
A Theory of Learning with Competing Objectives
and User Feedback

Pranjal Awasthi
Google Research

pranjalawasthi@google.com

Corinna Cortes
Google Research

corinna@google.com

Yishay Mansour
Google Research and Tel Aviv University

mansour@google.com

Mehryar Mohri
Google Research and Courant Institute of Mathematical Sciences

mansour@google.com

Abstract

Large-scale deployed learning systems are often evaluated along multiple objec-
tives or criteria. But, how can we learn or optimize such complex systems, with
potentially conflicting or even incompatible objectives? How can we improve the
system when user feedback becomes available, feedback possibly alerting to issues
not previously optimized for by the system? We present a new theoretical model
for learning and optimizing such complex systems. Rather than committing to
a static or pre-defined tradeoff for the multiple objectives, our model is guided
by the feedback received, which is used to update its internal state. Our model
supports multiple objectives that can be of very general form and takes into account
their potential incompatibilities. We consider both a stochastic and an adversarial
setting. In the stochastic setting, we show that our framework can be naturally cast
as a Markov Decision Process with stochastic losses, for which we give efficient
vanishing regret algorithmic solutions. In the adversarial setting, we design effi-
cient algorithms with competitive ratio guarantees. We also report the results of
experiments with our stochastic algorithms validating their effectiveness.

1 Introduction

Learning algorithms trained on large amounts of data are increasingly adopted in a variety of
applications and form the engine driving complex large-scale systems such as e-commerce platforms,
online advertising auctions and recommender systems. Their system designer must take into account
multiple metrics when optimizing them [Kaminskas and Bridge, 2016, Masthoff, 2011, Lin et al.,
2019]. As an example, consider the case of a recommendation system for recipes, videos or fashion.
There is no single metric that defines what a good recommendation engine should do. One needs
to carefully take into consideration metrics measuring the quality of recommendations provided to
end-users, their relevance and utility, the long-term growth of the content creators, and the overall
revenue generated for the hosting platform. Furthermore, it is crucial to consider the risk of bias in
these systems [Speicher et al., 2018, Xiao et al., 2017, Holstein et al., 2019]. Hence, additional metrics
may need to be incorporated, such as performance across demographic groups, geographical locations
or other identity terms. This can easily lead to hundreds of metrics that need to be simultaneously
optimized for user satisfaction.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Further complicating the above scenario is the fact that often the multiple metrics considered are
incompatible and inherently in conflict with each other [Kleinberg et al., 2017, Sener and Koltun,
2018, Jin, 2006]. For instance, in the context of a recommendation system, there is a tension between
maximizing revenue via ad placements and maximizing end-user “happiness”. Another tension may
be between maximizing quality versus diversity of recommendations. In many cases, resolving such
conflicts may force the designer to make hard choices among notions that seem perfectly reasonable in
isolation, weighing in current use-patterns, wins and losses. An illuminating example is the analysis
of the COMPAS tool for predicting recidivism by Angwin et al. [2019]. The authors showed that,
among black defendants who do not recidivate, the tool predicted incorrectly at twice the rate than
it did for white defendants who did not recidivate, i.e., the tool was unfair according to the false
positive rate metric. The creator of the tool, Northpointe, responded by demonstrating that the tool
was fair according to other natural measures such as AUC (Area Under the ROC Curve), for which
each group had similar values. Later work showed that this tension is inherent and that it is often
impossible to simultaneously satisfy multiple seemingly natural criteria [Kleinberg et al., 2017] (see
also [Feller et al., 2016]).

The above discussion raises the question of how one should define the optimal trade-off among
multiple conflicting metrics to optimize for user satisfaction. A natural approach is to define the
trade-offs in a static manner, either by using domain knowledge and human expertise, or by analyzing
past historical data. Another line of work studies optimization in the presence of multiple objectives
by designing algorithms that compete with any linear combination of the objectives [Mohri et al.,
2019, Cortes et al., 2020] or by designing pareto-optimal solutions [Sener and Koltun, 2018, Shah
and Ghahramani, 2016]. However, these solutions may be sub-optimal for the richer situation where
user feedback is available. While algorithms tailored to a specific metric or a combination of metrics
would be effective at first, experience shows that they become non pertinent over time: once a system
is deployed and it interacts with its end-users, inefficiencies in the system design emerge, as evident
via the user feedback, which in turn could lead one to prefer metrics originally not accounted for
[Liu et al., 2018]. In the context of the COMPAS tool discussed above, this would correspond to
the situation where user complaints make the system designers change loss function to ensure equal
false-positive rates. The important aspect is that the underlying data distribution on which the tool
has been trained does not change, new user feedback simply alerts the designers to short-comings
of the system. Motivated by the above, in this work, we present a theoretical data-driven model
for optimizing multiple conflicting metrics by taking into account the user feedback. Our proposed
framework allows for the design of algorithmic solutions with strong theoretical guarantees.

In the context of a recommender system, user initiated feedback may be a "dislike", "too spicy", or
"age inappropriate" [Chen and Pu, 2012], but feedback may also be indirectly observed by e.g. high
abandonment rates or low click-through rates. Going from complaints to actionable solutions involves
many steps. First, the complaints are analyzed, typically by human specialists, and attributed to a set
of predefined criteria, such as low accuracy of classifiers, false positive rates or AUC scores. Each
complaint could trigger several criteria and a human specialist can monitor the aggregate performance
on each criterion. Since criteria are often incompatible, based on the analysis of the complaints and
their affect on the criteria, a decision is made to allocate resources to improve a subset of the criteria
and this process repeats [Yu et al., 2020]. While human involvement is crucial in the above process
for both analyzing complaints and trading off metrics, a large portion of the above process could be
made algorithmic and automated.

In practice, the problem of multiple conflicting metrics may emerge, even when a single fixed criterion
is adopted [Klinkman et al., 1998, Buolamwini and Gebru, 2018]. As an example, consider again
a recommendation system for videos. Let us assume that a system designer has opted for the false
positive rate and the false negative rate to measure the performance of the system. The overall false
positive (FP) rate or the false negative (FN) rate is rarely a good indicator of performance, particularly
from an algorithmic bias point of view. Instead, the system designer would wish to monitor and
optimize the FP/FN rates across different slices of the data, such as “sports”, “religion”, “LGBTQ
issues” videos, or videos originating from different geographic locations, or a combination of them.
This could easily result in hundreds of relevant slices of the data, where each can be viewed as a
separate metric. As discussed before, these slices will often admit mutual incompatibilities [Kleinberg
et al., 2017, Feller et al., 2016]. Thus, a user feedback data-driven method is needed to make the
optimal choice. Our main contribution is precisely a data-driven model and algorithms for that

2

��
��

��

��

������� ��

��

�� ��

(a) (b) (c)

Figure 1: (a) Illustration of constraints graph G. v1, v2, v3, v4 represent 4 different criteria. (b) More
generally, each vertex can represent a joint criterion, for example v1 ∧ v2. This helps specify joint
constraints such as the following: v1, v2, and v3 cannot be simultaneously satisfied. (c) Illustration
of the MDP for a fully connected incompatibility graph G over three criteria. The state set is
S = {0 = [0, 0, 0],1 = [1, 0, 0],2 = [0, 1, 0],3 = [0, 0, 1]}, the action set A = {0, 1, 2, 3}. Each
transition is labeled with a/λ(s, a), where a is the action taken from s and where λ(s, a) is the total
loss incurred as a result.

purpose. Not only is our proposed framework grounded in theory, it can also be effectively realized
in practice as we will show later.

Our model assumes predetermined costs for user complaints along the multiple metrics. The difficulty
in optimizing for user happiness arises from the fact that the nature and volume of the complaints
depend on the state of the model. Of course if no complaints is received, an optimal state has been
reached, but most often complaints will arise. Fixing the model to optimize for this set of complaints
will most likely spur a different set of complaints, etc. Only by visiting all incompatible states of
the model and observing the associated complaint set would one be able to fully optimize the model.
Such an exhaustive search is prohibitive from both a time and development perspective. This paper
presents a model that effectively reaches a beneficial state and provides performance guarantees.

The rest of the paper is organized as follows. In Section 2, we define our model. In the stochastic
setting (Section 3), we show that our framework can be cast as a Markov Decision Process with
stochastic losses, for which we give efficient vanishing regret algorithmic solutions. We also further
discuss our modeling assumptions and extensions. In the adversarial setting (Section 4), we give
algorithms with competitive ratio guarantees. Section 5 demonstrates how our framework can be
realized in practice and reports the results of experiments with our algorithms in the stochastic setting
that demonstrate their effectiveness and the applicability of our model. We defer the related work
discussion as well as many of the proofs to the appendix.

2 Conflict resolution model

We consider optimization in the presence of multiple criteria, where not all criteria can be satisfied
simultaneously. The constraints are specified by an undirected graph G = (V,E), where each vertex
represents a criterion and where an edge between vertices vi and vj indicates that criteria vi and vj
cannot be simultaneously satisfied. We denote by V = {v1, . . . , vk} the set of k criteria considered.
Figure 1 illustrates these definitions. Note that vertices may represent joint criteria as in Figure 1(b).

We consider a machine learning system that evolves over a sequence of time steps in the presence of
the criteria represented by the graph G. At each time step t, the system is in some state st characterized
by its performance on all criteria in V . Note, a state is distinct from a vertex of G. The system then
receives a new batch of feedback that depend on its current state and incurs a loss. The objective of
the algorithm is to minimize the total cost incurred over a period of time, which includes the total
loss accrued, as well as the total cost of fixing various criteria over that period. We envision that the
algorithm is solving a constraint optimization problem with the criteria as constraints.

The assignment of a complaint to one or more criteria can be achieved by human analysis or via a
multi-class multi-label classifier trained on past data and making use of known classifiers for specific
criteria. Even when a complaint is related to a single criterion, we do not simply advocate taking
that raw feedback as the ground truth. We discuss the risks associated with doing so in Section 3
and Appendix F, in the context of the COMPAS example. To further improve and maintain the
accuracy of this multi-class multi-label classifier, in practice, there may be ongoing data labeling
and assistance by expert auditors analyzing complaints. Note that not all complaints received by the

3

system are relevant and the classifier, or a human in the loop, may decide to not assign a complaint
to any criterion. This also helps protect the system against potential attacks by coordinated users.
Recent work on interactive models for ML fairness has studied this for specific metrics and auditor
behavior [Bechavod et al., 2020].

Loss. As a result of the complaints, the system incurs a loss and responds by changing its state.
The definition of the loss, which depends on the criteria affected by the complaints is critical, a
poor choice can yield a so-called loudest voice effect (see discussion in Section 3). The notion of
complaints and the associated loss may seem abstract at this point. In Section 5, we demonstrate how
our model can be applied in practice.

Graph and criteria. The assumption that the graph G is known a priori may seem restrictive.
However, in many settings, graph G can be derived from analyzing past complaints and by measuring
how fixing one criterion affects the performance on others. For instance, in the recommendation
system example discussed above, where each metric corresponds to the false positive rate on a
different slice of the data, one can easily use past data to see how optimizing the false positive rate on
one slice affects the other and get the graph of incompatibilities. See the experiments in Section 5 for
a more concrete example. Our model also provides the flexibility of accounting for incompatibilities
among criteria such as those discussed by Kleinberg et al. [2017] and Feller et al. [2016]. This can
be achieved by augmenting the graph with vertices representing joint criteria as in Figure 1(b). The
graph stipulates in particular that v1, v2 and v3 cannot be all simultaneously satisfied.

States. For our theoretical and algorithmic analysis, we will adopt the following simplifying assump-
tions and will later discuss their extensions or relaxation in Section 3. We assume that each criterion
can only be in one of two states: fixed, meaning that criterion vi is met or is not violated, or unfixed,
meaning the opposite. Hence, the overall state of the system can be described by a k-dimensional
Boolean vector. An action corresponds to fixing a particular criterion, or set of criteria, and moving
to a different vertex vi in the graph. Fixing the criteria associated to vi entails an algorithmic and
resource allocation cost that we denote by ci. Initially, all criteria are unfixed. At each time step, a
conflict resolution system or algorithm selects some action, which may be to fix an unfixed vertex vi,
thereby incurring the cost ci and unfixing any vertex adjacent to vi, or the algorithm may select the
null action, not to fix or unfix any vertex and wait to collect more data. Note that the incompatibilities
in our model defined via edges in the graph are data agnostic. In practice, it is possible that two gen-
erally incompatible criteria can be simultaneously satisfied for a given dataset, say via incorporating
a slack. This is a direction for future work.

Fixing costs. The fixing cost can be estimated from past experience. In the absence of any prior
information, one could assume a unit fixing cost for all criteria. We deliberately avoid making specific
choices. This gives us flexibility in dealing with different types of metrics in a unified manner.

While the focus of our study is theoretical, let us emphasize that our model is easily applicable and
implementable in practice. We further discuss this in the end of Section 3 and illustrate it in Section 5.

3 Stochastic setting

We first detail a stochastic setting of our model that can be described in terms of a Markov Decision
Process (MDP). Next, we present algorithms with strong regret guarantees.

Description. The distribution of complaints received by the system is a function of its current state,
that is the current set of fixed or unfixed criteria vi. Thus, we consider an MDP with a state space
S ⊆ {0, 1}k representing the set of bit vectors for criteria: a state s ∈ {0, 1}k is defined by s(i) = 0
when criterion vi is unfixed and s(i) = 1 when it is fixed. By definition of the incompatibility graph
G, s is a valid state if and only if the set of fixed criteria at s is an independent set of G.

When in state s ∈ S, the system incurs a loss `si due to complaints related to criterion i ∈ [k].
Loss `si is a random variable assumed to take values in [0, B] with mean µsi . We do not assume
independence across criteria, i.e., `si and `sj may be dependent for a given state s. The action set is
A = {0, 1, . . . , k}. A non-zero action i corresponds to fixing criterion i. Action 0 is the null action,
that is no criterion is fixed. Transitions are deterministic: given state s and action i ∈ A, the next
state is s if i = 0 since the fixed-unfixed bits for criteria are unchanged; otherwise, for i 6= 0 the next
state is the state s′ that only differs from s by s′(i) = 1 and (possibly) s′(j) = 0 for all j ∈ N(i),
where N(i) is the neighbors of vi in G, since neighbors of i must be unfixed once i is fixed.

4

Each action a= i admits a fixing cost ci. The cost for unfixing, as well as the null action, is zero. The
loss incurred when taking action a at state s is the sum of the fixing cost ca and the complaint losses
at the (possibly) next state s′: λ(s, a) = ca +

∑k
i=1 `

s′

i . The expected loss of transition (s, a, s′) is:

E

[
ca +

k∑
i=1

`s
′

i

]
= ca +

k∑
i=1

µs
′

i . (1)

Note, ca and the losses `s
′

i are observed by the algorithm, but the mean values µs
′

i are unknown. To
keep the formalism simple we assume that the cost ca of taking an action a is independent of the
current state s. Figure 1 (c) illustrates our stochastic model for three mutually incompatible criteria.
The notion of each metric in a binary state is a simplifying modeling assumption for our theoretical
investigation. We discuss this more at the end of the Section.

Correlation sets. In practice, the distribution of complaints related to a criterion vi at
two different states may be related. To capture these correlations in a general way, we
assume that a collection C = {C1,C2, . . . ,Cn} of correlation sets is given, where each
Cj is a subset of the k criteria and has size at most m. By allowing correlation sets
of varying sizes, we can capture a range of dependencies that may exist between differ-
ent criteria. These dependencies affect the loss observed by the algorithm at each time.

Figure 2: Example of correla-
tion sets and associated losses
for a graph with four criteria.

