
Regularization in ResNet with Stochastic Depth

Soufiane Hayou∗
Department of Statistics

University of Oxford
United Kingdom

Fadhel Ayed∗
Huawei Technologies

France

Abstract

Regularization plays a major role in modern deep learning. From classic techniques
such as L1, L2 penalties to other noise-based methods such as Dropout, regulariza-
tion often yields better generalization properties by avoiding overfitting. Recently,
Stochastic Depth (SD) has emerged as an alternative regularization technique for
residual neural networks (ResNets) and has proven to boost the performance of
ResNet on many tasks [Huang et al., 2016]. Despite the recent success of SD, little
is known about this technique from a theoretical perspective. This paper provides
a hybrid analysis combining perturbation analysis and signal propagation to shed
light on different regularization effects of SD. Our analysis allows us to derive
principled guidelines for choosing the survival rates used for training with SD.

1 Introduction

Stochastic Depth (SD) is a well-established regularization method that was first introduced by Huang
et al. [2016]. It is similar in principle to Dropout [Hinton et al., 2012, Srivastava et al., 2014] and
DropConnect [Wan et al., 2013]. It belongs to the family of noise-based regularization techniques,
which includes other methods such as noise injection in data [Webb, 1994, Bishop, 1995] and noise
injection throughout the network [Camuto et al., 2020]. While Dropout, resp. DropConnect consists
of removing some neurons, resp. weights, at each iteration, SD randomly drops full layers, and
only updates the weights of the resulting subnetwork at each training iteration. As a result of this
mechanism, SD can be exclusively used with residual neural networks (ResNets).

There exists a stream of papers in the literature on the regularization effect of Dropout for linear
models [Wager et al., 2013, Mianjy and Arora, 2019, Helmbold and Long, 2015, Cavazza et al., 2017].
Recent work by Wei et al. [2020] extended this analysis to deep neural networks using second-order
perturbation analysis. It disentangled the explicit regularization of Dropout on the loss function
and the implicit regularization on the gradient. Similarly, Camuto et al. [2020] studied the explicit
regularization effect induced by adding Gaussian Noise to the activations and empirically illustrated
the benefits of this regularization scheme. However, to the best of our knowledge, no analytical study
of SD exists in the literature. This paper aims to fill this gap by studying the regularization effect of
SD from an analytical point of view; this allows us to derive principled guidelines on the choice of
the survival probabilities for network layers. Concretely, our contributions are four-fold:

• We show that SD acts as an explicit regularizer on the loss function by penalizing a notion
of information discrepancy between keeping and removing certain layers.

• We prove that the uniform mode, defined as the choice of constant survival probabilities, is
related to maximum regularization using SD.

• We study the large depth behaviour of SD and show that in this limit, SD mimics Gaussian
Noise Injection by implicitly adding data-adaptive Gaussian noise to the pre-activations.

∗Equal contribution. Correspondence to: <soufiane.hayou@yahoo.fr; fadhel.ayed@huawei.com>

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

• By defining the training budget L̄ as the desired average depth, we show the existence of two
different regimes: small budget and large budget regimes. We introduce a new algorithm
called SenseMode to compute the survival rates under a fixed training budget and provide a
series of experiments that validates our Budget hypothesis introduced in Section 5.

2 Stochastic Depth Neural Networks

Stochastic depth neural networks were first introduced by Huang et al. [2016]. They are standard
residual neural networks with random depth. In practice, each block in the residual network is
multiplied by a random Bernoulli variable δl (l is the block’s index) that is equal to 1 with some
survival probability pl and 0 otherwise. The mask is re-sampled after each training iteration, making
the gradient act solely on the subnetwork composed of blocks with δl = 1.

We consider a slightly different version where we apply the binary mask to the pre-activations instead
of the activations. We define a depth L stochastic depth ResNet by

y0(x; δ) = Ψ0(x,W0),

yl(x; δ) = yl−1(x; δ) + δlΨl(yl−1(x; δ),Wl), 1 ≤ l ≤ L,
yout(x; δ) = Ψout(yL(x; δ),Wout),

(1)

where Wl are the weights in the lth layer, Ψ is a mapping that defines the nature of the layer, yl are
the pre-activations, and δ = (δl)1≤l≤L is a vector of Bernoulli variables with survival parameters
p = (pl)1≤l≤L. δ is re-sampled at each iteration. For the sake of simplification, we consider constant
width ResNet and we further denote by N the width, i.e. for all l ∈ [L− 1], yl ∈ RN . The output
function of the network is given by s(yout) where s is some convenient mapping for the learning
task, e.g. the Softmax mapping for classification tasks. We denote by o the dimension of the network
output, i.e. s(yout) ∈ Ro which is also the dimension of yout. For our theoretical analysis, we
consider a Vanilla model with residual blocks composed of a Fully Connected linear layer

Ψl(x,W) = Wφ(x),

where φ(x) is the activation function. The weights are initialized with He init [He et al., 2015], e.g.
for ReLU, W l

ij ∼ N (0, 2/N).

There are no principled guidelines on choosing the survival probabilities. However, the original
paper by Huang et al. [2016] proposes two alternatives that appear to make empirical consensus: the
uniform and linear modes, described by

Uniform: pl = pL, Linear: pl = 1− l
L (1− pL),

where we conveniently parameterize both alternatives using pL.

