
CLLMs: Consistency Large Language Models

Siqi Kou * 1 Lanxiang Hu * 2 Zhezhi He 3 Zhijie Deng 1 Hao Zhang 2

Abstract
Parallel decoding methods such as Jacobi decod-
ing show promise for more efficient LLM infer-
ence as it breaks the sequential nature of the LLM
decoding process and transforms it into paral-
lelizable computation. However, in practice, it
achieves little speedup compared to traditional
autoregressive (AR) decoding, primarily because
Jacobi decoding seldom accurately predicts more
than one token in a single fixed-point iteration
step. To address this, we develop a new ap-
proach aimed at realizing fast convergence from
any state to the fixed point on a Jacobi trajec-
tory. This is accomplished by refining the target
LLM to consistently predict the fixed point given
any state as input. Extensive experiments demon-
strate the effectiveness of our method, showing
2.4× to 3.4× improvements in generation speed
while preserving generation quality across both
domain-specific and open-domain benchmarks.
Our code is available at https://github.com/hao-ai-
lab/Consistency LLM.

1. Introduction
Large language models (LLMs), including GPT-4 (Achiam
et al., 2023), LLaMA (Touvron et al., 2023a;b), PaLM (Anil
et al., 2023), are pushing the limit of artificial intelligence.
As LLMs are integrated into more applications (Zheng et al.,
2023; Wu et al., 2023), the inference latency of LLMs plays
a crucial role in ensuring a positive user experience and high
service quality. However, LLM serving operates in an AR
paradigm, generating one token at a time due to the attention
mechanism’s need for previous token states to generate the
next one. To produce a lengthy response, one must execute
forward passes through the LLMs as many times as the

*Equal contribution 1Qing Yuan Research Institute, SEIEE,
Shanghai Jiao Tong University 2University of California, San
Diego 3School of Electronic Information and Electrical Engineer-
ing, Shanghai Jiao Tong University. Correspondence to: Zhijie
Deng <zhijied@sjtu.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

number of tokens generated, resulting in high latency.

Existing methods address this issue from various perspec-
tives. For example, speculative decoding (Leviathan et al.,
2023; Chen et al., 2023) introduces a small draft LLM to
guess tokens and let the target LLM verify them in paral-
lel. Although they can opportunistically generate multiple
tokens in a single evaluation of the target LLM, obtaining
a small yet effective draft model is non-trivial; managing
multiple models within a single system remains a challeng-
ing engineering task. Medusa (Cai et al., 2024) alternatively
augments the target LLM with extra guess heads to enable
self-speculation with as much as 3× speedup on various
tasks. Yet, the number of added parameters can be signifi-
cant (e.g., Medusa2 with 5 extra heads adds 1.6B parameters
for a 6.7B target LLM). Increased memory consumption
could limit generation length and negatively affect infer-
ence latency due to the reduction in available memory for
key-value (KV) cache (Pope et al., 2023).

On the other hand, originating from the Jacobi and Gauss-
Seidel fixed-point iteration for solving nonlinear equa-
tions (Ortega & Rheinboldt, 2000; Song et al., 2021a), the
Jacobi decoding method (Santilli et al., 2023) first ran-
domly guesses the next n tokens in a sequence (referred to
as n-token sequence hereinafter) from an input prompt. The
n-token sequence, along with the prompt, is then fed to the
LLM to iteratively update itself. Eventually, the n-token
sequence converges to the same output generated by AR de-
coding under a greedy strategy (see Figure 1). The evolution
of the n-token sequence forms a Jacobi trajectory between
a randomly initialized sequence to the n-token sequence
generated by AR decoding (i.e., the fixed point).

However, vanilla Jacobi decoding for LLMs shows only
marginal speedup over AR decoding in practice, e.g., an
average of 1.05× speedup in Santilli et al. (2023). This is
because a LLM can rarely yield a correct token when there
are incorrection1 in its preceding tokens due to the attention
mechanism, resulting in a long trajectory as illustrated on the
left side of Figure 2. Lookahead decoding (Fu et al., 2024)
improves the efficiency by leveraging n-grams generated
from previous Jacobi iterations and verify them in parallel
during the decoding process. However, both work are unable

1By correctness, we mean alignment with the AR decoding
result under a greedy sampling strategy.

1

https://github.com/hao-ai-lab/Consistency_LLM
https://github.com/hao-ai-lab/Consistency_LLM

CLLMs: Consistency Large Language Models

Autoregressive LM

prefix random n-token seq

<BOS> The prompt … The

prefix

converged n-token seq

k iterations

Answer: This is one try
✔ ❌

🔥

❌✔ ✔

✔ ✔ ✔ ✔ ❌ ❌❌❌❌

✔ ✔ ✔ ✔ ✔
correct

!

randomly initialized point

fixed point

Jacobi
trajectory

 … The prompt …

n-token seq 🔥prefix
✔ ✔ ✔ ✔

prefix
✔ ✔ ✔ ✔

n-token seq

<BOS> The prompt …

<BOS> The prompt … Answer: This is

❄

❄

❄

❄

1

Figure 1. An instance of Jacobi trajectory. “n-token seq” refers to
the n-token sequence that is iteratively updated in Jacobi iterations.

to achieve the same level of speedup as Meudsa.

This work aims to achieve all three goals by refining the
target LLM. Specifically, we propose to fine-tune the LLM
so that it can yield multiple, instead of one, subsequent
tokens of a prefix at once. In the ideal case, with the prompt
and a randomly initialized n-token sequence as input, our
goal is to train a LLM that can generate the same n-token
sequence as AR decoding (the fixed point) using only one
step. Our preliminary experiments show the single-step
learning task is difficult when n is large, and leads to slow
model convergence. We therefore ease the learning process
by also taking intermediate points on the Jacobi trajectory
with more correct tokens into account. In particular, for
the second to last point on the trajectory, the learning is
identical to AR modeling, at which the target LLM without
adaptation has already excelled.

We argue such a learning strategy that a single model is
tuned to solve a series of learning problems of mapping
any arbitrary point on the trajectory to the fixed-point is
beneficial to model convergence (see Figure 4 and Fig-
ure 5). Imagining the evolution of the n-token sequence as
the denoising process of a natural image (Ho et al., 2020;
Song et al., 2021b), we surprisingly find that the above
learning procedure draws a sharp analogy to the acceler-
ation technique for diffusion models named consistency
models (CMs) (Song et al., 2023; Song & Dhariwal, 2023).
CMs aim to achieve single-step image generation using
the denoising objective by minimizing distances between
consecutive denoising steps along the probability flow ordi-
nary differential equation (ODE) trajectory during training.

