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Abstract

As AI systems play a progressively larger role in human affairs, it becomes more important that these systems

are built with insights from human behavior. In particular, models that are developed on the principle of

human plausibility will more likely yield results that are more accountable and more interpretable, in a way

that greater ensures an alignment between the behavior of the system and what its stakeholders want from

it. In this dissertation, I will present three projects that build on the principle of human plausibility for

three distinct applications:

(i) Plausible representations: I present the Priority-Adjusted Reply for Successor Representations (PARSR)

algorithm, a single-agent reinforcement learning algorithm that brings together the ideas of prioritisation-

based replay and successor representation learning. Both of these ideas lead to a more biologically plausible

algorithm that captures human-like capabilities of transferring and generalizing knowledge from previous

tasks to novel, unseen ones.

(ii) Plausible inference: I present a pragmatic account of the weak evidence effect, a counterintuitive phe-

nomenon of social cognition that occurs when humans must account for persuasive goals when incorporating

evidence from other speakers. This leads to a recursive, Bayesian model that encapsulates how AI systems

and their human stakeholders communicate with and understand one another in a way that accounts for the

vested interests that each will have.

(iii) Plausible evaluation: I introduce a tractable and generalizable measure for cooperative behavior

in multi-agent systems that is counterfactually contrastive, contextual, and customizable with respect to

different environmental parameters. This measure can be of practical use in disambiguating between cases

in which collective welfare is achieved through genuine cooperation, or by each agent acting solely in its own

self-interest, both of which result in the same outcome.
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Chapter 1

Introduction

AI and machine learning models are an increasingly prevalent mediator in our lives, with applications ranging

from autonomous vehicles, chatbots, and recommendation systems shaping much of what we choose to

consume online. Whether the integration of AI remains tacit or explicitly advertised, there is a tendency

for users of AI-based tools to anthropomorphize their outputs [129]. Users’ interactions with these tools are

shaped by the expectation that these tools act and reason in a human-like manner and with a certain base

level of competency, which can lead to adverse consequences if not managed responsibly [165]. It is always

incumbent on those who promote such tools to be open about their design and subsequent limitations in

order to mitigate any negative consequences. However, to the extent possible, these tools should also be

designed according to principles that can best close the gap between user expectations and reality.

This dissertation proposes human plausibility as one such design principle. In this Introduction we define

this principle and justify its use. We then give the necessary technical background, focusing on concepts

and algorithms in (tabular) single- and multi-agent reinforcement learning. Finally, we outline the research

contributions of this dissertation, as they lie within three areas of the human-plausible design framework.

1.1 Human plausibility in machine learning

1.1.1 What is human plausibility?

In this dissertation, we define a human-plausible system as one whose design has been informed by our models

of human behavior, neuroscience, reasoning, and concepts. Human-plausible design may therefore draw from
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many disciplines, including neuroscience, cognitive science, philosophy, economics, and evolutionary biology.

Moreover, it can be taken into consideration at all three of Marr’s levels for analyzing information-processing

systems [95]:

• At the level of computation or function, it can make reference to the goals that humans have and the

concepts humans have developed to understand these goals, as well as the environments that have

shaped these goals in the first place. For example, in human-AI interaction, the behavior of an AI can

be specified according to a reward that requires knowledge of the human’s own goals [10].

• At the level of representations and algorithms, it can make reference to the strategies humans use to

solve their problems and how the choice of representation of inputs, outputs, and the objects to be

learned can aid those strategies. For example, different learned representations for decision-making

tasks can lead to different degrees of transfer between tasks that can match human-like behavior [108].

• At the level of implementation, it can make reference to the physical substrates of the computations

that humans make. For example, neurally plausible AI seeks to develop systems whose computations

mimic those of different parts of the brain at the cellular or functional levels [105].

Not all AI systems are or ought to be designed according to human-plausibility. This is true even for

those systems relating to human action or designed to potentially supersede a human-performed task. For

example, an agent that is trained to run a power network must be robust to many kinds of change in the

environment [94, 93, 92]. Many of the sources of this change, such as damage from weather events like

storms, or the variability of renewable energy sources like wind, do not have an immediate human origin.

Even in the case of human-caused changes like cyberattacks, we might prefer to ensure safety and stability

through a strategy that can provide robust guarantees against a broad range of attacks whose form may be

unpredictable, rather than one that is a tailored best-response to a distribution of attacks that have been

seen in the past.

1.1.2 Why design things according to human plausibility?

Though it is not always appropriate, there are nevertheless many use-cases in which we would want to turn

towards human-plausible design. Next, we give three reasons why we would want to design our AI systems

according to this principle.
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Inductive biases Humans are capable of solving a diverse array of tasks with limited computational

resources, including tasks that have not previously been encountered [82]. This suggests that the paradigm

of human reasoning extends beyond purely making statistical inferences from past experience alone, and

that in fact humans have (inductive) biases shaped by all three levels of analysis that endow them with the

ability to quickly solve these tasks.

While much energy (literal and figurative) is currently being expended to increase the capabilities of

AI systems through the use of greater compute and the collection of more data [144], we might still worry

about the potential limitations of an approach that relies solely on statistical relationships between past data

[117]. If we wish to move beyond these limitations, we should instead focus on developing our understanding

on what it is that enables humans to successfully perform generalization across tasks, as well as engage in

abductive reasoning wherein we generate useful new hypotheses to understand the world around us [90].

Interpretability Beyond increasing the capabilities of our AI systems, human-plausible design also allows

us to develop these systems along a path in which each design step is more likely understandable and

interpretable by an end-user of the system. In particular, human-plausble design works with our innate

tendency to anthropomorphize our systems by designing them in a fashion that actively seeks to mimic

our own behavior and modes of reasoning. Unlike approaches which seek to use the tools of computational

cognitive science in order to understand complex systems not designed to be human-plausible [30], human-

plausible design is more likely to be successful by making our design choices explicit in the first place, thus

further closing the gap between true human behavior and human-like behavior.

Compatibility In order for AI systems to work well, they must also do so with humans. In the context

of applications such as self-driving cars, the nuances of human behavior often function as the difficult edge

case hindering the ultimate success of the research program [73]. In many other contexts, we would like

an AI system to act towards a goal in accordance with certain values that are hard to specify even in

natural language, let alone computationally [4]. Building systems that are human-compatible [128] therefore

demands a greater understanding of human behavior and values, and is therefore best achieved through

human-plausible design.
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1.2 Background

Both Chapters 2 and 4 involve models of sequential decision-making under uncertainty. The paradigmatic

approach to formalizing such models and investigating them is reinforcement learning, which we review in this

section. We first look at decision-making in the single-agent setting before moving to multi-agent systems.

In both settings, we assume a tabular model in which we observe and can represent the environmental state

exactly, rather than having partial observability. For the latter case, in which feature approximation becomes

more pertinent, refer to [146] for the single-agent setting and [42] for a treatment of the multi-agent setting.

Section 1.2.1 largely follows the material in [104, Ch. 14] and [146], with Section 1.2.2 drawing from [138].

1.2.1 Single-agent Reinforcement Learning

The environment in which an agent is situated, including its interactions and rewards, is modeled as a

Markov decision process (MDP), a tuple (S,A, P,R, γ, ρ) consisting of:

• a set of states S;

• a set of possible actions A;

• a transition function P : S ×A → ∆S mapping state-action pairs (s, a) to a distribution1 over states s′

(where we also write P (s, a, s′) ∈ [0, 1] to refer to an individual probability);

• a reward function R : S ×A → R mapping state-action pairs (s, a) to an expected, scalar reward;

• a discount rate γ ∈ [0, 1]; and

• a distribution over initial states ρ ∈ ∆S.

The Markov in MDP refers to the fact that the states are Markovian, in that the probability of transi-

tioning to state s′ is fully determined by the state s and action a.

Agents act in the environment according to a policy π : S → ∆A mapping states s to a distribution over

actions a. A policy is deterministic if for all states s ∈ S there exists an action a ∈ A such that π(s) = δa,

where δ is the Dirac delta function representing a point probability mass on action a. By abuse of notation,

we can also write this as π(s, a) = 1 or π(s) = a.

1For a set X , we use the notation ∆X to refer to the set of probability distributions over X .
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By combining policies and transition functions, we also derive an expected transition function

Tπ(s, s
′) =

∑
a

P (s, a, s′)π(s, a). (1.1)

As agents interact with the environment according to some policy π, they accumulate reward. The key

term for evaluating a policy is the value function Vπ : S → R, defined as the expected discounted sum of

rewards by an agent starting in state s and acting according to a policy π:

Vπ(s) = Eat∼π(st),st+1∼P (st,at)

[ ∞∑
t=0

γtR(st, at) | s0 = s

]
. (1.2)

These values obey a system of linear equations known as the Bellman equations:

∀s ∈ S, Vπ(s) = Eπ [R(s, π(s)] + γ
∑
s′

T (s, s′)Vπ(s
′). (1.3)

We also express these equations in matrix form as

Vπ = Rπ + γTπVπ, (1.4)

where Vπ ∈ R|S| is the vector of value functions, Rπ ∈ R|S| is the vector of expected rewards such that

Rπ[s] =
∑

a R(s, a)π(s, a), and Tπ ∈ R|S|×|S| is the expected transition function T expressed in matrix form.

For an MDP with finitely many states, Bellman’s equation admits a unique solution given by

Vπ = (I − γTπ)
−1Rπ, (1.5)

where I ∈ R|S|×|S| is the identity matrix. For a fully known MDP and a sufficiently small number of states,

it is computationally feasible to use Eq. 1.5 to find the value of any policy π.

The objective of the agent is to find an policy π∗ that is optimal in the sense that it maximizes value for

all states, that is, Vπ∗(s) = maxπ Vπ(s) for all s ∈ S. For ease of notation, we write V ∗ instead of Vπ∗ .

This gives rise to the optimal state-action value function Q∗ : S ×A → R, defined to be the expected

return for taking action a ∈ A at state s ∈ S and then following the optimal policy:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P (s, a, s′)V ∗(s′). (1.6)
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Algorithm 1 Value Iteration

1: Input: Arbitrary initial value function V ∈ R|S|, tolerance ε > 0.
2: while True do
3: ∀s ∈ S, V ′[s]← maxa∈A

{
R(s, a) + γ

∑
s′∈S P (s, a, s′)V (s′)

}
.

4: if ∥V − V ′∥ < (1−γ)ε
γ then

5: break
6: return V ′

From this definition, we can see that

∀s ∈ S, V ∗(s) = max
a∈A

Q∗(s, a). (1.7)

Moreover, we have that

∀s ∈ S, π∗(s) = argmax
a∈A

Q∗(s, a). (1.8)

Eq. 1.8 has two implications. Firstly, for all MDPs there exists an optimal policy that is deterministic.

Secondly, that knowledge of the optimal state-action value function Q∗ is sufficient for the agent to determine

the optimal policy, without any direct knowledge of the reward or transition function.

If we substitute in Q∗ in Eq.1.7 for its definition in Eq. 1.6, we get the Bellman optimality equation

V ∗(s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

P (s, a, s′)V ∗(s′)

}
. (1.9)

Unlike Eq. 1.3, this set of equations is no longer linear due to the max operator. However, we can still

find a solution iteratively using the value iteration algorithm (Alg. 1). For any initial value function V , this

algorithm is guaranteed to converge to V ∗ to within ε accuracy in O
(
log 1

ε

)
iterations [104, Thm. 14.2],

with each iteration requiring O
(
|S|2|A|

)
operations. Observe that we can also derive Q∗ and π∗ from this

algorithm, by considering the term inside of the max operator in line 3.

Value iteration is an example of a planning algorithm: the MDP is fully known and represented in

advance. However, this is often an unrealistic assumption when modeling actual behavior. In particular,

we are also interested in considering cases in which the MDP is not known in advance, and an agent learns

about the reward and transition structure through interacting with the environment, while possibly also

simultaneously learning a corresponding policy that asymptotically converges to an optimal one.

Consider first the case of stochastically learning Vπ for a fixed π interacting with the environment. At a

state s, the policy takes an action a, yielding a reward r and leading to a subsequent state s′. Combining
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Eqs. 1.2 and 1.3, we see that r + γVπ(s
′) is an unbiased estimator of Vπ(s).

Of course, we do not know Vπ. However, assuming we have a current estimate V , we can update this

estimate via

V (s)← (1− α)V (s) + α[r + γV (s′)] (1.10)

= V (s) + α[r + γV (s′)− V (s)], (1.11)

where α > 0 is a learning rate and the term inside the square brackets in Eq. 1.11 gives the temporal

difference (TD) error between the current and subsequent estimates of V (s). This update forms the basis

of the TD-learning algorithm for learning Vπ (Alg.2).

Algorithm 2 Temporal Difference (TD) Learning

1: Hyperparameters: Learning rate α > 0, arbitrary initial value function V .
2: Draw initial state s ∼ ρ.
3: while True do
4: Draw a ∼ π(s).
5: Take action a; observe reward, r, and state, s′.
6: V (s)← V (s) + α[r + γV (s′)− V (s)].
7: s← s′.

By adapting the TD update slightly to reflect the Bellman optimality equation (Eq. 1.9) rather than

the Bellman equation (Eq. 1.3) we arrive at the Q-learning algorithm (Alg 3), which can be used to learn

the optimal state-action value function Q∗ [164]. Rather than acting according to a fixed policy π, we now

derive our actions from our current state-action value function Q, while also exploring other actions. A

common way to do this is via an ε-greedy policy, which chooses the best action a∗ = argmaxa Q(s, a) with

probability (1 − ε), and otherwise chooses an action a at random. This approach guarantees that the full

space will be explored.

Algorithm 3 Q-Learning

1: Hyperparameters: Learning rate α > 0, exploration parameter ε > 0, arbitrary initial state-action
value function Q.

2: Draw initial state s ∼ ρ.
3: while True do
4: a← ε-greedy(s,Q).
5: Take action a; observe reward, r, and state, s′.
6: δQ ← r + γmaxa′ Q(s′, a′)−Q(s, a).
7: Q(s, a)← Q(s, a) + αδQ.
8: s← s′.
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Given a finite-state MDP and a specific learning rate schedule, the Q-learning algorithm converges almost

surely to Q∗ [104, Thm. 14.9]. A similar result guarantees the convergence for TD learning. However, this

convergence may still be slow, due either to the costliness of interacting with the environment, or the general

sparsity of reward signals in the environment. To speed this up, the Dyna algorithm (Alg. 4) interleaves

updates to Q from direct environmental interactions with updates from replay via a progressively learned

model of the environment [145, 146].2 This model, written Model(s, a), can record an individual next state

s′ or a learned distribution over such states, along with the reward r.

Algorithm 4 Dyna

1: Hyperparameters: Learning rate α > 0, exploration parameter ε > 0, arbitrary initial state-action
value function Q, number of replay cycles n.

2: Draw initial state s ∼ ρ.
3: while True do
4: a← ε-greedy(s,Q).
5: Take action a; observe reward, r, and state, s′.
6: Model(s, a)← r, s′

7: δQ ← r + γmaxa′ Q(s′, a′)−Q(s, a).
8: Q(s, a)← Q(s, a) + αδQ.
9: s← s′.

10: loop n times
11: s← random previously observed state.
12: a← random action previously taken in s.
13: r, s′ ← Model(s, a).
14: Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)].