Training budget L̄. We define the training budget L̄ to be the desired average depth of the sub-
networks with SD. The user typically fixes this budget, e.g., a small budget can be necessary when
training is conducted on small capacity devices.

Depth of the subnetwork. Given the mode p = (pl)1≤l≤L, after each iteration, the subnetwork
has a depth Lδ =

∑L
l=1 δl with an average Lp := Eδ[Lδ] =

∑L
l=1 pl. Given a budget L̄, there is a

infinite number of modes p such that Lp = L̄. In the next lemma, we provide probabilistic bounds on
Lδ using standard concentration inequalities. We also show that with a fixed budget L̄, the uniform
mode is linked to maximal variability.
Lemma 1 (Concentration of Lδ). For any β ∈ (0, 1), we have that with probability at least 1− β,

|Lδ − Lp| ≤ vp u−1

(
log(2/β)

vp

)
, (2)

where Lp = E[Lδ] =
∑L
l=1 pl, vp = Var[Lδ] =

∑L
l=1 pl(1− pl), and u(t) = (1 + t) log(1 + t)− t.

Moreover, for a given average depth Lp = L̄, the upperbound in Eq. (2) is maximal for the uniform

choice of survival probabilities p =
(
L̄
L , ...,

L̄
L

)
.

2

(a) Distributions of Lδ for a Resnet100
with average survival rate L̄/L = 0.5
for the uniform and linear modes.

(b) Training time of Dropout and
SD on CIFAR10 with ResNet56 for 100
epochs.

Figure 1

Lemma 1 shows that with high probability, the depth of the
subnetwork that we obtain with SD is within an `1 error of
vp u

−1
(

log(2/β)
vp

)
from the average depth Lp. Given a fixed

budget L̄, this segment is maximized for the uniform mode
p = (L̄/L, . . . , L̄/L). Fig. 1a highlights this result. This was
expected since the variance of the depth Lδ is also maximized
by the uniform mode. The uniform mode corresponds to max-
imum entropy of the random depth, which would intuitively
results in maximum regularization. We depict this behaviour
in more details in Section 4.

SD vs Dropout. From a computational point of view,
SD has the advantage of reducing the effective depth dur-
ing training. Depending on the chosen budget, the subnet-
works might be significantly shallower than the entire network
(Lemma 1). This depth compression can be effectively lever-
aged for computational training time gain (Fig. 1b). It is not
the case with Dropout. Indeed, assuming that the choice of
dropout probabilities is such that we keep the same number of
parameters on average compared to SD, we still have to multi-
ply matricesL times during the forward/backward propagation.
It is not straightforward to leverage the sparsity obtained by
Dropout for computational gain. In practice, Dropout requires
an additional step of sampling the mask for every neuron, re-
sulting in longer training times than without Dropout (Fig. 1b).
However, there is a trade-off between how small the budget is
and the performance of the trained model with SD (Section 6).

3 Effect of Stochastic Depth at initialization

Empirical evidence strongly suggests that Stochastic Depth allows training deeper models [Huang
et al., 2016]. Intuitively, at each iteration, SD updates only the parameters of a subnetwork with
average depth Lp =

∑
l pl < L, which could potentially alleviate any exploding/vanishing gradient

issue. This phenomenon is often faced when training ultra deep neural networks. To formalize
this intuition, we consider the model’s asymptotic properties at initialization in the infinite-width
limit N → +∞. This regime has been the focus of several theoretical studies [Neal, 1995, Poole
et al., 2016, Schoenholz et al., 2017, Yang, 2020, Xiao et al., 2018, Hayou et al., 2019, 2020, 2021a]
since it allows to derive analytically the distributions of different quantities of untrained neural
networks. Specifically, randomly initialized ResNets, as well as other commonly-used architectures
such as Fully connected Feedforward networks, convolutional networks and LSTMs, are equivalent to
Gaussian Processes in the infinite-width limit. An important ingredient in this theory is the Gradient
Independence assumption. Let us formally state this assumption first.

Assumption 1 (Gradient Independence). In the infinite width limit, we assume that the weightsW
used for back-propagation are an iid version of the weightsW used for forward propagation.

Assumption 1 is ubiquitous in the literature on the signal propagation in deep neural networks. It
has been used to derive theoretical results on signal propagation in randomly initialized deep neural
network [Schoenholz et al., 2017, Poole et al., 2016, Yang and Schoenholz, 2017, Hayou et al.,
2021b,a] and is also a key tool in the derivation of the Neural Tangent Kernel [Jacot et al., 2018,
Arora et al., 2019, Hayou et al., 2020]. Recently, it has been shown by Yang [2020] that Assumption 1
yields the exact computation for the gradient covariance in the infinite width limit. See Appendix
A0.3 for a detailed discussion about this assumption. Throughout the paper, we provide numerical
results that substantiate the theoretical results that we derive using this assumption. We show that
Assumption 1 yields an excellent match between theoretical results and numerical experiments.

Leveraging this assumption, Yang and Schoenholz [2017], Hayou et al. [2021a] proved that ResNet
suffers from exploding gradient at initialization. We show in the next proposition that SD helps
mitigate the exploding gradient behaviour at initialization in infinite width ResNets.

3

(a) L̄/L = 0.5, standard ResNet. (b) L̄/L = 0.7, standard ResNet. (c) L̄/L = 0.7, stable ResNet.