Our method and CMs share the notion of directly map-
ping intermediate states of a solving process (of non-linear
systems or ODEs) to its final solution for inference accel-
eration. Based on these, we refer to our trained models as
Consistency Large Language Models (CLLMs). In com-
parison with previous methods like speculative decoding
and Medusa, CLLM doesn’t introduce extra memory cost to
accommodate auxiliary model components while delivering
significant speedup with minimal performance degradation.

To implement this learning strategy, it only requires model
training with two loss terms. Following CMs, we can con-
vert the aforementioned learning objective into a consistency
loss where the model is demended to map arbitrary point on
the Jacobi trajectory to the fixed point. CLLMs also include
an AR loss to avoid deviating from the distribution of the
target LLM and hence ensure the generation quality.

The fine-tuning cost of CLLMs is moderate, e.g., training
on only ∼ 1M tokens for LLaMA-7B to achieve a 3.4×
speedup on the Spider dataset. We further empirically iden-
tify that such acceleration is likely to stem from the existence
of 1) fast forwarding, where multiple consecutive tokens
are correctly predicted in a single forward pass, and 2) sta-
tionary tokens, which are correctly predicted and remain
unaltered through subsequent iterations, despite being pre-
ceded by inaccurate tokens. An illustration of the examples
is shown in Figure 2.

To summarize, our key contributions are as follows:

• We propose Consistency Large Language Models
(CLLMs), a new family of LLMs specialized for the
Jacobi decoding method for latency reduction.

• We empirically observe the existence of fast forwarding
and stationary tokens phenomena in Jacobi decoding of
CLLMs. Empirically, CLLMs can lead to a 2.0× to 6.8×
improvement in the count of fast-forwarded tokens and
stationary tokens compared to the original LLM.

• We demonstrate the efficacy of CLLMs on a variety of
benchmarks. On domain-specific benchmarks including
GSM8K, CodeSearchNet Python, and Spider, CLLMs
can achieve 2.4× to 3.4× speedup using Jacobi decoding
with nearly no loss in accuracy. On open-domain bench-
mark MT-bench, CLLMs can achieve 2.4× speedup on
ShareGPT with state-of-the-art performance, scoring 6.4.

2. Related Work
Efficient LLM Inference. This body of work can be
broadly categorized into two streams: methods that neces-
sitate additional training and those that do not. The high
AR inference cost in LLMs has sparked a surge in research
aimed at efficient LLM inference, primarily focused on ac-
celerating the AR decoding process.

2

CLLMs: Consistency Large Language Models

The methods that do not require additional training include
speculative decoding, as introduced in studies by Leviathan
et al. (2023) and Chen et al. (2023). These techniques en-
hance LLM decoding speed by leveraging a smaller draft
model to predict the outputs of a larger target model which
subsequently verifies these predictions. Another category
of training-free approaches involves system- or hardware-
oriented optimizations. Notable examples include PagedAt-
tention (Kwon et al., 2023), which optimizes KV cache
management for throughput using memory paging, and
FlashAttention (Dao et al., 2022; Dao, 2023), which ac-
celerates attention module computations by reducing HBM
access via softmax tiling. Other strategies enhance LLM
inference speed by optimizing model designs, reducing
weight/activation precision, and utilizing sparsity, includ-
ing multi-query and grouped-query attention mechanisms
with fused heads (Shazeer, 2019; Ainslie et al., 2023), post-
training quantization (Dettmers et al., 2022; Xiao et al.,
2023; Frantar et al., 2022; Lin et al., 2023), and various
pruning techniques (Sun et al., 2023; Frantar & Alistarh,
2023; Ashkboos et al., 2024).

For methods that necessitate training, they often require in-
tegration of auxiliary components, such as additional LM or
AR heads, to facilitate faster AR generation (Cai et al., 2024;
Li et al., 2024). It may also involve significant modifica-
tions to the model weights or architecture, as seen in various
pruning approaches (Ma et al., 2023; Xia et al., 2022; 2023).
Moreover, training can enhance certain training-free tech-
niques, like speculative decoding, by capturing the behavior
of the original, larger model in a smaller student model
through distillation, thereby retaining performance with re-
duced size (Zhou et al., 2023b; Liu et al., 2023). An detailed
analysis that compare CLLMs with different SOTA baseline
methods are further discussed and compared in Section B
and Table 7. It’s worthy noticing that CLLMs requires nei-
ther modification to pre-trained models nor any auxiliary
components. This brings higher memory efficiency and
adaptability to users at inference time.

LLM Distillation. Knowledge distillation (KD) serves as a
technique for creating smaller models that replicate the func-
tionality of larger ones. While traditional KD approaches
often fall short for LLMs, (Gu et al., 2023) has adapted
KD for autoregressive LLMs, focusing on minimizing the
reverse KL divergence between student and teacher models
through student-driven decoding. In another advancement,
Agarwal et al. (2023) introduces generalized knowledge
distillation (GKD), which balances forward and reverse KL
divergences by employing a mix of data sampled from both
teacher and student models.

CLLMs are distinct from these works as our proposed
method can be regarded as a self-distillation approach with
a Jacobi trajectory training dataset that matches the target

LLM’s output distribution.

Consistency Models. Diffusion models (Ho et al., 2020;
Song et al., 2021b) suffer from slow iterative sampling pro-
cess. Consistency models overcome this limitation by map-
ping any point along the probability flow ODE of the dif-
fusion process back to the original point, corresponding to
the initial image, in a single step (Song et al., 2023). In this
work, we highlight that a parallelism can be drawn between
the few-step generation capability of CLLMs and that of the
consistency models.

3. Methodology
This section begins with a review of the Jacobi decoding
method (Santilli et al., 2023) for accelerating LLM infer-
ence, then elaborates on CLLMs, a refinement of pre-trained
LLMs to enjoy higher speedup from Jacobi decoding. In this
paper, we only consider greedy sampling and leave other
sampling strategies to future work. We also empirically
identify the fast-forwarding phenomenon and the emera-
gence of stationary tokens from CLLMs, which serve as the
source of such acceleration.

3.1. Preliminary: Jacobi Decoding

Given a prompt x and a pre-trained LLM p(·|x), we obtain
the model response typically with the standard AR decoding
method under the greedy strategy, i.e.,

yi = argmax
y

p(y|y<i,x) for i = 1, . . . , n (1)

where y<i denotes {y1, . . . , yi−1}. As shown, n forward
passes of the LLM are required to obtain n tokens y≤n. The
sequential nature of AR decoding hinders the fast genera-
tion of a lengthy response in practice. Speculative decod-
ing (Leviathan et al., 2023; Zhou et al., 2023b; Liu et al.,
2023) and Medusa (Cai et al., 2024) are existing remedia-
tions to such an issue, but the former suffers from the diffi-
culties in finding a suitable draft model and managing both
models in a single system, and the latter causes significant
increases in model size and architecture.