1.2.2 Multi-agent Reinforcement Learning

We can represent multi-agent systems as a stochastic game [137, 138], a tuple

(
S, N,

N∏
i=1

Ai, P,

N∏
i=1

Ri, γ, ρ

)

consisting of:

• a set S of states;

• N agents, indexed by i = 1, ..., N ;

• a set of available actions Ai for each agent i;

• a transition function P : S ×
∏N

i=1Ai → ∆S;
2We alternatively refer to this algorithm as the Dyna-Q algorithm in Chapter 2 to emphasize the function being learned.
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• a reward function Ri : S ×
∏N

i=1Ai → R for each agent i;

• a discount rate γ; and

• a distribution over initial states ρ ∈ ∆S as before.

Stochastic games are a useful broad formalism encompassing many other modelling scenarios as special

cases:

• An MDP is a stochastic game where N = 1.

• A normal form matrix game, the simplest form of a game studied in game theory, can be viewed as a

stochastic game with a single state that is played for one time step.3

• An iterated game, in which a normal form matrix game is played ad infinitum, is a stochastic game

with with a single state s. We can incorporate memory into the iterated game by having states which

consist of possible actions taken at previous time steps. However, for a memory of size m, this requires

an exponentially scaling state space of size |S| = O
(
|A|mN

)
.

Since there are multiple reward functions, there is no single generalization of the notion of optimality to

the multi-agent setting. However, by deriving MDPs from a stochastic game, we can in turn derive solution

concepts which are useful in different contexts.

Firstly, imagine that all agents are controlled by a single controller who chooses the actions a for all agents.

If all reward functions are equal, so that Ri = R for all i = 1, ..., N , we get the cooperative setting for multi-

agent systems. Otherwise, we can still derive a single reward function via the sum of all rewards R =
∑

i Ri,

which we refer to as the prosocial setting. The prosocial optimum is the optimal policy of the MDP consisting

of this reward function and an action space where each action is a tuple of all individual agents’ actions.

Not all stochastic games involve agents with aligned or altruistic motives, or that are capable of coor-

dinating with one another. Let π−i be the policies of all agents except for agent i. Holding this fixed, we

derive an MDP for agent i with a reward given by Ri. Let BRi(π−i) be the set of optimal policies to this

MDP, also referred to as the best responses to π−i. A set of policies π1, ..., πN are a Nash equilibrium for a

stochastic game if for all i = 1, ..., N ,

πi ∈ BRi(π−i). (1.12)

3We can fit this more formally in to the stochastic game framework via a game with an initial dummy state s0 and a
terminal state sT , such that for s ∈ {s0, sT }, for all action combinations a ∈

∏
i Ai, and for i = 1, ..., N , we have P (s,a, sT ) = 1

and Ri(sT ,a) = 0.
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That is, in a Nash equilibrium, no agent has an incentive to defer from their current policy as it is the optimal

response to all of the other policies. In a stochastic game, at least one Nash equilibrium is guaranteed to

exist [138, Thm. 6.2.6].

1.3 Research contributions in this dissertation

The remainder of this dissertation (prior to the Conclusion in Chapter 5) is organized according to three

application domains for the principle of human plausibility, tracking three projects that were completed in

those domains.

Plausible representations As a core component of Marr’s second level of analysis, representations are

an important part of understanding human behavior, including how humans learn and how they adapt to

unseen changes in their environment. Developing representations that balance compactness with flexibility

is a challenge in both the space of evolutionary design and engineering design, and within the field of single-

agent reinforcement learning there has been much study in finding representations that are human-plausible,

both to bootstrap more competent behavior as well as to understand better that of humans [106].

InChapter 2 we present priority-adjusted replay for successor representations [13, 11], an algorithm com-

bining prioritized replay with the successor representations, a form of representing the long-term transition

structure of an environment in a way that more easily permits transfer between tasks in a human-plausible

fashion. This work was presented at RLDM 2022 and CogSci 2022 and was carried out in collaboration with

Ida Momennejad as part of an internship at Microsoft Research.

Plausible inference Humans learn about their environment from a diversity of sources: as passive ob-

servers, through active interaction with the world, or socially through interactions with other humans.

Knowing that the information can come from different sources, we can account for it in different ways, lead-

ing to different inferences that are derived from the same information [65, 151, 150, 136, 63, 112]. If we wish

to design AI systems that can usefully inform us and help us to achieve our goals, we need those systems to

have an accurate model of how its outputs will be processed by us—in other words, we need to accurately

model our data-generating assumptions and our subsequent inference procedures.

In Chapter 3 we present a pragmatic account of the weak evidence effect [12]. This chapter develops

a model of listener and speaker behavior where speakers are active agents, presenting evidence according

to their own persuasive goals rather than at random. This generalizes the Rational Speech Acts (RSA)

10



framework [49], which provides a recursive Bayesian model for pragmatic inference. This work was published

in Open Mind and was carried out in collaboration with Tom Griffiths and Robert Hawkins.

Plausible evaluation In a scenario in which humans with mixed motives deputize AI agents to act in a

shared environment, these agents will have to coordinate and cooperate with one another in order to achieve

their goals to the extent possible. Cooperative AI is an emerging discipline that develops algorithms and

test frameworks for designing systems that can learn to cooperate in complex environments [32, 31]. Yet, in

its reliance on evaluation metrics for cooperation that are arbitrary, acontextual, or fail to consider relevant

counterfactuals regarding the environment’s external reward structure, these recent efforts have failed to

factor in insights about what constitutes cooperative behavior from cognitive science and evolutionary biology

[154, 166].

In Chapter 4 we present a counterfactual measure of cooperative behavior. This is a tractable and

generalizable measure within the stochastic game framework that better accords with a human-plausible

account of what constitutes cooperative (as well as anti-cooperative) behavior. After proposing the measure,

we evaluate it on a number of games of increasing complexity that have been studied in the multi-disciplinary

cooperation literature. This work is in preparation for publication, and has been carried out in collaboration

with Ryan P. Adams. A poster based on this work was presented at the Cooperative AI Summer School in

2023.

1.3.1 Research contributions not included in this dissertation

In addition to the work covered in this dissertation, two other projects were completed during the course of

the PhD:

• Neuro-Nav: A Library for Neurally-Plausible Reinforcement Learning [71]: in this work, completed

concurrently with Barnett and Momennejad [13], we propose Neuro-Nav, an open-source library for

neurally plausible reinforcement learning, available at https://github.com/awjuliani/neuro-nav.

This work was presented at RLDM 2022 and was carried out in collaboration with Arthur Juliani (the

primary author), Brandon Davis, Margaret Sereno, and Ida Momennejad.

• Toeplitz posterior approximation for multivariate time series modeling with Gaussian processes: in

this work, we propose the Independent Toeplitz Variational Strategy (ITVS) for scalable multi-output

Gaussian process regression on multivariate time series with latent correlation structure. In addition
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to proposing the strategy, we also develop the Carathéodory parametrization for initialization and

optimization on the space of real, symmetric Toeplitz positive definite matrices. This work is in

preparation for publication, and has been carried out in collaboration with Joshua Aduol, Alex Guerra,

Suat Gumussoy, and Ryan P. Adams.
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Chapter 2

PARSR: Priority-Adjusted Replay for

Successor Representations

Those who cannot remember the past are

condemned to repeat it.

George Santayana

2.1 Introduction

Intelligent agents are capable of transfer and generalization. Imagine driving to a coffee shop to meet a

friend. If we encounter a blocked road, we are able to quickly adapt in choosing a new route that will get us

there. Or if we decide that a different coffee shop might be preferable, we can just as easily change course.

To accommodate this flexibility to changes in the environment, contemporary reinforcement learning

algorithms often rely on representation learning and replay as human-plausible solutions [108, 106, 169, 14].

Learning flexible yet compact representations of the environment allows us to adapt to changes in its rewards,

and replay enables us to adapt to changes in transition structures without the need for significant amounts

of further real experience.

One such algorithm combines the successor representation (SR) [36, 143], in which states are represented

in terms of long-run, time-discounted visitation frequencies according to a given policy, and memory replay

(inspired by Dyna [145, Alg. 4]). This algorithm, Dyna-SR for short, captures human-like task transfer
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behavior across a number of tabular tasks [127, Algorithm 3]. A key advantage of the Dyna-SR algorithm is

that it is almost as flexible as a model-based RL algorithm (in which the full transition structure is learned

and then used for planning), while at decision time it is almost as inexpensive as model-free RL (in which

a policy is found solely by learning the long-term reward structure). By caching multi-step trajectories of

states offline, Dyna-SR remains more flexible than model-free RL and SR alone, while avoiding model-based

RL’s high cost of rolling out entire state-action-state-reward trajectories at decision time.

As a caveat, the replay prioritization in current implementations of Dyna-SR focus on more recent

memories for efficiency. While this heuristic may capture certain aspects of human memory recall [72],

previous work in cognitive neuroscience suggest human-like replay may be better modelled by an error-based

replay prioritization [107]. Thus, here we extend the scope of algorithms combining representation and replay,

using both reward-based and representation-based errors for replay prioritization. While current approaches

remain largely limited to tagging memories with reward prediction errors (PE) for priority [109, 119, 132,

60, 70], our proposed algorithm is inspired by Dyna-SR but can prioritize replay using either reward PE and

successor PE.

We propose PARSR (pronounced PARS -er), Priority-Adjusted Replay for Successor Representations,

which improves on Dyna-SR offering more human-plausible replay prioritization with no effective increase

in hyperparameters. As an SR-based algorithm, PARSR learns a representation of the transition structure

(i.e., the environment dynamics) and the reward structure separately, allowing either to be quickly relearned

for greater generalization. Critically, by decoupling reward and transition representations, PARSR can use

the prediction errors from either to prioritize memory replay.

We propose two variants of PARSR based on the choice of prediction error: M-PARSR (prioritizes

memories using successor PE) and Q-PARSR (prioritizes memories using value PE). This prioritization for

memory selection distinguishes PARSR from Dyna-SR [127], which performs replay-enhanced SR learning

with random memory selection with a recency bias.

We test how well PARSR captures human behavior in small tabular experiments (with 6 states) [108]

as well as a scaled version of the experiments (with 121 states). We compare PARSR to a number of

state of the art algorithms using replay on simple benchmark transfer learning (or revaluation) tasks in

cognitive neuroscience (Figs. 2.2a, 2.2b, 2.2c) and a scaled up version of these tasks (Figs.2.3a, 2.3b, 2.3c).

We find that PARSR matches human-like behavior as well as other algorithms’ efficiency in learning speed

of the prioritization-based algorithms. To clarify differences among the solutions different replay heuristics

provide, we visualize which experiences are prioritized as more important to recall by different prioritization
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algorithms (Fig. 2.3b). The code for implementing the algorithm and benchmark experiments is available at

https://github.com/s-a-barnett/PrioritizedSR.

2.2 Background

In this section, we build on the single-agent reinforcement learning paradigm outlined in Sec. 1.2.1.

2.2.1 The Successor Representation

The successor representation (SR) [36] is defined as the discounted sum over expected future state visitations:

Mπ(a, s, s
′) = Eπ

[ ∞∑
t=T

γt−T1(st = s′) | sT = s, aT = a

]
. (2.1)

Observe that in addition to the stochasticity inherent to the environment, this expectation is also taken

with respect to a specific policy π, since the actions the agent takes also impact the states that are visited

in the future. The SR is therefore policy-dependent : however, we often drop the π subscript if it is clear

from the context, or when the SR is being learned on-policy, i.e., with respect to the actions taken by an

SR-learning algorithm that do not correspond to a fixed policy.

Assuming that we take our initial action in expectation according to π, the SR is strongly connected to

the one-step transition structure of the environment, Tπ—it is in fact the Neumann series for this structure

multiplied by the discount factor γ [127]:

Mπ :=
∑
a∈A

(
Mπ(a, :, :)

⊤π(a, :)
)
=

∞∑
t=0

γtT t
π = (I − γTπ)

−1. (2.2)

Combining Eq. 2.2 with Eq. 1.5, we are able to decompose the value function as

Vπ = MπRπ, (2.3)

where Rπ ∈ R|S| gives the expected one-step reward according to policy π. Similarly, after writing Rπ as a

vector of weights w(s′), we can also express the state-action value function as a linear combination:1

Qπ(s, a) =
∑
s′

Mπ(a, s, s
′)w(s′). (2.4)

1We can extend this analysis to rewards defined on state-action pairs, w(s′, a′), and define our SR on 4-tuples asM(a, s, a′, s′).
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We can therefore split the task of learning Qπ for a given policy π into learning Mπ and w. If an agent

has acted in state s according to π and received reward r, we can update the estimate of w(s) according to

the delta rule

w(s)← w(s) + αw

[
r −w(s)

]
, (2.5)

where αw is the learning rate for the reward weights.

One approach to learning Mπ is to initially learn Tπ (which can easily be achieved by keeping track

of frequencies of state-to-state pair transitions), and then computing the inversion on the right-hand side

of Eq. 2.2. Combining this with Eq. 2.5 yields the Model-Based SR (SR-MB) algorithm [127, Algorithm

2]. However, inverting Tπ requires O
(
|S|3

)
operations, which can be costly if there are too many states

and is therefore likely to be infeasible as a mechanistic account of how humans would compute a successor

representation.

Alternatively, we can exploit the fact that the SR obeys a Bellman-like equation

M(a, s, :) = 1s + γ
∑
s′∈S

∑
a′∈A

Tπ(s, s
′)π(s′, a′)M(a′, s′, :), (2.6)

where 1s ∈ R|S| is a one-hot vector with a 1 on the index representing state s. Analogously to our combination

of Eqs. 1.2 and 1.3, this leads to a temporal difference update similar to to the one for the value function

(see Eq. 1.11):

M(a, s, :)←M(a, s, :) + αM

[
1s + γM(a′, s′, :)−M(a, s, :)

]︸ ︷︷ ︸
δM

, (2.7)

where αM > 0 is the SR learning rate. Combining Eq. 2.7 with Eq. 2.7 yields the Temporal Difference SR

(SR-TD) algorithm [127, Algorithm 1].

2.2.2 Prioritized Replay

In addition to learning appropriate representations, we can also integrate the advantages of both model-based

planning (flexibility) and model-free learning methods (speed and memory efficiency) by interleaving learning

from real experience with learning from simulated experience, or replay, sampled from a model learned from

previous interactions with the environment. In the deterministic setting considered in this paper, this model

is a dictionary whose entries are state-action pairs, and whose values are the next state and received reward,

Model(s, a) = (r, s′). (2.8)
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Within the space of replay algorithms, there are a number of choices of which previous experience is

chosen at each time step (for a broad treatment, refer to Sutton and Barto [146, Chapter 8]). The Dyna-Q

algorithm [145, Alg. 4] samples past experience from its model uniformly at random. Combining Dyna-style

replay mechanics with the temporal difference approach to SR learning yields the Dyna-SR algorithm [127,

Algorithm 3].2

However, by prioritizing experience that previously led to larger changes in the learned representations,

we can improve the efficiency of our replay algorithm. These changes are given by the absolute temporal

difference prediction errors for the state-action value function |δQ|, as computed in Alg. 3, line 6, and Alg. 4,

line 7. Prioritized Sweeping (PS) [109, 119] maintains a queue ordered according to the most recent error

|δQ| for each state-action pair, and pops from the queue after every time step. This is then propagated to

states that precede the replayed state, allowing the largest changes to flow backwards through the model.

In addition to the increased efficiency, this approach is consistent with human studies suggesting that larger

prediction errors are followed by more offline replay, and offline replay of predecessors of states tagged with

prediction error is correlated with future revaluation behavior [107].