Figure 2: Empirical illustration of Proposition 1 ((a) and (b)) and Stable Resnet (c). Comparison of the growth
rate of the gradient magnitude q̃l(x, z) at initialization for Vanilla ResNet50 with width 512. The y-axis of
figures (a) and (b) are in log scale. The y-axis of figure (c) is in linear scale. The expectation is computed using
500 Monte-Carlo (MC) samples.

Proposition 1. Let φ = ReLU and L(x, z) = `(yout(x; δ), z) for (x, z) ∈ Rd × Ro, where `(z, z′)

is some differentiable loss function. Let q̃l(x, z) = EW,δ
‖∇ylL‖

2

‖∇yLL‖2
, where the numerator and denomi-

nator are respectively the norms of the gradients with respect to the inputs of the lth and Lth layers .
Then, in the infinite width limit, under Assumption 1, for all l ∈ [L] and (x, z) ∈ Rd × Ro, we have

• With Stochastic Depth, q̃l(x, z) =
∏L
k=l+1(1 + pk),

• Without Stochastic Depth (i.e. δ = 1), q̃l(x, z) = 2L−l.

Table 1: Gradient magnitude
growth rate with Vanilla Resnet50
with width 512 and training budget
L̄/L = 0.7. Empirical vs. The-
oretical value (between parenthe-
sis) of q̃l(x, z) at initialization, for
standard (no SD), uniform and lin-
ear modes. The expectation is per-
formed using 500 MC samples.

Standard Uniform Linear
`

0 2.001 (2) 1.705 (1.7) 1.694 (1.691)
10 2.001 (2) 1.708 (1.7) 1.633 (1.629)
20 2.001 (2) 1.707 (1.7) 1.569 (1.573)
30 2.001 (2) 1.716 (1.7) 1.555 (1.516)
40 1.999 (2) 1.739 (1.7) 1.530 (1.459)

Proposition 1 indicates that with or without SD, the gradient ex-
plodes exponentially at initialization as it backpropagates through
the network. However, with SD, the exponential growth is charac-
terized by the mode p. Intuitively, if we choose pl � 1 for some
layer l, then the contribution of this layer in the exponential growth
is negligible since 1 + pl ≈ 1. From a practical point of view,
the choice of pl � 1 means that the lth layer is hardly present
in any subnetwork during training, thus making its contribution
to the gradient negligible on average (w.r.t δ). For a ResNet with
L = 50 and uniform mode p = (1/2, . . . , 1/2), SD reduces the
gradient exploding by six orders of magnitude. Fig. 2a and Fig. 2b
illustrates the exponential growth of the gradient for the uniform and linear modes, as compared to
the growth of the gradient without SD. We compare the empirical/theoretical growth rates of the
magnitude of the gradient in Table 1; the results show a good match between our theoretical result
(under Assumption 1) and the empirical ones. Further analysis can be found in Section A4.

Stable ResNet. Hayou et al. [2021a] have shown that introducing the scaling factor 1/
√
L in front

of the residual blocks is sufficient to avoid the exploding gradient at initialization, as illustrated in
Figure 2c. The hidden layers in Stable ResNet (with SD) are given by,

yl(x; δ) = yl−1(x; δ) +
δl√
L

Ψl(yl−1(x; δ),Wl), 1 ≤ l ≤ L. (3)

The intuition behind the choice of the scaling factor 1/
√
L comes for the variance of yl. At initial-

ization, with standard ResNet (Eq. (1)), we have Var[yl] = Var[yl−1] + Θ(1), which implies that
Var[yl] = Θ(l). With Stable ResNet (Eq. (3)), this becomes Var[yl] = Var[yl−1] + Θ(1/L), resulting
in Var[yl] = Θ(1) (See Hayou et al. [2021a] for more details). In the rest of the paper, we restrict our
analysis to Stable ResNet; this will help isolate the regularization effect of SD in the limit of large
depth without any variance/gradient exploding issue.

Nevertheless, the natural connection between SD and Dropout, coupled with the line of work on the
regularization effect induced by the latter [Wager et al., 2013, Mianjy and Arora, 2019, Helmbold
and Long, 2015, Cavazza et al., 2017, Wei et al., 2020], would indicate that the benefits of SD are
not limited to controlling the magnitude of the gradient. Using a second order Taylor expansion,
Wei et al. [2020] have shown that Dropout induces an explicit regularization on the loss function.
Intuitively, one should expect a similar effect with SD. In the next section, we elucidate the explicit
regularization effect of SD on the loss function, and we shed light on another regularization effect of
SD that occurs in the large depth limit.

4

4 Regularization effect of Stochastic Depth

4.1 Explicit regularization on the loss function

Consider a dataset D = X × T consisting of n (input, target) pairs {(xi, ti)}1≤i≤n with (xi, ti) ∈
Rd × Ro. Let ` : Rd × Ro → R be a smooth loss function, e.g. quadratic loss, cross-entropy loss etc.
Define the model loss for a single sample (x, t) ∈ D by

L(W , x; δ) = `(yout(x; δ), t), L(W , x) = Eδ [`(yout(x; δ), t)] ,

whereW = (Wl)0≤l≤L. The empirical loss given by L(W) = 1
n

∑n
i=1 Eδ [`(yout(xi; δ), ti)] .