We assume that at a given state s, each set Cj generates losses with
mean value θsj per vertex, and that if two states s and s′ admit the
same configuration for the vertices in Cj , then they share the same
parameter θsj = θs

′

j . Given a criterion i and a state s, we assume
that the loss incurred by criterion i equals the sum of the individual
losses due to each correlation set Cj that contains i. Thus, µsi can
be expressed as follows: µsi =

∑n
j=1 θ

s
j 1(i ∈ Cj). If a criteria is

not correlated with any other vertex, we add to C a correlation set of
size one for that criterion. See Figure 2 for an illustration. For each
j ∈ [n], there are at most 2m configurations for the vertices of Cj in a state s, hence there are at most
2mn distinct parameters θsj . Let θ denote the vector of all distinct parameters θsj . Our MDP model
can then be denoted MDP(S,A, C,θ).

Algorithm. We consider an online algorithm that at time t takes action at from state st and reaches
state st+1, starting from the initial state (0, . . . , 0). The objective of an algorithm can be formulated
as that of learning a policy, that is a mapping π : S→ A, with a value close to that of the optimal. We
are mainly interested in the cumulative loss of the algorithm over the course of T interactions with
the environment. The goal is to minimize the pseudo-regret:

Reg(A) =

T∑
t=1

E
[
λt(st, at)

]
−

T∑
t=1

E
[
λt(s

π∗

t , π∗(sπ
∗

t))
]
, (2)

where λt(s, a) is the total loss incurred by taking action a at state s at time t, s1 = (0, . . . , 0) and
π∗ is the optimal policy. Note, λt is only a function of the current state and the action taken. The
expectation is over the random generation of the complaint losses. Given the correlation sets and
the parameter θ, the optimal policy π∗ corresponds to moving from the initial state (0, . . . , 0) to the
state s∗ ∈ S with the most favorable distribution and remaining at s∗ forever. We define by g(s) the
expected (per time step) loss incurred by staying in state s, that is, g(s) :=

∑k
i=1 µ

s
i . The optimal

state s∗ is then defined as follows:

s∗ = argmin
s∈S

g(s). (3)

Note, in this definition of s∗, we disregard the one-time cost of moving to a state from the initial
state, since in the long run the expected cost incurred by staying at a given state governs the choice of
the optimal state. We will assume that we have access to an oracle that can solve the above offline
optimization problem. This is a standard assumption in the theory of online learning and MDPs.
Since our problem can be seen as that of learning with a deterministic MDP with stochastic losses, we
could adopt an existing algorithm for that problem [Jaksch et al., 2010]. However, the running-time
of such algorithms would directly depend on the size of the state space S, which here is exponential
in k, and that of the action set A. Furthermore, the regret guarantees of these algorithms would

5

Input: The graph G, correlation sets C, fixing costs ci.

1. Pick a cover K = {s1, s2, . . . , sr} of C.

2. Let N = 10T2/3(log rkT)1/3

r2/3
.

3. For each state s ∈ K do:
• Move from current state to s in at most k time steps.
• Play action a = 0 in state s for the next N time steps to obtain an estimate µ̂s

i for all i ∈ [k].
4. Using the estimated losses for the states in K and Equation (4), run the oracle for the optimization (3)

to obtain an approximately optimal state ŝ.
5. Move from current state to ŝ and play action a = 0 from ŝ for the remaining time steps.

Figure 3: Algorithm for m = 2 achieving Õ(T 2/3) pseudo-regret.

also depend on |S||A|. Instead, by exploiting the structure of the MDP, we can design vanishing
regret algorithms with a computational complexity that is only polynomial in k and the number of
parameters. We will assume access to an oracle that, given θ, can optimize (3). In Appendix B, we
show how to approximately solve (3) for the case of m = 1, i.e., singleton correlation sets. In that
case, the true parameters θ can also be estimated efficiently (see Theorem 5).

There are certain important distinctions between our proposed stochastic model and the standard
online learning setting. Our model has a notion of a state that evolves as a result of the stochastic losses
suffered. These losses in turn depend on the distribution of complaints received. This distribution
should not be confused with the distribution of data over which classifiers may be trained to fix
a criterion. The latter is assumed fixed over time. Via correlation sets we can model complex
correlations among the criteria when defining the stochastic losses.

Case m = 2. To illustrate the ideas behind our general algorithm, we first consider a simpler
setting where correlation sets are defined on subsets of size at most two. This setting also captures
an important case where fixing a particular criterion affects the complaints of its neighbors. The
algorithmic challenge we face here is to avoid exploring the exponentially many states in the MDP.
Instead, we will design an algorithm that spends an initial exploration phase by visiting a specific
subset of states of size at most 4n. This subset denoted by K, that we call a cover of C will help the
algorithm estimate the expected loss of any state in the MDP given the estimates of losses for states
in the cover. After the exploration phase, the algorithm creates an estimate θ̂ of the true parameter
vector θ, uses the optimization oracle for solving Eq. (3) to find a near optimal state ŝ and selects to
stay at state ŝ for the remaining time steps. We next define the cover.

For two criteria i, j and b ∈ {0, 1}, we say that (i, j, b) is a dichotomy if there exist two states
s, s′ ∈ S such that: (1) s(j) = 0 and s′(j) = 1, and (2) s(i) = s′(i) = b. We call the two states
s, s′ an (i, j, b)-pair. Note that if an edge (vi, vj) is present in G, then (i, j, 1) cannot be a dichotomy,
since criteria i and j cannot be fixed simultaneously. A cover K of C is simply a subset of the states
in the MDP that contains an (i, j, b)-pair for every {i, j} ∈ C and valid dichotomy (i, j, b).

Furthermore, for every singleton set {i} in C, K contains states s, s′ such that s(i) = 0, s′(i) = 1
and s(j) = s′(j) for all j 6= i. Note that we only need the cover to contain an (i, j, b)-pair if {i, j} is
a correlation set. Hence, it is easy to see that when m = 2, there is always a cover of size at most 4n.

Next, we state our key result that estimating the loss values for the states in a cover is sufficient.
Theorem 1. Let K be a cover for C. For any state s ∈ S and any i ∈ [k] with s(i) = b, we have:

µsi = µs
′

i +

k∑
j=1

Xi,j
b [1(s(j) = 1)1(s′(j) = 0)]−

k∑
j=1

Xi,j
b [1(s(j) = 0)1(s′(j) = 1)] , (4)

where s′ is any state in K with s′(i) = b, and for {i, j} ∈ C, Xi,j
b := µs1i − µ

s2
i where (s1, s2) is

some (i, j, b) pair. If {i, j} /∈ C, we define Xi,j
b to be zero.

From the above theorem we have the following guarantee.
Theorem 2. Consider an MDP(S,A, C,θ) with losses in [0, B], maximum fixing cost c, and correla-
tions sets of size at most m = 2. Let K be a cover of C of size r ≤ 4n, then, the algorithm of Figure 3
achieves a pseudo-regret bounded by O(kr1/3(c+B)(log rkT)1/3T 2/3). Furthermore, given access
to an oracle for (3), the algorithm runs in time polynomial in k and n = |C|.

6

Input: graph G, correlation sets C, fixing costs ci.

1. Let K be the cover of size k + 1 that includes the all zeros state and the states corresponding to
indicator vectors of the k vertices.

2. Move to each state in the cover once and update the optimistic estimates according to (5).
3. For episodes h = 1, 2, . . . do:

• Run the optimization oracle for solving Eq. (3) with the optimistic estimates as in (5) to get a
state s.

• Move to state s. Stay in state s for t(h) time steps and update corresponding estimates using (5).
Here t(h) = mini τ

s(i)
i,th

and th is the total number of time steps before episode h starts.

Figure 4: Online algorithm for m = 1 with Õ(
√
T) regret.

There is a natural extension to arbitrary correlation sets via extending the notion of a dichotomy and
a cover (Algorithm in Figure 8, Appendix B). Our algorithms are also scalable. During step 1 they
only explore the states in the cover K that could be much smaller than the full state space.

Beyond T 2
3 regret. Next, we present algorithms that achieve Õ(

√
T) regret, first in the case m = 1,

next for any m, under the assumption that each criterion does not participate in too many correlations
sets. Although our problem can be cast as an instance of the stochastic multi-armed bandit problem
with switching costs, and arms corresponding to the states in the MDP, existing algorithms achieving
Õ(
√
T) have time complexity that depends on the number of arms which in our case is exponential

(2k) [Cesa-Bianchi et al., 2013, Simchi-Levi and Xu, 2019]. We will show here that, in most realistic
instances of our model, we can achieve Õ(

√
T) regret efficiently. When correlation sets are of size

one, the parameter vector θ can be described using the following 2k parameters: for each i ∈ [k],
let γ0i denote the expected loss incurred by criterion i when it is unfixed and γ1i its expected loss
when it is fixed. Our proposed algorithm is similar to the UCB algorithm [Auer et al., 2002]. For
every vertex i, let τ0i,t be the total number of time steps up to t (including t) during which vi is in an
unfixed position and let τ1i,t be the number of times steps up to t during which vi is in a fixed position.
Fix δ ∈ (0, 1) and let γ̂bi,t be the empirical average loss observed when vertex vi is in state b, for
b ∈ {0, 1}. Our algorithm maintains optimistic estimates

γ̃bi,t = γ̂bi,t − 10B

√
log(kT/δ)

τ bi,t
. (5)

The algorithm divides the T time steps into consecutive intervals that we call as episodes. In episode
h, the algorithm moves to and stays at a fixed state for t(h) time steps. At the end of the episode it
makes a query to the optimization oracle (using the current optimistic estimates) to decide on the
state to go to for the next episode. The algorithm carefully chooses t(h) to maintain low regret. The
algorithm is described in Figure 4. We will prove that it benefits from the following regret guarantee.
Theorem 3. Consider MDP(S,A, C,θ) with losses in [0, B] and maximum fixing cost c. Given
correlations sets C of size one, the algorithm of Figure 4 achieves a pseudo-regret bounded by
O(k2(c+B)2

√
T log T). Furthermore, given access to an oracle for (3), the algorithm runs in time

polynomial in k.

The algorithm of Figure 4 can be extended to higher m values (see Figure 10 in Appendix C).

Modeling assumptions and extensions. Here, we briefly discuss the assumptions we adopted and
various natural extensions. i) Scalability. The running time of our algorithms depends linearly on
the size of the cover K. While in the worst case the size of the cover could be exponential in n,m,
in practice, we expect it to be very small, in which case our algorithms are quite efficient. ii) Loss
function. The choice of the loss function is critical in the effectiveness of our model. We made the
simplifying assumption that the loss at each time step is additive in the losses incurred by correlation
sets. A careless choice of what the additive losses correspond to may result in a sub-optimal overall.
For example, a poor choice is one that uses the volume of complaints, i.e., how many complaints have
triggered a criterion. This will make us vulnerable to the loudest voices in the system. In Section 5,
we discuss how our framework can be implemented in practice and present reasonable choices for
the loss function. We further discuss the choice of the loss function in the case of the COMPAS
example in Appendix F. (iii) Adversarial manipulation. Our model may be vulnerable to strategic

7

coordination. A malicious group of users can form a sub-community generating a large number of
complaints to press the system to include a new criterion in the graph. The presence of such poor
criteria may result in an overall suboptimal system. Modeling this scenario is beyond the scope of the
current work. (iv) Continuous states. While this is a direction for future work, our method offers a
simple way to achieve this by simply adding, for each criterion i, additional criteria to the graph with
different levels or thresholds τ1, τ2, . . . for satisfying the criterion.

4 Adversarial setting

Motivated by the above discussion on adversarial manipulation, we next study a setting with no
distributional assumptions about the arrival of complaints. We consider an adversarial model where,
at each time step, multiple complaints arrive for the vertices in G. Initially all the vertices in G are in
an unfixed state and each vertex has a fixing cost of ci. Each time, the algorithm can decide to fix a
particular vertex, and as a result its neighbors get unfixed. At time step t, if criterion vi is unfixed,
then the algorithm incurs a loss of `i(t) (which depends on the current state of the system), otherwise
the algorithm incurs no loss. For an algorithm A, during T time steps, the total loss is

Loss(A) =

k∑
i=1

T∑
t=1

`i(t) · 1(st(i) = 0) +

k∑
i=1

T∑
t=2

ci · 1(st−1(i) = 0, st(i) = 1). (6)

Let OPT be the algorithm that, given the entire loss sequence in advance, makes the decisions to fix
vertices. We define the competitive ratio [Borodin and El-Yaniv, 1998] of A to be the maximum of
Loss(A)/Loss(OPT) over all possible complaint sequences. Our main result is stated below.
Theorem 4. Let G be a graph with fixing costs at least one. There is a polynomial-time algorithm
with a competitive ratio of at most 2B + 4 on any sequence of complaints with loss values in [0, B].

Our algorithm for this setting is provided in Figure 11 in Appendix D. The intuition behind the
algorithm is the following. For each criteria we consider it fixing cost, the accumulated loss since the
last time it was fixed plus a measure of the cost of fixing its neighbors. We fix a criteria (and implicitly
unfix its neighbors) once its accumulated loss is larger than both its fixing cost and a measure of the
cost of fixing its neighbors (the decision in the algorithm is more refined). This allows us to "charge"
the cost of fixing a criteria to its accumulated loss. In addition, we make sure that (future) fixing of
the neighbors of the criteria can also be charged appropriately. For details for the algorithm and the
analysis see Appendix D.

5 Experiments

Simulated Data. We first evaluated the performance of our stochastic setting algorithms (Section 3)
on simulated data. We generated the graph G from the Erdős-Rényi model: G(k, p) and set p = 2 log k

k ,
to ensure connectivity. We generated correlation sets (C) of size two by picking αk pairs of vertices
at random and adding them to C, where α is a parameter. Hence, on average, each vertex is in α
correlation sets. We also added to C singleton sets for each vertex in G. The fixing cost of a vertex
was sampled uniformly in [1, 5]. Parameters governing the loss distribution were drawn from a
Beta distribution. We approximated the oracle for the optimization in (3) via a linear programming
relaxation. Our algorithms of Figure 3 and Figure 10 admit complementary guarantees. The former
admits a higher regret as a function of T , but only a polynomial dependence on α, i.e., the average
number of correlation sets a vertex participates in. The latter incurs a smaller regret of Õ(

√
T) as

a function of T at the expense of an exponential dependence on α. Figure 5 shows an empirical
illustration of this: for smaller values of α, the Õ(

√
T) regret algorithm performs significantly better,

while for larger values of α the Õ(T 2/3) regret algorithm is more desirable. We choose to compare the
performance of our two proposed stochastic algorithms as we are not aware of any existing baselines
for simultaneously optimizing multiple diverse metrics. Additionally, we focus on experiments with
the stochastic model as it is hard to approximate the best offline algorithm in the adversarial setting
of Section 4. See Appendix E for more details and experimental results.

Real-world dataset. We next illustrate how our framework can be applied to real-world data. Due to
space constraints, we provide a brief description here and refer the reader to Appendix E for details
and more results. We studied the UCI Adult dataset [Kohavi, 1996] which includes 48,852 examples,

8

Figure 5: Cumulative loss of the algorithms of Figures 3 and 10 on a graph with k = 100 criteria.
α = 1, 3, 4 determines the number of random pairs of vertices, αk, added into correlation sets.

each represented by 124 features, after processing. Each data point corresponds to a person and the
label is a 0/1-value representing whether the income of the person is more or less than $50,000. The
dataset contains information about sensitive attributes such as race and gender. We simulated an
online scenario where a classifier is making predictions on the income of individuals. At each time
step, a batch of complaints arrive, the system incurs a loss and responds by transitioning to a different
state (and updating the classifier). We now describe the various components.