2.3 Algorithms

Though replay alone improves an agent’s ability to relearn local aspects of the task at hand, the representation

of this task (namely, the Q function) is inflexible inasmuch as it can obscure the different kinds of changes

that might take place. This can lead to slower learning, and does not correspond to the representations of

such tasks used by biological agents [152, 48, 106].

By simultaneously updating both an SR and reward weights, we can enable flexibility to changes in

rewards (reward transfer). However, changes in the transition structure (transition transfer) requires up-

dating the SR for states with reevaluated transitions, via real or replayed experience. Thus, combining the

representational flexibility of the SR with efficient forms of planning through replay achieves both reward

and transition transfer.

The Dyna-SR algorithm [127] discussed previously is one such hybrid. However, we hypothesized that

sampling past experiences according to a prioritization schema, similar to prioritized sweeping, could further

improve performance while still capturing human-like behavior.

2Technically, the model in the Dyna-SR algorithm stores a list of previously seen successor states and rewards for each state-
action pair, which is then drawn based on a recency-weighted bias governed by an exponential distribution with rate λ = 1/5.
In this paper, the difference between storing a list of values and storing an individual value is minimal.
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Algorithm 5 PARSR

1: Hyperparameters: Number of replay cycles n, exploration parameter ε, SR learning rate αM , reward
weights learning rate αw, prioritization type PriType.

2: Initialize M(a, s, s′), w(s), Model(s, a) for all s, a and PQueue to empty.
3: while True do
4: s← current (nonterminal) state.
5: Q← w(:)⊤M(a, s, :).
6: a← ε-greedy(s,Q).
7: Take action a; observe reward, r, and state, s′.
8: Model(s, a)← r, s′.
9: Q← w(:)⊤M(a, s, :).

10: a′ ← argmaxa′′(Q(s′, a′′)).
11: δM ←

[
1s + γM(a′, s′, :)−M(a, s, :)

]
. ▷ SR (M) prediction error.

12: M(a, s, :)←M(a, s, :) + αMδM .
13: w(s)← w(s) + αw

[
r −w(s)

]
.

14: if PriType is M-PARSR then
15: p← ∥δM∥
16: else if PriType is Q-PARSR then
17: p← δQ ≡ δ⊤Mw −w(s) + r ▷ Q prediction error.

18: Insert s, a into PQueue with priority p.
19: loop n times
20: if PQueue is not empty then
21: s, a← first(PQueue).
22: else
23: s← random previously observed state.
24: a← random action previously taken in s.

25: r, s′ ← Model(s, a).
26: Q← w(:)⊤M(a, s, :).
27: a′ ← argmaxa′′(Q(s′, a′′)).
28: δM ←

[
1s + γM(a′, s′, :)−M(a, s, :)

]
.

29: M(a, s, :)←M(a, s, :) + αMδM .

To this end, we propose PARSR: Priority-Adjusted Replay for Successor Representations (Alg. 5 and

Fig. 2.1, changes from Dyna-SR in blue). Unlike prioritized sweeping, which only relies on reward prediction

errors (PE), PARSR can prioritize replay using PE for either the SR or reward weights. When using the

latter priority measure for PARSR we call this variant Q-PARSR, and when using successor prediction errors

(∥δM∥), we refer to the variant as M-PARSR. Each algorithm represents different choices about what kinds

of experience to prioritize, potentially leading to different behavior and training times.
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Figure 2.1: Flowcharts for both variants of the PARSR algorithm. Components of the agent are in blue.
Real experience (s, a, r, s′) is fed into the priority queue, and used to update the reward weights w(s′)
and successor representation M(a, s, s′) via temporal difference learning. The priority queue returns
simulated experiences (s, a, r, s′), which are used to provide further updates to the successor representa-
tion. M-PARSR (a) prioritizes according to the successor representation prediction error (SR PE), whereas
Q-PARSR (b) prioritizes according to the reward prediction error (Reward PE). The reward weights and
successor representation determine the state-action value function Q(s, a) =

∑
s′ M(a, s, s′)w(s′), which in

turn determines the policy for acting in the environment.
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2.4 Experiments

We evaluate the performance of both variants of the PARSR algorithm in comparison to other SR-based and

replay-based RL algorithms on revaluation tasks on different scales. Each experiment is evaluated over 10

seeds with ε ∈ {0.1, 0.3, 0.5, 1.0}. The Six States (resp. Six Rooms) experiment is performed for 100 (resp.

10) runs per seed, with 10 (resp. 1000) replay cycles per timestep for each algorithm. Note that PARSR has

the same number of hyperparameters as other algorithms, so any improvement in human-like performance

is not due to increased model complexity.

2.4.1 Six States

(a) Six States design.
(b) Six States human re-
sults.

(c) Six States model results (10 replay
cycles).

Figure 2.2: Structure and results for the Six States experiment, reproduced from Experiment 2 in [108].
In (a), numbered circles denote different states, and arrows denote the unidirectional actions available at
each state. For a given phase of a given condition, trials begin only in the earliest-stage states that are
displayed in the figure for that condition and phase. (b) shows the proportion of participants in the human
experiment (n = 88) who changed preference following the re-learning phase for each condition. Participants
show greater ability to transfer in the case of reward revaluation than they do for the transition or policy
conditions, though they are also capable of performing those tasks in some proportion. (c) reproduces these
results for different algorithms.

We first reproduce and extend the results of Experiment 2 of [108], which we refer to as the “Six States”

experiment. In this decision-making task (in which, unlike Experiment 1, the participant takes actions

at every step), participants complete four games, each corresponding to a different experimental condition

(Fig. 2.2a). The six states of the environment are structured as a unidirectional, three-stage decision tree,

where two actions are available at the first two stages and a scalar reward is received at the terminal states

in the final stage.

Each task is divided into three phases: one must pass each phase three times consecutively in order to
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progress to the next phase. In phase 1, participants are trained on a specific reward and transition structure.

In phase 2, a change in either the reward or transition structure is changed, and participants learn about the

changed structure without revisiting the starting state. Hence, participants do not get to experience these

new contingencies following an action taken from the first stage. In phase 3, participants perform a single

test trial beginning from the starting state, with the revaluation score corresponding to the probability (over

multiple experimental runs) that the participant changes their action in state 1 between the end of phase 1

and the single trial in phase 3. Results from a human study in [108] show a greater revaluation score for the

reward condition than transition or policy conditions, and no significant difference in revaluation between

the latter two. Revaluation in the control condition is significantly lower than all of these.

For both Experiments 1 and 2, we find that both variants of PARSR are able to capture the human

revaluation behavior in the task equally as well as Dyna-SR.

2.4.2 Six Rooms

(a) Six Rooms (121
states) design.

(b) Six Rooms priority visualization, phase 2
of transition revaluation.

(c) Six Rooms model results (1000 replay cy-
cles).

Figure 2.3: Results for the Six Rooms experiment. (a) shows the map of the Six Rooms environment,
with white arrows denoting “trapdoors” between rooms. (c) shows the revaluation scores for each model:
all algorithms with the exception of PS attain results that are analogous to those achieved by human
participants in Experiment 2 of [108] (Six States). (b) shows the relative frequency of the states prioritized
during replay for the transition revaluation condition during phase 2. M-PARSR has a much narrower focus
on the bottlenecks between the rooms at which the revaluation is taking place, whereas Q-PARSR has a more
uniform distribution over the prioritized states despite nonetheless employing a priority queue. Both achieve
similar performance in these tasks in spite of these differences.

We wanted to investigate whether the findings from the Six States experiment scaled to tasks with larger

state spaces. To test this, we designed Six Rooms, a gridworld analog with 121 states. In this environment,

the states in the Six States experiment correspond to the centers of the six rooms, laid out in a similar
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structure to the smaller environment. Unidirectionality is enforced through one-way corridors between each

room, in order to retain the solution structure of the smaller environment. Each of the conditions and phases

of the Six States experiment can be defined analogously for the Six Rooms domain.

Despite their similar latent structure, the Six Rooms environment represents a greater challenge for the

agents since moving between the rooms requires a sequence of several actions, thus requiring more updates

to the agents’ representations. To successfully pass each phase, therefore, requires not only that the agent

navigates to the correct state given its starting state, but moreover that it do so using the shortest path.

During phase 2, agents are initialized in the center states of the second-stage rooms and are required to

navigate to center states of the correct final rooms using the quickest path. This matches the difficulty of

the exclusion criteria across the four conditions.

Fig. 2.3c shows the results of the experiment for each algorithm. We observe that the revaluation scores

for these tasks match that of the human performance on the Six States experiment for all but Priortized

Sweeping and most faithfully by PARSR. This suggests that PARSR’s performance scales to more complex

tasks with a similar latent structure. This further offers the testable prediction that human behavior in the

Six Rooms experiment should scale accordingly.

In Fig. 2.3b, we visualize the relative frequencies at which each state was prioritized by each algorithm

during transition revaluation (phase 2). We observe a difference between the two PARSR variants in their

prioritization strategies: while M-PARSR prioritizes replaying bottleneck states at which the revaluation is

occurring, Q-PARSR’s prioritization focus is more diffuse. Future work is required to test which conditions

and tasks are best served by each prioritization scheme. For instance, adding meta-learning to PARSR could

control which type of prioritization is appropriate depending on the task at hand.

2.5 Related work

Experience replay has been incorporated as a core part of many reinforcement learning algorithms, both in

the tabular setting in algorithms such as Dyna [145, 83], and in deep reinforcement learning, where Deep

Q-Networks (DQN) update the Q-network using a minibatch randomly sampled from a replay buffer [103].

Likewise, the use of prioritization based on prediction error as a heuristic for faster learning has also

been explored in both settings. In the tabular setting, Prioritized Sweeping [109, 119] is the most prevalent

of these, with a “small backups” variant improving performance by making computation time independent

of the number of successor states [158]. In the deep reinforcement learning setting, Prioritized Experience
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Replay [132] and its extensions [60, 74] also use a PE-based prioritization heuristic. Unlike in the tabular

case, however, experiences are sampled at random with a probability proportional to the PE (with an

importance-based sampling correction), as opposed to the experiences being popped from a queue.

The successor representation was first introduced in [36]. In the tabular setting, SR-based algorithms

have been proposed and studied for their ability to capture neurally plausible, human-like behavior in transfer

tasks [108, 127], planning and hippocampal replay [97], as well as cognitive fatigue and boredom [3].

Extensions to the successor representation can also be found in the deep reinforcement learning setting.

The Deep Successor Representation architecture [79, 88] learns the SR as a deep neural network with pixels

as its input, and outputs including a deep convolutional decoder to reproduce the input, a linear regressor

to predict instantaneous rewards, and a feedforward neural network producing successor activations corre-

sponding to each outcome. Alternatively, the Successor Features framework [16] generalizes its discounted

sum from a one-hot vector representing a state visitation to a feature vector, where instantaneous rewards

are linear in these features. This framework has been successfully combined with the Generalized Policy

Improvement algorithm for combining solutions of previous tasks into a policy for the unseen task [16, 14,

22, 17, 27]. Successor features can also be used for discovering extended courses of actions known as options,

an initial finite set of which can be combinatorially extended without extra learning [15, 87, 28].

The eigendecomposition of the SR matrix has also been an object of interest. It can be used to show the

equivalence of the SR for a uniform policy to the graph Laplacian of the matrix of adjacent states in the

environment [88, 87]. Moreover, the eigenvectors can be seen as a reflection of grid cell firing patterns in the

brain used for navigation tasks [143]. For comprehensive overviews of the successor representation and its

properties, refer to [48] and [106].

2.6 Discussion and Future Work

We have introduced PARSR: an algorithm that combines successor representation based learning with novel

replay prioritization heuristics. By drawing from neuroscience [127, 46, 25] and human behavior studies

[108], this algorithm is inspired by the principle of human-plausibility [105]. PARSR’s two variants prioritize

experience replay using either representation-based or reward-based prediction errors. Both PARSR variants

show human-like behavior on benchmark tasks with 6 states (Figs. 2.2a, 2.2b, 2.2c) as well as as scaled tasks

(the Six Rooms environment) with 121 states (Figs.2.3a, 2.3b, 2.3c). The latter offers novel predictions for

human behavior in scaled experiments.
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In future work could extend PARSR beyond tabular environments, as a deep RL algorithm with function

approximation, similar to that of Prioritized Experience Replay [132]. Even within the tabular setting, the

Prioritized Experience Replay algorithm suggests useful modifications that may also be of benefit to the

PARSR algorithm, such as incorporating importance sampling to correct for the bias introduced by drawing

based on prioritization.

In addition to extending PARSR to deep learning and more complex environments, future work would

investigate further the nature of the two prioritization signals in PARSR variants, e.g., to investigate se-

quence memory activations at given moments in the task [97]. Moreover, we have visualized how error signals

determine the relative frequency of prioritized experiences (Fig. 2.3b). Future work is required to investi-

gate which problems are better served by which prioritization schemes. One solution is a novel algorithm

combining PARSR with meta-learning of a control parameter learned across tasks and environments that,

given the problem at hand, determines which PE signal is appropriate for efficient replay prioritization.
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Chapter 3

A Pragmatic Account of the Weak

Evidence Effect

Well, he would [say that], wouldn’t he?

Mandy Rice-Davies

3.1 Introduction

Communication is a powerful engine of learning, enabling us to efficiently transmit complex information that

would be costly to acquire on our own [153, 58]. While much of what we know is learned from others, it

can also be challenging to know how to incorporate socially transmitted information into our beliefs about

the world. Each source is a person with a “hidden agenda” encompassing their own beliefs and desires and

biases, and not all information can be treated the same [63, 112]. For example, when deciding whether to

buy a car, we may weight information differently depending on whether we heard it from a trusted family

memory or the dealership, as we know the dealership is trying to make a sale. While such reasoning is

empirically well-established—even young children are able to discount information from untrustworthy or

unknowledgeable individuals [170, 141, 124, 102, 53, 56]—these phenomena have continued to pose a problem

for formal models of belief updating, which typically take information at face value.

Recent probabilistic models of social reasoning have provided a mathematical framework for understand-

ing how listeners ought to draw inferences from socially transmitted information. Rather than treating

information as a direct observation of the true state of the world, social reasoning models suggest treating
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the true state of the world as a latent variable that can be recovered by inverting a generative model of

how an intentional agent would share information under different circumstances [57, 160, 167, 69, 9, 49,

50]. These models raise new explanations for classic effects in the judgment and decision-making literature,

where behavior is often measured in social or linguistic contexts [123, 142, 110, 8, 100, 86].

Consider the weak evidence effect [99, 41, 84] or boomerang effect [122], a striking case of non-monotonic

belief updating where weak evidence in favor of a particular conclusion may backfire and actually reduce an

individual’s belief in that conclusion. For example, suppose a juror is determining the guilt of a defendant

in court. After hearing a prosecutor give a weak argument in support of a guilty verdict—say, calling a

single witness with circumstantial evidence—we might expect the juror’s beliefs to only be shifted weakly

in support of guilt. Instead, the weak evidence effect describes a situation where the prosecutor’s argument

actually leads to a shift in the opposite direction—the juror may now believe that the defendant is more

likely to be innocent.