To isolate the regularization effect of SD on the loss function, we use a second order approximation
of the loss function around δ = 1, this allows us to marginalize out the mask δ. The full derivation
is provided in Appendix A2. Let zl(x; δ) = Ψl(Wl, yl−1(x; δ)) be the activations. For some pair
(x, t) ∈ D, we obtain

L(W , x) ≈ L̄(W , x) +
1

2L

L∑
l=1

pl(1− pl)gl(W , x), (4)

where L̄(W , x) ≈ `(yout(x;p), t) (more precisely, L̄(W , x) is the second order Taylor approxi-
mation of `(yout(x;p), t) around p = 12), and gl(W , x) = zl(x;1)T∇2

yl
[` ◦Gl](yl(x;1))zl(x;1)

with Gl is the function defined by yout(x;1) = Gl(yl−1(x;1) + 1√
L
zl(x;1)).

The first term L̄(W , x) in Eq. (4) is the loss function of the average network (i.e. replacing δ with
its mean p). Thus, Eq. (4) shows that training with SD entails training the average network with an
explicit regularization term that implicitly depends on the weightsW .

SD enforces flatness. The presence of the hessian in the penalization term provides a geometric
interpretation of the regularization induced by SD: it enforces a notion of flatness determined by the
hessian of the loss function with respect to the hidden activations zl. This flatness is naturally inherited
by the weights, thus leading to flatter minima. Recent works by [Keskar et al., 2016, Jastrzebski et al.,
2018, Yao et al., 2018] showed empirically that flat minima yield better generalization compared
to minima with large second derivatives of the loss. Wei et al. [2020] have shown that a similar
behaviour occurs in networks with Dropout.

Let Jl(x) = ∇ylGl(yl(x;1)) be the Jacobian of the output layer with respect to the hidden layer yl
with δ = 1, and H(x) = ∇2

z`(z)|z=yout(x;1) the hessian of the loss function `. The hessian matrix
inside the penalization terms gl(W , x) can be decomposed as in [LeCun et al., 2012, Sagun et al.,
2017]

∇2
yl

[` ◦Gl](yl(x;1)) = Jl(x)TH(x)Jl(x) + Γl(x),

where Γ depends on the hessian of the network output. Γ is generally non-PSD, and therefore
cannot be seen as a regularizer. Moreover, it has been shown empirically that the first term generally
dominates and drives the regularization effect [Sagun et al., 2017, Wei et al., 2020, Camuto et al.,
2020]. Thus, we restrict our analysis to the regularization effect induced by the first term, and we
consider the new version of gl defined by

gl(W , x) = ζl(x,W)T H(x) ζl(x,W) = Tr
(
H(x) ζl(x,W)ζl(x,W)T

)
, (5)

where ζl(x,W) = Jl(x)zl(x;1). The quality of this approximation is discussed in Appendix A4.

Information discrepancy. The vector ζl represents a measure of the information discrepancy
between keeping and removing the lth layer. Indeed, ζl measures the sensitivity of the model output
to the lth layer,

yout(x;1)− yout(x;1l) ≈ ∇δlyout(x; δ)|δ=1 = ζl(x,W),

where 1l is the vector of 1′s everywhere with 0 in the lth coordinate.
With this in mind, the regularization term gl in Eq. (5) is most significant when the information
discrepancy is well-aligned with the hessian of the loss function, i.e. SD penalizes mostly the layers
with information discrepancy that violates the flatness, confirming our intuition above.

2Note that we could obtain Eq. (4) using the Taylor expansion around δ = p. However, in this case, the
Hessian will depend on p, which complicates the analysis of the role of p in the regularization term.

5

Quadratic loss. With the quadratic loss `(z, z′) = ‖z − z′‖22, the hessian H`(x) = 2I is isotropic,
i.e. it does not favorite any direction over the others. Intuitively, we expect the penalization to be
similar for all the layers. In this case, we have gl(W , x) = 2 ‖ζl(x)‖22, and the loss is given by

L(W) ≈ L̄(W) +
1

2L

L∑
l=1

pl(1− pl)gl(W), (6)

where gl(W) = 2
n

∑n
i=1 ‖ζl(xi,W)‖22 is the regularization term marginalized over inputs X .

Eq. (6) shows that the mode p has a direct impact on the regularization term induced by SD. The
latter tends to penalize mostly the layers with survival probability pl close to 50%. The mode
p = (1/2, . . . , 1/2) is therefore a universal maximizer of the regularization term, given fixed
weightsW . However, given a training budget L̄, the mode p that maximizes the regularization term
1

2L

∑L
l=1 pl(1− pl)gl(W) depends on the values of gl(W). We show this in the next lemma.

Lemma 2 (Max regularization). Consider the empirical loss L given by Eq. (6) for some fixed weights
W (e.g. W could be the weights at any training step of SGD). Then, given a training budget L̄, the
regularization is maximal for p∗l = min

(
1,max(0, 1

2 − Cgl(W)−1)
)
, where C is a normalizing

constant, that has the same sign as L− 2L̄. The global maximum is obtained for pl = 1/2.

Figure 3: Distribution of gl(W)
across the layers at initialization for
Vanilla ResNet50 with width 512.