In comparison, Jacobi decoding has shown the capacity to
reduce the inference cost of LLMs without extra model
components (Santilli et al., 2023) and is therefore more
applicable. Concretely, supposing f(yi,y<i,x) := yi −
argmaxy p(y|y<i,x), Jacobi decoding re-frames the LLM
inference process in Equation (1) as solving a system of
nonlinear equations w.r.t. yi:

f(yi,y<i,x) = 0 for i = 1, . . . , n. (2)

It can be solved in parallel using the Jacobi fix-point
iteration method (Ortega & Rheinboldt, 2000), starting
from a randomly initialized n-token sequence y(0) =

3

CLLMs: Consistency Large Language Models

 GROUP BY
 H AV ING
 count (*)

Target LLM CLLMa lot of collocations

Figure 2. Comparison of Jacobi trajectory between a target LLM and CLLMs on Spider. Each point along the Jacobi trajectory is a
color-coded sequence: blue for correct tokens matching with AR results, and red for inaccurate ones. CLLM demonstrates enhanced
efficiency, converging to the fixed point 2× faster than the target LLM. This increased efficiency in the CLLM can be attributed to the
consistency loss which facilitates the learning of the structure of each n-token sequence given a prefix.

{y(0)1 , . . . , y
(0)
n } and iteratively updating it by the follow-

ing rule:

y
(j+1)
1 = argmax

y
p(y|x)

y
(j+1)
2 = argmax

y
p(y|y(j)

1 ,x)

...
y
(j+1)
n = argmax

y
p(y|y(j)

<n,x).

(3)

Notably, for LLM, the above n maximization problems
can be solved in parallel by using a causal attention mask,
i.e., only one forward pass of the LLM is required to obtain
y(j+1) based on y(j). The iteration exits at some k such that
y(k) = y(k−1) and we define y∗ := y(k) as the fixed point.
Let J := {y(1), . . . ,y(k)} denote the Jacobi trajectory. It
can be proven that y∗ is identical to AR decoding under
greedy strategy (Song et al., 2021a). The acceleration effect
of Jacobi decoding primarily stems from the fact that each
forward pass of the LLM could potentially generate more
than one fixed token within the n-token sequence, so the
number of queries to the LLM could be smaller than that of
AR decoding, i.e., k ≤ n.

Generally, for a prefix x of length nx, each forward pass
in Jacobi decoding deals with a longer sequence of length
nx + n, demanding more FLOPs than AR decoding that
deals with a shorter sequence length at nx + i, 1 ≤ i ≤ n.
Yet, the added overhead can be minimal when nx is large or
n is small. Besides, we can integrate the KV cache mech-
anism (Pope et al., 2023) into Jacobi decoding to further
reduce the additional overhead, as detailed below.

Jacobi Decoding with KV Cache. The sequential nature
of LLMs ensures that each token generation is dependent
only on preceding tokens. Namely, we have an increasing
number of fixed tokens, which are correctly aligned with the
AR generations. We don’t need to iteratively update them
and recompute their keys and values for computing attention
in subsequent iterations thanks to the KV cache technique.
So, we 1) progressively reduce the length of the iteration

state by at least one token and 2) save the KV cache of fixed
tokens along with the decoding procedure. We elaborate on
this in Algorithm 3.

3.2. Consistency Large Language Models (CLLMs)

Despite the promise, the speedup effect of Jacobi decod-
ing for vanilla LLMs is minimal in practice (Santilli et al.,
2023; Fu et al., 2024). The reason is that AR-trained LLMs
can usually generate only one correct token in each Jacobi
iteration as such models can rarely yield a correct token
when there are incorrect preceding tokens. To address this,
we propose to adapt pre-trained LLMs to consistently map
any point y on the Jacobi trajectory J to the fixed point y∗.
Surprisingly, such an objective is analogous to that of con-
sistency models (Song et al., 2023; Song & Dhariwal, 2023),
a leading acceleration approach for diffusion models (Ho
et al., 2020; Song et al., 2021b).

This section first delineates our data preparation procedure
for tuning CLLM and then elaborates on the training proce-
dure of CLLM. Lastly, we discuss some possible sources of
the reason for CLLMs’ acceleration.

3.2.1. JACOBI TRAJECTORY COLLECTION

Let p denote the target LLM we aim to adapt. Let qθ(·|x)
denote the CLLM with parameters θ initialized with those
of p. To realize the aforementioned adaptation, we collect
a set of Jacobi trajectories by running the Jacobi decoding
algorithm with the target LLM p on prompts from a certain
domain of interest, forming an original training set D. We
summarize the algorithm for dataset generation in Algo-
rithm 1. Note that to generate a lengthy response l of N
(N ≫ n) tokens, we can sequentially perform Jacobi de-
coding for every truncation of n tokens to avoid slow model
evaluation on lengthy input. Consequently, l amounts to the
concatenation of a set of consecutive fixed points.

Data augmentation. In a typical Jacobi iteration process,
the correct tokens often appear one after another, and n-

4

CLLMs: Consistency Large Language Models

Algorithm 1 Generate dataset to train a CLLM
Input: prompt setO, n-token sequence size n, max new tokens
N , target LLM p
repeat

Sample prompt x from origin dataset O.
while <EOS> is not generated and length generated < N
do
J = {y(0), . . . ,y∗} ← Jacobi Decoding(p,x)
x← cat(x, y∗)
if use data augmentation then

for all y ∈ J do
Augment y with false tokens corrected randomly

end for
end if
Append x and J to Training Dataset D

end while
until all prompts in origin dataset O are used

token sequences usually exhibit a “correct, correct, wrong,
wrong, wrong” pattern. In comparison, patterns like “cor-
rect, correct, wrong, correct, wrong” can be rare. To enhance
the learning and generalization capabilities of CLLMs, we
augment the dataset D by randomly correcting erroneously
predicted tokens within the samples.

Data post-processing. Since the target LLM itself can
make errors for some prompts, it often leads to low-quality
generations in the Jacobi trajectories. We find training a
CLLM with n-token sequences with token-level (Holtzman
et al., 2019) or sentence-level repetitions (Polišenská et al.,
2015) often results in to repetitive content generation and
noticeably degrades performance. Recognizing the signif-
icance of high-quality datasets for training LLMs (Zhou
et al., 2023a), we perform post-processing to eliminate the
low-quality samples from our training dataset D based on a
rule-based detector.

3.2.2. TRAINING

We jointly optimize two losses for tuning CLLMs, one guar-
anteeing the prediction of multiple tokens at once and the
other avoiding the CLLM from deviating from the target
LLM so as to maintain generation quality.