Graph G: We used race in {black,white} as an attribute to obtain two sub-populations and considered
two natural criteria, namely the true positive rate and the AUC score, equivalent to the criteria of
the COMPAS tool. This leads to four vertices tprw, tprb, aucw, aucb. Furthermore, we added the
overall classifier accuracy as a fifth vertex. We consider a unit fixing cost for all criteria.

Losses and Correlation Sets: We consider correlation sets of size one, and the total loss of a state is
the sum of the losses of each criterion. For the accuracy vertex, we define the loss to be the error
of the classifier. For a vertex, say tprw, if the overall tpr of the classifier and the tpr on the white
population deviated by more than τ , we penalized the classifier linearly: the loss for tprw was defined
as: max(0, |tproverall − tprw| − τ). Other losses are defined similarly. We set τ = 0.005.

Incompatibilities and State Transitions: We solved, for each state s ∈ {0, 1}5, an optimization
via the tensorflow constrained optimization toolkit [Cotter et al., 2018a,b] to get a classifier.

Figure 6: Performance of the Algorithm of Fig-
ure 4. Loss of the offline and online algorithms
and states chosen by the online algorithm, as a
function of the time steps.

We evaluated the classifier on a test set and if
the loss of any criterion was more than a specific
threshold (0.01), we considered the state invalid.
As an example, in the instance corresponding
to Figure 6, we obtained four valid states. We
obtained the state transitions as follows. If the
algorithm asked to fix vi in state s, we set s(i) =
1 to go to the next state s′. While s′ is invalid,
we unfixed the criterion (not including vi) with
the highest loss in the state s′ to reach another
state.

Simulating Complaints: We divided the dataset
into 16,000 examples that we used to update our
classifier at each time step and the remaining
test set to simulate the arrival of complaints. At
each step, we randomly selected a batch of examples from the test set to generate complaints. This
batch was used to compute the loss at the given time step.

Benchmark and Results: We compared our Algorithm of Figure 4 with an offline optimal solution
computed by finding the state with the minimum average loss over the sequence of complaints. The
results are in Figure 6. We plot the loss of the algorithm as compared to the benchmark, as well as the
states chosen by the algorithm, as a function of the time steps. Our algorithm quickly converges to the
offline optimal solution after an initial exploration phase. Note that the choice of the loss functions
was important in this case and that we did not weight each criterion by the volume of the complaints.
This demonstrates that our algorithms, when combined with a good choice of the loss function, can
be useful in practice. See Appendix E for details.

9

6 Conclusion

We presented a new data-driven model of online optimization from user feedback in the presence of
multiple criteria, with algorithms benefiting from theoretical guarantees both in the stochastic and
the adversarial setting. We provided empirical evidence that our model can be effectively realized in
practice. Several extensions are worth exploring in future work. These include fixing costs that can
vary with time to capture varying algorithmic price and human effort cost. Similarly, the expected
losses in our stochastic model could be time-dependent to express the growing cost of a criterion not
being addressed.

10

7 Reviews and changes from NeurIPS 2022 main conference

Based on the reviewer comments from the NeurIPS 2022 main conference (printed from openreview
in the next page), we have made the following changes to the manuscript.

• Clarified reviewer comment about the choice of the baselines in the experiments.
• Clarified the connection to multi-task learning in the related work.
• Added clarification about adaptive thresholds in the details of the experiments.
• Added more details about the generality of our model and the algorithms.
• Added a note about access to the offline optimization oracle.
• Further clarified the discussion of the COMPAS example.

11

9/29/22, 8:34 PM Learning with Competing Objectives and User Feedback | OpenReview

https://openreview.net/forum?id=wFG4ywRbNlR¬eId=ZIq45h5Z5to&referrer=%5BAuthor Console%5D(%2Fgroup%3Fid%3DNeurIPS.cc%2F2022%2FConfer… 2/8

14 Sept 2022 NeurIPS 2022 Conference Paper8299 Decision Readers: Program Chairs,
Paper8299 Senior Area Chairs, Paper8299 Area Chairs, Paper8299 Reviewers, Paper8299
Authors

Paper Decision
NeurIPS 2022 Conference Program Chairs

Decision: Reject

[–]

22 Aug 2022 NeurIPS 2022 Conference Paper8299 Meta Review Readers: Paper8299
Senior Area Chairs, Paper8299 Area Chairs, Paper8299 Authors, Paper8299 Reviewers
Submitted, Program Chairs

Meta Review of Paper8299 by Area Chair CF2w
NeurIPS 2022 Conference Paper8299 Area Chair CF2w

Recommendation: Reject
Confidence: Certain
Metareview:
This paper definitely raised interest among the reviewers. It tackles a very important problem and proposes an
approach that draws on tools from many different fields of ML/Mathematics (e.g. online optimization, reinforcement
learning, combinatorial optimization). While this can be great for innovation, it also requires very diverse background
knowledge. Therefore, in order to remain understandable (and thus impactful) for readers who are external to any of
these fields, the paper requires to be very well organized and clearly written. Possibly due to a lack of clarity, reviewers
had a hard time seeing how the proposed approach could be of any practical interest with all the requirements brought
along by the different parts of the solution (i.e. compatibility graph for the objectives, binarization of target values for
each objective). Reviewers were open to believing that there exist realistic scenarios where such information is available.
Picking a problem perfectly suited to the proposed method from the beginning to the end of the paper, with some
numerical results on it, could be a strong improvement for clarifying both the approach and the potential applications,
thus strongly strengthening the contributions. Overall, this paper contains many technical innovations that could benefit
the community in an improved version.

Award: No

[–]

08 Aug 2022 NeurIPS 2022 Conference Paper8299 Reviewers Author Rebuttal
Acknowledgement Readers: Program Chairs, Paper8299 Senior Area Chairs, Paper8299
Area Chairs, Paper8299 Authors, Paper8299 Reviewer T1Df

Author Rebuttal Acknowledgement by Paper8299 Reviewer T1Df
NeurIPS 2022 Conference Paper8299 Reviewer T1Df

Author Rebuttal Acknowledgement: Yes

[–]

07 Aug 2022 NeurIPS 2022 Conference Paper8299 Reviewers Author Rebuttal
Acknowledgement Readers: Program Chairs, Paper8299 Senior Area Chairs, Paper8299
Area Chairs, Paper8299 Authors, Paper8299 Reviewer a6LN

Author Rebuttal Acknowledgement by Paper8299 Reviewer a6LN
NeurIPS 2022 Conference Paper8299 Reviewer a6LN

Author Rebuttal Acknowledgement: Yes

[–]

Author Rebuttal Acknowledgement by Paper8299 Reviewer VJXj
NeurIPS 2022 Conference Paper8299 Reviewer VJXj

[–]

12

9/29/22, 8:34 PM Learning with Competing Objectives and User Feedback | OpenReview

https://openreview.net/forum?id=wFG4ywRbNlR¬eId=ZIq45h5Z5to&referrer=%5BAuthor Console%5D(%2Fgroup%3Fid%3DNeurIPS.cc%2F2022%2FConfer… 3/8

07 Aug 2022 NeurIPS 2022 Conference Paper8299 Reviewers Author Rebuttal
Acknowledgement Readers: Program Chairs, Paper8299 Senior Area Chairs, Paper8299
Area Chairs, Paper8299 Authors, Paper8299 Reviewer VJXj
Author Rebuttal Acknowledgement: Yes

13 Jul 2022 NeurIPS 2022 Conference Paper8299 Official Review Readers: Program
Chairs, Paper8299 Senior Area Chairs, Paper8299 Area Chairs, Paper8299 Reviewers
Submitted, Paper8299 Ethics Reviewers, Paper8299 Authors

Official Review of Paper8299 by Reviewer T1Df
NeurIPS 2022 Conference Paper8299 Reviewer T1Df

Summary:
The paper is proposing a new multi-constrained optimization problem, where many competing targets are available in a
context where high variance performance feedback is obtained regarding the satisfaction of these constraints. This is
presented as a significant problem in recommender systems, where many targets can be defined (possible through
specific segmentations of the data according to specific attributes), and where user feedback is used to guide
recommendations (hence high variance). The problem is modeled as a Markov decision process (MDP), with many
criteria defined in order to attain good performance over the various targets. The assumption of the approach is that all
criteria cannot be satisfied simultaneously, but a subset of them can be. The goal is to identify the subset of criteria that
would minimize the number of complaints received overall (the loss used for this problem). The approach assumes that
not all criteria are compatible, and a graph is provided to express criteria that cannot be satisfied simultaneously.

The proposed approach proceeds by activating/deactivating satisfaction of the criteria one by one. A graph should be
provided as prior knowledge to define which criteria cannot be satisfied simultaneously. The activation/deactivation of
criteria satisfaction is modeled into the MDP, and the optimization proceeds by executing the MDP for a long enough
period to reach a stable state minimizing the loss received. The loss can be the negative feedback on the
recommendations provided the users, hence can be highly stochastic.

Strengths And Weaknesses:
Strengths

Presents a problem that appears to be novel in its formulation (to the best of my knowledge) of some practical
importance.
Aims at doing some formalization of the problem and presents with some theoretical support.

Weaknesses

The solution to the problem is quite specific, relatively complex and not necessarily well justified. The MDP
resolution of it is not very well justified and imposes a way to solve the problem that imposes some structure that
are not well justified (i.e. add/remore one criterion at the time and reach a stable state).
The requirement for providing a graph of compatibility of the different criteria to satisfy is quite strong, even if the
authors argue otherwise. Once such a graph can be properly articulated, most of the job is done in terms of
optimization. Nevertheless, I even doubt that the relation between criteria can be simplified as a graph, as reaching
satisfaction of many criteria may be difficult and not properly modeled with the type of graph proposed.
Results are reported on a purely synthetic and a toy real-world problem (UCI Adult dataset). No comparison to any
baselines is provided and the results are not quite convincing.
The code is not provided as part of it is stated as proprietary. However, considering the experiments made, I think
that a completely open version of the code could have been given to allow results on the experiments presented to
be reproduced.

General comment on the soundness of the approach
I have difficulty making sense of the problem tackled. What is
proposed here is to identify the subset of targets / criteria that can be satisfied in order to minimize negative users of
the recommender system. I get that the feedback is highly stochastic, but I am quite puzzled by the fact that we are
assuming that the incompatibility between criteria is set in a graph. First, building up that graph appears not an easy
job, I would rather argue that being able to build that model is the hardest problem to solve here. Second, the relations
are more complex than pairwise relation, I think that we can safely consider that we can see situations where criteria A,

[–]

13

9/29/22, 8:34 PM Learning with Competing Objectives and User Feedback | OpenReview

https://openreview.net/forum?id=wFG4ywRbNlR¬eId=ZIq45h5Z5to&referrer=%5BAuthor Console%5D(%2Fgroup%3Fid%3DNeurIPS.cc%2F2022%2FConfer… 4/8

B and C and be satisfied in pairs (i.e,., simultaneous satisfaction of A-B, A-C or B-C), but that satisfaction of A, B, and C
simultaneously can be much harder. I think that getting to model this over all combinations can be achieved in the
general case only by going through all possible subsets, which is not tractable. Thirdly, the fact that each criteria is
binarized is quite limitative, that target value for each criteria should be defined in a rather arbitrary way. Also, it
removes subtleties in the fact that one solution may barely satisfy a criteria while another may offer superior
performance in a given case. In brief, I have a hard time to buy the assumptions on which the paper is building, and as
such I am not convinced by the usefulness of the solutions presented.

Questions:
Can some baseline results be provided? Even if nothing similar has been proposed in the literature, I think that simple
heuristics, random search or exhaustive enumeration (brute force) approach in searching over the criteria subset can be
devised and used as a comparison point with the proposed approach in the experiments provided.

From my perspective, I see the problem tackled boiling down to some constrained combinatorial optimization setting
with stochastic performance evaluation. It is not presented that way, but I think that looking at it from that perspective
may lead to simpler explanations and sounder resolution approach.

Limitations:
The paper aims for an approach that would minimize user complaints on recommendation made by a system, using a
set of constraints to be satisfied, with all constraints cannot be satisfied simultaneously. It puts all constraints at the
same level, but in practice I think it can be much more complex than that, especially when considering constraints with
significant social impacts. If such important constraints are not satisfied, we can expect to get more negative feedback.
But that’s quite a bad practice to wait until we get some negative feedback before acting. I think that some constraints
can be stated as unavoidable and should be managed differently. Example with such impacts is presented in the paper
(e.g. black vs white for the UCI Adult real world example), but these are not dealt with in any particular ways. One don't
want to deploy a system that is known to be clearly unfair to some identified vulnerable population subgroups.

Ethics Flag: No
Soundness: 1 poor
Presentation: 3 good
Contribution: 2 fair
Rating: 2: Strong Reject: For instance, a paper with major technical flaws, and/or poor evaluation, limited impact, poor
reproducibility and mostly unaddressed ethical considerations.
Confidence: 3: You are fairly confident in your assessment. It is possible that you did not understand some parts of the
submission or that you are unfamiliar with some pieces of related work. Math/other details were not carefully checked.
Code Of Conduct: Yes

Official Comment by Paper8299 Area Chair CF2w • Discussion with authors[+]

Official Comment by Paper8299 Authors • Response to reviewer T1Df[+]

11 Jul 2022 NeurIPS 2022 Conference Paper8299 Official Review Readers: Program
Chairs, Paper8299 Senior Area Chairs, Paper8299 Area Chairs, Paper8299 Reviewers
Submitted, Paper8299 Ethics Reviewers, Paper8299 Authors

Official Review of Paper8299 by Reviewer a6LN
NeurIPS 2022 Conference Paper8299 Reviewer a6LN

Summary:
The paper proposes a new online learning algorithm from user feedback in the presence of multiple objectives. The
method leverages the online setting to better address user complaints compared with offline methods.

Strengths And Weaknesses:
The paper proposes a method for online learning to improve user experience in the presence of multiple criteria. The
work is technically sound and interesting in my point of view.

[–]

14

9/29/22, 8:34 PM Learning with Competing Objectives and User Feedback | OpenReview

https://openreview.net/forum?id=wFG4ywRbNlR¬eId=ZIq45h5Z5to&referrer=%5BAuthor Console%5D(%2Fgroup%3Fid%3DNeurIPS.cc%2F2022%2FConfer… 5/8

Strengths
The problem of competing objectives in learning a data-driven model is a problem of great interest to the
community. The authors clearly describe the limitations of offline methods and provide a comparison in the
experiments.
The technical parts of this paper seem to be sound. The paper focuses on a unique problem of large-scale deployed
learning systems.

However, I have the following concerns for which I wish the authors can clarify:

Weakness
It seems that the paper does not cover related work in rich literature on multi-task and online learning. I believe
works in these fields are very related.
It would also be valuable to add a more in-depth discussion regarding the settings where we can expect the method
to be particularly good (e.g., user feedback) and where can we expect it to fail or not provide further benefits.

Questions:
How would the authors distinguish this paper from works in the rich literature on multi-task and online learning?
How can the proposed methods generalize to other online learning settings beyond user feedback?

Limitations:
The authors provide a detailed discussion on limitations.

Ethics Flag: No
Soundness: 3 good
Presentation: 3 good
Contribution: 3 good
Rating: 6: Weak Accept: Technically solid, moderate-to-high impact paper, with no major concerns with respect to
evaluation, resources, reproducibility, ethical considerations.
Confidence: 2: You are willing to defend your assessment, but it is quite likely that you did not understand the central
parts of the submission or that you are unfamiliar with some pieces of related work. Math/other details were not
carefully checked.
Code Of Conduct: Yes

Official Comment by Paper8299 Area Chair CF2w • Discussion with authors[+]

Official Comment by Paper8299 Authors • Response to reviewer a6LN[+]

11 Jul 2022 NeurIPS 2022 Conference Paper8299 Official Review Readers: Program
Chairs, Paper8299 Senior Area Chairs, Paper8299 Area Chairs, Paper8299 Reviewers
Submitted, Paper8299 Ethics Reviewers, Paper8299 Authors

Official Review of Paper8299 by Reviewer VJXj
NeurIPS 2022 Conference Paper8299 Reviewer VJXj

Summary:
This paper proposes a general theoretical framework of learning complex models based on user feedback/complaints.
The problem is formulated as MDP and solved with low regrets with the help of an oracle. Both the application and
underlying theory are interesting. Overall, I think this is a good paper, both empirically and theoretically.