Lemma 2 shows that under fixed budget, the mode p∗ that
maximizes the regularization induced by SD is generally layer-
dependent (6= uniform). However, we show that at initialization,
on average (w.r.tW), p∗ is uniform.
Theorem 1 (p∗ is uniform at initialization). Assume φ = ReLU
andW are initialized withN (0, 2

N). Then, in the infinite width
limit, under Assumption 1, for all l ∈ [1 : L], we have

EW [gl(W)] = EW [g1(W)].

As a result, given a budget L̄, the average regularization term
1

2L

∑L
l=1 pl(1 − pl)EW [gl(W)] is maximal for the uniform

mode p∗ = (L̄/L, . . . , L̄/L).

The proof of Theorem 1 is based on some results from the signal propagation theory in deep neural
network. We provide an overview of this theory in Appendix A0. Theorem 1 shows that, given a
training budget L̄ and a randomly initialized ResNet with N (0, 2/N) and N large, the average (w.r.t
W) maximal regularization at initialization is almost achieved by the uniform mode. This is because
the coefficients EW [gl(W)] are equal under Assumption 1, which we highlight in Fig. 3. As a result,
we would intuitively expect that the uniform mode performs best when the budget L̄ is large, e.g. L is
large and L̄ ≈ L, since in this case, at each iteration, we update the weights of an overparameterized
subnetwork, which would require more regularization compared to the small budget regime. We
formalize this intuition in Section 5.

In the next section, we show that SD is linked to another regularization effect that only occurs in the
large depth limit; in this limit, we show that SD mimics Gaussian Noise Injection methods by adding
Gaussian noise to the pre-activations.

4.2 Stochastic Depth mimics Gaussian noise injection

Recent work by Camuto et al. [2020] studied the regularization effect of Gaussian Noise Injection
(GNI) on the loss function and showed that adding isotropic Gaussian noise to the activations zl
improves generalization by acting as a regularizer on the loss. The authors suggested adding a zero
mean Gaussian noise parameterized by its variance. At training time t, this translates to replacing
ztl by ztl +N (0, σ2

l I), where ztl is the value of the activations in the lth layer at training time t, and
σ2
l is a parameter that controls the noise level. Empirically, adding this noise tends to boost the

performance by making the model robust to over-fitting. Using similar perturbation analysis as in
the previous section, we show that when the depth is large, SD mimics GNI by implicitly adding
a non-isotropic data-adaptive Gaussian noise to the pre-activations yl at each training iteration.
We bring to the reader’s attention that the following analysis holds throughout the training (it is not
limited to the initialization), and does not require the infinite-width regime.

6

Consider an arbitrary neuron yiαL in the (αL)th layer for some fixed α ∈ (0, 1). yiαL(x, δ) can be
approximated using a first order Taylor expansion around δ = 1. We obtain similarly,

yiαL(x, δ) ≈ ȳiαL(x) +
1√
L

αL∑
l=1

ηl 〈zl,∇ylGil(yl(x;1))〉 (7)

where Gil is defined by yiαL(x;1) = Gil(yl(x;1)), ηl = δl − pl, and ȳiαL(x) = yiαL(x,1) +
1√
L

∑αL
l=1(pl − 1) 〈zl,∇ylGil(yl(x;1))〉 ≈ yiαL(x,p).

Let γα,L(x) = 1√
L

∑αL
l=1 ηl 〈zl,∇ylGil(yl(x;1))〉. With SD, yiαL(x; δ) can therefore be seen as a

perturbed version of yiαL(x;p) (the pre-activation of the average network) with noise γα,L(x). The
scaling factor 1/

√
L ensures that γα,L remains bounded (in `2 norm) as L grows. Without this scaling,

the variance of γα,L will generally explode. The term γα,L captures the randomness of the binary
mask δ, which up to a factor α, resembles to the scaled mean in Central Limit Theorem(CLT) and
can be written as γα,L(x) =

√
α × 1√

αL

∑αL
l=2Xl,L(x) where Xl,L(x) = ηl 〈zl,∇ylGil(yl(x;1))〉.

Ideally, we would like to apply CLT to conclude on the Gaussianity of γα,L(x) in the large depth
limit. However, the random variables Xl are generally not i.i.d (they have different variances) and
they also depend on L. Thus, standard CLT argument fails. Fortunately, there is a more general form
of CLT known as Lindeberg’s CLT which we use in the proof of the next theorem.
Theorem 2. Let x ∈ Rd, Xl,L(x) = ηl µl,L(x) where µl,L(x) = 〈zl,∇ylGil(yl(x;1)〉, and
σ2
l,L(x) = Varδ[Xl,L(x)] = pl(1− pl)µl,L(x)2 for l ∈ [L]. Assume that

1. There exists a ∈ (0, 1/2) such that for all L, and l ∈ [L], pl ∈ (a, 1− a).

2. limL→∞
maxk∈[L] µ

2
k,L(x)∑L

l=1 µ
2
l,L(x)

= 0.

3. vα,∞(x) := limL→∞

∑L
l=1 σ

2
l,L(x)

L exists and is finite.

Then, γα,L(x)
D−→

L→∞
N (0, α vα,∞(x)).

Figure 4: (Theorem 2) Assumption 2 as a
function the depth L and epoch.