Consistency Loss. For a prompt x with the Jacobi trajectory
J , let y and y∗ denote a random state on the trajectory and
the fixed point respectively. We can directly push CLLM to
output y∗ with y as the input by minimizing the following
loss:

LGC = E(x,J)∼D,y∼J

[
n∑

i=1

D (qθ−(·|y∗
<i,x)||qθ(·|y<i,x))

] (4)

where θ− = stopgrad(θ) and we abuse notations to repre-
sent uniform sampling from the dataset. D(·||·) denotes
the distance between two distributions, with forward KL,

Algorithm 2 Training algorithm for a CLLM
Input: Jacobi trajectory dataset D, n-token sequence size n,
the weight factor ω, CLLM qθ(·|x)
repeat

Sample prompt x, Jacobi trajectory J , and full response l
from D
Calculate LAR using Equation (6)
Sample y from J
Calculate Lconsistency using Equation (4) or Equation (5)
Calculate L(θ) and update the parameters θ

until convergence

reverse KL, and their mixture (i.e., the Jensen-Shannon di-
vergence) as popular examples (Agarwal et al., 2023). We
primarily experiment with the forward KL.

Alternatively, we can also achieve the goal that CLLM con-
sistently maps all intermediate states to the fixed point with
a local consistency (LC) loss following CMs (Song et al.,
2023), where the adjacent states (y(j),y(j+1) in the Jacobi
trajectory J are demanded to yield the same outputs:

LLC = E(x,J)∼D,(y(j),y(j+1))∼J

[
n∑

i=1

D
(
qθ−(·|y(j+1)

<i ,x)||qθ(·|y(j)
<i ,x)

)]
.

(5)

We compare LGC and LLC empirically in Table 6, where
the results show that the global consistency loss is more
efficacious to train CLLMs. This is probably attributed to
that LLC only implicitly aims at mapping from any point
consistently to the fixed point by minimizing the distance
between consecutive points. However, there is still a gap
between LLC and the goal of predicting multiple tokens at
once, because there is typically only one more correct token
in y(j+1) than y(j) in the collected Jacobi trajectory.

AR Loss. To avoid deviating from the distribution of the
target LLM, we incorporate the traditional AR loss based
on the generation l of the target LLM p:

LAR = E(x,l)∼D

[
−

N∑
i=1

log qθ(li|l<i,x)
]
. (6)

This term contributes to maintaining generation quality sub-
stantially (see Table 6).

Consequently, the total loss for training a CLLM is:

L(θ) = Lconsistency + wLAR (7)

where ω represents a weighting coefficient, Lconsistency can
be either LGC or LLC and we adopt LGC in our experiments.

The training procedure is detailed in Algorithm 2.

5

CLLMs: Consistency Large Language Models

3.3. Acceleration Mechanisms in CLLMs

Next, we compare the Jacobi trajectory of the target LLM
and CLLM in Figure 2 to chase an in-depth understanding
of acceleration mechanisms in CLLMs.

As shown in the left side of Figure 2, target LLMs typically
generate only one correct token in one iteration. In contrast,
we identify fast forwarding phenomenon where multiple
consecutive tokens are correctly predicted in a single for-
ward pass in CLLMs. The average fast forward count per
forward pass in CLLMs ranges from 2 to 6 tokens as eval-
uated in Table 3. Moreover, tokens correctly generated in
advance (e.g. “country” and “H” in point 5 and 6 in the
left side of Figure 2), are often replaced inaccurately in sub-
sequent iterations in target LLMs. Unlike the pre-trained
models, CLLMs exhibit the capability of predicting correct
tokens preemptively, even with preceding incorrect tokens,
while ensuring the tokens remain unchanged. We term such
tokens as stationary tokens, whose existance allow simulta-
neous extension of discontinuous correct tokens within the
n-token sequence. Both phenomena contribute to the fast
convergence in Jacobi decoding of CLLMs, thereby leading
to a considerable generation speedup.

We observe that CLLMs acquire a crucial linguistic con-
cept through training – collocations: a series of words or
terms that co-occur more frequently than one would ex-
pect by random chance (Smadja, 1991). Language is not
solely composed of isolated words but also relies heavily on
specific word pairings. Examples of collocations are abun-
dant in both natural and coding languages. They include
verb + preposition combinations (e.g., “talk to”, “remind
... of ...”), verb + noun structures (e.g., “make a decision”,
“catch a cold”), and many more domain-specific syntactical
structures (e.g., “SELECT ... FROM ...”, “if ... else” for
programming). The consistency generation objective allows
CLLMs to infer such structures from any point in the Jacobi
trajectory, encouraging CLLMs to acquire proficiency in
numerous collocations and thereby predict multiple words
simultaneously to minimize iteration steps.

Notably, lookahead decoding (Fu et al., 2024) collects n-
grams generated from previous Jacobi iterations as candi-
date tokens and verifies them in the next iteration to acceler-
ate decoding. CLLMs can also be combined with lookahead
decoding and achieve extra speedup (see Table 1 and Ta-
ble 2) because collocations learned in CLLMs improve the
quality of n-grams and thus increase the acceptance rate.

4. Experiments
4.1. Evaluations

Benchmarks and Setup. We evaluate performance across
three domain-specific tasks, including text-to-SQL (Spi-

Table 1. Comparison of CLLMs with other baselines including
speculative decoding using distilled draft model, Medusa, and
fine-tuned model using LLaMA2-7B as the backbone model. Per-
formance and inference speed are evaluated with applicable gener-
ation techniques. To quantify speed improvements, we measure
speedup as the ratio of the wall-clock speed to the baseline AR
decoding speed for each model. Results are measured with a batch
size of 1.

Methods Speed (tokens/s) Speedup Metric Size

GSM8K

Fine-tuned LLaMA2-7B (Chern et al.)
+ AR 43.5 1.0× 59.1

6.7B+ Jacobi 45.7 1.1× 59.1
+ lookahead 74.8 1.7× 59.1

CLLM-LLaMA2-7B
+ AR 43.5 1.0× 56.4

6.7B+ Jacobi 132.4 3.0× 56.4
+ lookahead 125.2 2.9× 56.4

Medusa-2 + LLaMA2-7B
+ typical 70.2 1.6× 51.3 8.3B

Fine-tuned LLaMA2-7B + distilled LLaMA-160m
+ speculative 73.8 1.7× 59.1 6.8B

ShareGPT (MT-Bench)

Fine-tuned LLaMA2-7B
+ AR 37.6 1.0× 6.5

6.7B+ Jacobi 39.9 1.1× 6.5
+ lookahead 60.8 1.6× 6.5

CLLM-LLaMA2-7B
+ AR 36.7 1.0× 6.4

6.7B+ Jacobi 88.4 2.4× 6.4
+ lookahead 95.0 2.5× 6.4

Medusa-2 + LLaMA2-7B
+ typical 102.5 2.7× 6.4 8.3B

Fine-tuned LLaMA2-7B + distilled LLaMA-160m
+ speculative 51.3 1.4× 6.5 6.8B

der) (Yu et al., 2018), Python code generation (Code-
search-Python) (Husain et al., 2019) and graduate school
math (GSM8k) (Cobbe et al., 2021). To test CLLMs gen-
eralizability on open-domain conversational interactions
and instruction-following scenarios, we also train CLLMs
on ShareGPT2 data and perform evaluation on the MT-
bench (Zheng et al., 2023). The performance metrics are the
greedy answers’ problem solve rate (test@1) on GSM8K,
MT-bench score, execution accuracy on Spider, as well as
and strict accuracy (pass@1) on Human-Eval. Additionally,
we also run evaluations of CLLMs’ language modeling capa-
bility on raw-WikiText2 (Merity et al., 2016) and PTB (Pan
et al., 2020).