Importantly, social reasoning mechanisms are not necessarily in conflict with previously proposed mech-

anisms for the weak evidence effect, such as algorithmic biases in generating alternative hypotheses [41, 33],

causal reasoning about other non-social attributes of the situation [18] or sequential belief-updating [99,

156]. Both social and asocial models are able to account for the basic effect. To find unique predictions that

distinguish models with a social component, then, we argue that we must shift focus from the existence of the

effect to asking under what conditions it emerges. Social mechanisms lead to unique predictions about these

conditions that purely asocial models cannot generate. In particular, if evidence comes from an intentional

agent who is expected to present the strongest possible argument in favor of their case, then weak evidence

would imply the absence of stronger evidence [52]; otherwise weak evidence may be taken more at face value.

Thus, a pragmatic account predicts a systematic relationship between a listener’s social expectations and

the strength of the weak evidence effect:1 weak evidence should only backfire when the information source is

expected to provide the strongest evidence available to them.

In this paper, we proceed by first extending recent rational models of communication to equip speakers

with persuasive goals (rather than purely informative ones) and present a series of simulations deriving key

predictions from our model. We then introduce a simple behavioral paradigm, the Stick Contest, which allows

us to elicit a participant’s social expectations about the speaker alongside their inferences as listeners. Based

1Harris, Corner, and Hahn [55] presents a related model of the faint praise effect, where the omission of any stronger
information that a speaker would be expected to know implies that it is more likely to be negative than positive (e.g. “James
has very good handwriting.”) Importantly, this effect is sensitive to the perceived expertise of the source; no such implication
follows for unknowledgable informants [see also 64, 21, 53, for related inferences from omission].
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on speaker expectation data, we find that participants cluster into sub-populations of pragmatic listeners

or literal listeners, who expect speakers to provide strongly persuasive evidence or informative but neutral

evidence, respectively. As predicted by the pragmatic account, only the first group of participants, who

expected speakers to provide persuasive evidence, reliably displayed a weak evidence effect in their belief

updates. Finally, we use these data to quantitatively compare our model against prior asocial accounts and

find that a pragmatic model accounting for these hetereogenous groups is most consistent with the empirical

data. Taken together, we suggest that pragmatic reasoning mechanisms are central to explaining belief

updating when evidence is presented in social contexts.

3.2 Formalizing a pragmatic account of the weak evidence effect

To derive precise behavioral predictions, we begin by formalizing the pragmatics of persuasion in a compu-

tational model. Specifically, we draw upon recent progress in the Rational Speech Act (RSA) framework [45,

49, 135]. This framework instantiates a theory of recursive social inference, whereby listeners do not naively

update their beliefs to reflect the information they hear, but explicitly account for the fact that speakers are

intentional agents choosing which information to provide [52].

3.2.1 Reasoning about evidence from informative speakers

We begin by defining a pragmatic listener L who is attempting to update their beliefs about the underlying

state of the world w (e.g. the guilt or innocence of the defendant), after hearing an utterance u (e.g. an

argument provided by the prosecution). According to Bayes’ rule, the listener’s posterior beliefs about the

world PL(w | u) may be derived as follows:

PL(w | u) ∝ PS(u | w)P (w) (3.1)

where P (w) is the listener’s prior beliefs about the world and the likelihood PS(u | w) is derived by imagining

what a hypothetical speaker agent would choose to say in different circumstances. This term yields different

predictions given different assumptions about the speaker, captured by different speaker utility functions U .

In existing RSA models, the speaker is usually assumed to be epistemically informative, choosing utterances

that bring the listener’s beliefs as close as possible to the true state of the world, as measured by information-
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theoretic surprisal:

PS(u | w) ∝ exp{αUepi(u;w)}

Uepi(u;w) = lnPL0(w | u) (3.2)

where the free parameter α ∈ [0,∞] controls the temperature of the soft-max function and Uepi denotes the

utility function of an (epistemically) informative speaker. As α→∞, the speaker increasingly chooses the

single utterance with the highest utility, and as α→ 0 the speaker becomes indifferent among utterances. If

this hypothetical speaker, in turn, aimed to be informative to the same listener defined in Eq. 3.1, it would

yield an infinite recursion: the RSA framework instead assumes that the recursion is grounded in a base case

known as the “literal” listener, L0, who takes evidence at face value:

PL0(w | u) ∝ δJuK(w)P (w). (3.3)

Here, JuK gives the literal semantics of the utterance u, with δJuK(w) returning 1 if w is consistent with the

state of affairs denoted by u, and 0 (or very small ϵ) otherwise.

3.2.2 Reasoning about evidence from motivated speakers

The epistemic utility defined in Eq. 3.2 aims only to produce assertions that most effectively lead to true

beliefs. Often, however, speakers do not seek to neutrally inform, but to persuade in favor of a particular

outcome or “hidden agenda.” What is needed to represent such persuasive goals in the RSA framework?

We begin by assuming that motivated speakers have a particular goal state w∗ that they aim to induce in

the listener, where w∗ does not necessarily coincide with the true state of affairs w. This naturally yields a

persuasive utility Upers that aims to persuade the listener to adopt the intended beliefs w∗:

Upers(u;w
∗) = lnPL0

(w∗ | u) (3.4)

where we say an utterance u is strictly more persuasive than u′ if and only if Upers(u | w∗) > Upers(u
′ | w∗) (i.e.

when the utterance results in the listener assigning higher probability to the desired state w∗). Following prior

extensions of the speaker utility to other non-epistemic goals [e.g. 172, 173, 19], we then define a combined

utility assuming the speaker aims to jointly fulfill persuasive aims (Eq. 3.4) while remaining consistent with
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the true world state w (Eq. 3.2):

PS(u | w,w∗) ∝ exp{α · U(u;w,w∗)} (3.5)

U(u;w,w∗) = Uepi(u;w) + β · Upers(u;w
∗) (3.6)

where β is a parameter controlling the strength of the persuasive goal (we recover the standard epistemic

RSA model when β = 0). This motivated speaker forms the foundation for a pragmatic model of the weak

evidence effect.2 A pragmatic listener L1 who suspects that the utterance was generated by a motivated

speaker with non-zero bias β is able to be “skeptical” of the speaker’s agenda and discount their evidence

accordingly:3

PL(w | u,w∗, β) ∝ PS(u | w∗, w, β) · P (w) (3.7)

To see why this model allows evidence to backfire, note that the probability of different utterances are in

competition with one another under the speaker model. In the case that w and w∗ coincide, the speaker

is expected to choose a utterance that is strongly supportive of that state; weaker utterances have a lower

probability of being chosen. Conversely, if w∗ deviates from the true state of affairs, stronger utterances in

favor of w∗ will be dispreferred (because they will be false and violate the epistemic term), hence weaker

utterances are more likely. In this way, the absence of strong evidence from a speaker who would be highly

motivated to show it statistically implies that no such evidence exists.

3.3 Experiment: The Stick Contest

Empirical studies of the weak evidence effect require a cover story to elicit belief judgments and manipulate

the strength of evidence. Typically, this cover story is based on a real-world scenario such as a jury trial [99]

or public policy debate [41], where participants are asked to report their belief in a hypothetical state such as

the defendant’s guilt or the effectiveness of the policy intervention. While these cover stories are naturalistic,

they also introduce several complications for evaluating models of belief updating: participants may bring

in different baseline expectations based on world knowledge and the absolute scalar argument strength of

verbal statements is often unclear. To address these concerns, we introduce a simple behavioral paradigm

2Coincident with our work, [161] has proposed a similar formulation to explain how speakers may stretch the truth of
epistemic modals like “possibly” or “probably.”

3Although we formulate the listener’s posterior as being conditioned on a known value of β, we can also consider the case in
which the listener has a prior distribution over biases and can compute (marginal) posteriors accordingly – refer to Appendix A.5
for details.
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Figure 3.1: In the Stick Contest paradigm, participants are asked to determine whether a set of five hidden
sticks is longer or shorter, on average, than a midpoint (dotted line) based on limited evidence from a pair
of contestants. In the speaker expectation phase (left), participants were asked which one of the five sticks
a given contestant would be most likely to show. In the listener judgment phase (right), participants were
presented with a sequence of sticks from each contestant and asked to judge the likelihood that the overall
sample is “longer.”

called the Stick Contest (see Fig. 3.1). This game is inspired by a courtroom scenario: two contestants take

turns presenting competing evidence to a judge, who must ultimately issue a verdict. Here, however, the

verdict concerns the average length of N = 5 sticks which range from a minimum length of 1” to a maximum

length of 9”. These sticks are hidden from the judge but visible to both contestants, who are each given an

opportunity to reveal exactly one stick as evidence for their case. As in a courtroom, each contestant has a

clear agenda that is known to the judge: one contestant is rewarded if the judge determines that the average

length of the sticks is longer than the midpoint of 5” (shown as a dotted line in Fig. 3.1), and the other is

rewarded if the judge determines that the average length of the sticks is shorter than the midpoint.

This paradigm has several advantages for comparing models of the weak evidence effect. First, unlike

verbal statements of evidence, the scale of evidence strength is made explicit and provided as common

knowledge to the judge and contestants. The strength of a given piece of evidence is directly proportional to
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the length of the revealed stick, and these lengths are bounded between the minimum and maximum values.

Second, while previous paradigms have operationalized the weak evidence effect in terms of a sequence of

belief updates across multiple pieces of evidence (e.g. where the first piece of evidence sets a baseline for

the second piece of evidence), common knowledge about the scale allows the weak evidence effect to emerge

from a single piece of evidence. This property helps to disentangle the core mechanisms driving the weak

evidence effect from those driving order effects [e.g. 156].

3.3.1 Participants

We recruited 804 participants from the Prolific crowd-sourcing platform, 723 of whom successfully completed

the task and passed attention checks (see Appendix A.1). The task took approximately 5 to 7 minutes, and

each participant was paid $1.40 for an average hourly rate of $14. We restricted recruitment to the USA,

UK, and Canada and balanced recruitment evenly between male and female participants. Participants were

not allowed to complete the task on mobile or to complete the experiment more than once.

3.3.2 Design and procedure

The experiment proceeded in two phases: first, a speaker expectation phase, and second, a listener judgment

phase (see Fig. 3.1). In the speaker expectation phase, we placed participants in the role of the contestants,

gave them an example set of sticks {2, 4, 7, 8, 9} and asked them which ones they believed each contestant

would choose to show, in order of priority. In the listener judgment phase, we placed participants in the

role of the judge and presented them with a sequence of observations. After each observation, they used a

slider to indicate their belief about the verdict on a scale ranging from 0 (“average is definitely shorter than

five inches”) to 100 (“average is definitely longer than five inches”). It was stated explicitly that the judge

knows that there are exactly five sticks, and that each contestant’s incentives are public knowledge. After

each phase, we asked participants to explain their response in a free-response box (see Tables A.2 and A.3

for sample responses).

This within-participant design allowed us to examine individual co-variation between the strength of

a participant’s weak evidence effect in the listener judgment phase and their beliefs about the evidence

generation process in the speaker expectation phase. Critically, while the set of candidate sticks in the

speaker expectation phase was held constant across all participants for consistency, the strength of evidence

we presented in the listener judgment phase was manipulated in a between-subjects design. The length of
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the first piece of evidence was chosen from the set {6, 7, 8, 9} when the long-biased contestant went first,

and from the set {4, 3, 2, 1} when the short-biased contestant went first, for a total of 4 possible “strength”

conditions (measured as the distance of the observation from the midpoint; we assigned more participants to

the more theoretically important “weak evidence” condition, i.e. {4, 6}, to obtain a higher-powered estimate).

The order of contestants was counterbalanced across participants and held constant across the speaker and

listener phase.4 Although it was not the focus of the current study, we also presented a second piece of

evidence from the other contestant to capture potential order effects (see Appendix A.2 for preliminary

analyses).

3.4 Results

3.4.1 Behavioral results

Before quantitatively evaluating our model, we first examine its key qualitative predictions. Do participants

exhibit a weak evidence effect in their listener judgments at all, and if so, to what extent is variation in

the strength of the effect related to their expectations about the speaker? We focus on each participant’s

first judgment, provided after the first piece of evidence in the listener phase. This judgment provides the

clearest view of the weak evidence effect, as subsequent judgments may be complicated by order effects.

We constructed a linear regression model predicting participants’ continuous slider responses. We included

fixed effects of evidence strength as well as expectations from the speaker phase (coded as a categorical

variable, expecting strongest evidence vs. expecting weaker evidence), and their interaction, along with a

fixed effect of whether the first contestant was “short”-biased or “long”-biased. Because the design was fully

between-participant (i.e. each participant only provided a single slider response as judge), no random effects

were supported.

As predicted, we found a significant interaction between speaker expectations and evidence strength,

t(718) = 5.2, p < 0.001; see Fig. 3.2. For participants who expected the speaker to provide the strongest

evidence (485 participants or 67% of the sample), weak evidence in favor of the persuasive goal backfired and

actually pushed beliefs in the opposite direction, m = 34.7, 95% CI: [32.3, 37.3], p < 0.001. Meanwhile, for

participants who expected speakers to “hedge” and not necessarily show the strongest evidence first (238 par-

ticipants, or 33% of the sample), no weak evidence effect was found (m = 50.1, group difference = −15.4, post-

hoc t(367) = −6.3, p < 0.001.) We found only a marginally significant asymmetry in slider bias, p = 0.056,

4An earlier iteration of our experiment only used a long-biased speaker; we report results from this version in Appendix A.4.

32



2in

4in

7in
8in

9in sp
eaker p

h
ase

“which stick would this contestant show?”

listen
er p

h
ase

6” 7” 8” 9”
0

25

50

75

100

be
lie

f
in

cr
ea

se
d

d
ec

re
as

ed

strengthstrength
weaker stronger weaker stronger

6” 7” 8” 9”

lo
n

ge
r

sh
o

rt
er

Figure 3.2: Individual differences in the weak evidence effect are predicted by pragmatic expectations.
Dotted line represents neutral or unchanged beliefs. Error bars are bootstrapped 95% CIs (see Fig. A.3 for
raw distributions).

with short-biased participants giving slightly larger endorsements (m = 1.6 slider points) across the board.

3.4.2 Model simulations

The qualitative effect observed the previous section is consistent with our pragmatic account: weak evidence

only backfired for participants who expected speakers to provide the strongest available. In this section we

conduct a series of simulations to explicitly examine the conditions under which this effect emerges from

our model of recursive social reasoning between a speaker (who selects the evidence) and a listener (who

updates their beliefs in light of the evidence). Our task is naturally formalized by defining the possible

utterances u ∈ U as the possible lengths of individual sticks the speaker must choose between, the world

state w as the true set of sticks, and the persuasive goals w∗ ∈ {longer, shorter} as a binary proposition

corresponding to each speaker’s incentive. Because the speaker only has access to true utterances, all
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Figure 3.3: Model simulations. (A) Our pragmatic listener model predicts a weak evidence effect for a
broader range of evidence strengths at higher perceived speaker bias β. The color scale represents the extent
to which the listener’s posterior beliefs decrease in light of positive evidence, where the black region represents
conditions under which no weak evidence effect is predicted. (B) Posterior beliefs of literal and pragmatic
listener models as a function of evidence from long-biased speaker. Horizontal line represents prior beliefs.
Error bars are given by 10-fold cross-validation across parameter fits on different subsets of our behavior
data, with average β = 2.03 and response offset o = −0.13 (translating the curve down).

utterances have equal epistemic utility (i.e. the speaker must show one of the five actual sticks,5 which has

the epistemic effect of reducing uncertainty about the identity of exactly one stick). Hence, the combined

utility (Eq. 3.6) simplifies to the following:

S(u | w,w∗, β) ∝ exp{α · β · lnL0(w
∗ | u)} (3.8)

and the persuasive utility of an utterance is monotonic in the stick length (see Appendix A.3 for complete

proofs). Note that when β = 0, the pragmatic listener L1 expects the speaker preferences to be uniform over

true evidence, S1(u | w,w∗, β = 0) = Unif(u), thus reducing to the literal listener L0. When β →∞, the

pragmatic listener expects the speaker to maximize utility and choose the single strongest piece of evidence.6

In our simulations, we present the listener models with different pieces of evidence u ∈ {5, 6, 7, 8, 9, 10}
5For related tasks studying outright lying, see Oey, Schachner, and Vul [113], Ransom, Voorspoels, Perfors, and Navarro

[125], and Franke, Dulcinati, and Pouscoulous [44] and Oey and Vul [114]. For a more comprehensive and multidisciplinary
overview of varieties of deception and misleading, see Saul [131] and Meibauer [101].