Fig. 4 provides an empirical verification of the second
condition of Theorem 2 across all training epochs. There
is a clear downtrend as the depth increases; this trend is
consistent throughout training, which supports the validity
of the second condition in Theorem 2 at all training times.
Theorem 2 shows that training a ResNet with SD involves
implicitly adding the noise γα,L(x) to yiαL. This noise becomes asymptotically normally distributed3,
confirming that SD implicitly injects input-dependent Gaussian noise in this limit. Camuto et al.
[2020] studied GNI in the context of input-independent noise and concluded on the benefit of such
methods on the overall performance of the trained network. We empirically confirm the results of
Theorem 2 in Section 6 using different statistical normality tests.

Similarly, we study the implicit regularization effect of SD induced on the gradient in Appendix A3,
and show that under some assumptions, SD acts implicitly on the gradient by adding Gaussian noise
in the large depth limit.

5 The Budget Hypothesis

We have seen in Section 4 that given a budget L̄, the uniform mode is linked to maximal regularization
with SD at initialization (Theorem 1). Intuitively, for fixed weightsW , the magnitude of standard
regularization methods such as ‖.‖1 or ‖.‖2 correlates with the number of parameters; the larger the
model, the bigger the penalization term. Hence, in our case, we would require the regularization term
to correlate (in magnitude) with the number of parameters, or equivalently, the number of trainable
layers. Assuming L� 1, and given a fixed budget L̄, the number of trainable layers at each training

3The limiting variance vα,∞(x) depends on the input x, suggesting that γα,L(.) might converge in distribution
to a Gaussian process in the limit of large depth, under stronger assumptions. We leave this for future work.

7

iteration is close to L̄ (Lemma 1). Hence, the magnitude of the regularization term should depend on
how large/small the budget L̄ is, as compared to L.
Small budget regime (L̄/L � 1). In this regime, the effective depth Lδ of the subnetwork is
small compared to L. As the ratio L̄/L gets smaller, the sampled subnetworks become shallower,
suggesting that the regularization need not be maximal in this case, and therefore p should not be
uniform in accordance with Theorem 1. Another way to look at this is through the bias-variance
trade-off principle. Indeed, as L̄/L→ 0, the variance of the model decreases (and the bias increases),
suggesting less regularization is needed. The increase in bias inevitably causes a deterioration of the
performance; we call this the Budget-performance trade-off. To derive a more sensible choice of p
for small budget regimes, we introduce a new Information Discrepancy based algorithm (Section 4).
We call this algorithm Sensitivity Mode or briefly SenseMode. This algorithm works in two steps:

1. Compute the sensitivity (S) of the loss w.r.t the layer at initialization using the approximation,

Sl = L(W ;1)− L(W ;1l) ≈ ∇δlL(W ; δ)|δ=1.

Sl is a measure of the sensitivity of the loss to keeping/removing the lth layer.
2. Use a mapping ϕ to map S to the mode, p = ϕ(S), where ϕ is a linear mapping from

the range of S to [pmin, 1] and pmin is the minimum survival rate (fixed by the user).
φ is the linear mapping from the range of S to the segment [pmin, 1]. In other words,
pl = pmin + α × Sl, where the constant alpha is chosen in order to satisfy the budget
constraint:

∑
l pl = L̃.

Large budget regime (L̄/L ∼ 1). In this regime, the effective depth Lδ of the subnetworks is
close to L, and thus, we are in the overparameterized regime where maximal regularization could
boost the performance of the model by avoiding over-fitting. Thus, we anticipate the uniform mode to
perform better than other alternatives in this case. We are now ready to formally state our hypothesis,
Budget hypothesis. Assuming L � 1, the uniform mode outperforms SenseMode in the large
budget regime, while SenseMode outperforms the uniform mode in the small budget regime.

We empirically validate the Budget hypothesis and the Budget-performance trade-off in Section 6.

6 Experiments
The objective of this section is two-fold: we empirically verify the theoretical analysis developed in
sections 3 and 4 with a Vanilla ResNet model on a toy regression task; we also empirically validate
the Budget Hypothesis on the benchmark datasets CIFAR-10 and CIFAR-100 [Krizhevsky et al.,
2009]. Notebooks and code to reproduce all experiments, plots and tables presented are available in
the supplementary material. We perform comparisons at constant training budgets.

Implementation details: Vanilla Stable ResNet is composed of identical residual blocks each
formed of a Linear layer followed by ReLU. ResNet110 follows [He et al., 2016, Huang et al.,
2016]; it comprises three groups of residual blocks; each block consists of a sequence Convolution-
BatchNorm-ReLU-Convolution-BatchNorm. We use the adjective "Stable" (Stable Vanilla ResNet,
Stable ResNet110) to indicate that we scale the blocks using a factor 1/

√
L as described in Section 3.

We build on an open-source implementation of standard ResNet4. The toy regression task consists of
estimating the function fβ : x 7→ sin(βTx), where the inputs x and parameter β are in R256, sampled
from a standard Gaussian. CIFAR-10, CIFAR-100 contain 32-by-32 color images, representing
respectively 10 and 100 classes of natural scene objects. We present here our main conclusions.
Further implementation details and other insightful results are in the Appendix A4.

Gaussian Noise Injection: We proceed by empirically verifying the Gaussian behavior of the
neurons as described in Theorem 4. For each input x, we sample 200 masks and the corresponding
y(x; δ). We then compute the p-value pvx of the Shapiro-Wilk test of normality [Shapiro and Wilk,
1965]. In Fig. 5 we represent the distribution of the p-values {pvx | x ∈ X}. We can see that the
Gaussian behavior holds throughout training (left). On the right part of the Figure, we can see that
the Normal behavior becomes accurate after approximately 20 layers. In the Appendix we report
further experiments with different modes, survival rates, and a different test of normality to verify
both Theorem 2 and the critical assumption 2.