Reported experiments were conducted using either pre-
trained coder LLM, Deepseek-coder-7B-instruct (Bi et al.,

2http://www.sharegpt.com.

6

http://www.sharegpt.com.

CLLMs: Consistency Large Language Models

Table 2. Comparison of CLLMs with other baselines using
Deepseek-Coder-7B-Instruct as the backbone model.

Methods Speed (tokens/s) Speedup Metric Size

Spider

Fine-tuned Deepseek-7B
+ AR 38.0 1.0× 70.0

6.7B+ Jacobi 39.5 1.0× 70.0
+ lookahead 55.3 1.5× 70.0

CLLM-Deepseek-7B
+ AR 38.0 1.0× 69.3

6.7B+ Jacobi 127.4 3.4× 69.3
+ lookahead 135.2 3.6× 69.3

Medusa-2 + Deepseek-7B
+ typical 104.2 2.7× 66.4 8.3B

Fine-tuned Deepseek-7B + distilled LLaMA-160m
+ speculative 66.8 1.8× 70.0 6.8B

Code-Search-Net Python

Fine-tuned Deepseek-7B
+ AR 40.1 1.0× 60.4

6.7B+ Jacobi 43.2 1.1× 60.4
+ lookahead 68.0 1.7× 60.0

CLLM-Deepseek-7B
+ AR 38.5 1.0× 59.2

6.7B+ Jacobi 102.1 2.5× 59.2
+ lookahead 115.7 2.9× 59.2

Medusa-2 + Deepseek-7B
+ typical 128.0 3.2× 48.3 8.3B

Fine-tuned Deepseek-7B + distilled LLaMA-160m
+ speculative 59.3 1.5× 60.4 6.8B

2024) or LLaMA-2-7B (Touvron et al., 2023a;b) depending
on the task. Both training and evaluation are carried out on
servers equipped with 8 NVIDIA A100 40GB GPUs and
128 AMD EPYC 7742 64-core processors.

Baselines. In this section, we compare CLLMs with a
range of alternative models that employ various strategies to
speed up the inference process. This includes Medusa (Cai
et al., 2024), which modifies the underlying architecture,
and approaches utilizing distilled draft models for specula-
tive decoding (Zhou et al., 2023b; Liu et al., 2023). Along-
side these, we also consider fine-tuned baseline models for
a comprehensive comparison. Our evaluation tests each
model under different decoding paradigms the model is
compatible with to thoroughly assess their inference quality
and speed. The decoding algorithms include vanilla AR
decoding, Jacobi decoding (Song et al., 2021a), speculative
decoding (Leviathan et al., 2023), and lookahead decod-
ing (Fu et al., 2024).

Results. To evaluate the performance and inference speedup
of CLLMs across various tasks, we conduct an extensive
comparison with the SOTA baselines on the three domain-

specific tasks and the open-domain MT-bench.

Table 1 and Table 2 compare CLLMs against fine-tuned
baseline models across three different generation modes:
AR decoding, Jacobi decoding, lookahead decoding, and the
stronger speculative decoding baseline using a distilled draft
model. In both Jacobi and lookahead decoding, CLLMs
consistently surpass the baselines. Notably, on the Spider
dataset, CLLMs achieve a 3.4× speedup with negligible per-
formance loss using Jacobi decoding. When benchmarked
against other SOTA methods for efficient LLM inference,
particularly those necessitating training, CLLMs exhibit
the ability of fast consistency generation while maintain-
ing lower memory and computational demands with lowest
memory consumption in comparison with Medusa and spec-
ulative decoding. In these cases, we can still see CLLMs
consistently outperform speculative decoding with distilled
draft model and achieve better accuracy with comparable
and even better inference speedup on datasets like Spi-
der and GSM8K, where collocations are more common.
CLLMs can also seamlessly integrate with lookahead de-
coding and more speedup is gained compared to lookahead
decoding applied in fine-tuned LLMs.

We highlight CLLMs’ advantage over speculative decoding
with distilled draft models and Medusa is its high adaptabil-
ity. This is because CLLMs’ are models tailored for Jacobi
decoding. Jacobi decoding requires no modification to the
original models. In the contrary, both speculative decod-
ing and Meudsa require either auxiliary components like
LM head, tree-based attention mask, or draft model, which
usually come with the cost of searching for the optimal
configuration. This is further summarized in Table 7.

Moreover, the language modeling results in Table 5 show
CLLMs are able to maintain a low perplexity while render-
ing at least 2× speedup, suggesting CLLMs’ potential to be
trained as pre-trained LLM with higher inference efficiency.

4.2. Acceleration Mechanisms in CLLMs

With insights provided in Section 3.3, we investigate the
fast-forwarding phenomenon and the emergence of station-
ary tokens in Jacobi decoding to provide further empirical
evidences for our hypothesis. We compare fast-forwarded
and stationary token counts in target LLMs and CLLMs
across the four datasets in Table 3.

From the table, there is a consistent 2.0x to 6.8x improve-
ment in both fast-forwarded token and stationary token
counts across all four datasets. In particular, for domain-
specific datasets, such improvement is much more signifi-
cant than open-domain dataset profiled on MT-bench. The
results align with the observations from Section 3.3, where
we see more distinctive collocations and easy syntactical
structures like blank space, newline tokens, and repetitive

7

CLLMs: Consistency Large Language Models

Table 3. Profiling results for fast-forwarded and stationary token counts in fine-tuned models and CLLMs. The numbers are
reported for each n-token sequence, with the best-performing model and an accompanying n-gram size. Fast-forwarded token count
reported in the table includes the one token that will be predicted right even without fast-forwarding.

Models n-token sequence length Fast-forward token count Stationary token count

Spider
Fine-tuned Deepseek-coder-7B-instruct 16 1.1 0.4

CLLM-Deepseek-coder-7B-instruct (size 16) 16 5.7 1.6

Code-Search-Net Python
Fine-tuned Deepseek-coder-7B-instruct 32 1.1 0.4

CLLM-Deepseek-coder-7B-instruct (size 32) 32 4.0 6.8

GSM8K
Fine-tuned LLaMA-2-7B 16 1.1 0.1

CLLM-LLaMA-2-7B (size 16) 16 2.8 2.0

ShareGPT
Fine-tuned LLaMA-2-7B 32 1.1 0.3

CLLM-LLaMA-2-7B (size 32) 32 2.2 4.8

special characters in specialized domains like coding as
demonstrated in Figure 2, versus open-domain conversa-
tions in ShareGPT and MT-bench with a significantly more
diverse set of collocations.