Strengths And Weaknesses:
Strenghts:

Learning complex models based on user feedback is very interesting and promising.
The theoretical framework, albeit building on top of MDP, captures key aspects of the practice and is interesting on
its own.

[–]

15

9/29/22, 8:34 PM Learning with Competing Objectives and User Feedback | OpenReview

https://openreview.net/forum?id=wFG4ywRbNlR¬eId=ZIq45h5Z5to&referrer=%5BAuthor Console%5D(%2Fgroup%3Fid%3DNeurIPS.cc%2F2022%2FConfer… 6/8

The regret analysis is valuable.

Weakness:

The regret reduction compared to SOTA seems to come from the key assumption that an oracle is available for
solving Eqn. (3). The authors provide some empirical justification, but it's not clear how crucial this assumption is for
the theoretical analysis of regrets.

Questions:
The regret reduction compared to SOTA seems to come from the key assumption that an oracle is available for solving
Eqn. (3). The authors provide some empirical justification, but it's not clear how crucial this assumption is for the
theoretical analysis of regrets. Will the regret order reduce to SOTA if we remove this assumption?

Limitations:
Yes.

Ethics Flag: No
Soundness: 3 good
Presentation: 4 excellent
Contribution: 3 good
Rating: 7: Accept: Technically solid paper, with high impact on at least one sub-area, or moderate-to-high impact on
more than one areas, with good-to-excellent evaluation, resources, reproducibility, and no unaddressed ethical
considerations.
Confidence: 2: You are willing to defend your assessment, but it is quite likely that you did not understand the central
parts of the submission or that you are unfamiliar with some pieces of related work. Math/other details were not
carefully checked.
Code Of Conduct: Yes

Official Comment by Paper8299 Authors • Response to reviewer VJXj[+]

08 Jul 2022 (modified: 11 Jul 2022) NeurIPS 2022 Conference Paper8299 Official
Review Readers: Program Chairs, Paper8299 Senior Area Chairs, Paper8299 Area Chairs,
Paper8299 Reviewers Submitted, Paper8299 Ethics Reviewers, Paper8299 Authors

Official Review of Paper8299 by Reviewer qEve
NeurIPS 2022 Conference Paper8299 Reviewer qEve

Summary:
This paper studies the problem of deploying a learned classifier required to satisfy a number of potentially conflicting
objectives. For example, the classifier might be required to minimize multiple metrics quantifying unfairness as well as
minimize the training error.

Suppose each objective is quantified via a loss function . Then, this problem could be viewed as a multi-objective
optimization problem. Prior work in this area has considered finding a Pareto-optimal solution, e.g. (Sener & Koltun,
2018), minimizing a linear combination of the , or minimizing the worst-case convex combinations of the (Cortes et
al, 2020).

This paper proposes a new, data-driven approach. Specifically, they suppose the entity responsible for maintaining the
classifier periodically receives batches of complaints from users of said classifier. Moreover, they suppose these
complaints are labeled according to which metric/objective's violation they pertain too. Using these complaints, a
different combination of the is targeted, and the classifier retrained. Importantly, incompatibility between the is
encoded as a graph, and only compatible combinations of the can be targeted. The process repeats.

After formalizing this idea into the problem of determining a suitable policy for a Markov Decision Process, the
author(s) propose several algorithms drawing on both the bandit- and the combinatorial- optimization literatures. They
prove these algorithms achieve low regret. Theory is then complemented with two experiments, one using synthetic
data on a random compatibility graph, and one on real data.

[–]

Li

Li Li

Li Li

Li

π

16

9/29/22, 8:34 PM Learning with Competing Objectives and User Feedback | OpenReview

https://openreview.net/forum?id=wFG4ywRbNlR¬eId=ZIq45h5Z5to&referrer=%5BAuthor Console%5D(%2Fgroup%3Fid%3DNeurIPS.cc%2F2022%2FConfer… 7/8

Strengths And Weaknesses:

Strengths
Studies a highly relevant problem.
Provides an interesting and novel mathematical formulation of said problem.
Provides theoretically grounded algorithms.
The experiments, though limited, are enough to provide a proof of concept.
It is clear the authors have put thought into how their work could be used in practice and/or generalized, and there
are numerous interesting remarks throughout the paper to this effect.

Weaknesses.
See questions.

Questions:

Major Questions
I thoroughly enjoyed reading this paper, and found it well-written and thought-provoking! That being said, I found it
challenging to see how all the pieces fit together. Below I will try and flesh out some of these misgivings. In case my
confusions are overly naive, you can take them as pointers towards improving the exposition for non-experts! I would be
happy to adjust my score upwards based on your responses.

1. I was puzzled by the notion of fixing a criterion. In the context of the COMPAS model, would an example of this be
retraining the model such that the false positivity rate for sub-population is constrained to be less than a threshold

? This seems to be what is suggested by Appendix E. If yes, how would one choose the threshold in a data-driven
way? Also, why then would one choose your approach over minimizing the classification error over the training set,
subject to in an offline manner? (Here denotes a loss associated to the -th criterion). Perhaps you can
elaborate on this in the context of the COMPAS model within the States paragraph in Section 2.

2. Related to the above, there seemed to me to be some blurring between constraints and losses. Specifically, suppose
we transition from state to state by fixing . Suppose further this corresponds to retraining the model such
that , for some threshold . Most likely, this constraint will be tight: . Unless the data distribution
changes radically, it seems reasonable to assume , so why include it in the loss function?

3. I agree that your model can be described by an MDP, but perhaps this is overkill. In my experience with MDPs (e.g,
the first few chapters of Puterman), they are equipped with a scalar reward function. Here, you get much richer
feedback, namely a tuple of losses . Thus, it feels more like the simpler multi-armed bandit formalism
would suffice. You mention this at the bottom of page 6, and claim that the number of arms is . But theorem
1 seems to suggest you only need consider arms (here is a cover) at least in the case. Also, the
algorithms presented in the main text (Fig.3 and 4) don't (at least to me) have a MDP/RL flavor. Specifically, there is
no Bellman equation and no value function. So, could you say a few words on why y'all think the MDP machinery is
necessary here?

4. Can you say more about the optimization oracle for eq. 3? For the case covered in the appendix, it appears
that eq.3 reduces to a weighted max independent set problem, which I believe to be NP-hard. So, is it realistic to
assume such an oracle exists, especially for large , and are your results still valid if one uses an approximate
oracle? Sidenote: I like the interplay between combinatorial and online optimization running through this paper.
Perhaps you can say more about this. For example, are the papers in the combinatorial optimization literature
studying the problem expressed in eq (3)?

5. In eq 3 you do not consider the fixing cost when determining the best state. However in the proof of Theorem 5 in
Appendix B you do.

6. The synthetic experimental example is OK, but could be better. Specifically, there is no classifier to train here. It
would be better if you cooked up some sort of binary classification problem coupled to the randomly generated ER
graph.

Minor Comments
1. There are some hints scattered through the paper about adding new metrics/ vertices to the graph (e.g. line 55 and

line 294--295). This is interesting, but not addressed by your proposed model. I would recommend removing these
references to new metrics.

i

τi

Li ≤ τi Li i

s s′ vi

ℓs
i

≤ τi τi ℓs
i

= τi

ℓs
′

i
= τi

(ℓs
1, … , ℓs

k
)

O(2k)
|K| K m = 2

m = 1

m

17

9/29/22, 8:34 PM Learning with Competing Objectives and User Feedback | OpenReview

https://openreview.net/forum?id=wFG4ywRbNlR¬eId=ZIq45h5Z5to&referrer=%5BAuthor Console%5D(%2Fgroup%3Fid%3DNeurIPS.cc%2F2022%2FConfer… 8/8

2. I found the sentence in line 136--137 hard to parse. I think the graph referenced encodes that one can choose to
satisfy and , or one can choose to satisfy , but one cannot simultaneously satisfy and (or and).
But line 136--137 seems to suggest any strict subset of can be satisfied, just not all three.

3. In line 268, 'times' should be 'time'.
4. In line 288 I think a word is missing (what exactly will be 'sub-optimal overall'?)
5. Typo in line 312. "it should be "its"

6 . In line 322, when referring to a graph drawn from the ER model, the connectivity only holds with high probability.
(You mention this in the appendix, but should probably state this in the main text too).

7. In line 323, it would help to specify the range of permissible values. Something like , or .

Limitations:
These are adequately discussed.

Ethics Flag: No
Soundness: 3 good
Presentation: 3 good
Contribution: 3 good
Rating: 6: Weak Accept: Technically solid, moderate-to-high impact paper, with no major concerns with respect to
evaluation, resources, reproducibility, ethical considerations.
Confidence: 3: You are fairly confident in your assessment. It is possible that you did not understand some parts of the
submission or that you are unfamiliar with some pieces of related work. Math/other details were not carefully checked.
Code Of Conduct: Yes

v1 v2 v3 v1 v3 v2 v3

v1, v2, v3

α α ≥ 1 α ∈ [1, 10]

Official Comment by Paper8299 Area Chair CF2w • Discussion with authors[+]

Official Comment by Paper8299 Authors • Response to reviewer qEve[+]

About OpenReview (/about)
Hosting a Venue (/group?

id=OpenReview.net/Support)
All Venues (/venues)
Sponsors (/sponsors)

Frequently Asked Questions
(https://docs.openreview.net/getting-
started/frequently-asked-questions)

Contact (/contact)
Feedback

Terms of Service (/legal/terms)
Privacy Policy (/legal/privacy)

OpenReview (/about) is a long-term project to advance science through improved peer review, with legal nonprofit status
through Code for Science & Society (https://codeforscience.org/). We gratefully acknowledge the support of the OpenReview

Sponsors (/sponsors).

18

References
A. Agarwal, A. Beygelzimer, M. Dudík, J. Langford, and H. Wallach. A reductions approach to fair

classification. arXiv preprint arXiv:1803.02453, 2018.

J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias: There’s software used across
the country to predict future criminals. and it’s biased against blacks. 2016. URL https://www.
propublica. org/article/machine-bias-risk-assessments-in-criminal-sentencing, 2019.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2-3):235–256, 2002.

O. Bastani, X. Zhang, and A. Solar-Lezama. Probabilistic verification of fairness properties via
concentration. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–27, 2019.

Y. Bechavod, C. Jung, and Z. S. Wu. Metric-free individual fairness in online learning. arXiv preprint
arXiv:2002.05474, 2020.

R. K. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde, K. Kannan, P. Lohia, J. Martino, S. Mehta,
A. Mojsilovic, et al. Ai fairness 360: An extensible toolkit for detecting, understanding, and
mitigating unwanted algorithmic bias. arXiv preprint arXiv:1810.01943, 2018.

A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge University
Press, 1998.

J. Buolamwini and T. Gebru. Gender shades: Intersectional accuracy disparities in commercial
gender classification. In Conference on fairness, accountability and transparency, pages 77–91.
PMLR, 2018.

N. Cesa-Bianchi, O. Dekel, and O. Shamir. Online learning with switching costs and other adaptive
adversaries. In Advances in Neural Information Processing Systems, pages 1160–1168, 2013.

L. Chen and P. Pu. Critiquing-based recommenders: survey and emerging trends. User Modeling
and User-Adapted Interaction, 22(1):125–150, 2012.

C. Cortes, M. Mohri, J. Gonzalvo, and D. Storcheus. Agnostic learning with multiple objectives.
Advances in Neural Information Processing Systems, 33:20485–20495, 2020.

A. Coston, K. N. Ramamurthy, D. Wei, K. R. Varshney, S. Speakman, Z. Mustahsan, and
S. Chakraborty. Fair transfer learning with missing protected attributes. In Proceedings of
the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pages 91–98, 2019.

A. Cotter, M. Gupta, H. Jiang, N. Srebro, K. Sridharan, S. Wang, B. Woodworth, and S. You. Training
well-generalizing classifiers for fairness metrics and other data-dependent constraints. arXiv
preprint arXiv:1807.00028, 2018a.

A. Cotter, H. Jiang, and K. Sridharan. Two-player games for efficient non-convex constrained
optimization. arXiv preprint arXiv:1804.06500, 2018b.

S. Doroudi, P. S. Thomas, and E. Brunskill. Importance sampling for fair policy selection. Grantee
Submission, 2017.

C. Dwork, N. Immorlica, A. T. Kalai, and M. Leiserson. Decoupled classifiers for group-fair and
efficient machine learning. In Conference on Fairness, Accountability and Transparency, pages
119–133, 2018.

A. Feller, E. Pierson, S. Corbett-Davies, and S. Goel. A computer program used for bail and
sentencing decisions was labeled biased against blacks. it’s actually not that clear. The Washington
Post, 2016.

B. Ghosh, D. Basu, and K. S. Meel. Justicia: A stochastic sat approach to formally verify fairness.
arXiv preprint arXiv:2009.06516, 2020.

M. Gupta, A. Cotter, M. M. Fard, and S. Wang. Proxy fairness. arXiv preprint arXiv:1806.11212,
2018.

19

V. Gupta, P. Nokhiz, C. D. Roy, and S. Venkatasubramanian. Equalizing recourse across groups.
arXiv preprint arXiv:1909.03166, 2019.

T. B. Hashimoto, M. Srivastava, H. Namkoong, and P. Liang. Fairness without demographics in
repeated loss minimization. arXiv preprint arXiv:1806.08010, 2018.

K. Holstein, J. Wortman Vaughan, H. Daumé III, M. Dudik, and H. Wallach. Improving fairness in
machine learning systems: What do industry practitioners need? In Proceedings of the 2019 CHI
conference on human factors in computing systems, pages 1–16, 2019.

S. Jabbari, M. Joseph, M. Kearns, J. Morgenstern, and A. Roth. Fairness in reinforcement learning.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
1617–1626. JMLR. org, 2017.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning. Journal of
Machine Learning Research, 11(Apr):1563–1600, 2010.

Y. Jin. Multi-objective machine learning, volume 16. Springer Science & Business Media, 2006.

Y. Jin and B. Sendhoff. Pareto-based multiobjective machine learning: An overview and case studies.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(3):
397–415, 2008.

M. Kaminskas and D. Bridge. Diversity, serendipity, novelty, and coverage: a survey and empirical
analysis of beyond-accuracy objectives in recommender systems. ACM Transactions on Interactive
Intelligent Systems (TiiS), 7(1):1–42, 2016.

S. Kannan, A. Roth, and J. Ziani. Downstream effects of affirmative action. In Proceedings of the
Conference on Fairness, Accountability, and Transparency, pages 240–248, 2019.

A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive snoopy caching. Algorith-
mica, 3(1-4):79–119, 1988.

M. Kearns, A. Roth, and S. Sharifi-Malvajerdi. Average individual fairness: Algorithms, generaliza-
tion and experiments. arXiv preprint arXiv:1905.10607, 2019.

J. Kleinberg, S. Mullainathan, and M. Raghavan. Inherent trade-offs in the fair determination of risk
scores. In Innovations in Theoretical Computer Science Conference (ITCS), 2017.