4https://github.com/felixgwu/img_classification_pk_pytorch

8

Figure 5: Empirical verification of Theorem 2 on Vanilla ResNet100 with width 128 with average survival
probability L̄/L = 0.7 and uniform mode. Distribution of the p-values for Shapiro’s normality test as a function
of the training epoch (left) and depth of the network (right). The tests are performed for the final output neuron
yL(x) (left) and for an arbitrary neuron per layer (right).

Empirical verification of the Budget Hypothesis: We compare the three modes: Uniform,
Linear, and SenseMode on two benchmark datasets using a grid survival proportions. The val-
ues and standard deviations reported are obtained using four runs. For SenseMode, we use
the simple rule pl ∝ |Sl|, where Sl is the sensitivity (see section 5). We report in Table 2
the results for Stable ResNet110. Results with Stable ResNet56 are reported in Appendix A4.

Table 2: Comparison of the modes of selec-
tion of the survival probabilities with fixed
budget with Stable ResNet110.

L̄/L Uniform SenseMode Linear

0.1 17.2 ± 0.3 15.4 ± 0.4 −
0.2 10.3 ± 0.4 9.3 ± 0.5 −
0.3 7.7 ± 0.2 7.0 ± 0.3 −
0.4 7.4 ± 0.3 7.3 ± 0.4 −
0.5 6.8 ±0.1 7.3 ± 0.2 9.1 ± 0.1
0.6 6.3 ±0.2 6.9 ± 0.1 7.5 ± 0.2
0.7 5.9 ± 0.1 7.3 ± 0.3 6.4 ± 0.2
0.8 5.7 ± 0.1 6.6 ± 0.2 6.1 ± 0.2
0.9 5.7 ± 0.1 6.2 ± 0.2 6.0 ± 0.2

1 6.37± 0.12

(a) CIFAR10

L̄/L Uniform SenseMode Linear

0.1 55.2 ± 0.4 51.3 ± 0.6 −
0.2 38.3 ± 0.3 36.4 ± 0.4 −
0.3 31.4 ± 0.2 30.1 ± 0.5 −
0.4 30.9 ± 0.2 28.5 ± 0.4 −
0.5 28.4 ± 0.3 29.5 ± 0.5 36.5 ± 0.4
0.6 26.5 ± 0.4 29.9 ± 0.6 30.9 ± 0.4
0.7 25.8 ± 0.1 29.5 ± 0.3 27.3 ± 0.3
0.8 25.5 ± 0.1 30.0 ± 0.3 25.7 ± 0.2
0.9 25.5 ± 0.3 28.3 ± 0.2 25.5 ± 0.2

1 26.5 ± 0.2

(b) CIFAR100

The empirical results are coherent with the Budget Hypoth-
esis. When the training budget is large, i.e. L̄/L ≥ 0.5,
the Uniform mode outperforms the others. We note nev-
ertheless that when L̄/L ≥ 0.9, the Linear and Uniform
models have similar performance. This seems reasonable
as the Uniform and Linear probabilities become very close
for such survival proportions. When the budget is low, i.e.
L̄/L < 0.5, the SenseMode outperforms the uniform one
(the linear mode cannot be used with budgets L̄ < L/2
when L� 1, since

∑
pl/L > 1/2−1/(2L) ∼ 1/2), thus

confirming the Budget hypothesis. Table 2 also shows a
clear Budget-performance trade-off.

7 Related work
The regularization effect of Dropout in the context of linear
models has been the topic of a stream of papers [Wager
et al., 2013, Mianjy and Arora, 2019, Helmbold and Long,
2015, Cavazza et al., 2017]. This analysis has been recently
extended to neural networks by Wei et al. [2020] where au-
thors used a similar approach to ours to depict the explicit
and implicit regularization effects of Dropout. To the best
of our knowledge, our paper is the first to provide analyt-
ical results for the regularization effect of SD, and study
the large depth behaviour of SD, showing that the latter
mimics Gaussian Noise Injection [Camuto et al., 2020]. A
further analysis of the implicit regularization effect of SD is provided in Appendix A3.

8 Limitations and extensions
In this work, we provided an analytical study of the regularization effect of SD using a second order
Taylor approximation of the loss function. Although the remaining higher order terms are usually
dominated by the second order approximation (See the quality of the second order approximation
in Appendix A4), they might also be responsible for other regularization effects. This is a common
limitation in the literature on noise-based regularization in deep neural networks [Camuto et al., 2020,
Wei et al., 2020]. Further research is needed to isolate the effect of higher order terms.
We also believe that SenseMode opens an exciting research direction knowing that the low budget
regime has not been much explored yet in the literature. We believe that one can probably get
even better results with more elaborate maps ϕ such that p = ϕ(S). Another interesting extension
of an algorithmic nature is the dynamic use of SenseMode throughout training. We are currently
investigating this topic which we leave for future work.

9

References
Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with

stochastic depth. In European conference on computer vision, pages 646–661. Springer, 2016.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural
networks using dropconnect. In International conference on machine learning, pages 1058–1066,
2013.