4.3. Ablation Studies

In this section, we evaluate the impact of various hyperpa-
rameter selections on the performance of CLLMs.

Dataset sizes and generalizability. In Section 3.2.1, Ja-
cobi trajectory datasets are collected to conduct training for
efficient Jacobi decoding. Table 4 demonstrates larger Ja-
cobi trajectory datasets bring more significant speedup, and
the speedup gradually saturates as the dataset size scales.
Moreover, CLLMs trained with more data can perform well
even at the n-token sequence lengths it’s not trained on and
introduce more deployment-time robustness.

Different lengths of n-token sequence. We investigate how
different n-token sequence lengths in the Jacobi trajectory
dataset affect CLLMs’ performance on GSM8K. We employ
varying lengths to generate the Jacobi dataset and train the
CLLMs accordingly. Figure 3 illustrates that CLLMs con-
sistently maintain generation quality while the models are
trained with different lengths. In practice, longer sequence
lengths come at cost of increased computational overhead
during inference. In Figure 3, significant degradation infer-
ence speed can thus be observed when the n-token sequence
length exceeds 64.

Loss design. We adjust the ratio of consistency loss to
autoregressive loss described in Section 3.2.2 and evaluate
different loss ratios’ performance on GSM8K. As illustrated
in Table 6, increasing the emphasis on autoregressive loss
does indeed enhance accuracy, though it slightly compro-
mises the speedup gains. Additionally, we compare the

16 32 64 128 256
Length of n-token sequence

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy

Figure 3. Accuracy and speedup of models trained with different
n-token sequences lengths on GSM8K dataset. The sequence
length for generation matches the training settings. Speedup is
measured as the ratio of the wall-clock generation throughput when
employing Jacobi decoding, and that of the baseline AR decoding.

efficacy of CLLMs using both consistency global loss and
consistency local loss. Table 6 demonstrates that the global
loss is more efficacious in the training of CLLMs.

4.4. Limitations and Discussion

In our experiments, we observe that achieving significant
speedup while maintaining good generation quality with
a CLLM relies strongly on having a high-quality Jacobi
trajectory dataset. Therefore, data cleaning is crucial, as
discussed in Section 3.2.1. Dataset size also plays a role as
described in Section 4.3 and shown in Table 4, although to
a lesser extent. For instance, Jacobi trajectories generated
with only 10% of the Code-Search-Net Python dataset is
able to yield a 2.9× speedup as demonstrated in Table 2.
However, for open-domain datasets like ShareGPT, more
data is necessary for improved efficiency. The computa-

8

CLLMs: Consistency Large Language Models

Table 4. Comparison the performance of CLLMs trained with different sizes of Jacobi trajectory datasets on ShareGPT.

TRAJECTORY COUNT MT-BENCH
INFERENCE SPEEDUP (VARYING LENGTHS)

16 32 64 128 256

20K 6.1 1.7× 1.8× 1.4× 1.2× 1.1×
100K 6.4 2.5× 2.4× 2.1× 2.0× 1.5×
500K 6.4 2.7× 2.7× 2.2× 2.1× 1.8×

Table 5. CLLMs’ performance versus the fine-tuned baseline on
language modeling tasks.

Methods Speed (tokens/s) Speedup PPL (↓)
raw-WikTtext2

fine-tuned LLaMA2-7B
+ AR 41.2 1.0× 8.0

+ Jacobi 36.9 1.0× 8.0
+ lookahead 58.1 1.6× 8.0

CLLM-LLaMA2-7B
+ AR 40.1 1.0× 9.5

+ Jacobi 83.2 2.1× 9.5
+ lookahead 89.5 2.2× 9.5

PTB

fine-tuned LLaMA2-7B
+ AR 43.8 1.0× 15.6

+ Jacobi 41.8 1.0× 15.6
+ lookahead 62.0 1.5× 15.6

CLLM-LLaMA2-7B
+ AR 43.6 1.0× 15.3

+ Jacobi 98.1 2.3× 15.3
+ lookahead 101.5 2.3× 15.3

tion cost for CLLMs training is moderate and discussed in
Appendix D.

In our proposed method and experiments, we primarily use
output sequences from the teacher (Kim & Rush, 2016)
to collect Jacobi trajectories and train a CLLM. This intro-
duces some additional overhead in comparison with conven-
tional model training. On-policy GKD proposed in Agarwal
et al. (2023) suggests LLM distillation using a mixture of
teacher and student samples or even student samples by
themselves can yield high-performance models. One miti-
gation is therefore to use n-token sequences generated by
the trained model itself as the training samples. This can
remove the Jacobi trajectory collection overhead, making
our proposed method potentially feasible for pre-training.

Results from our language modeling experiments, as de-
tailed in Table 5, demonstrate the robustness of the CLLM
when trained on pre-training jobs with a notable speedup. By
incorporating on-policy GKD, it is conceivable that a mod-
ified version of our proposed method could be employed

Table 6. Comparison the performance of CLLMs trained with dif-
ferent loss design. All models are trained on GSM8K.

LOSS SPEEDUP ACCURACY

LCTG + LAR 3.2× 51.3
LCTG + 10 · LAR 3.0× 56.4
LCTL + LAR 2.8× 55.2
LCTL + 10 · LAR 2.4× 56.0

for LLM pre-training. This modification would equip the
pre-trained model with both a strong language modeling
capability, as existing models possess, and a high generation
speed when employing Jacobi decoding for inference. We
leave the opportunities of adapting CLLMs to pre-trained
jobs for future work.

5. Conclusion
In this work, we introduce CLLMs, a new family of LLMs
that excel in efficient parallel decoding, designed to signif-
icantly enhance the efficiency of Jacobi decoding. Unlike
other existing techniques for efficient LLM inference, which
often require either additional architectural components (Cai
et al., 2024; Li et al., 2024) or draft models (Leviathan et al.,
2023; Zhou et al., 2023b; Liu et al., 2023), CLLMs are di-
rectly adapted from a target pre-trained LLM. This reduces
the complexity associated with additional architecture de-
signs or managing two different models in a single system.
In addition, CLLMs can also be integrated seamlessly with
other techniques for efficient LLM inference (Dao, 2023; Fu
et al., 2024; Ainslie et al., 2023) to achieve greater speedup.
We have demonstrated the efficacy of CLLMs on both spe-
cific and open domains, revealing a significant improvement
in generation speed while preserving generation quality.