M. S. Klinkman, J. C. Coyne, S. Gallo, and T. L. Schwenk. False positives, false negatives, and the
validity of the diagnosis of major depression in primary care. Archives of family medicine, 7(5):
451, 1998.

R. Kohavi. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In Kdd,
volume 96, pages 202–207, 1996.

A. Lamy, Z. Zhong, A. K. Menon, and N. Verma. Noise-tolerant fair classification. In Advances in
Neural Information Processing Systems, pages 294–305, 2019.

X. Lin, H. Chen, C. Pei, F. Sun, X. Xiao, H. Sun, Y. Zhang, W. Ou, and P. Jiang. A pareto-efficient
algorithm for multiple objective optimization in e-commerce recommendation. In Proceedings of
the 13th ACM Conference on recommender systems, pages 20–28, 2019.

L. T. Liu, S. Dean, E. Rolf, M. Simchowitz, and M. Hardt. Delayed impact of fair machine learning.
arXiv preprint arXiv:1803.04383, 2018.

R. T. Marler and J. S. Arora. Survey of multi-objective optimization methods for engineering.
Structural and multidisciplinary optimization, 26(6):369–395, 2004.

J. Masthoff. Group recommender systems: Combining individual models. In Recommender systems
handbook, pages 677–702. Springer, 2011.

A. K. Menon and R. C. Williamson. The cost of fairness in binary classification. In Conference on
Fairness, Accountability and Transparency, pages 107–118, 2018.

20

M. Mohri, G. Sivek, and A. T. Suresh. Agnostic federated learning. In International Conference on
Machine Learning, pages 4615–4625. PMLR, 2019.

H. Mouzannar, M. I. Ohannessian, and N. Srebro. From fair decision making to social equality. In
Proceedings of the Conference on Fairness, Accountability, and Transparency, pages 359–368,
2019.

O. Sener and V. Koltun. Multi-task learning as multi-objective optimization. arXiv preprint
arXiv:1810.04650, 2018.

A. Shah and Z. Ghahramani. Pareto frontier learning with expensive correlated objectives. In
International Conference on Machine Learning, pages 1919–1927. PMLR, 2016.

D. Simchi-Levi and Y. Xu. Phase transitions and cyclic phenomena in bandits with switching
constraints. In Advances in Neural Information Processing Systems, pages 7521–7530, 2019.

T. Speicher, M. Ali, G. Venkatadri, F. N. Ribeiro, G. Arvanitakis, F. Benevenuto, K. P. Gummadi,
P. Loiseau, and A. Mislove. Potential for discrimination in online targeted advertising. In
Conference on Fairness, Accountability and Transparency, pages 5–19. PMLR, 2018.

P. S. Thomas, B. C. da Silva, A. G. Barto, S. Giguere, Y. Brun, and E. Brunskill. Preventing
undesirable behavior of intelligent machines. Science, 366(6468):999–1004, 2019.

S. Tsirtsis and M. Gomez-Rodriguez. Decisions, counterfactual explanations and strategic behavior.
arXiv preprint arXiv:2002.04333, 2020.

S. Wang, W. Guo, H. Narasimhan, A. Cotter, M. Gupta, and M. I. Jordan. Robust optimization for
fairness with noisy protected groups. arXiv preprint arXiv:2002.09343, 2020.

M. Wen, O. Bastani, and U. Topcu. Fairness with dynamics. arXiv preprint arXiv:1901.08568, 2019.

L. Xiao, Z. Min, Z. Yongfeng, G. Zhaoquan, L. Yiqun, and M. Shaoping. Fairness-aware group
recommendation with pareto-efficiency. In Proceedings of the eleventh ACM conference on
recommender systems, pages 107–115, 2017.

B. Yu, Y. Yuan, L. Terveen, Z. S. Wu, J. Forlizzi, and H. Zhu. Keeping designers in the loop:
Communicating inherent algorithmic trade-offs across multiple objectives. In Proceedings of the
2020 ACM Designing Interactive Systems Conference, pages 1245–1257, 2020.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 3 and Section 4
(b) Did you describe the limitations of your work? [Yes] See Section 3
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 3
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See 3 and
Section 4

(b) Did you include complete proofs of all theoretical results? [Yes] See the appendix
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No] Part of the code
is proprietary

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] see Section E

21

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] see Section E

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section E
(b) Did you mention the license of the assets? [Yes] See Section E
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

22

Table of Contents – Appendix

A Related work 24

B Stochastic setting 26

B.1 Case m = 2 . 27

B.2 General case . 29

C Beyond T 2
3 regret 30

D Adversarial setting 34

E Experiments 38

E.1 Experiments with simulated data . 38

E.2 Experiments with a real-world dataset . 39

F Further discussion on the COMPAS example 44

23

A Related work

There is extensive literature on optimizing multiple metrics or objectives under specific criteria.
The recent works of Mohri et al. [2019], Cortes et al. [2020] consider optimizing in the presence
of multiple base objectives. Given objectives L1, . . . , Li these works aim to design “agnostic”
algorithms that can simultaneously compete with any linear or convex combination of the objectives.
Another line of work considers design algorithms that can achieve the Pareto optimal solution [Jin
and Sendhoff, 2008, Sener and Koltun, 2018, Shah and Ghahramani, 2016, Marler and Arora, 2004].

Another line of work considers optimizing multiple constraints (inspired by group fairness metrics)
via constrained non-convex optimization [Agarwal et al., 2018, Cotter et al., 2018a, Thomas et al.,
2019]. These publications either reduce the problem to that of cost-sensitive classification [Agarwal
et al., 2018, Dwork et al., 2018] or replace the non-convex constraints by convex proxies and next
optimize them via external or swap regret minimization algorithms [Cotter et al., 2018b,a].

There have also been studies of the inherent tension between satisfying multiple metrics. Kleinberg
et al. [2017] and Feller et al. [2016] demonstrate that it is impossible to satisfy equal opportunity and
calibration at the same time. Inspired from fairness applications the work of Menon and Williamson
[2018] studies the tradeoff between accuracy and other metrics of interest such as false positive and
false negative rates.

Since we are concerned with optimizing multiple metrics, it is natural to consider whether the problem
can be framed via multi-task learning. However, there are certain crucial differences. In multi-task
learning, the learner has access to data from multiple tasks and the goal is to jointly learn these tasks,
which are assumed to be somewhat related or similar, to achieve a better generalization across all
tasks. The online version of the problem admits many variants and with the aim of learning both
a task similarity and predictors or only predictors when a task similarity is already supplied. The
literature is indeed very rich.

In our setting, there is typically only one task (same label), but different loss functions. In lieu
of a similarity between tasks, we have an incompatibility graph between losses. We consider user
feedback which does not seem to have a direct counterpart in the multi-task setting. Furthermore, a
different predictor is typically learned for each task, while this is not our setting. In most settings of
multi-task online learning, the objective is in terms of an adversarial regret, while our MDP scenario
is for a stochastic scenario. Hence, while there are some aspects that seem reminiscent of our scenario,
the traditional multi-task learning scenario seems to be quite different from our considered setting.

Recent works have also studied the long-term impact of optimizing multiple conflicting criteria
in settings with feedback mechanisms [Liu et al., 2018, Hashimoto et al., 2018, Mouzannar et al.,
2019, Kannan et al., 2019]. Liu et al. [2018] show that, in certain situations, constrained loss
minimization to equalize certain criteria could lead to further disparate impact on the end users in
the long run. Hashimoto et al. [2018] proposed algorithms for minimizing such disparate impact in
settings involving repeated loss minimization. More recently, Jabbari et al. [2017], Wen et al. [2019]
study the problem of satisfying multiple constraints in reinforcement learning settings involving a
Markov Decision Process. The authors in Jabbari et al. [2017] consider learning in an MDP where
the criteria to be optimized require that the algorithm never takes an action a over action a′ if the
long-term reward is higher. It is clear to see that the optimal policy for the MDP indeed satisfies this
property. Hence, there does exist a policy that satisfies the required criterion. However, the authors
show that finding a near optimal policy while satisfying the criterion requires time exponential in the
size of the state space.

Wen et al. [2019] consider other metrics such as demographic parity in the context of learning in
MDPs. Doroudi et al. [2017] show that existing importance sampling methods for off-policy policy
selection in reinforcement learning can lead to bad outcomes according to other natural criteria and
present algorithms to mitigate this effect.

While our work also involves learning in a Markov Decision Process (MDP) and optimizing multiple
criteria in the long term, the setup and the motivation are different. Unlike all the previous work
mentioned, we do not commit to a fixed definition of quality or a metric, and allow for arbitrary
criteria. Hence, states in our MDP correspond to the current configurations of different criteria.
Rather than studying each metric in isolation, the objective of our work is to propose a data-driven
model that can learn from feedback, a near-optimal configuration of the metrics to impose on the

24

system. To the best of our knowledge, ours is the first work to incorporate optimizing metrics of
arbitrary types in an online setting. In this context, inspired by fairness applications, the recent work
of Kearns et al. [2019] studies a specific combination of group and individual fairness metrics. The
authors consider a setting where there is a distribution over individuals as well as a distribution over
classification tasks. They consider algorithms for achieving average individual fairness, that is in
expectation over classification tasks, the performance of the algorithm on a group fairness metric
such as demographic parity should be the same for each individual.

An important aspect of our stochastic MDP-based model requires the ability to observe the losses
associated with different criteria at each time. This relates to the problem of evaluating and monitoring
the performance of the system according to different metrics from data. There has been work in recent
years on developing auditing and monitoring approaches Bastani et al. [2019], Ghosh et al. [2020],
Bellamy et al. [2018]. Furthermore, many metrics require access to both labeled data and to certain
sensitive attribute information such as race or gender, for accurate evaluation. A recent line of work
has studied this estimation problem when one has limited and/or noisy access to sensitive attribute
information Gupta et al. [2018], Coston et al. [2019], Lamy et al. [2019], Wang et al. [2020]. Finally,
we note that our model learns from feedback received as a form of complaints. These complaints
are a result of a (potentially incorrect) decision made by an ML system. There has been recent
work in developing counterfactual based explanations Tsirtsis and Gomez-Rodriguez [2020] for such
decisions and exploring recourse strategies Gupta et al. [2019].

25

B Stochastic setting

We first show that in the stochastic model, if correlation sets are of size one then one can efficiently
approximate the cost of the optimal state up to a factor of two.
Theorem 5. If correlations sets are of size one (m = 1), then, for any ε, δ > 0, the true parameter
vector for MDP(S,A, C,θ) can be approximated to ε-accuracy in `∞-norm with probability at
least 1 − δ, in at most O(B

2k
ε2 log(kδ)) time steps and exploring at most k + 1 specific states in S.

Furthermore, given a parameter vector θ, there is an algorithm that runs in time polynomial in k and
finds an approximately optimal state s′ such that g(s′) ≤ 2 mins∈S g(s).

Proof. Notice that when correlation sets are of size one, the expected loss incurred for criterion vi
at any given state s solely depends on whether s(i) = 0 or s(i) = 1. Hence in this case the MDP
consists of 2k parameters where we use γ1i and γ0i to denote the expected losses incurred by vertex i
when it is in fixed and unfixed position respectively. For any δ > 0, by Hoeffding’s inequality, we
have that if we stay in state s = (0, 0, . . . , 0) for N = B2

ε2 log(2k/δ) time steps then with probability
at least 1 − δ

2 , we have each γ0i estimated up to ε accuracy. Let ei ∈ {0, 1}k denote the indicator
vector for i. If we stay in state s = ei for B2

ε2 log(2k/δ) time steps, then with probability at least
1 − δ

2 we have γ1i estimated up to ε accuracy. Hence, overall after O(B
2k
ε2 log(kδ)) time steps, we

have each parameter estimated up to ε accuracy. Notice that in total we observe at most k + 1 states.

Next we show how to efficiently approximate the loss of the best state. Given the parameters of the
MDP each vertex has two costs Λ

(1)
i = γ0i , denoting the cost incurred if the vertex is unfixed and

Λ
(2)
i = ci + γ1i , denoting the cost incurred if the vertex is fixed. Without loss of generality assume

that Λ
(1)
i > Λ

(2)
i (any vertex that does not satisfy this can be safely left unfixed). For each i, define

yi = 1 if vertex i is unfixed otherwise define yi = 0. Then the offline problem of finding the best
state can be written as

min
k∑
i=1

(1− yi)Λ2
i + yiΛ

1
i =

k∑
i=1

yiγi +

k∑
i=1

Λ
(2)
i

s.t. yi ∈ {0, 1}
yi + yj ≥ 1, ∀(vi, vj) ∈ E.

Here γi = Λ
(1)
i − Λ

(2)
i > 0. By relaxing yi to be in [0, 1] and solving the corresponding linear

programming relaxation, we get a solution y∗1 , y
∗
2 , . . . , y

∗
k. Let LPval denote the linear programming

objective value achieved by y∗1 , y
∗
2 , . . . , y

∗
k. Since the linear programming formulation is a valid

relaxation of the problem of finding the best state, we have LPval ≤ mins∈S g(s).

We output the state s′ in which a vertex i if and only if y∗i < 1/2. Let S be the set of fixed vertices.
We have

g(s′) =
∑
i∈S

Λ
(2)
i +

∑
i/∈S

Λ
(1)
i

=

k∑
i=1

Λ
(2)
i +

∑
i/∈S

(Λ
(1)
i − Λ

(2)
i)

=

k∑
i=1

Λ
(2)
i +

∑
i/∈S

γi

<

k∑
i=1

Λ
(2)
i + 2

∑
i/∈S

y∗i γi

< 2
(k∑
i=1

Λ
(2)
i +

k∑
i=1

y∗i γi

)
< 2 · LPval
≤ min

s∈S
2gp(s).

26

B.1 Case m = 2

To illustrate the ideas behind our general algorithm, we first consider a simpler setting where
correlation sets are defined on subsets of size at most two. This setting also captures an important
case where fixing a particular criterion affects the rate of complaints of its neighbors.

Our algorithm consists of an exploration phase where it observes the losses for a specific subset
of at most 4n states. We will show that after the exploration phase, the algorithm can accurately
estimate the expected loss for any other state s ∈ S. Notice that the number of states in S is in general
exponential in k. Thus, the subset of states to observe must be carefully chosen and must take into
account the structure of the graph G. After the exploration phase, the algorithm creates an estimate θ̂
of the true parameter vector θ, uses the optimization oracle for solving Eq. (3) to find a near optimal
state ŝ and selects to stay at state ŝ for the remaining time steps.

Let c denote the maximum fixing cost: c = maxi∈[k] ci. We will show that the pseudo-regret of our
algorithm is bounded by O(k log k(c + B)1/3T 2/3 log(kT)). We first describe how we select the
subset of states to observe in the exploration phase.

We say that (i, j, b) is a dichotomy if for two criteria i and j and for b ∈ {0, 1}, there exist two states
s, s′ ∈ S such that: (1) s(j) = 0 and s′(j) = 1, and (2) s(i) = s′(i) = b. Note that if an edge
(vi, vj) is present in G, then (i, j, 1) cannot be a dichotomy, since criteria i and j cannot be fixed
simultaneously.
Definition 1. Consider a subset K ⊂ S. We will say that K is a cover for C if for any dichotomy
(i, j, b), where {i, j} is a correlation set ({i, j} ∈ C) there exist two states s, s′ ∈ K such that:

(1) they agree in all criteria except criterion j: s(l) = s′(l) for all l 6= j;

(2) criteria i is in state b in both: s(i) = s′(i) = b;

(3) we have that s(j) = 0 and s′(j) = 1.

We call such a pair (s, s′) an (i, j, b)-pair.