6Because the product α · β is non-zero only if the persuasion weight β is non-zero, these two parameters are redundant in
our task. We thus treat their product as a single free parameter, effectively fixing α = 1. It is possible that a near-zero α (e.g.
low effort from participants) may make it difficult to empirically detect a non-zero β term in our model comparison below, but
this would work against our hypothesis.
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and manipulate β, which represents the degree to which the pragmatic listener L1 expects the speaker S to

be motivated to show data that prefers target goal state w∗ = longer (the case for shorter is analogous).

We operationalize the size of the weak evidence effect as the decrease in belief for a proposition given positive

evidence supporting that proposition. For example, if observing a stick length of 6” decreased the listener’s

beliefs that the sample was longer than 5” from a prior belief of P (longer) = 0.5 to a posterior belief

of P (longer | u = 6) = 0.4, then we say the size of the effect is 0.5− 0.4 = 0.1.

First, we observe that when β = 0 (Fig. 3.3A, left-most column), no weak evidence effect is observed: the

listener interprets the evidence literally. However, as the perceived bias of the speaker increases, we observe

a weak evidence effect emerge for shorter sticks. When the perceived bias grows large (e.g. β = 100, right-

most column), the weak evidence effect is found over a broad range of evidence: if the listener expects the

speaker to show the single strongest piece of evidence available, then even a stick of length 8” rules out the

existence of any stronger evidence, shifting the possible range of sticks in the sample. To further understand

this effect, we computed the beliefs of literal (L0) and pragmatic (L1) listener models as a function of the

evidence they’ve been shown (Fig. 3.3B). While the literal listener predicts a near-linear shift in beliefs as

a function of positive or negative evidence, the pragmatic listener yields a sharper S-shaped curve reflecting

more skeptical belief updating.

3.4.3 Quantitative Model Comparison

Our behavioral results suggest an important role for speaker expectations in explanations of the weak evidence

effect, and our simulations reveal how a pragmatic listener model derives this effect from different expectations

about speaker bias. In this section, we compare our model against alternative accounts by fitting them to

our empirical data (see Appendix A.5 for details).

Fitting the RSA model to behavioral data We considered several variants of the RSA model, which

handled the relationship between the speaker and listener phase in different ways. The simplest variant, which

we call the homogeneous model, assumes the entire population of participants is explained by a pragmatic

model (z = L1) with an unknown bias. It is homogeneous because the same model is assumed to be shared

across the whole population. The second variant, which we call the heterogeneous model, is a mixture model

where we predicted each participant’s response as a convex combination of the L0 and L1 models with

mixture weight pz (i.e. marginalizing out latent assignments zi). In the third variant, which we call the

speaker-dependent model, we explicitly fit different mixture weights depending on the participant’s response
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Model Variant Likelihood WAIC PSIS-LOO

A&A Homogeneous -28.1 57.7 ± 9.9 28.8 ± 9.9
MAS Homogeneous 8.2 -13.3 ± 9.6 -6.6 ± 9.6

Heterogeneous 8.2 -11.3 ± 9.5 -5.6 ± 9.5
RSA Homogeneous 8.1 -13.3 ± 9.5 -6.7 ± 9.5

Heterogeneous 8.1 -10.5 ± 9.3 -5.2 ± 9.3
Speaker-dependent 12.0 -16.4 ± 9.1 -9.2 ± 9.1

Table 3.1: Results of the model comparison, including the likelihood achieved by the best-fitting model as well as the
WAIC, and PSIS-LOO (± standard error), which penalize for model complexity.

in the speaker expectations phase. Rather than learning a single mixture weight for the entire population,

this variant learns independent mixture weights for different sub-groups zj , defined by the different sticks j

that participants chose in the speaker phase. This model asks whether conditioning on speaker data allows

the model to make sufficiently better predictions about the listener data.

Fitting anchor-and-adjust models to empirical data The most prominent family of asocial models

accounting for the weak evidence effect are anchor-and-adjust (AA) models. In these models, individuals

compare the strength of new evidence u against a reference point R and adjust their beliefs P (w|u) up or

down accordingly:

P (w|u) = P (w) + η · (s(u)−R), (3.9)

where s(u) is the strength of the evidence, and η is an adjustment weight. In the simplest variant [62],

the reference point and scaling are fixed to a neutral baseline η = P (w) = 1− P (w) = .5 and R = 0. In a

more complex variant, beliefs are not updated from a neutral baseline but instead relative to more strin-

gent level known as the argument’s “minimum acceptable strength” [MAS; 99], which is treated as a free

parameter: R ∼ Unif[−1, 1]. In this case, positive evidence that falls short of R may nonetheless be treated

as negative evidence and decrease the listener’s beliefs. Although the anchor is typically taken to be a

specific earlier observation, it may be interpreted in the single-observation case as the participant’s implicit

or imagined expectations from the task instructions and cover story. Prior work using anchor-and-adjust

models would not predict a relationship between behavior in the speaker phase and in the listener phase. We

thus evaluated a homogeneous AA model, a homogeneous MAS model, and a heterogeneous mixture model

predicting responses as a convention combination of the two.
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Comparison Results We examined several metrics to assess the relative performance of these models.7

First, as an absolute goodness of fit measure, we found the parameters that maximized the model likelihood

(see Table 3.1). As a Bayesian alternative, which penalizes models for added complexity, we also considered

a measure using the full posterior,8 the Watanabe-Akaike (or Widely Applicable) Information Criterion [163,

47]. The WAIC penalizes model flexibility in a way that asymptotically equates to Bayesian leave-one-out

(LOO) cross-validation [1, 47], which we also include in the form of the PSIS-LOO measure [PSIS stands

for Pareto Smoothed Importance Sampling, a method for stabilizing estimates 159]. These comparison

criteria (Table 3.1) suggest that the added complexity of the speaker-dependent RSA model is justified:

it outperforms all asocial variants. For this speaker-dependent model, we found a maximum a posteriori

(MAP) estimate of β̂ = 2.26, providing strong support for a non-zero persuasive bias term. We found that

the pragmatic L1 model best explained the judgments of participants who expected the strongest evidence to

be shown during the speaker phase (mixture weight p̂z = 0.99) while the literal L0 model best explained the

judgments of participants who expected weaker sticks to be shown (mixture weight p̂z = 0.1). Full parameter

posteriors are shown in Fig. A.5.

3.5 Discussion

Evidence is not a direct reflection of the world: it comes from somewhere, often from other people. Yet

appropriately accounting for social sources of information has posed a challenge for models of belief-updating,

even as increasing attention has been given to the role of pragmatic reasoning in classic phenomena. In this

paper, we formalized a pragmatic account of the weak evidence effect via a model of recursive social reasoning,

where weaker evidence may backfire when the speaker is expected to have a persuasive agenda. This model

critically predicts that individual differences in the weak evidence effect should be related to individual

differences in how the speaker is expected to select evidence. We evaluated this qualitative prediction using

a novel behavioral paradigm – the Stick Contest – and demonstrated through simulations and quantitative

model comparisons that our model uniquely captures this source of variance in judgments.

Several avenues remain important for future work. First, while we focused on the initial judgment as

the purest manifestation of the weak evidence effect, subsequent judgments are consistent with the order

effects that have been the central focus of previous accounts [see Appendix A.2; 5, 34, 156]. Thus, we

7All models were implemented in WebPPL [51]; code for reproducing these analyses is available at https://github.com/

s-a-barnett/bayesian-persuasion.
8We drew 1,000 samples from the posterior via MCMC across four chains, with a burn-in of 7,500 steps and a lag of 100

steps between samples.
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view our model of social reasoning as capturing an orthogonal aspect of the phenomenon, and further work

should explicitly integrate computational-level principles of social reasoning with process-level mechanisms

of sequential belief updating. Second, our model provides a foundation for accounting for related message

involvement effects (e.g., emotion, attractiveness of source), presentation effects (e.g. numerical vs. verbal

descriptions), and social affiliation effects (i.e., whether the source is in-group) that have been examined in

real-world settings of persuasion [e.g. 96, 37, 20, 115, 29, 40], These settings also involve uncertainty about

the scale of possible argument strength, unlike the clearly defined interval of lengths in our paradigm. Third,

while the weak evidence effect emerges after a single level of social recursion, it is natural to ask what happens

at higher levels: what about a more sophisticated speaker who is aware that weak evidence may lead to

such inferences? Our paradigm explicitly informed participants of the speaker bias, but uncertainty about

the speaker’s hidden agenda may give rise to a strong evidence effect [120], where speakers are motivated to

avoid the strongest arguments to appear more neutral (see Appendix A.5). Based on the self-explanations we

elicited (Table A.2), it is possible that some participants who expected less strong evidence were reasoning

in this way. These individual differences are consistent with prior work reporting heterogeneity in levels of

reasoning in other communicative tasks [e.g. 43].

We used a within-participant individual differences design for simplicity and naturalism, but there are

also limitations associated with this design choice. For example, it is possible that the group of participants

who expected weaker evidence to be shown first could be systematically different from the other group

in some way, such as differing levels of inattention or motivation, that explains their behavior on both

speaker and listener trials. We aimed to control for these factors in multiple ways, including strict attention

checks (Appendix A.1) and self-explanations (Tables A.2 and A.3), which suggest a thoughtful rationale

for expecting weaker evidence. However, an alternative solution would be to explicitly manipulate social

expectations about the speaker in the cover story (e.g. training participants on speakers that tend to show

weaker or stronger evidence first). Such a design would license stronger causal inferences, but would also

raise new concerns about exactly what is being manipulated. A second limitation of our design is that

the speaker phase was always presented before the listener phase. It is already known that the order of

these roles may affect participants’ reasoning [e.g. 139, 136], but asocial accounts of the weak evidence effect

would not predict any relationship between speaker and listener trials under either order. Hence, we chose

the order we thought would minimize confusion about the task; it is not our goal to suggest that social

reasoning is spontaneous or mandatory, and we expect that social-pragmatic factors may be more salient in

some contexts than others [e.g. when evidence is presented verbally vs. numerically, as in 96].
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Probabilistic models have continually emphasized the importance of the data generating process, dis-

tinguishing between assumptions like weak sampling, strong sampling, and pedagogical sampling [65, 136,

151, 150]. Our work considers a fourth sampling assumption, rhetorical sampling, where the data are not

necessarily generated in the service of pedagogy but rather in the service of persuasive rhetoric. Critically,

although we formalized this account in a recursive Bayesian reasoning framework, insights about rhetorical

sampling are also compatible with other frameworks: for example, work in the anchor-and-adjust framework

may use similar principles to derive a relationship between information sources and reference points.

Such socially sensitive objectives may be particularly key in the context of developing artificial agents

that are more closely aligned with human values. As an example, the AI safety via debate framework [67]

involves agents compete in a debate game to produce the most true, useful information for a human to judge

in a decision-making task. While the initial version of this model posed agents playing a zero-sum game

using Monte Carlo Tree Search [24], it is plausible that an human-plausible agent model with a theory of

mind about the target of persuasion can produce more useful information. This would be in line with other

research indicating the importance of human-like AI models for tasks in which humans and AI systems must

cooperate [26, 61].
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Chapter 4

Measuring Cooperation with

Counterfactual Planning

Antigonus, leader of Socho, received [his

Torah] from Shimon the Just. He used to say:

“Don’t be like servants who serve their master

for the sake of receiving a reward; instead be

like servants who serve their master with the

understanding that they will not receive a

reward. And let the awe of heaven be upon

you.”

Pirkei Avot 1:3

4.1 Introduction

In the trees of the Tai Forest in Côte d’Ivoire, chimpanzees hunt for red colobus monkeys in groups. Each

chimpanzee shares the goal of hunting the monkey, and each chimpanzee benefits from the participation of

the other chimpanzees in order to increase the likelihood that the prey is caught. Therefore, each chimpanzee

is acting in a way that is conducive to the good of the group—this would appear to be a paradigmatic case

of cooperative behavior.

However, there is another characterization of this sequence of events [154]. One chimpanzee initiates the
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hunt in the knowledge that other chimpanzees are in the area, and then each other chimpanzee will in turn

take the position that best maximizes its own likelihood of catching the prey. This has the cumulative effect

of each chimpanzee blocking the monkey’s next best path of escape. Importantly, each of the chimpanzees

takes these actions individually and makes their plans solely according to its own self regard; there is no

central planning.

A similar dynamic can arise within artificial systems. Although central planning is possible in theory and

may be more likely to lead to desirable outcomes, due to its computational demand the approach is often

eschewed in favor of agents who learn and act independently in an environment without regard to the other

agents’ utilities [42]. In many cases, this can still lead to an outcome that is beneficial to all of the agents

[147].

In order to evaluate the cooperativeness of group behavior in both artificial multi-agent systems and

biological species, we need to be able to measure the cooperativeness of these systems [32, 31]. However,

as the preceding examples show, behavior that increases the total utility of the group is not necessarily

cooperative—in other words, the cooperativeness of behavior is underdetermined by the actual sequence of

events [116].

Previous work studying cooperation in artificial systems has focused on the design of environments within

which cooperation can be understood, using these to investigate what mechanisms can drive cooperation [7,

80, 66, 68, 118, 39, 38]. However, cooperative behavior is typically either declared so by fiat, or is defined

only in relation to the actual group outcome, without reference to the actions of uncooperative agents. An

alternative to this is to measure the alignment between individual and collective interests in the system as

a whole, such as through the price of anarchy [77] or the self-interest level [168].

In this paper, we propose a family of scalar measures of cooperation capable of precluding cases such

as that of unintended mutual benefit by being counterfactually contrastive: we subtract from the group’s

total utility the amount that would have been attained had the agent in question acted purely in their self-

interest. Our approach is agnostic to the mechanisms that distinguish between cooperative and competitive

modes of group behavior [75, 149, 148], and it does not require any manipulations of the external rewards

in the environment [91]. Moreover, we allow our measure to be contextual, in that it is relative to other

agents’ behavior, as well as customizable with respect to the time and space horizons, which can help to

disambiguate other gray areas of cooperative behavior that have been previously studied.

We define our measure on stochastic games, a formalization of multi-agent systems that allow for the

application of our measure on a broad class of artificial agents, as well as biological agents that can be
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modelled in this way [138]. Using this definition, we evaluate the behavior of multiple classes of agents with

different types of behavior in tabular social dilemmas, a common test bed in a variety of disciplines for

understanding cooperation [7]. We show that many of these behaviors are no longer regarded as cooperative

when our measure is applied to it, and other seemingly uncooperative behaviors become otherwise according

to our measure. Crucially, by making explicit the components of the measure, our measure can provide

an interpretable explanation of why behavior is cooperative or uncooperative. Moreover, by making the

choice of social welfare function one of these components, our measure also explains the respect in which

this behavior is cooperative, either by achieving a greater total utility, or a more equitable or fair outcome.