A.R. Webb. Functional approximation by feed-forward networks: a least-squares approach to
generalization. IEEE Transactions on Neural Networks, 5(3):363–371, 1994.

Chris M. Bishop. Training with noise is equivalent to tikhonov regularization. Neural Computation,
7(1):108–116, 1995.

A. Camuto, M. Willetts, U. Simsekli, S. J. Roberts, and C. C. Holmes. Explicit regularisation in
gaussian noise injections. In Advances in Neural Information Processing Systems, volume 33,
pages 16603–16614, 2020.

Stefan Wager, Sida Wang, and Percy S Liang. Dropout training as adaptive regularization. In
Advances in neural information processing systems, pages 351–359, 2013.

Poorya Mianjy and Raman Arora. On dropout and nuclear norm regularization. arXiv preprint
arXiv:1905.11887, 2019.

David P Helmbold and Philip M Long. On the inductive bias of dropout. The Journal of Machine
Learning Research, 16(1):3403–3454, 2015.

Jacopo Cavazza, Pietro Morerio, Benjamin Haeffele, Connor Lane, Vittorio Murino, and René Vidal.
Dropout as a low-rank regularizer for matrix factorization. arXiv preprint arXiv:1710.05092, 2017.

C. Wei, S. Kakade, and T. Ma. The implicit and explicit regularization effects of dropout. In
Proceedings of the 37th International Conference on Machine Learning, Proceedings of Machine
Learning Research, pages 10181–10192. PMLR, 2020.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In ICCV, 2015.

R.M. Neal. Bayesian Learning for Neural Networks, volume 118. Springer Science & Business
Media, 1995.

B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli. Exponential expressivity in deep
neural networks through transient chaos. In Advances in Neural Information Processing Systems,
2016.

S.S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein. Deep information propagation. In
International Conference on Learning Representations, 2017.

G. Yang. Tensor programs iii: Neural matrix laws. arXiv preprint arXiv:2009.10685, 2020.

L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. S. Schoenholz, and P. Pennington. Dynamical isometry and a
mean field theory of cnns: How to train 10,000-layer vanilla convolutional neural networks. ICML
2018, 2018.

S. Hayou, A. Doucet, and J. Rousseau. On the impact of the activation function on deep neural
networks training. In International Conference on Machine Learning, 2019.

10

S. Hayou, A. Doucet, and J. Rousseau. Mean-field behaviour of neural tangent kernel for deep neural
networks. arXiv preprint arXiv:1905.13654, 2020.

S. Hayou, E. Clerico, B. He, G. Deligiannidis, A. Doucet, and J. Rousseau. Stable resnet. In
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, pages
1324–1332, 2021a.

G. Yang and S. Schoenholz. Mean field residual networks: On the edge of chaos. In Advances in
Neural Information Processing Systems, pages 7103–7114, 2017.

S. Hayou, J.F. Ton, A. Doucet, and Y.W. Teh. Robust pruning at initialization. In International
Conference on Learning Representations, 2021b.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural
networks. In Advances in Neural Information Processing Systems, 2018.

S. Arora, S.S. Du, W. Hu, Z. Li, R. Salakhutdinov, and R. Wang. On exact computation with an
infinitely wide neural net. In Advances in Neural Information Processing Systems, 2019.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Stanislaw Jastrzebski, Zachary Kenton, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and Amos
Storkey. On the relation between the sharpest directions of dnn loss and the sgd step length. arXiv
preprint arXiv:1807.05031, 2018.

Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-based analysis
of large batch training and robustness to adversaries. In Advances in Neural Information Processing
Systems, pages 4949–4959, 2018.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of the
hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for normality (complete
samples). Biometrika, 52(3/4):591–611, 1965.

J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pennington. Wide neural
networks of any depth evolve as linear models under gradient descent. In Advances in Neural
Information Processing Systems. 2019.

A.G. Matthews, J. Hron, M. Rowland, R.E. Turner, and Z. Ghahramani. Gaussian process behaviour
in wide deep neural networks. In International Conference on Learning Representations, 2018.

T. Lillicrap, D. Cownden, D. Tweed, and C. Akerman. Random synaptic feedback weights support
error backpropagation for deep learning. Nature Communications, 7(13276), 2016.

A. Neelakantan, L. Vilnis, Quoc V. Le, I. Sutskever, L. Kaiser, K. Kurach, and J. Martens. Adding
gradient noise improves learning for very deep networks. arXiv prePrint 1511.06807, 2015.

RALPH B. D’Agostino. Transformation to normality of the null distribution of g1. Biometrika, 57(3):
679–681, 12 1970. ISSN 0006-3444. doi: 10.1093/biomet/57.3.679. URL https://doi.org/
10.1093/biomet/57.3.679.

11

https://doi.org/10.1093/biomet/57.3.679
https://doi.org/10.1093/biomet/57.3.679

	Introduction
	Stochastic Depth Neural Networks
	Effect of Stochastic Depth at initialization
	Regularization effect of Stochastic Depth
	Explicit regularization on the loss function
	Stochastic Depth mimics Gaussian noise injection

	The Budget Hypothesis
	Experiments
	Related work

	Limitations and extensions
	Proofs
	Full derivation of explicit regularization with SD
	Implicit regularization and gradient noise
	Further experimental results