Furthermore, for every singleton set {i} in C, the cover K contains states s, s′ such that s(i) =
0, s′(i) = 1 and s(j) = s′(j) for all j 6= i. We can always find a cover K of size at most 4n by
picking for each {i, j} ∈ C, at most four states corresponding to different bit configurations for i and
j, with all other bits set to zero. For any valid dichotomy (i, j, b) we define Xi,j

b as

Xi,j
b := µsi − µs

′

i , (7)

where s, s′ ∈ K is an (i, j, b) pair. If {i, j} /∈ C we define Xi,j
b to be zero. Notice that the values

Xi,j
b can be approximated from estimating the loss values of states in the cover. Next, we state our

key result showing that, given the loss values for the states in a cover, we can accurately estimate the
loss values for any vertex in any other state.
Theorem 1. Let K be a cover for C. Then, for any state s ∈ S and any i ∈ [k] with s(i) = b, we
have:

µsi = µs
′′

i +

k∑
j=1

Xi,j
b [1(s(j) = 1)1(s′′(j) = 0)− 1(s(j) = 0)1(s′′(j) = 1)] , (8)

where s′′ is any state in K with s′′(i) = b.

Proof. Consider a correlation set {i, j}. The expected loss incurred by vertex vi or vj due to this set
in any given state depends solely on the configuration of vi and vj in that state. Hence there are four
parameters in the θ vector corresponding to the correlation set {i, j} and we denote them using γa,bi,j ,
where a, b ∈ {0, 1}. Let s, s′ be an (i, j, b) pair. When we switch from s to s′ the only difference in
the expected losses for vertex i comes from the pair (i, j). Hence we have

µs
′

i − µsi = γb,1i,j − γ
b,0
i,j := Xi,j

b .

27

Input: The graph G, correlation sets C, fixing costs ci.
1. Pick a cover K = {s1, s2, . . . , sr} of C.

2. Let N = 10T
2/3(log rkT)1/3

r2/3
.

3. For each state s ∈ K do:
• Move from current state to s in at most k time steps.
• Play action a = 0 in state s for the next N time steps to obtain an estimate µ̂si for all
i ∈ [k].

4. Using the estimated losses for the states in K and Equation (8), run the oracle for the
optimization (3) to obtain an approximately optimal state ŝ.

5. Move from current state to ŝ and play action a = 0 from ŝ for the remaining time steps.

Figure 7: Online algorithm for m = 2 achieving Õ(T 2/3) pseudo-regret.

Hence, given the loss estimates for states in K we can estimate Xi,j
b for each i, j ∈ [k] and b ∈ {0, 1}.

Next, given an arbitrary state s with s(i) = b let s′′ ∈ K such that s′′(i) = b. We have

µsi = µs
′′

i +
∑

j:s(j)=0
s′′(j)=1

(γb,0i,j − γ
b,1
i,j) +

∑
j:s(j)=1
s′′(j)=0

(γb,1i,j − γ
b,0
i,j)

= µs
′′

i +
∑

j:s(j)=1,
s′′(j)=0

Xi,j
b −

∑
j:s(j)=0,
s′′(j)=1

Xi,j
b

= µs
′′

i +

k∑
j=1

Xi,j
b [1(s(j) = 1)1(s′′(j) = 0)− 1(s(j) = 0)1(s′′(j) = 1)] .

From the above theorem we have the following guarantee.
Theorem 2. Consider an MDP(S,A, C,θ) with losses in [0, B], a maximum fixing cost c, and corre-
lations sets of size at mostm = 2. Let K be a cover of C of size r ≤ 4n, then, the algorithm of Figure 7
(same as Figure 3) achieves a pseudo-regret bounded by O(kr1/3(c+B)(log rkT)1/3T 2/3). Fur-
thermore, given access to the optimization oracle for Eq. (3), the algorithm runs in time polynomial
in k and n = |C|.

Proof. In each time step the maximum loss incurred by any criterion is bounded by c + B. Let
{s1, s2, . . . , sr} be the states in K. During the exploration phase the algorithm stays in each state
for N time steps and incurs a total loss bounded by kNr(c+B). During the exploration phase the
algorithm moves from one state to another in at most k steps and incurs a total additional loss of at
most rk2(c+B). At any given state s ∈ K and vertex vi, after N time steps we will, with probability

at least 1− δ, an estimate of µsi up to an accuracy of 2B
√

log 1/δ
N . Setting δ = 1/(rkT 4) and using

union bound, we have that at the end of the exploration phase, with probability at least 1− 1
T 4 , the

algorithm will have estimate µ̂si for all s ∈ K and i ∈ [k] such that

µ̂si − µsi ≤ 4B

√
log rkT

N
. (9)

Hence during the exploitation phase, with high probability, the algorithm will have the estimate for

the expected loss of each state in S, i.e.,
∑
i µ

s
i up to an error of 4kB

√
log rkT
N . Combining the above

we get that the total pseudo-regret of the algorithm is bounded by

Reg(A) ≤ kNr(c+B) + rk2(c+B) +
(

1− 1

T 4

)
4kBT

√
log rkT

N
+

1

T 4
k(c+B)T.

28

Setting N = 10T
2/3(log rkT)1/3

r2/3
we get that

Reg(A) ≤ O(kr1/3(c+B)(log rkT)1/3T 2/3).

B.2 General case

The algorithm for the case of m = 2 naturally extends to arbitrary correlation set sizes. Overall
the structure of the algorithm remains the same where we pick a cover of C and estimate the losses
incurred in states that belong to the cover. Using the estimated losses we are able to approximately
estimate the loss of any vertex at any other state. In order to do this we extend the definition of the
cover as follows. Given correlation sets of arbitrary size in C, a vertex vi may participate in many
of them. We say that vertices vi and vj share a correlation set, if they appear together in a set in C.
Consider the set of indices of all the vertices that vi shares a correlation set with. We partition this
set into disjoint subsets such that no two vertices in different subsets share a correlation set. For a
given vertex vi, we denote this collection of disjoint subsets by Ii. For example, if C contains sets
{1, 2}, {1, 3}, and {1, 4}, then, I1 consists of the set {2, 3, 4}. On the other hand if C contains sets
{1, 2, 3}, {1, 3, 4}, and {1, 6, 7} then, I1 consists of sets {2, 3, 4} and {6, 7}. For a given state s and
J ∈ Ii we denote by s(J) the vector s restricted to indices in J . Notice that, in the worst case, Ii
will consist of a single set of size at most min(k − 1, nm). However, for more structured cases (e.g,
m = 2) we expect Ii to consist of subsets of small sizes.

Given i ∈ [k], J ∈ Ii, b ∈ {0, 1} and vectors u1, u2, we say that (i, b, J, u1, u2) is a dichotomy, if
there exist two states s, s′ ∈ S such that: (1) s(J) = u1, s

′(J) = u2, (2) s(i) = b = s′(i), and (3)
s, s′ agree in all other criteria. We call such a pair of states s, s′ an (i, b, J, u1, u2) pair. We next
extend the definition of a cover as follows. A subset K ⊆ S is called a cover of C if for any valid
dichotomy (i, b, J, u1, u2), there exists an (i, b, J, u1, u2) pair s, s′ ∈ K. In general, we will always
have a cover of size at most n2mn. Similar to (7), for a valid dichotomy (i, b, J, u1, u2), we define
Xi,u1,u2

b,J as

Xi,u1,u2

b,J := µsi − µs
′

i , (10)

where s, s′ ∈ K is an (i, b, J, u1, u2) pair. Given the loss values in the states present in K, we can
estimate the loss of any other state using Theorem 6 stated below.
Theorem 6. Let K be a cover for C. Then, for any state s ∈ S and any i ∈ [k] with s(i) = b, we
have:

µsi = µs
′′

i +
∑
J∈Ii

X
i,s(J),s′′(J)
b,J (11)

Here s′′ is any state in K with s′′(i) = b.

Proof. Let s, s′ ∈ K be an (i, b, J, u1, u2) pair. When we move from state s to s′, the only difference
between the expected losses incurred by vertex vi comes from the configuration of the vertices in J .
Hence there at at most 2|J|+1 distinct parameters governing the expected loss incurred by vertex i in
a given state s due to the configuration of the vertices in J . Denoting these parameters by γb,s(J)i,J we
have

µs
′

i − µsi = γ
b,s′(J)
i,J − γb,s(J)i,J := X

i,s′(J),s(J)
b,J .

Given the loss values for the states in the cover K, we can estimate the quantities Xi,s(J),s′′(J)
b,J .

Next, for an arbitrary state s such that s(i) = b, let s′′ ∈ K be such that s′′(i) = b. We have

µsi = µs
′′

i +
∑
J∈Ii

γ
b,s(J)
i,J − γb,s

′′(J)
i,J

=
∑
J∈Ii

X
i,s(J),s′′(J)
b,J .

29

Input: The graph G, correlation sets C, fixing costs ci.
1. Pick a cover K = {s1, s2, . . . , sr} of C.

2. Let N = 10T
2/3(log rkT)1/3

r2/3
.

3. For each state s ∈ K do:
• Move from current state to s in at most k time steps.
• Play action a = 0 in state s for the next N time steps to obtain an estimate µ̂si for all
i ∈ [k].

4. Using the estimated losses for the states in K and Equation (11), run the oracle for the
optimization (3) to obtain an approximately optimal state ŝ.

5. Move from current state to ŝ and play action a = 0 from ŝ for the remaining time steps.

Figure 8: Online algorithm for general m achieving Õ(T 2/3) pseudo-regret.

For general correlation sets with each vertex participating in at most n sets, we use (11) instead of (8)
to estimate losses in step 4 of the algorithm in Figure 7. The algorithm for general m is described
in Figure 8 and has the following associated regret guarantee. The proof is identical to the proof of
Theorem 2.

Theorem 7. Consider an MDP(S,A, C,θ) with losses bounded in [0, B] and maximum cost of fixing
a vertex being c. Given correlations sets C of size at most m, and a cover K of C of size r ≤ n2mn,
the algorithm in Figure 8 achieves a pseudo-regret bounded by O(kr1/3(c+B)(log rkT)1/3T 2/3).
Furthermore, given access to the optimization oracle for Eq. (3) the algorithm runs in time polynomial
in k, n = |C| and r = |K|.

C Beyond T
2
3 regret

In this section, we present algorithms for our problem that achieve Õ(
√
T) regret, first in the case

m = 1, next for any m, under the natural assumption that each criterion does not participate in too
many correlations sets.

Let us first point out that our problem can be cast as an instance of the stochastic multi-armed
bandit problem with switching costs, where each state s is viewed as an arm and where the cost of
transitions from state s to state s′ is the switching cost between s and s′. For the instance of this
problem with identical switching costs, Cesa-Bianchi et al. [2013][Appendix A] gave an algorithm
achieving expected regret Õ(

√
T), via an arm-elimination technique with at most O(log log T)

switches. However, naturally, the regret guarantee and the time complexity of that algorithm depend
on the number of arms, which in our case is exponential (2k). We will show here that, in most realistic
instances of our model, we can achieve Õ(

√
T) regret efficiently.

We first consider the case where the correlations sets in C are of size one (m = 1). In this case, the
parameter vector θ can be described using the following 2k parameters: for each i ∈ [k], let γ0i
denote the expected loss incurred by criterion i when it is unfixed and γ1i its expected loss when it
is fixed. In this case, the cover K is of size k + 1 and includes the all-zero state, as well as k states
corresponding to the indicator vectors of the k vertices. Our algorithm is similar to the UCB algorithm
for multi-armed bandits Auer et al. [2002] and maintains optimistic estimates of the parameters. For
every vertex i, we denote by τ0i,t the total number of time steps up to t (including t) during which the
vertex vi is in an unfixed position and by τ1i,t the total number of times steps up to t during which
vertex vi is in a fixed position. Fix δ ∈ (0, 1) and let γ̂bi,t be the empirical expected loss observed
when vertex vi is in state b, for b ∈ {0, 1}. Our algorithm maintains the following optimistic estimates
at each time step t,

γ̃bi,t = γ̂bi,t − 10B

√
log(kT/δ)

τ bi,t
. (12)

30

Input: graph G, correlation sets C, fixing costs ci.
1. Let K be the cover of size k+ 1 that includes the all zeros state and the states corresponding

to indicator vectors of the k vertices.
2. Move to each state in the cover once and update the optimistic estimates according to (12).
3. For episodes h = 1, 2, . . . do:

• Run the optimization oracle for solving Eq. (3) with the optimistic estimates as in (12)
to get a state s.

• Move from current state to state s. Stay in state s for t(h) time steps and update the
corresponding estimates using (12). Here t(h) = mini τ

s(i)
i,th

and th is the total number
of time steps before episode h starts.

Figure 9: Online algorithm for m = 1 with Õ(
√
T) regret.

To minimize the fixing cost incurred when transitioning from one state to another, our algorithm
works in episodes. In each episode h, the algorithm first uses the current optimistic estimates to query
the optimization oracle and determine the current best state s. Next, it remains at state s for t(h) time
steps before querying the oracle again. The number of time steps t(h) will be chosen carefully to
avoid incurring the fixing costs too often. The algorithm is described in Figure 9 (same as Figure 4 in
main body). We will prove that it benefits from the following regret guarantee.

Theorem 3. Consider an MDP(S,A, C,θ) with losses bounded in [0, B] and maximum cost of fixing
a vertex being c. Given correlations sets C of size one, the algorithm of Figure 9 (same as Figure 4)
achieves a pseudo-regret bounded by O(k2(c + B)2

√
T log T). Furthermore, given access to an

oracle for (3), the algorithm runs in time polynomial in k.

Proof. We first bound the total number of different states visited by the algorithm. Initially the
algorithm visits k + 1 states in the cover. After that, each time the optimization oracle returns a new
state s, by the definition of t(h), the number of time steps where some vertex is in a 0 or 1 position is
doubled. Hence, at most O(k log T) calls are made to the optimization oracle. Noticing that one can
move from one state to another in at most k time steps, the total loss incurred during the switching of
the states is bounded by O(k2(c+B) log T).

For ε > 0 to be chosen later, we consider the episodes where the algorithm plays a state s with
expected loss at most ε more than that of the best state s∗. The total expected regret accumulated in
these good episodes is at most εT . We next bound the expected regret accumulated during the bad
episodes.

From Hoeffding’s inequality we have that for any time t, with probability at least 1 − δ
T 3 , for all

i ∈ [k], b ∈ {0, 1},

γ̃bi,t + 20B

√
log(kT/δ)

τ bi,t
≥ γbi ≥ γ̃bi,t. (13)

Let G be the good event that (13) holds for all t ∈ [1, T]. Conditioned on G we also have that for any
state s and vertex i

µsi ≥ µ̃si , (14)

where µ̃si is the estimated loss using the optimistic estimates. We will bound the expected regret
accumulated in the bad episodes conditioned on the event G above.

In order to do this we define certain key quantities. Consider a particular trajectory T of T time
steps executed by the algorithm. Furthermore, let T be such that the good event in (13) holds during
the T time steps. We associate the following random variables with the trajectory. Let Nε be the
total number of time steps spent in bad episodes. Furthermore, let Regε be the total accumulated
regret during these time steps. Then it is easy to see that E[Regε |G] > εNε. For each vertex vi and
b ∈ {0, 1} we define τε(i, b) to be the total number of time steps that vertex vi spends in bad episodes
in position b and τε(i, b, t) to be the total number of time steps spent in bad episodes up to time step t.

31

Notice that ∑
b

∑
i

τε(i, b) ≤ 2kNε. (15)

Consider a particular bad episode h and let s be the state returned by the optimization oracle during
that episode. Then conditioned on the good eventG, the total regret Regh accumulated during episode
h satisfies

E[Regh|T] =
∑
i

(
µsi − µs

∗

i

)
t(h)

≤
∑
i

(
µsi − µ̃s

∗

i

)
t(h)

(
from(14)

)
≤
∑
i

(
µsi − µ̃si

)
t(h)

(
since s is best state according to the optimistic losses

)
≤
∑
i

(
γ
s(i)
i − γ̃s(i)i,th

)
t(h)

≤
∑
i

20B

√
log(kT/δ)

τ bi,th
t(h).