Acknowledgments
This work was supported by Key R&D Program of Shan-
dong Province, China (2023CXGC010112), NSF of China
(Nos. 62306176, 62102257), National Key R&D Program
of China (2022YFB4500200), Natural Science Founda-
tion of Shanghai (No. 23ZR1428700), and CCF-Baichuan-
Ebtech Foundation Model Fund.

9

CLLMs: Consistency Large Language Models

Impact Statement
This work presents a challenge in machine learning and
proposes a solution, the potential negative consequences
are not apparent. While it is theoretically possible for any
technique to be misused, the likelihood of such misuse
occurring at the current stage is low.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Agarwal, R., Vieillard, N., Stanczyk, P., Ramos, S., Geist,
M., and Bachem, O. Gkd: Generalized knowledge distilla-
tion for auto-regressive sequence models. arXiv preprint
arXiv:2306.13649, 2023.

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,
Lebrón, F., and Sanghai, S. Gqa: Training generalized
multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin,
D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen,
Z., et al. Palm 2 technical report. arXiv preprint
arXiv:2305.10403, 2023.

Ashkboos, S., Croci, M. L., do Nascimento, M. G., Hoefler,
T., and Hensman, J. Slicegpt: Compress large language
models by deleting rows and columns, 2024.

Bi, X., Chen, D., Chen, G., Chen, S., Dai, D., Deng, C.,
Ding, H., Dong, K., Du, Q., Fu, Z., et al. Deepseek llm:
Scaling open-source language models with longtermism.
arXiv preprint arXiv:2401.02954, 2024.

Cai, T., Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D.,
and Dao, T. Medusa: Simple llm inference acceleration
framework with multiple decoding heads. arXiv preprint
arXiv:2401.10774, 2024.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,
L., and Jumper, J. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Chern, E., Zou, H., Li, X., Hu, J., Feng, K., Li, J., and
Liu, P. Generative ai for math: Abel. URL https:
//github.com/GAIR-NLP/abel.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

Dao, T. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Llm. int8 (): 8-bit matrix multiplication for transformers
at scale. arXiv preprint arXiv:2208.07339, 2022.

Frantar, E. and Alistarh, D. Sparsegpt: Massive language
models can be accurately pruned in one-shot. 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Fu, Y., Bailis, P., Stoica, I., and Zhang, H. Break the se-
quential dependency of llm inference using lookahead
decoding. arXiv preprint arXiv:2402.02057, 2024.

Gu, Y., Dong, L., Wei, F., and Huang, M. Knowledge
distillation of large language models. arXiv preprint
arXiv:2306.08543, 2023.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. The
curious case of neural text degeneration. arXiv preprint
arXiv:1904.09751, 2019.

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., and
Brockschmidt, M. CodeSearchNet challenge: Evalu-
ating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Kim, Y. and Rush, A. M. Sequence-level knowledge distil-
lation. arXiv preprint arXiv:1606.07947, 2016.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Li, Y., Wei, F., Zhang, C., and Zhang, H. Eagle: Speculative
sampling requires rethinking feature uncertainty, 2024.

10

https://github.com/GAIR-NLP/abel
https://github.com/GAIR-NLP/abel

CLLMs: Consistency Large Language Models

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Liu, X., Hu, L., Bailis, P., Stoica, I., Deng, Z., Cheung, A.,
and Zhang, H. Online speculative decoding, 2023.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. arXiv preprint
arXiv:2305.11627, 2023.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Ortega, J. M. and Rheinboldt, W. C. Iterative solution of
nonlinear equations in several variables. SIAM, 2000.

Pan, H., Wang, C., Qiu, M., Zhang, Y., Li, Y., and Huang,
J. Meta-kd: A meta knowledge distillation framework
for language model compression across domains. arXiv
preprint arXiv:2012.01266, 2020.

Polišenská, K., Chiat, S., and Roy, P. Sentence repetition:
What does the task measure? International Journal of
Language & Communication Disorders, 50(1):106–118,
2015.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury,
J., Heek, J., Xiao, K., Agrawal, S., and Dean, J. Efficiently
scaling transformer inference. Proceedings of Machine
Learning and Systems, 5, 2023.

Santilli, A., Severino, S., Postolache, E., Maiorca, V., Man-
cusi, M., Marin, R., and Rodolà, E. Accelerating trans-
former inference for translation via parallel decoding.
arXiv preprint arXiv:2305.10427, 2023.

Shazeer, N. Fast transformer decoding: One write-head is
all you need. arXiv preprint arXiv:1911.02150, 2019.

Smadja, F. From n-grams to collocations: An evaluation
of xtract. In 29th Annual Meeting of the Association for
Computational Linguistics, pp. 279–284, 1991.

Song, Y. and Dhariwal, P. Improved techniques for training
consistency models. arXiv preprint arXiv:2310.14189,
2023.

Song, Y., Meng, C., Liao, R., and Ermon, S. Accelerating
feedforward computation via parallel nonlinear equation
solving. In International Conference on Machine Learn-
ing, pp. 9791–9800. PMLR, 2021a.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A.,
Ermon, S., and Poole, B. Score-based generative mod-
eling through stochastic differential equations. In In-
ternational Conference on Learning Representations,

2021b. URL https://openreview.net/forum?
id=PxTIG12RRHS.

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Consis-
tency models. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org,
2023.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Wu, S., Fei, H., Qu, L., Ji, W., and Chua, T.-S. Next-
gpt: Any-to-any multimodal llm. arXiv preprint
arXiv:2309.05519, 2023.

Xia, M., Zhong, Z., and Chen, D. Structured pruning
learns compact and accurate models. arXiv preprint
arXiv:2204.00408, 2022.

Xia, M., Gao, T., Zeng, Z., and Chen, D. Sheared llama:
Accelerating language model pre-training via structured
pruning. arXiv preprint arXiv:2310.06694, 2023.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023.

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li,
Z., Ma, J., Li, I., Yao, Q., Roman, S., et al. Spider:
A large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task. arXiv
preprint arXiv:1809.08887, 2018.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. arXiv
preprint arXiv:2306.05685, 2023.

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X.,
Efrat, A., Yu, P., YU, L., Zhang, S., Ghosh, G., Lewis,
M., Zettlemoyer, L., and Levy, O. LIMA: Less is more
for alignment. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023a.

11

https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS

CLLMs: Consistency Large Language Models

Zhou, Y., Lyu, K., Rawat, A. S., Menon, A. K., Ros-
tamizadeh, A., Kumar, S., Kagy, J.-F., and Agarwal,
R. Distillspec: Improving speculative decoding via
knowledge distillation. arXiv preprint arXiv:2310.08461,
2023b.