4.2 The challenges of defining cooperation

Cooperation has long been a subject of study in disciplines ranging from philosophy and economics to evo-

lutionary biology and cognitive science [7, 154, 157, 78]. In these disciplines, we investigate the mechanisms

that allow for cooperative behavior, the degree to which it leads to greater flourishing for a system as a

whole, and what the motivations are for cooperating in the first place. In turn, this allows us to build

artificial multi-agent systems that display cooperative properties, arguably essential as we begin to deploy

progressively more complex AIs in the real world.

In order to study cooperation with computational models, an initial approach is simply to declare be-

haviors as cooperative or defecting by fiat. For example, in the Prisoner’s Dilemma, the classic one-shot

social dilemma game, the available actions to each player are to “Cooperate” or “Defect”. The conclusions

drawn from analyses of this game are subsequently generalized about cooperation as a broader concept [7].

However, this approach fails as we begin to examine systems acting in more complex environments that are

capable of a richer range of behaviors: these behaviors will arguably now be cooperative to different degrees,

with the cooperativeness of each behavior not necessarily being obvious [80].

Hence the need to define a measure on the cooperativeness of behavior. At a first pass, we might do this

by simply evaluating the sum of all utilities attained by the group, also referred to as the utilitarian welfare

[66, 81]; other welfare metrics such as fairness or sustainability could also be considered [6]. One drawback

of this approach is that the cooperativeness of behavior is defined on groups as a whole, whereas it would be

desirable for a measure to tell us if one agent were acting more cooperatively than others within the group.

More importantly, however, solely evaluating the actual outcome erroneously includes cases such as the

aforementioned chimpanzee group hunting in which a mutually beneficial outcome results from individual
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agents acting solely in their own self-regard. A related phenomenon occurs in evolutionary biology in which

two species feed upon the waste product of the other: this is known as byproduct reciprocity. Unless this

behavior is selected for because of the beneficial effect on the recipient (or at least partially because of this

effect), this is not classed as cooperation [166].

Another issue when defining cooperation relates to the time horizon over which it is evaluated. The utility

accrued from a group behavior, either to the individual or the entire group, may vary in its magnitude and

valence over time. For example, consider the case of costly punishment as a means of enforcing a societally-

beneficial norm: by invoking the punishment in response to a violation, the whole group is harmed in the

short term, but with the expectation that these harms will be compensated for by a mutually beneficial

outcome in the longer term. The degree to which this punishment is cooperative is therefore ambiguous

without reference to this time horizon. A related notion in evolutionary biology is that of reciprocal altruism,

in which individuals take turns helping each other in a costly way with the expectation that they will be

helped in the future [155]. The term “altruism” is commonly taken to be a misnomer in relation to this

phenomenon [54, 166], and this mistake can be clarified with appeal to the time horizon in question: while

“reciprocally altruistic” behavior is costly to the agent performing it in the short term, in the long term we

expect that the reciprocated benefits will justify this cost, so that the behavior can eventually be considered

as self-interested.

4.3 Desiderata for a measure of cooperation

To address these common pitfalls, we divide the desiderata for a measure of cooperation into three broad

categories: that it should be counterfactually contrastive, customizable, and contextual.

Counterfactually contrastive The absolute returns in total utility can be a misleading guide to the

cooperativeness of a system: in certain situations, these returns might result without any cooperation taking

place. We call a measure counterfactually contrastive if it sets as a baseline the behavior of agent(s) acting

uncooperatively.

However, defining this baseline is not straightforward. For instance, consider a process-level approach

whereby we contrast the agent with a counterpart that has had the mechanisms which allow for it to

cooperate removed. For a human-like agent, the relevant cognitive mechanism in question might be the

capacity to form a theory-of-mind about other agents [23, 175], so that cooperativeness would be measured

by the difference between the actual outcome for the group and the outcome for the group if that agent’s
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theory-of-mind capabilities were removed.

This process-level approach has two limitations. Firstly, it would mean that each class of agent would

have a different version of the measure applied to it depending on what its cooperative mechanism is—a

measure would ideally be agnostic to these process-level details. Secondly, even within a particular class

of agents it is non-trivial to specify what these mechanisms are. In the above example, while a theory-of-

mind might be necessary for human-like cooperation to occur, it is certainly not sufficient: a theory-of-mind

equally allows for enhanced competitive behavior [75]. In general, the boundary between “cooperative” and

“non-cooperative” components of decision-making is too blurred to be of use for a measure of cooperation.

As a mechanism-agnostic alternative, we can base our measure on the contrast between an agent acting

in accordance with its own goals, rather than the goals of the group. This is much simpler to evaluate for

any given agent, as we need only consider what that agent’s best response is to the behavior of the rest

of the system, assuming the agent is only concerned with its own goals. This captures the individualized

description of what truly occurs during chimpanzee group hunting [154].

One drawback of this approach is that it seems to rule out the idea that cooperation occurs ultimately

as a result of agents acting in their own self-interest. In the context of evolutionary biology, much of the

cooperation of biological systems is explained in terms of the direct fitness benefits that accrue to the

cooperating agent. A contrastive measure of cooperation that used self-interest as a baseline would therefore

appear to preclude any form of cooperation that has direct fitness as its basis as being true cooperation. To

address this issue, we must go to the next category of desiderata.

Customizable A measure of cooperation should be customizable insofar as it allows variations to certain

components that are key to determining how cooperative a given behavior is.

One such component is the time scale over which the behavior is evaluated. This is important for

understanding the challenge posed by direct fitness explanations of cooperation: the self-interested benefits

of direct fitness accrue only in the long term, whereas in the short term the behavior in question may seem

counterintuitive from the self-interested perspective.

For example, a cleaning symbiosis exists between certain species of fish, in which a “cleaner” fish will

enter into a “host” fish to consume the ectoparasites that live within it [155]. The host fish allows the cleaner

fish to do this, even allowing the cleaner to exit when the cleaning is done. Though consuming the cleaner

fish would provide an immediate benefit to the host, the host forgoes this in return for the opportunity for

future cleaning, either by the same cleaner or another of its species. As a function of this time horizon, the
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cooperativeness of this behavior would start as being positive before converging to zero. Punishments for

norm violations would be an inverse to this case, starting negative and eventually going to zero or even a

positive value under a potential measure.

Another important component of any evaluation of cooperative behavior is the way in which social

outcomes are valued: while a typical choice would be to take the sum of all relevant agents’ utilities, this

does not always capture everything that we care about for a given outcome. For instance, we might instead

evaluate success in terms of the utility of the worst-off agent, or in terms of the equitability of outcomes for

each individual agent. The choice of metric for each social outcome will vary depending on the multi-agent

system in question, and should not be held as a fixed component of the cooperative measure.

Contextual Finally, a measure should be contextual, so as to reflect the idea that the cooperativeness of

an individual agent’s actions depends on those of the other agents in the system they are interacting in.

Hence, when measuring the cooperativeness of the agent, it will always be relative to the other agents in

question. We can nonetheless derive the cooperativeness of the system as a whole by taking the average

cooperativeness of each agent in the context of each other agent, though importantly this cooperativeness

should fundamentally be a measure on individual behavior.

By making the measure contextual, we also make explicit the subgroup of agents on which the social

outcomes are considered. While this subgroup may include all of the agents in the environment, this is not

a requirement: in the example of predator-prey interactions, we do not consider the utility of the prey to be

a factor in the cooperativeness of the group hunting behavior.

4.4 Measuring cooperation in stochastic games

We define our measure of cooperation within the framework of a stochastic game [137, 138]

(
S, N,

N∏
i=1

Ai, P,

N∏
i=1

Ri, γ, ρ

)
.

For an overview of this framework, refer to Sec 1.2.2 of the Introduction.

Assuming the agents follow policies π = (π1, ..., πN ), we can write the value of a state s for agent i as:

V (i)
π (s) = Eπ

[ ∞∑
t=T

γt−TRi(st, at)

∣∣∣∣ sT = s

]
. (4.1)
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Figure 4.1: A schematic of the cooperation measure. A multiagent system consisting of three robots (Blue,
Orange, and Green) has three outcomes, one actual and two potential, with utilities to each agent represented
by stacked colored bars. The cooperativeness measure for Blue’s policy consists of subtracting from the actual
welfare (given here by total utility) the welfare for the selfish outcome, that is, the outcome for which Blue’s
utility is the largest.

To measure the social outcome of a stochastic game, we use a welfare metric w that is a function of each

agent’s value function, which we can then weight by the initial state distribution ρ. A typical choice is to

use the utilitarian welfare as our metric, wU : π 7→
∑

s∈S
∑N

i=1 ρ(s)V
(i)
π (s).

If we fix the policies of all agents except for i (denoting these as π−i), the stochastic game reduces to a

single-agent Markov Decision Process (MDP). Let BRi(π−i) denote the (non-empty) set of optimal policies

(or best responses) for agent i in the context of the other agents choosing policies π−i, i.e., the set of solutions

to the single-agent MDP.

Finally, we define our measure of cooperation for a policy πi in the context of π−i as the welfare of these

policies, minus the best possible welfare of agent i’s best response policy:

c(πi;π−i) = w(πi,π−i)− max
π∗
i ∈BRi(π−i)

w(π∗
i ,π−i). (4.2)

A schematic diagram explaining this definition can be seen in Fig. 4.1.

By defining a scalar measure for cooperation, we are now able to evaluate the degree to which a policy

is cooperative or uncooperative, and therefore we can also make comparative judgements between different
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policies. Intuitively, the measure evaluates the extent to which policy πi improves the social welfare over the

(best) outcome that would have resulted from the agent acting purely in its self-interest.

This definition is clearly contextual, as the cooperativeness of πi depends on the context of the other

agents’ policies π−i. Moreover, the definition clearly depends on the choice of welfare and discount factor.

Each of these serves as an example of the measure’s customizability, with the discount factor capturing the

notion of a relevant time horizon..

The measure is also counterfactually contrastive in the sense set out above. In this case, we take the

relevant counterfactual to hold fixed the policies of the other agents, and consider a self-interested agent to be

one who maximizes its value in response to these policies. Since evaluating the counterfactual only requires

us to find the best self-interested policy, it is agnostic to the internal mechanisms of the agent in question.

In the environments we are interested in, we can compute optimal policies to arbitrary precision with value

iteration [146], although for more complex systems we can also approximate the cooperation measure by

using reinforcement learning to find approximate solutions to this problem.

4.5 Experiments in Social Dilemmas

To understand how our measure captures the intuitive notion of cooperative behavior, we focus on social

dilemmas [35]. This class of games, studied in a wide variety of disciplines, involve interactions of agents

with mixed motives in which agents acting in their own individual self-interest can effect an outcome that is

worse than if all agents had cooperated. These dilemmas are therefore designed so as to clearly differentiate

between cooperative and uncooperative behavior in a way that ought to be apparent in our measure.

We measure the cooperativeness of different kinds of behaviors that have been studied in these games.

Moreover, by varying the context of other agents, as well as the time horizon, we show the impact that these

parameters have on the cooperativeness of the agent behavior in question.

4.5.1 Matrix Game Social Dilemmas

To motivate the applicability of our measure, we begin by evaluating the cooperativeness of different strategies

in four matrix games. The first three of these are the canonical one-shot social dilemmas that are designed

to elucidate the opposing pressures of individual rationality and ideal collective action [85, 126, 89].

In these games, two agents have the choice of actions C (for Cooperate) or D (for Defect). The agents

prefer mutual C to mutual D, mutual C to unilateral C, and mutual C yields a higher total utility than
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and Byproduct Mutualism. The top tow shows the payoff matrices for each game, with the colors representing
the value of the total utility (calculated by adding the players’ payoffs in each cell). The bottom row shows
the heatmaps for the cooperativeness score for the row player’s action in the context of the column player’s
action.

mutual D. However, in each game, we have that either unilateral D is preferable to mutual C (so that

you can do better by exploiting a cooperator than cooperating with one), or that mutual D is preferable

to unilateral C (so that being exploited is worse than not cooperating with a would-be exploiter). Chicken

meets only the first of these disjuncts, Stag Hunt only the second, and Prisoner’s Dilemma meets both.

The bottom row of Fig. 4.2 shows the cooperativeness of each row player’s action in the context of the

column player’s action, using total utility as welfare. Holding fixed this context, we see that C is always

strictly more cooperative than D, supporting the interpretation of C and D as cooperation and defection,

respectively. Notably, in Byproduct Mutualism there is no pair of actions with a positive cooperativeness

score. This is due to the fact that in this game the dilemma is completely relaxed: it is better to cooperate

irrespective of the partner’s decision, and so the choices that lead to the highest collective utility are also

precisely the ones that self-interested actors would take.
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4.5.2 Iterated Social Dilemmas

When we move to the iterated Prisoner’s Dilemma, in which agents interact in a Prisoner’s Dilemma ad

infinitum, there is no strictly dominant individual strategy in this game.1 Nonetheless, a number of strategies

have been proposed with desirable properties [7, 111, 140]. We limit our strategies to those that depend

on at most one previous interaction, referred to as memory-1 strategies: this includes strategies such as

(Suspicious)-Tit-for-Tat ((S)TFT), Win-Stay-Lose-Shift (PAVLOV), and Grim (GRIM) (and their stochastic

variants), but excludes others such as Tit-for-Two-Tats or Majority that require keeping track of a longer

history. Hence, the MDP that arises from fixing the opponent’s strategy to one of these will have five states

(one for each possible action combination, and an additional initial state), making it tractable to solve so

that we can compute the cooperativeness scores analytically.

Fig. 4.3 shows the cooperativeness measure applied to six deterministic memory-1 strategies, with each

strategy being evaluated in the context of the other agent adopting every other strategy from the group.

Strategies that take action C in more states generally score higher than strategies that take action D.

However, we also see that the context policy plays an important role in determining the cooperativeness of

the evaluated policy. In particular, in the context of policies that punish defection (either for one turn as in

the case of (S)TFT or forever as in the case of GRIM), ALL C does not rank as cooperative, as it becomes the

best-response strategy. This supports the intuition that cooperating in the face of potential punishment is

not as cooperative as unconditional cooperation, allowing us to distinguish between coercion and cooperation

[133].

In addition to evaluating the cooperativeness of the most common deterministic memory-1 strategies, we

ran a further analysis on all 25 = 32 such strategies. Averaging over the possible deterministic other-agent

contexts, we find that the policies that always end up cooperating (such as ALL C) and the policies that

always end up defecting (such as ALL D) strategies attain the highest and lowest cooperativeness scores, on

average (+10.5 and −9.5, respectively).

We also see the impact that the discount factor has on the measure of cooperativeness. If the column

player adopts the TFT policy, then a row player will be able to exploit the fact that this strategy cooperates

in the initial turn, at the expense of a defection in the subsequent turn. Therefore, if future rewards are

sufficiently discounted relative to immediate rewards, it is optimal for the row player to initially defect.

However, if future rewards are not significantly discounted, then it is in the row player’s best interest to

always cooperate. Fig. 4.4 shows the cooperativeness of each memory-1 strategy in the context of TFT plotted

1Refer to Appendix B.1 for analyses of the iterated Chicken and Stag Hunt.
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against the discount factor: cooperative policies such as ALL C score positively on cooperativeness for lower

values of the discount factor, with the score eventually tending towards zero. On the other hand, defecting

policies such as ALL D have cooperativeness scores that begin at zero before tending towards −∞.