(
from (12)

)
In the above inequality, the expectation is taken over the loss distribution for each vertex during states
visited in the trajectory T .

Since τ bi,th ≥ τε(i, b, th) we have we have that

E[Regh|T] ≤
∑
i

20B

√
log(kT/δ)

τε(i, b, th)
t(h).

Summing over bad episodes, the total expected regret in bad episodes can be bounded by

E[Regε|T] ≤
∑
i

∑
b

∑
h:h is bad

20B

√
log(kT/δ)

τε(i, b, th)
t(h). (16)

Notice that τε(i, b, th) =
∑
h′<h:h′ is bad t(h

′). Furthermore, we know that (Jaksch et al. [2010]) for
any sequence z1, z2, . . . , zh of non-negative numbers such that zi ≥ 1,

h∑
i=1

zi√∑i−1
j=1 zj

≤ (1 +
√

2)

√√√√ h∑
i=1

zi. (17)

From (17) we get: ∑
h:h is bad

t(h)√
τε(i, b, th)

≤
√
τε(i, b).

Substituting into (16) we get that

E[Regε|T] ≤
∑
i

∑
b

20B
√

log(kT/δ)
√
τε(i, b).

Using (15) we have that the above expected regret is maximized when τε(i, b) are equal, thereby
implying

E[Regε|T] ≤ 20Bk
√

log(kT/δ)
√
Nε.

Using the fact that E[Regε |G] > εNε we get that conditioned on G,

Nε ≤
400B2k2 log(kT/δ)

ε2
.

32

Combining trajectories T where the good event G holds, we get that the total expected regret
accumulated in the bad episodes satisfies

E[Regε|G] ≤ 20Bk
√

log(kT/δ)
√
Nε

≤ 400B2k2
log(kT/δ)

ε
.

Combining the above with the total expected regret accumulated in the good episodes, the loss of
moving to different states, and the probability of good event G not holding, we get

Reg(A) ≤ 400B2k2
log(kT/δ)

ε
+ εT +

k(c+B)

T 3
+O(k2(c+B) log T).

Setting ε = 1√
T

and δ = 1
T 4 , we have the final bound

Reg(A) ≤ O
(
(c+B)2k2

√
T log(T)

)
.

The above result extends to higher m values, assuming that each vertex does not participate in too
many correlation sets. If a vertex vi appears in at most O(log k) correlation sets, then the total loss
incurred by vertex vi in any state depends on the position of vi and every other vertex that it is
correlated with. Hence the total loss incurred by vertex vi depends on an O(m log k)-dimensional
vector. For every configuration b of this vector, we associate with each vertex vi, parameters γbi .
Notice that there are at most O(km) such parameters. Each parameter is in turn a sum of a subset of
the parameters in θ. Notice that in this case the size of the cover K is upper bounded by O(km+1).
Our algorithm for higher m values is similar to the one for m = 1, but instead maintains optimistic
estimates of the parameters γbi via

γ̃bi,t = γ̂bi,t − 10B

√
m

log(kT/δ)

τbi,t
. (18)

Here τbi,t is the total time spent up to and including t where the vertex i and the vertices that it is
correlated with are in configuration b. Similarly, for a given state s, we will denote by s(i), the
configuration of the vertex i and the vertices that it is correlated with. The algorithm is sketched
below
Input: The graph G, correlation sets C, fixing costs ci.

1. Let K be the cover of size O(km+1).
2. Move to each state in the cover once and update the optimistic estimates according to (18).
3. For episodes h = 1, 2, . . . do:

• Run the optimization oracle (3) with the optimistic estimates as in (18) to get a state s.
• Move from current state to state s. Stay in state s for t(h) time steps and update the

corresponding estimates using (18). Here t(h) = mini τ
s(i)
i,th

and th is the total number
of time steps before episode h starts.

Figure 10: Online algorithm for higher m.

For m ≥ 1, we obtain the following guarantee.
Theorem 8. Consider an MDP(S,A, C,θ) with losses bounded in [0, B] and maximum cost of fixing
a vertex being c. Given correlations sets C of size at most m such that each vertex participates
in at most O(log k) sets, the the algorithm in Figure 10 achieves a pseudo-regret bounded by
O(mk2m+2(c+B)2

√
T log T). Furthermore, given access to an oracle for (3), the algorithm runs

in time polynomial in O(km+1).

Proof. The proof is very similar to the proof of Theorem 3. Since each time the optimization oracle
is called the time spent in some configuration s(i) is doubled, we get that the total number of calls
to the optimization oracle are bounded by O(km log T). Hence the total loss incurred during the

33

exploration phase can be bounded by O(km(c+B) log T). Let G be the good event that (18) holds
for all t ∈ [1, T].

As before, the loss incurred during good episodes is bounded by εT . Define τε(i, b) to be the total
time that vertex i and vertices that it is correlated with spend in configuration b during bad episodes.
Then analogous to (15) we have ∑

b

∑
i

τε(i, b) ≤ O(km)Nε.

For a trajectory T where the good event G holds, the total expected regret in bad episodes can be
bounded as

E[Regε|T] ≤
∑
i

∑
b

∑
h:h is bad

20B

√
m

log(kT/δ)

τε(i, b, th)
t(h) (19)

≤
∑
i

∑
b

20B
√
m log(kT/δ)

√
τε(i, b) (20)

≤ O(Bkm+1)
√
m log(kT/δ)

√
Nε. (21)

Using the fact that E[Regε |T] > εNε we get that for a trajectory where the event G holds,

Nε ≤
O(R2k2m+2m log(kT/δ))

ε2
.

Hence we get that conditioned on the good event G, the total expected regret accumulated in the bad
episodes is at most

E[Regε|G] ≤ O
(
R2mk2m+2 log(kT/δ)

ε

)
.

Combining the above with the total expected regret accumulated in the good episodes, the loss of
moving to different states, and the probability of the event G not holding we get

Reg(A) ≤ O
(
B2mk2m+2 log(kT/δ)

ε

)
+ εT +

k(c+B)

T 3
+O(km log T).

Setting ε = 1√
T

and δ = 1
T 4 , we have the final bound

Reg(A) ≤ O
(
(c+B)2mk2m+2

√
T log(T)

)
.

An important corollary of the above is the following
Corollary 1. If G is a constant degree graph with correlation sets consisting of subsets of edges in
G, then there is a polynomial time algorithm that achieves a pseudo-regret bounded by O(k6(c +

B)2
√
T log T).

D Adversarial setting

In the previous section, we studied a stochastic model for arrival of complaints and designed no
regret algorithms. In this section, we study the setting when we cannot make assumptions about the
arrival of complaints. In particular, we study an adversarial model where at each time step multiple
complaints arrive for the vertices in G via the choice made by an oblivious adversary. For a given
vertex vi and time step t, we denote by `i(t) the loss incurred if criterion vi is unfixed at time t.
Similar to the setting from the previous section, initially all the vertices in G are in unfixed state and
each vertex has a fixing cost of ci. At each time step the algorithm can decide to fix a particular
vertex. As a result all its neighbors get unfixed. At time step t, if criterion vi is unfixed then the
the algorithm incurs a loss of `i(t). If vi is fixed at time step t then algorithm incurs no loss. The
overall loss incurred by the algorithm is the total fixing cost and the total loss incurred over the arrival
complaints. As before, we will denote a configuration of the vertices in G using a vector s ∈ {0, 1}k

34

Input: The graph G, fixing costs ci, loss sequence (i1, `i1), . . . , (iT , `iT).
1. For each i ∈ [k], initialize τi, κi to 0.
2. Process the complaints in sequence and for each complaint (i, `i) such that vi is unfixed do:

(a) τi = τi + `i.
(b) While `i > 0 and exists j ∈ N(i) with κj > 0 do:

i. Set ∆ = min(`i, κi) and reduce both κi and `i by ∆.
(c) If τi ≥ max

(
ci,
∑
j∈N(i) κj

)
fix vi. Set τi to 0 and κi to ci. Set τj = 0 for all

j ∈ N(i).

Figure 11: Online algorithm for the adversarial setting.

with s(i) = 0 representing an unfixed vertex. For an algorithm A processing the request sequence,
During the course of T time steps, the total loss of processing the complaints is

Loss(A) =

k∑
i=1

T∑
t=1

`i(t) · 1(st(i) = 0) +

k∑
i=1

T∑
t=2

ci · 1(st−1(i) = 0, st(i) = 1). (22)

Define OPT to be the algorithm that given the entire loss sequence in advance, makes the optimal
choice of decisions to fix vertices. Following standard terminology we define the competitive ratio of
an algorithm A to be the maximum of Loss(A)/Loss(OPT) over all possible complaint sequences.
We will design efficient online algorithms for processing the complaints that achieve a constant
competitive ratio. Notice that in this setting, in order for the competitive ratio to be finite, we need to
bound the range of the losses and the fixing costs of the vertices. We will assume that the cost of
fixing each vertex is at least one and as before assume that the losses are bounded in the range [0, B].
For ease of exposition, in the rest of the discussion we will assume that at each time step complaints
arrive for one of the vertices in G. A simple reduction shows that an algorithm that is competitive
with OPT in this setting remains so in the general setting with the same competitive ratio. We discuss
this at the end of the section. Via this reduction we can consider the loss sequence to be of the form
((i1, `i1), . . . , (iT , `iT)) where it is the index of the criterion for which the tth complaint arrives and
`it is the associated loss.

To get a better understanding of the above adversarial setting, consider the case when the graph G
over the criteria has no edges, i.e., there are no conflicts. In this case, given a sequence of complaints,
each with unit loss value, the optimal offline algorithm that has the entire loss sequence in advance
can independently make a decision for each vertex. In particular, if the total loss of the complaints
incurred at vertex vi exceeds the fixing cost ci then the optimal decision is to fix the vertex vi, and
otherwise simply incur the loss from the arriving complaints. In this case the online algorithm can
also simply process each vertex independently. At each vertex the algorithm is faced with the classical
ski-rental problem for which there exists a deterministic algorithm that is 2-competitive with optimal
algorithm Karlin et al. [1988]. For each vertex i, the online algorithm simply waits till a total loss of
ci or more has been incurred on vertex i and then decides to fix it. It is easy to see that the total cost
incurred by this strategy is at most twice the cost incurred by OPT.

However, the above algorithm will fail miserably in the presence of conflicts in the graph G. As an
example consider a graph with two vertices vi and vj that are connected by an edge. Let the fixing
cost of vi be 1 and the fixing cost of vj be C � 1. Consider a sequence of complaints, each of unit
loss, consisting of C complaints for vj followed one complaint for vi. If this sequence is repeated T
times the optimal offline algorithm OPT incurs a loss of C + T by fixing vj and incurring losses due
to vi. However, the algorithm above will incur a cost of (2C + 2)T thereby leading to an unbounded
competitive ratio. Hence, in order to achieve a good competitive ratio one must make decisions
not only based on the loss incurred at the given vertex vi, but also the status of the vertices in the
neighborhood of vi. Our main result in this section is the algorithm in Figure 11 that achieves a
constant factor competitive ratio.

The algorithm described in Figure 11 makes decisions based on local neighborhood information of a
vertex. Intuitively, if a vertex is fixed only once or a few times in the optimal algorithm one would
like to avoid fixing it too many times. In order to achieve this, each time a vertex vi is fixed, it adds a

35

barrier of κi = ci to the loss any of its neighbors need to incur before getting fixed. Hence, if a vertex
is connected to a lot of fixed vertices then it has a high barrier to cross before getting fixed. During
the course of the algorithm each unfixed vertex is in one of the two phases. In phase one, the vertex is
accumulating losses to pay for the barrier introduced by its neighbors (step 2(b) of the algorithm).
In phase two, once the barrier has been crossed the vertex follows the standard ski-rental strategy
independent of other vertices for making a decision as to fix or not. Notice that via step 2(b) of the
algorithm, multiple neighbors of a vertex vi can help bring down the barrier of ci introduced by the
action of fixing vertex vi. This is necessary to ensure the online algorithm does not incur a large loss
on a vertex by waiting too long to fix it.

As an example consider a graph G with k vertices and k − 1 edges, where vertex v0 is the central
vertex connected to every other vertex. Let the fixing cost of vertex v0 be a large value C, and the
fixing cost of other vertices be one. We consider a sequence of C complaints, each with unit loss
arriving for vertex v0, followed by a sequence of C complaints for vertex v1 and so on. In this case
the optimal offline solution incurs a loss of C + k by deciding to fix every vertex except v0. After
processing C complaints for v0, the online algorithm will fix v0 and incur a loss of 2C. Next, during
the course of processing C complaints for v1, the algorithm fixes v1 and incurs an additional loss of
C + 1. More importantly, due to step 2(b), the barrier κ0 introduced by vertex v0 has been reduced to
zero and hence the algorithm only incurs a loss of 2 per vertex for the remaining sequence for a total
loss of 3C + 2k − 1. Without the presence of step 2(b) each vertex will incur a loss of C leading to a
large competitive ratio.

Notice that our algorithm in Figure 11 is designed for a setting where in each time step complaints
arrive for a single vertex in G. If multiple vertices accumulate complaints in a time step, we can
simply order them arbitrarily and run the algorithm on the new sequence. Let OPT be the optimal
offline algorithm according to the chosen ordering of the complaints. Let OPT’ be the optimal offline
algorithm when processing multiple complaints per time step. Notice that for each time step, the loss
of OPT cannot be larger than that of OPT’ since any choice available to OPT’ is available to OPT as
well. Hence it is enough to design an algorithm that is competitive with OPT. In particular, we have
the following theorem.
Theorem 4. Let G be a graph with fixing costs at least one. Then, the algorithm of Figure 11 achieves
a competitive ratio of at most 2B + 4 on any sequence of complaints with loss values in [0, B].

Proof. Recall that `i(t) denotes the loss incurred by vertex vi at time t. We divide this loss into the
amount that was used to reduce the κj value of one its neighbors and the rest. Formally, for every
edge (i, j) we define δti→j as follows. If in time step t, the complaint arrived for vertex i and step
2(b) was executed to reduce κj by ∆, then we define δti→j = ∆. Otherwise we define δti→j to be
zero. We also define

δti→i = `i(t) −
∑

j∈N(i)

δti→j . (23)

If vertex vi is fixed fi times during the course of the algorithm then we have that the total loss incurred
by the algorithm can be written as

Loss(A) =

k∑
i=1

fici +

k∑
i=1

T∑
t=1

(
δti→i +

∑
j∈N(i)

δti→j
)
. (24)

Next we notice that each time a vertex vi is fixed it accumulates a value of κi = ci. Furthermore, the
total loss incurred by vertices as a result of executing step 2(b) is upper bounded by the total κ value
accumulated. Hence we have

T∑
t=1

k∑
i=1

∑
j∈N(i)

δti→j ≤
k∑
i=1

fici. (25)

Substituting into (24) we have

Loss(A) ≤
k∑
i=1

2fici +

k∑
i=1

T∑
t=1

δti→i. (26)

36

Next we bound the above loss for each vertex separately. For a given vertex vi that is fixed fi times
by the algorithm, we can divide the time steps into fi+ 1 intervals consisting of an interval I0 starting
from t = 0 up to (and including) the first time vi is fixed. The next fi intervals correspond to the
time spent by vi between two successive fixes. Denoting these intervals as I0, I1, . . . we have that

2fici +

k∑
i=1

T∑
t=1

δti→i =
∑
t∈I0

δti→i +
∑
t∈Ir

(2ci + δti→i). (27)

Next we compare the above to the loss incurred by OPT for vertex vi. Let `∗i(t) be the loss incurred by
OPT for vertex vi at time t. We will denote by s∗t the state of the vertices at time t according to OPT.