12

CLLMs: Consistency Large Language Models

A. Illustration of Consistency Loss Learning Objectives
In our proposed method described in Section 3.2, we use Jacobi trajectories collected from a target model to train the model
with a loss that encourages single-step convergence during Jacobi iterations. This is achieved with either choice of the two
consistency loss:

• Global consistency loss: directly minimize the distance D between any arbitrary point y on a Jacobi trajectory and the
fixed point y∗ in Equation 4.

• Local consistency loss: minimize the distance D between any arbitrary point y(j) on a Jacobi trajectory with its adjacent
state y(j+1) in Equation 5, which thereby also implicitly minimizes the distance between y(j+1) and the fixed point y∗.

An illustration further depict the global consistency loss and the local consistency loss in Figure 4 and Figure 5.

Autoregressive LM

prefix (k-1)-th n-token sequence

input

k=4 (4th iteration):
Converged, same result as greedy AR decoding.

k=1 (1-st iteration)

k=2 (2nd iteration)

<BOS> Are you a LLM ?

k-th n-token sequence

Yes a LLM ! one fun meet

Yes I am one one smart gadget

k=3 (3rd iteration)

Yes I am . Nice to chat

Yes I am . Nice to meet

prefix

k=0 (initialization)

You ? Are LLM ? a you

Jacobi trajectoryrandom initialization

fixed point

Figure 4. The image illustrates global consistency loss where we aim to directly learn a model qθ that maps arbitrary n-token sequence
y(0), y(1), etc.) to the fixed point y∗.

Jacobi trajectory

k=4 (4th iteration):
Converged, same result as greedy AR decoding.

k=1 (1-st iteration)

k=2 (2nd iteration)

Yes a LLM ! one fun meet

Yes I am one one smart gadget

k=3 (3rd iteration)

Yes I am . Nice to chat

Yes I am . Nice to meet

k=0 (initialization)

You ? Are LLM ? a you

Jacobi trajectoryrandom initialization

fixed point

Autoregressive LM

prefix (k-1)-th n-token sequence

input

<BOS> Are you a LLM ?

k-th n-token sequenceprefix

Figure 5. The image illustrates local consistency loss where we aim to learn a model qθ that maps an arbitrary n-token sequence y(j) to
its next adjacent state, and implicitly mapping the point to the fixed point y∗.

13

CLLMs: Consistency Large Language Models

B. Comparison with Baseline Algorithms
In this section, we present a comparative analysis of baseline algorithms for efficient LLM inference. Key features considered
are listed below. Table 7 underlines that CLLMs, our proposed method, stands out for its memory efficiency and adaptability,
requiring no modifications to the existing model architecture while achieving up to 3.4× inference speedup.

• Lossless: whether the method generates exactly the same output distribution as AR decoding does in the backbone model.

• Training-free: whether the method requires training.

• Architecture-design-free: whether the method requires modifications or adding auxiliary components to pre-trained
LLMs (like extra MLP layers, LM heads (Cai et al., 2024), autoregressive heads (Li et al., 2024), etc.).

• Attention-modification-free: whether the methods require modifications to exisiting attention mechanism in transformers.
For example, this includes tree token verification as appears in Cai et al. (2024).

• Extra-memory-free: whether the method requires extra memory conmsumption in the system to accommodate speculative
model or extra parameters.

• Speedup: Whether the method can effectively deliver inference speedup in practical use cases.

Table 7. All speedups are relative to the vanilla AR. CLLMs has the best memory efficiency and adaptability as it requires no modifications
to the model. yes∗ refers to capability of achieving more than 3× speedup on at least one of our benchmarks. Jacobi decoding doesn’t
always lead to a speedup as discussed in Section 3.1, so we denote it with yes.

Methods Lossless Training-free Arch-design-free Attention-mod-free Extra-memory-free Speedup

Vanilla AR yes yes yes yes yes no

Jacobi Decoding yes yes yes yes yes yes

Speculative Decoding yes yes yes yes no yes

Lookahead Decoding yes yes yes yes no yes

SD with Distilled Student yes no yes yes no yes

Eagle yes no no no no yes∗

Medusa no no no no no yes∗

CLLMs (Ours) no no yes yes yes yes∗

C. Pesudo Code for Jacobi Decoding with KV Cache

Algorithm 3 Jacobi Decoding with KV Cache
1: Input: prompt x, n-gram size n, past KV cache K, LLM, Jacobi trajectory J
2: y ← random tokens from x
3: nt ← 0 {Initialization of accurate length}
4: y0,K ← LLM(x) {Prefill phase: generate the first token}
5: znext ← cat(y0,y≥1)
6: repeat
7: zcurrent ← znext

8: znext,K ← LLM(zcurrent,K)
9: i∗ ← max{i | zcurrent

<i = znext
<i , i ∈ {0, . . . , len(zcurrent)− 1}} {Fast-forwarded token count}

10: ynt≤i
′
<nt+i∗ ← znext

<i∗ {i
′

denotes a dummy variable}
11: nt ← nt + i∗

12: Append cat
(
y<nt ,z

next
≥i∗

)
to J

13: Remove KV cache of false tokens from K
14: znext ← znext

≥i∗

15: until nt = n
16: Ouput: J and y

14

CLLMs: Consistency Large Language Models

D. Computation cost for CLLMs training
For the computation required for dataset generation, the cost is low and it’s a one-time overhead. In the cases where
the dataset size is large, for example for CodeSearchNet-Python, only 10% of the dataset is required to generate Jacobi
trajectories and the trained CLLMs obtain around 2.5× speedup on average. More details are shown in the table below.

Table 8. Computation required for dataset generation. The estimated generation time is based on sequential generation with batch size =
1. We can further reduce the generation time with serving systems like vLLM (Kwon et al., 2023) with batch size = 16 or more. We give
an example of estimated training time with vLLM using batch size = 16 in the table as well. All time is estimated by a single A100 40G
GPU*hours.

Dataset ♯ Generated tokens Estimated generation time Estimated generation time(vLLM)

Spider 2M 5 < 1
GSM8K 10M 14 ∼ 1
CodeSearchNet-Python 100M 100 8
ShareGPT 200M 120 10

For the computation required for consistency training, we conclude the time and resources required for training a CLLM

in the table below. For the percentage of pre-training cost, we estimate it by
♯tokens required for training a CLLM

♯tokens required for pre-training
, where

♯tokens required for pre-training is 1T for LLaMA-7B (Touvron et al., 2023a).

Table 9. Computation required for consistency training.

Dataset Training time % of pre-training cost Training resources

Spider 2 hours < 0.01% 8 A100 40GB GPUs
GSM8K 12 hours ∼ 0.01% 8 A100 40GB GPUs
CodeSearchNet-Python 22 hours ∼ 0.1% 8 A100 40GB GPUs
ShareGPT 30 hours ∼ 0.2 % 8 A100 40GB GPUs

15