4.5.3 Tabular Cleanup

Though iterated matrix games can lead to a richer range of behaviors through the use of memory-based

strategies, the actions themselves that these strategies are defined over nonetheless treat cooperate and

defect as primitives. A more faithful depiction of social dilemmas demands more complex strategies that

apply to policies over richer action and state space. To this end, we investigate a simplified version of the

social dilemma Cleanup [121, 66, 2, 59, 162]. This an example of a public goods dilemma, in which an

individual must pay a personal cost in order to provide a resource that is shared by all [76].

The original version of Cleanup is an example of a sequential social dilemma [80]. These are typically

formulated as being partially observable, so that each agent has only incomplete information on the state of the

game (in this case, by limiting each agent’s field of vision to a small subgrid of pixel values). Training agents to

maximize rewards in such games typically requires example-inefficient deep reinforcement learning algorithms

such as PPO [134, 174], in addition to policy models based on neural networks that must first learn to map

pixel observations onto appropriate features. While our measure of cooperativeness is sufficiently general to

capture such cases (any RL algorithm could find an “approximate best-response”, giving a cooperativeness

upper-bound), we believe that we can still develop insights about public goods dilemmas such as Cleanup

without resorting to as much complexity.

To this end, we propose a simplified version we refer to as Tabular Cleanup: this game consists of N

players who can choose between the actions Clean, Eat, and Punish Player i for i = 1, ..., N . The state space

consists of the actions taken by each player at the previous time-step, and the number of apples currently

available, which can range from 0 to 3N − 1. An apple grows with a probability linearly proportional to the

number of agents choosing Clean, with the probability ranging from 0 to 1. If an agent chooses to eat an

apple, it receives a reward of +1.0, unless there are fewer apples available than agents eating, in which case

the reward is divided amongst the eaters. If an agent chooses to punish another agent, it imposes a −2.0

reward deduction from the target, at an expense of −0.5 reward. For N = 2, we exclude the possibility of

self-punishment for simplicity.

We consider two- and three-player instantiations of Tabular Cleanup, leading to state spaces of sizes 54

and 1125, respectively. This includes states which are not reachable from any other state: we therefore define
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the distribution over initial states according to the states reached by starting with a uniformly random choice

over actions and numbers of apples. We evaluate the following policies:

• Always X: This policy takes a constant action across all states. When there are three players, Always

Punish punishes another player at random.

• Take Turns: This policy alternates between cleaning and eating.

• TFT : In the two-player version, this policy reciprocates the action taken by its co-player in the previous

timestep. In the three-player version, TFT n will clean if n players are also cleaning, and will eat

otherwise. Hence, TFT 2 is a more “suspicious” reciprocator than TFT 1 [2].

• Nash: This policy cleans when there are no apples available, and eats otherwise. As the name suggests,

this is a Nash equilibrium to both versions of the game.

• Prosocial : This policy cleans when there are fewer apples available than the number of players, and eats

otherwise. This was derived by solving the MDP derived from the two-player game with a centralized

actor controlling both agents, and a reward consisting of the sum of the player’s rewards. However,

while this policy is maximally prosocial for the two-player game, it is not for the three-player game.2

Figures 4.5 and 4.6 show the results of evaluating each of these policies in a variety of contexts. In the

two-player case, as expected, the Prosocial policy is the most cooperative on average across all contexts, and

Always Punish the least. However, in many contexts and for both number of players, Always Clean is less

cooperative than Always Eat, and Take Turns is more cooperative than both. This can be explained by the

fact that eating contributes to the collective reward through adding to your own reward, and so choosing to

clean in states where there are a sufficient number of apples for all agents needlessly forgoes a reward that

contributes to the joint welfare. While such a result is intuitive, it is obscured by discussions of Cleanup

that simply equate cooperativeness with the frequency at which each agent cleans [66].

These results can also be interpreted as providing a quantitative argument that specialization can be

crucial to cooperation depending on the context. In the context of an agent that always eats, it is in fact

more cooperative to focus on cleaning. However, in the converse context, eating becomes more imperative

for increasing the joint welfare.

2We in fact find that no maximally prosocial policy exists for the three-player game that is the same for all three players.
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4.6 Conclusion

Evaluating cooperativeness in multi-agent systems comprising of both people and AIs requires an under-

standing of cooperation that is human-plausible. In particular, our approach should accord with human-like

judgments of behavior that rely on the posing of “what-if” scenarios involving the agent under evaluation

acting in its own self-interest.

In this paper, we have motivated and specified a framework for measuring cooperative behavior that

is contextual, customizable, and counterfactually contrastive. The cooperativeness measure is defined on

a broad class of games and is agnostic to the mechanisms that drive cooperation, making it applicable

to a variety of agent models. We then evaluated this measure in the space of deterministic policies in

iterated social dilemmas, showing that the measure works in accordance with our intuitions and is capable of

precluding examples of non-cooperative group behavior that contingently provide a group benefit. Finally,

we expanded our evaluations to Tabular Cleanup: a stochastic game with a larger state space representing

a temporally-extended social dilemma.

Future work will expand these evaluations to the sequential social dilemmas specified by the Melting

Pot experimental suite [2], which introduce further complexity through temporally extended policies whose

cooperative properties are not necessarily clear from taking a single action. These environments would also

allow us to investigate the properties of the measure for environments involving more than two agents, and

whether cooperation arises only within certain subgroups.

Furthermore, our measure could be used to detect collusion between a subgroup of agents by contrasting

the agents’ cooperativeness within the subgroup to the cooperativeness within the overall group [98].
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Chapter 5

Conclusion

In this dissertation, we defined and proposed human plausibility as a unifying framework for building both

single- and multi-agent models that can successfully interact with humans. Within this framework, we

presented three projects motivated by this principle.

First, we showed how human-plausible representations and learning mechanisms, in the form of the

successor representation and prioritized replay, can be used to create algorithms that exhibit human-like

transfer and generalization behavior. This can be useful in creating predictive models of how people make

split-second decisions when presented with unseen tasks, which can then be leveraged when designing systems

that are deployed in time-critical applications.

We then showed how a recursive Bayesian model of speaker-listener interactions in which the speaker

has persuasive goals can form a human-plausible account of inference from communicated evidence. This is

essential for designing agents that must make choices about what information to present to a human and

need to reason intelligently about how that information might be processed.

Finally, we proposed a tractable measure for the evaluation of cooperative behavior based on human-

plausible intuitions about what constitutes such behavior in different contexts, where different counterfactuals

might hold. This is an important methodological intervention in a field where the misevaluation or misdi-

agnosis of cooperative behavior may lead to disastrous consequences when an algorithm is deployed in the

world at large.

By way of these projects, we hope to have demonstrated the fruitfulness of human plausibility as a concept

for organizing and progressing our decision-making about how we can best design AIs that are to be used

in everyday life. There is further work to be done in each of these projects, as outlined in the conclusions
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of each chapter. Moreover, the general framework of human plausibility will naturally be enriched as we

continue to develop our models of human intelligence. Beyond these avenues, the most interesting future

projects in this direction might seek to understand further how humans interact with human-plausible AI,

and what dynamics this may lead to in turn as the AI learns policies in response. This becomes increasingly

relevant as the applications of AI systems expand into more areas of our lives. It also begs the question

of how these interactions differ, depending on whether they occur in the context that the presence of AI is

made explicit, or in the context of a “Turing test”-like scenario in which this is unknown.

Perhaps, as expansions in computational resources and theoretical models push us further along within

this framework, we will build a clearer picture of the true nature of the gap between the behavior of humans

and that of intelligent machines.
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Julia Haas, and Joel Z. Leibo. Doing the right thing for the right reason: Evaluating artificial moral

cognition by probing cost insensitivity. 2023. arXiv: 2305.18269 [cs.AI].

[92] Antoine Marot, Benjamin Donnot, Karim Chaouache, Adrian Kelly, Qiuhua Huang, Ramij-Raja

Hossain, and Jochen L Cremer. “Learning to run a power network with trust”. In: Electric Power

Systems Research 212 (2022), p. 108487.

[93] Antoine Marot, Benjamin Donnot, Gabriel Dulac-Arnold, Adrian Kelly, Aidan O’Sullivan, Jan Viebahn,

Mariette Awad, Isabelle Guyon, Patrick Panciatici, and Camilo Romero. “Learning to run a power

network challenge: a retrospective analysis”. In: NeurIPS 2020 Competition and Demonstration Track.

PMLR. 2021, pp. 112–132.

67

https://openreview.net/forum?id=Bk8ZcAxR-
https://openreview.net/forum?id=Bk8ZcAxR-
https://arxiv.org/abs/2305.18269


[94] Antoine Marot, Benjamin Donnot, Camilo Romero, Balthazar Donon, Marvin Lerousseau, Luca

Veyrin-Forrer, and Isabelle Guyon. “Learning to run a power network challenge for training topology

controllers”. In: Electric Power Systems Research 189 (2020), p. 106635.

[95] David Marr. Vision. San Francisco, CA: W. H. Freeman, 1982.

[96] Kristy A Martire, Richard I Kemp, M Sayle, and Ben R Newell. “On the interpretation of likelihood

ratios in forensic science evidence: Presentation formats and the weak evidence effect”. In: Forensic

Science International 240 (2014), pp. 61–68.

[97] Marcelo G Mattar and Nathaniel D Daw. “Prioritized memory access explains planning and hip-

pocampal replay”. In: Nature Neuroscience 21.11 (2018), pp. 1609–1617.

[98] Parisa Mazrooei, Christopher Archibald, and Michael Bowling. “Automating collusion detection in

sequential games”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 27. 1. 2013,

pp. 675–682.

[99] Craig R M McKenzie, Susanna M Lee, and Karen K Chen. “When Negative Evidence Increases Con-

fidence: Change in Belief After Hearing Two Sides of a Dispute”. In: Journal of Behavioral Decision

Making 15.1 (2002), pp. 1–18.

[100] Craig RM McKenzie and Jonathan D Nelson. “What a speaker’s choice of frame reveals: Reference

points, frame selection, and framing effects”. In: Psychonomic Bulletin & Review 10.3 (2003), pp. 596–

602.

[101] Jörg Meibauer. The Oxford handbook of lying. Oxford University Press, 2019.

[102] Candice M Mills and Asheley R Landrum. “Learning who knows what: Children adjust their inquiry

to gather information from others”. In: Frontiers in Psychology 7 (2016), p. 951.

[103] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, DaanWierstra,

and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning. 2013. arXiv: 1312.5602

[cs.LG].

[104] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. MIT

Press, 2018.

[105] Ida Momennejad. “A rubric for human-like agents and NeuroAI”. In: Philosophical Transactions of

the Royal Society B 378.1869 (2023), p. 20210446.

68

https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602


[106] Ida Momennejad. “Learning structures: Predictive representations, replay, and generalization”. In:

Current Opinion in Behavioral Sciences 32 (2020), pp. 155–166.

[107] Ida Momennejad, A Ross Otto, Nathaniel D Daw, and Kenneth A Norman. “Offline replay supports

planning in human reinforcement learning”. In: Elife 7 (2018), e32548.

[108] Ida Momennejad, Evan M Russek, Jin H Cheong, Matthew M Botvinick, Nathaniel Douglass Daw,

and Samuel J Gershman. “The successor representation in human reinforcement learning”. In: Nature

Human Behaviour 1.9 (2017), pp. 680–692.

[109] Andrew W Moore and Christopher G Atkeson. “Prioritized sweeping: Reinforcement learning with

less data and less time”. In: Machine Learning 13.1 (1993), pp. 103–130.

[110] Giuseppe Mosconi and Laura Macchi. “The role of pragmatic rules in the conjunction fallacy”. In:

Mind & Society 2.1 (2001), pp. 31–57.

[111] Martin Nowak and Karl Sigmund. “A strategy of win-stay, lose-shift that outperforms tit-for-tat in

the Prisoner’s Dilemma game”. In: Nature 364.6432 (1993), pp. 56–58.

[112] Daniel J O’Keefe. Persuasion: Theory and research. Sage Publications, 2015.

[113] Lauren A Oey, Adena Schachner, and Edward Vul. “Designing good deception: Recursive theory

of mind in lying and lie detection”. In: Proceedings of the 41st Annual Conference of the Cognitive

Science Society. 2019, pp. 897–903.

[114] Lauren A Oey and Ed Vul. “Lies are crafted to the audience”. In: Proceedings of the 43rd Annual

Meeting of the Cognitive Science Society. 2021, pp. 791–797.

[115] Hee Sun Park, Timothy R Levine, Catherine Y Kingsley Westerman, Tierney Orfgen, and Sarah

Foregger. “The effects of argument quality and involvement type on attitude formation and attitude

change: A test of dual-process and social judgment predictions”. In: Human Communication Research

33.1 (2007), pp. 81–102.

[116] Cédric Paternotte. “Minimal cooperation”. In: Philosophy of the Social Sciences 44.1 (2014), pp. 45–

73.

[117] Judea Pearl and Dana Mackenzie. The Book of Why: the New Science of Cause and Effect. New York:

Basic Books, 2018.
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Appendix A

Appendix to Chapter 3

A.1 Exclusions and attention checks

Our pre-registered exclusion criteria used two basic attention checks. First, participants were required to

complete a comprehension quiz immediately following the task instructions, and we excluded participants

who failed to successfully complete this quiz within three attempts. Second, at the end of the experiment,

we asked participants to use a slider to indicate the degree of bias they believed each contestant exhibited.

These motivations were stated explicitly in the instructions (e.g. “the red contestant will receive $10 if the

judge chooses “shorter,” otherwise the blue contestant will receive $10”) so, although participants may differ

in the degree to which they thought such incentives would bias the contestants away from neutrality, we took

responses in the opposite direction of the incentive as indicative of inattentiveness or misunderstanding of

task instructions.

We therefore coded bias check responses as “incorrect” if the slider response was inconsistent with the

bias given in the instructions (e.g. if the short-biased contestant received a slider rating above the mid-

point, s ≥ 50− ϵ, or the long-biased contestant received a slider rating below the midpoint, s ≤ 50 + ϵ where

we set ϵ = 5 to allow for the possibility of motor jitter from participants who intended to use the exact

midpoint.) In our pre-registered second sample (reported in the main text), 793 participants completed

instructions and 723 (91%) of them passed the attention check.

While these pre-registered criteria were designed to ensure that apparent differences in speaker and

listener behavior were not simply driven by general attentional factors, it is possible that participants who

did not expect the strongest evidence to be shown in the speaker phase (238 participants, or 33%) were still
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group n
both 2AFC and point
estimate consistent

generative model
also consistent

strongest first 485 0.97 0.89
not strongest first 238 0.96 0.86

Table A.1: Stricter attention check passage rates broken out by speaker group.

systematically less attentive than other participants. To address this concern, we analyzed a series of other

measures to assess the degree of attention and task understanding across “speaker expectation” groups.

Specifically, we examine internal consistency within several post-test questions, where we asked participants

(i) to make a final two-alternative forced choice verdict about whether the sample of sticks is ‘longer’ vs.

‘shorter’ than 5 inches, (ii) to provide a point estimate of their best guess of the actual mean on a slider

ranging from 1 inch to 9 inches, and (iii) to guess the values of the remaining three sticks that were not

revealed, allowing us to impute a “generative” average across the two observed values and the three guessed

values (Table A.1).