We instead redefine the loss incurred by OPT for vertex vi at time t to be

˜̀
i(t) = `∗i(t) +

∑
j∈N(i)

δtj→i 1(s∗t (j) = 0). (28)

Notice that ∑
i∈N(j)

δtj→i 1(s∗t (j) = 0) ≤ `∗j(t).

Hence we get that

k∑
i=1

T∑
t=1

˜̀
i(t) ≤

k∑
i=1

(T∑
t=1

`∗i(t) +
∑

j∈N(i)

`∗j(t)
)

(29)

≤ 2 · Loss(OPT). (30)

Next we consider each interval in (26) separately. For any interval Ir we have that∑
t∈Ir

δti→i ≤ Bci. (31)

This is because after incurring a loss of more than ci, any additional loss incurred by vi is due to step
2(b), since otherwise step 2(c) will be executed and vi will be fixed.

Next consider interval I0. The loss incurred by the algorithm on vertex vi equals
∑
t∈I0 δ

t
i→i ≤ Bci.

Either OPT fixes vi at least once during this interval or incurs the total loss. Either way we have that
the loss incurred by OPT is at least

min
(
ci,
∑
t∈I0

δti→i
)
≥
∑
t∈I0 δ

t
i→i

B
. (32)

Next consider an interval Ir between two successive fixes. The loss incurred by the algorithm for
vertex vi during this interval is at most∑

t∈Ir

δti→i + 2ci ≤ (B + 2)ci.

If OPT fixes vi at least once during this interval then it incurs a cost of ci. If vi remains unfixed in
OPT during the course of the interval then OPT incurs a loss of at least ci. This is because vertex vi
went from being unfixed to fixed during the second half of the interval and hence a total loss of at
least ci must have arrived for the vertex vi during this interval.

Finally, suppose vertex vi is fixed in OPT before the start of the interval and remains so through-
out. Since vi goes from being fixed to unfixed during the first half of the interval, we must have∑
t∈Ir

∑
j∈N(i) δ

t
j→i ≥ ci. Furthermore, since vi is fixed by OPT during this interval, OPT must

incur a loss on all neighbors of j. In particular, from (28) we have∑
t∈Ir

˜̀
i(t) ≥

∑
t∈Ir

∑
j∈N(i)

δtj→i 1(s∗t (j) = 0) (33)

≥ ci. (34)

37

In either of the three cases we have that the loss
∑
t∈Ir

˜̀
i(t) incurred by OPT is at least a 1/(B + 2)

fraction of the loss incurred by the algorithm. Summing over all the vertices and the corresponding
intervals, we get that the total loss incurred by the algorithm can be bounded by

Loss(A) ≤ (B + 2)

T∑
t=1

k∑
i=1

˜̀
i(t) ≤ 2(B + 2)Loss(OPT).

E Experiments

In this appendix we provide more detail of the experiments discussed in Section 5 and also report
additional results with the algorithm for the stochastic setting. We view our work as primarily
theoretical and of course a more extensive empirical evaluation is a direction for future work.
Regarding the choice of baselines, we are not aware of any efficient algorithms that directly apply to
our setting. Existing general algorithms for solving MDPs will not scale to our setting since their
complexity is proportional to the number of states. Note that in our experiments we will demonstrate
that our proposed algorithms can compete with the offline optimal (the best solution in hindsight)
which is a strong comparison point.

E.1 Experiments with simulated data

We evaluate the performance of our algorithms developed in the stochastic setting of Section 3. We
first detail experiments on simulated data. We consider a simulated environment where the conflict
graph G is generated from the Erdős-Renyi model: G(k, p) where we set p = 2 log k

k . This ensures
that with high probability G is connected. Next we generate correlation sets C consisting of pairs
of vertices in G sampled uniformly at random. For a parameter α > 0 that we vary, we choose αk
pairs of vertices at random and add them as correlation sets in C. Hence on average, each vertex
participates in α correlation sets. We also add to C singleton sets for each vertex in G. The fixing cost
of each vertex is samples uniformly at random in the range [1, 5].

Next we describe the choice of parameters governing the loss distribution of the different states in
the MDP. For a correlation set {i} of size one corresponding to vertex vi, we sample a parameter γ1i
from the beta distribution Beta(0.5, 0.5). For a given state s with s(i) = 1, the loss generated due to
{i} is drawn from an exponential distribution with mean γ1i . For a given state s with s(i) = 0, the
loss generated due to {i} is drawn from an exponential distribution with mean λγ1i , where λ > 1 is
a parameter that we vary. For a correlation set {i, j} of size two, we generate two parameters γ1,1i,j
and γ1,0i,j from the beta distribution Beta(0.5, 0.5) such that γ1,0i,j > γ1,1i,j . For a given state s with
s(i) = 1 and s(j) = 1, the loss generated due to {i, j} is drawn from an exponential distribution
with mean γ1,1i,j . For states where s(i) = 0 and s(j) = 1 or vice-versa, the loss is generated from an
exponential distribution with mean γ1,0i,j . Finally, for states where both s(i) = 0 and s(j) = 0, the
loss is generated from an exponential distribution with mean λγ1,0i,j .

In general, computation of the optimal state in (3) requires time exponential in k. In our experiments
we approximate the optimal state by a linear programming relaxation of the optimization in (3) and
use the appropriately rounded linear programming relaxation solution as a proxy for the optimal state.

For general m, our proposed algorithms in Figure 3 and Figure 10 have complementary strengths.
While the algorithm in Figure 3 incurs a higher regret as a function of the number of time steps T ,
its running time has a polynomial dependence on the parameter α, i.e., the number of correlation
sets that a vertex participates in, on average. The algorithm in Figure 10 incurs a smaller regret of
Õ(
√
T) as a function of T at the expense of an exponential dependence on α. In Figures 12 and 13

we empirically demonstrate this behavior where for small values of α, the Õ(
√
T)-regret algorithm

is much better, whereas for higher values of α the Õ(T 2/3)-regret algorithm is more desirable.

For the case of m = 1 however, i.e., singleton correlation sets, the algorithm in Figure 10 achieves a
smaller regret and runs in polynomial time and hence is expected to outperform the explore-exploit

38

Figure 12: The figure shows the total accumulated loss incurred by the Algorithms in Figure 3 and
Figure 10 on a graph with k = 50 criteria. The parameter α controls the total number of correlation
sets. For each value of α, we add αk random pairs of vertices into correlation sets.

based algorithm from Figure 3. As can be seen from Figure 14 this is indeed the case and the Õ(
√
T)

regret algorithm significantly outperforms the Õ(T 2/3) regret algorithm.

E.2 Experiments with a real-world dataset

In this section we demonstrate via experiments how our framework and algorithms can be applied
to real world data. In order to do this we study the UCI Adult dataset [Kohavi, 1996]. The dataset
comprises of 48852 examples each represented using 124 features, after binarizing categorical
features. Each data point corresponds to a person and the label is a 0/1 value representing whether the
income of the person is more or less than $50,000. The dataset contains information about sensitive
attributes such as race and gender. We will simulate an online scenario where a classifier is making
predictions on the income of individuals. At each time step a batch of complaints arrive, the system
incurs a loss and responds by transitioning to a different state (and updating the classifier). We next
describe how we instantiate various components of our stochastic model from Section 3.

Graph G: We take race as a sensitive attribute that takes values in {black,white}, to obtain two
sub-populations and consider two natural criteria namely the true positive rate and the AUC score.
This leads to four vertices tprw, tprb, aucw, aucb. Furthermore, we add the classifier accuracy as
another criterion. This leads to total 5 vertices in the graph.

39

Figure 13: The figure shows the total accumulated loss incurred by the Algorithms in Figure 3 and
Figure 10 on a graph with k = 100 criteria. The parameter α controls the total number of correlation
sets. For each value of α, we add αk random pairs of vertices into correlation sets.

Losses and Correlation Sets: We consider correlation sets of size one, and hence the total loss
incurred at any state is the sum of the losses incurred by each criterion. For the accuracy criterion
we simply define the loss to be the error of the system (the classifier). We next describe how we
define the loss for the tprw criterion. We first compute the overall true positive rate of the classifier
and also the true positive rate on the white population. If the two deviate by more than a threshold
τ , then we penalize the classifier linearly in the violation. Therefore the loss for tprw is defined
as: max(0, |tproverall − tprw| − τ). The loss for all other criteria is defined the same way. In
our experiments we choose τ = 0.005. Note that while we fix the threshold apriori, our method
does indeed offer a way to choose the thresholds themselves in a data-driven manner. This can be
achieved by simply adding, for each metric i, additional metrics to the graph with different thresholds
τi,1, τi,2, . . . and so on.

Incompatibilities and State Transitions: To generate incompatibilities among criteria we compute
a set of valid and invalid states as follows. For each state s ∈ {0, 1}5, we solve a constrained
optimization problem on a training set to compute a classifier. We then evaluate the classifier on
the test set to compute the loss of each criterion. If the loss of any criterion is more than a specific
threshold then we consider the state as an invalid state, otherwise the state is valid. In our experiments
we set a threshold of 0.4 for the accuracy criterion. For the considered criteria we present results
for two thresholds, 2τ and 6τ , the first one resulting in 4 valid states and other second one resulting
in 7 valid states. To solve a constrained optimization problem we use the tensorflow constrained
optimization toolkit [Cotter et al., 2018a,b]. We use the default parameter settings provided by the

40

Figure 14: The figure shows the total accumulated loss incurred by the Algorithms in Figure 3 and
Figure 4 for the case of m = 1 and varying graph sizes.

toolkit. The toolkit is released under Apache license 2.0. If a state s has accuracy criterion set to 1,
then we optimize for model accuracy subject to constraints for the other criteria that are set to 1 in s.
If the accuracy criterion is set to 0 then we optimize for a constant loss function subject to constraints.
Recall that our proposed algorithms function by fixing a criterion and as a result moving to another
state. We obtain these state transitions as follows. If the algorithm asks to fix criterion vi in state s,
we set s(i) = 1 to go to the next state s′. While s′ is invalid, we unfix the criterion (not including vi)
with the highest loss in the state s′ to reach another state.

Fixing Cost: We simply take the fixing cost of each criterion to be 1.

Simulating Complaints: We divide the dataset into a set of 16000 examples that we use to update our
classifier at each time step and the remaining test set to simulate the arrival of complaints. At each
time step, we randomly select a batch of examples from the test set to generate complaints. This set
of complaints is used to compute the loss of a given state at a given time step.

Benchmark and Results: We compare our Algorithm from Figure 4 with an offline optimal solution
that has been computed to find the state with the minimum average loss over the arrival sequence of
complaints. The results are averaged over 10 independent runs.

The results are shown in Figure 15 and Figure 16. We show results for two values of the threshold
parameters and in each case plot the loss of the algorithm as compared to the benchmark, as well as
the states chosen by the algorithm, as a function of the number of time steps. As can be seen from
Figure 15 our algorithm quickly converges to the offline optimal solution after an initial exploration
phase. To get a better understanding of the performance of the algorithm in the initial phases, in
Figure 16 we plot the same setting as in the case of Figure 15, but with x-axis on a log-scale. For
the case of threshold being 0.01, one can see that the state 0 results in much higher loss and, during
exploration, the algorithm alternates in a periodic pattern between states 1 and 3 that have similar
loss. A similar pattern holds for the case of the threshold being 0.03. It is important to note that the
choice of the loss functions was important in this case and that we did not weight each criterion by
the volume of the complaints. This demonstrates that our algorithms, when combined with a good
choice of the loss function, can be useful in practice.

41

Figure 15: The figure shows the performance of the Algorithm in Figure 4 on the UCI Adult dataset.
We present results for two threshold values, and in each case plot the loss of the offline solution and
the online algorithm as well as the states chosen by the online algorithm, as a function of the time
steps.

42

Figure 16: The figure shows the performance (x-axis on a log scale) of the Algorithm in Figure 4 on
the UCI Adult dataset. We present results for two threshold values, and in each case plot the loss of
the offline solution and the online algorithm as well as the states chosen by the online algorithm, as a
function of the time steps.

Compute Resources. All our experiments were performed on a machine containing a Tesla P100
GPU with 80 GB of RAM and four CPUs.

Hyperparameters. For the case of simulated data the hyperparameters have been mentioned in
Section E.1. For the case of real data, apart from the hyperparameters mentioned in Section E.2, we
used the default learning rates and optimizers provided by the tensorflow constrained optimization
toolkit [Cotter et al., 2018a,b]. We performed a random train/test split as detailed in Section E.2.

Assets. We used publicly available code from the tensorflow constrained optimization toolkit1 and
the publicly available UCI Adult Dataset2.

1License at: https://github.com/google-research/tensorflow_constrained_
optimization/blob/master/README.md.

2https://archive.ics.uci.edu/ml/datasets/adult.

43

F Further discussion on the COMPAS example

Throughout the main sections, we have mentioned that the choice of the loss function is important
in the effectiveness of our model. We briefly discussed this in Section 3. Below, we present a more
detailed discussion of the effect of the loss function on our model, by using the COMPAS scenario
from Section 1 as an example.

Loss function – COMPAS illustration. Consider the COMPAS example with a graph G with four
criteria namely, false positive rate on populationA, false positive rate on populationB, AUC score for
population A and AUC score for population B. We want to understand what kinds of loss functions
will result in an overall suboptimal system when our model and algorithms from Section 3. Suppose
our algorithm take an action to fix a criterion and reach a state where the true positive rates and the
AUC scores associated with the four criteria are: [0.1, 0.8, 0.5, 0.5]. Then a poor choice of the loss
function would be f1 ·0.1+f2 ·0.8+f3 ·0.5+f4 ·0.5, where fi represents the fraction of complaints
that trigger criterion i. Such a choice of the loss function will make our system vulnerable to the
loudest voices in the system and as a result might not lead to a good solution at all. A more reasonable
choice of the loss is 0.1 + 0.8 + 0.5 + 0.5, that weighs each criteria equally and does not take into
account the underlying size of the population. Another alternative is λ1|0.1− 0.8|+ λ2(|0.5− 0.5|),
that aims at keeping both the discrepancy in the false positive rate and the AUC scores small. Finally,
the choice we make in our experiments of penalizing each criterion for the deviation from the
value over the entire population, i.e., max(0, |tproverall − tprw| − τ), also leads to good solutions
empirically.

Another case where additive losses are a poor choice is if the criteria in G is not chosen carefully. For
instance, consider a scenario in the COMPAS example where all except one of the criteria correspond
to the performance of the system on population A. An additive loss would then naturally force the
system to disproportionately favor population A over a period of time.

While the above discussion used the COMPAS scenario as a specific example, we would like to
re-iterate that our model and algorithms are much more general and can be motivated from different
applications. As another motivating scenario for our work, consider a large organization that is
building a classifier to detect harmful content that the users of their platform may be exposed to. The
organization wants to build a classifier that has a good overall performance, say measured in terms
of false positive rates (FPRs) and false negative rates (FNRs) (these in general could be arbitrary
metrics). Furthermore, the organization also wants to ensure good FPRs and FNRs on users sliced by
different attributes such as race, gender, geographic location, education level etc. While the overall
classifier performance is still of paramount importance, the organization’s policy team may have
given them guidelines to try and enforce that FPRs and FNRs on different slices are less than a certain
threshold. However, not all such constraints may be satisfiable and the organization wants to figure
out the optimal tradeoffs between these metrics via end user feedback. Our model and algorithms
address this question

44

