaojiang Liu. 2018a. Translating math word786
problem to expression tree. In Proceedings of the787
2018 Conference on Empirical Methods in Natural788
Language Processing, pages 1064–1069. ACL.789

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan790
Song, Long Guo, and Heng Tao Shen. 2018b.791
Mathdqn: Solving arithmetic word problems via792
deep reinforcement learning. In Proceedings of793
the Thirty-Second AAAI Conference on Artificial794
Intelligence, AAAI, pages 5545–5552. AAAI Press.795

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu,796
Lianli Gao, Bing Tian Dai, and Heng Tao Shen.797
2019. Template-based math word problem solvers798
with recursive neural networks. In Proceedings799
of the Thirty-Third AAAI Conference on Artificial800
Intelligence, AAAI, pages 7144–7151. AAAI Press.801

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.802
Deep neural solver for math word problems. In803
Proceedings of the 2017 Conference on Empirical804
Methods in Natural Language Processing, pages805
845–854. ACL.806

Ronald J. Williams. 1992. Simple statistical gradient-807
following algorithms for connectionist reinforce-808
ment learning. Mach. Learn., 8(3–4):229–256.809

Qinzhuo Wu, Qi Zhang, Zhongyu Wei, and Xuan-810
Jing Huang. 2021. Math word problem solving811
with explicit numerical values. In Proceedings812
of the 59th Annual Meeting of the Association813
for Computational Linguistics and the 11th814
International Joint Conference on Natural Language815

Processing (Volume 1: Long Papers), pages 816
5859–5869. 817

Zhipeng Xie and Shichao Sun. 2019. A goal-driven 818
tree-structured neural model for math word prob- 819
lems. In Proceedings of the 28th International Joint 820
Conference on Artificial Intelligence, pages 5299– 821
5305. AAAI Press. 822

M. Yuhui, Z. Ying, C. Guangzuo, R. Yun, and 823
H. Ronghuai. 2010. Frame-based calculus of solv- 824
ing arithmetic multi-step addition and subtraction 825
word problems. In 2010 Second International 826
Workshop on Education Technology and Computer 827
Science, volume 2, pages 476–479. 828

Dongxiang Zhang, Lei Wang, Nuo Xu, Bing Tian Dai, 829
and Heng Tao Shen. 2018. The gap of semantic 830
parsing: A survey on automatic math word problem 831
solvers. CoRR, abs/1808.07290. 832

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan 833
Wang, Jie Shao, and Ee-Peng Lim. 2020. Graph- 834
to-tree learning for solving math word problems. 835
In Proceedings of the 58th Annual Meeting of the 836
Association for Computational Linguistics, pages 837
3928–3937, Online. Association for Computational 838
Linguistics. 839

10



Supplementary Material : WARM: A Weakly(+Semi)
Supervised Math word Problem Solver

Anonymous ACL submission

1 Notations001

We summarize the notations used in section 4 of002
the main paper in table 1.

Notation Description
opt Probability distribution of operators at decoding timestep t.

olt Probability distribution of the left operand at decoding timestep t.
ort Probability distribution of the right operand at decoding timestep t.

hdt Decoder hidden state at timestep t.
Emop Operator Embedding Matrix
hopt Hidden state for the operator at timestep t
opt Operator sampled from opt .

holt Hidden state for the left operand at timestep t.

olt Left operand sampled from olt.
hort Hidden state for the right operator at timestep t.
ort Right operator sampled from ort .

OpDict Operand dictionary used while decoding
Rt Rewards obtained at timestep t.

pθ(yt) Probability of generating yt = (opt, olt, ort) at timestep t.

Table 1: Summary of notation used.

003

2 Ablation Study: Varying Amount004

of Semi-supervision005

We performed an experiment to study the effect006
of different amounts of supervision by varying the007
number of instances in training set we treat as fully008
labelled. The number of fully labelled instances009
is X-axis*80. We observe that just having 160010
equation-labelled instances (out of 8846 ie. 1.8%)011
improves the equation-exploration accuracy signif-012
icantly (46.7% to 90.6%) when we don’t use beam013
exploration.014

Figure 1: Equation Exploration accuracy with
varying supervision

3 Infrastructre Details 015

GPU Model used : 016
1)Model number: GeForce GTX 1080 Ti 017
2)Memory : 12GB 018

019
Training time : 020
1) WARM takes 4 hours for training 021
2) G2T takes 1 hour and 30 minutes to get trained 022
completely 023

024

1