We say a participant passed the 2AFC check if their binary verdict (‘longer’ vs. ‘shorter’) is consistent

with the direction of their point estimate. We say a participant also passed the stricter “generative” check if

the average imputed from their guesses for the remaining three unobserved sticks matches their 2AFC and

point estimates. We observe that rates for the these stricter checks were somewhat lower for participants

who expected speakers not to show the strongest evidence first (97% vs. 96%, and 89% vs. 86%, respec-

tively), though neither of these differences was significant, χ2(1) = 0.76, p = 0.38 and χ2(1) = 1.05, p = 0.31,

respectively. Rates were far above chance for all groups. To ensure robustness, we re-ran our primary

analyses on the subset of participants that passed the strictest conjunction of all checks, which is highly im-

probable under an inattentive null model, and obtained nearly identical results (most crucially, a significant

interaction, t(718) = 5.18, p < 0.001).
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Figure A.1: Participants revised their beliefs after obtaining a second piece of evidence. Each facet represents
participants who were given the same initial piece of evidence (blue dots) with each arrow connecting their
judgment after the first piece of evidence and the second piece of evidence. In most cases, participants
revised their estimates down, although participants who showed a weak evidence effect for the first stick (top
column) also displayed a classical weak evidence effect on the second piece of evidence (e.g. in the second
row, participants who saw a 7” stick on the first trial were slightly more confident the average was longer
after seeing a 4” stick).
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Figure A.2: We found strong order effects, with the belief judgment elicited after the second stick apparently
affected by a recency bias. Under perfect averaging, the diagonal would leave the judge with complete
uncertainty (denoted on our color scale by white), since the evidence from both the longer side (blue) and
the shorter side (red) should cancel out.

A.2 Order effects

While we focus on the first piece of evidence as the clearest weak evidence effect, we also collected a second

response after a second piece of evidence was shown by the other speaker. These responses are visualized

in Fig. A.1. As expected, we observed a recency effect (more easily observed in the diagonal of Fig. A.2,

where evidence from the “short”-biased and “long”-biased speakers were equally strong), where participants

weighted the second piece of evidence more strongly.

A.3 Proofs

Theorem 1. The speaker model using the combined utility Eq. 3.6 simplifies to Eq. 3.8 for the stick contest

task.

Proof. We begin by substituting the combined utility (Eq. 3.6) into the speaker softmax:

S(u|w,w∗) ∝ exp{α · U(u;w,w∗)}

= exp{α · [Uepi(u;w) + β · Upers(u;w
∗)]}

= exp{α · Uepi(u;w)} · exp{α · β · Upers(u;w
∗)}
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Now, using Eq. 3.3 to expand the first term, note that

Uepi(u;w) = lnPL0
(w|u) = ln

P (w)δJuK(w)∑
w P (w)δJuK(w)

=

 − lnN if JuK(w)

−∞ o.w.

where N is the number of sticks in the true set (N = 5 in our experiment). However, we already assume

that the set of possible utterances U are the true sticks in the underlying set (i.e. the contestants cannot

make up sticks, they must choose one of the N sticks in the set), so

exp{α · Uepi(u,w)} =

 α/N if JuK(w)

0 o.w.

= α/N

Because all utterances have the exact same epistemic utility Uepi, this term drops out of the soft-max:

S(u|w,w∗) ∝ exp{α · Uepi(u;w)} · exp{α · β · Upers(u;w
∗)}

∝ exp{α · β · Upers(u;w
∗)}

= exp{α · β · lnL0(w
∗|u)}

yielding Eq. 3.8.

Theorem 2. Persuasiveness monotonically increases as a function of stick length.

Proof. We say an utterance u is more persuasive than an utterance u′ when

Upers(u | w∗) > Upers(u
′ | w∗).

Under the stick contest, let L = {l1, . . . , lN} be an partially-ordered set of N stick lengths, such that li ≤ lj

for any index i < j. We denote the mean stick length by l̄ = 1
N

∑
i li. Without loss of generality, let the

speaker’s persuasive goal be w∗ = shorter = l̄ < 5 (the argument follows analogously for longer). Take

two utterances u = li and u′ = lj such that li ≤ lj (i.e. such that u is just as short or shorter than u′). First,
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we expand the utility:

Upers(u | shorter) = lnL0(shorter | u)

= lnP (l̄ < 5 | li)

= lnP

(
li +

∑
l−i

N
< 5

)
= lnP

(∑
l−i < 5N − li

)

Now, let X be a random variable representing the sum of the N − 1 still-unknown sticks, X =
∑

l−i. Then

we recognize this as the cumulative distribution function (CDF), FX(x) = P (X < x). Because the underlying

set of sticks L is assumed to be i.i.d., note that the random variable X =
∑

l−i does not depend on the

original choice of i. Critically, we know that the cumulative distribution function is monotonic increasing

in x, i.e. FX(a) ≤ FX(b) for a ≤ b. Hence if li ≤ lj then 5N − li ≥ 5N − lj and FX(5N − li) ≥ FX(5N − lj):

U(u | shorter) = lnP
(∑

l−i < 5N − li

)
= lnFX(5N − li)

≥ lnFX(5N − lj)

= U(u′ | shorter)

A.4 Results from original sample

The results reported in the main text are based on a pre-registered replication we conducted during the

revision of the manuscript (May 2022). In this appendix, we report the corresponding results from our

original sample (February 2020). The only methodological difference between the original study and the

internal replication was the way we counter-balanced the order of the “long”- vs. “short”-biased contestants.

In our original study, the “long”-biased contestant always presented their evidence first; in our replication, the

order of the contestants was randomized. Additionally, in our replication, we added the following clarification

to the instructions: “Sticks ranging in length from 1 to 9 inches are equally likely to appear in the set.”

Participants in the initial sample were recruited on the Prolific platform, with no restriction on country. Of
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the 784 participants who successfully completed the instructions, 708 passed the second attention check.

Our regression model was the same as in the main text, except we did not include a fixed effect of “long” vs.

“short”: all participants were shown evidence from the “long”-biased speaker. As in the study reported in the

main text, we found a significant interaction between speaker expectations and evidence strength on beliefs

about the underlying mean, t(704) = 5.9, p < 0.001. For participants who expected the speaker to provide

the strongest evidence (421 participants or 60% of our sample), the weak evidence provided by a six inch

stick backfired, leading them to instead expect that the mean stick length was significantly less likely to be

longer than five inches, m = 37.5, 95% CI: [33.1, 41.9], t(98) = −5.7, p < 0.001. Meanwhile, for participants

who expected to be shown the second-longest stick (40% of the sample), no weak evidence effect was found,

with the ‘longest stick’ group significantly different from the other groups, t(167) = −5.5, p < 0.001.

A.5 Model fitting details

A.5.1 RSA model

We used the following priors for our Bayesian data analysis:

y ∼ Gaussian(µ+ o, 0.3)

pz ∼ Unif[0, 1]

β ∼ Unif[0, 10]

o ∼ Unif[−0.5, 0.5]

where pz is the mixture weight used for heterogeneous models, µ = PLi(longer|u) ∈ [0, 1] is the RSA listener

model’s posterior belief, and o is a uniform offset included to allow for systematic response biases in use of the

slider. Intuitively, Gaussian(µ+ o, 0.3) can be viewed as a simple way of scoring the error between the model

prediction µ+ o and the participant’s response y. For the speaker-dependent model, we used independent

priors depending on the participant’s choice of stick j: p
(j)
z ∼ Unif[0, 1]. Because there were relatively fewer

participants who expected the longer speaker to choose 0.2 or 0.4 (sticks that were in the opposite direction

of their goal; and vice versa for the shorter speaker), we collapsed these participants together, forming three

groups: those who expected the strongest evidence to be presented first (e.g. who selected {0.2, 0.9} for the

short and long biased speakers, respectively), those who expected the second-strongest to be presented first
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(e.g. who selected {0.4, 0.8}, respectively), and those who expected less strong evidence. However, our

findings are robust to whether we collapse these groups or not.

A.5.2 Belief-adjustment models

In the notation of McKenzie, Lee, and Chen [99], Eq. 3.9 is written:

Ck = Ck−1 + wk · (s(ek)−R), (A.1)

where Ck ∈ [0, 1] is the degree of belief in a particular claim after being presented with evidence ek, s(ek)

is the independently judged strength of evidence ek, R is a reference point, and wk ∈ [0, 1] is an adjustment

weight for evidence ek. In the adding variant of the belief-adjustment model, Hogarth and Einhorn [62] argue

that the evidence should be encoded in an absolute manner, letting R = 0 and s(ek) ∈ [−1, 1], and assuming

that if s(ek) ≤ R then wk = Ck−1, otherwise wk = 1− Ck−1.
1 To allow the reference point for evidence to

be more demanding than neutrality, McKenzie, Lee, and Chen [99] proposed replacing the reference point R

with a Minimum Acceptable Strength (MAS) threshold (m | e), that depends on the evidence previously

presented. We can therefore rewrite Eq. A.1 as

Ck = Ck−1 + wk · (s(ek)− (mk | e1, ..., ek−1)). (A.2)

To fit this class of models to our data, we follow Trueblood and Busemeyer [156], assuming a mapping

between stick length and evidence strength given by a centered logistic function:

strength(u) =
1

1 + exp (−B · (u− 5))
− 0.5, (A.3)

where the logistic growth rate B is fit to the data (we used a uniform prior B ∼ Unif[0, 10]). This function

satisfies several desiderata: it is monotonically increasing in the size of the stick, it is bounded in the

interval [−1, 1], and it is centered in line with the prior over stick lengths, so that a stick of length 5 inches

has a strength of 0.5.

For the anchor-and-adjust (AA) variant, we fix the reference point as R = 0, and for the minimum

1The averaging variant, in which evidence is encoded in relationship to the current belief in the hypothesis, is more suited
for estimation tasks involving some kind of moving average [62], whereas the Stick Contest is better described as an evaluation
task in which a single hypothesis is under consideration (“is the sample long?”). We also found empirically that the adding
variant provided a better fit to the data than the averaging variant.
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acceptable strength (MAS) variant, we infer a reference point with prior R ∼ Unif[−1, 1]. We consider

homogeneous variants in which the entire population is assumed to share the same model with the same

parameters, as well as a heterogeneous model, in which we assume a priori that participants are a convex

combination of the two models. As in the RSA models, we infer the mixture weight pz that best explains

the population-level mixture (marginalizing over latent variable assignments z).

A.5.3 Higher levels of reasoning and the strong evidence effect

While our cover story explicitly provided participants with the motivations of speakers, in terms of their

financial incentives, these motivations are less obvious in most real-world scenarios. They must be inferred

from what the speaker is saying. This is straightforwardly derived in our framework by allowing the listener

to jointly infer the true state of the world w and the speaker’s bias β:

PL1
(w, β | u) ∝ PS1

(u | w, β) · P (w) (A.4)

Our formulation raises a natural question about how speakers would behave if they were aware judges

were making such inferences. This emerges at the next level of recursive reasoning:

PS2
(u | w, β) ∝ exp

(
|β| ln

(
PL1

(w∗ | u)− wc · C(u)
))

. (A.5)

where C(u) represents some cost associated with being perceived as biased by the judge:

C(u) = Eβ∼PL1
(·|u)

[
|β|
]
, (A.6)

and wc ≥ 0 is a parameter specifying the degree of the cost. We included a L2 model who reasons about this

listener in our model comparison (i.e. allowing participants to be explained by a convex combination of all

three levels) and found that this three-level speaker-dependent model leads to improved performance over the

two-level speaker-dependent model (max likelihood = 16.2, WAIC= −18.3± 8.9, PSIS-LOO= −9.2± 8.9.)

We conjecture that this formulation is required to account for the strong evidence effect [120], in which the

desire to appear unbiased leads a speaker to choose weaker evidence in spite of the presence of stronger

alternatives, but leave further investigation for future work.
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A.6 Transcript of the Experiment

The written instructions for our experiment are reproduced below. Note that the task can be seen exactly as

participants experienced it (e.g. with images) using the code released in our repository: https://github.

com/s-a-barnett/bayesian-persuasion.

In this task, you will serve as the judge for a heated game between these two contestants.

The two contestants in this game have been given a set of sticks ranging in length from very long

ones to very short ones. Sticks ranging in length from 1 to 9 inches are equally likely to appear

in the set. One contestant (shown in pink) will be rewarded handsomely if they can convince you

that the average length of these sticks is shorter than 5in (see dotted line). The other (shown

in blue) will get paid if if they can convince you that the average length of these sticks is longer

than 5in (see dotted line). In this case, the average length is 6in, so the position that this person

was arguing for was true. As the judge, however, you will not be able to see the full set of sticks:

you will only see what the contestants choose to show you. They will each get to show exactly

one of the five sticks to convince you. After you see each stick, you will use this slider to report

how strongly you are leaning in your decision. If you think the stick average is more likely to

be shorter than 5in, click further to the left. If you think it is more likely to be longer than 5in,

click further to the right.
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Figure A.3: The raw data distribution of responses for the listener phase, where each individual (jittered)
point is a different participant and the boxplot represents the median (dark line) and first and third quartiles
(top and bottom of box) of the response distribution.
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phase, and the grey region represents the 95% confidence interval of the empirical data.
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Figure A.5: Full Bayesian posteriors for the parameters of the speaker-dependent RSA model. In the
top panel, the MAP parameter values are found to be (β∗, o∗) = (2.26,−0.11). The bottom panel shows
the posteriors over mixture weights pz for the different speaker groups. The MAP parameter values for
are pz = 0.10 for the less strong evidence group and pz = 0.97 for the strongest evidence group.
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group What was your strategy for selecting sticks as a speaker?

strongest
evidence

If I need them to believe more than 5 inch i’d choose the biggest and opposite

for below 5 inch — either choose the longest if I am blue, or the shortest if I am red — I

picked the longest or shortest stick based on what I wanted the judge to believe

— Trying to show the extremes for each argument so the judge thinks the average is more
likely to be closer to those — I think it’s best to show the longest/shortest stick you

own - to make it appear that they’re all very long/short — i guess it was to show
extremes of the sizes of sticks i had, show the smallest on or the tallest one — my strategy was

to create the illusion that the average lenght is bigger in the case I am the

blue contestant by showing the longest sticks only, and the same with the red

one only showing the shortest. — Pick the shortest or longest one to bump up or reduce
the avearge

weaker
evidence

Selected slightly towards where the first stick suggested — I actually want to avoid
the highest or lowest if I can at first to give the impression that you yourself have picked a
more ”average” stick. — Not going too far either way, but just enough to seem less

obvious. — To show a slightly longer or shorter length than the average to try persuade the
judge otherwise. — show some variation to gain trust — try to keep them guessing

Table A.2: Participants were presented with a free-response text field to explain their reasoning at the end
of both phases. Here we provide sample responses from the end of the speaker phase, from both participants
who expected the strongest evidence and those who expected less strong evidence.

group How did you reach your decision as a judge?

strongest
evidence

6 is not very much over the average that their trying to prove - which makes me

think that al the other sticks are even shorter than that." — I was thinking that
the pink player would choose the shortest stick, whilst the blue would choose the longest — if

4cm was the shortest stick available then the maximum number of sticks above 5cm

would be 4 — blue showed me a very long stick meaning there would have to be an opposite
short stick to average it out. pink however did not show a very short stick suggesting there aren’t
any. — the blue would have shown a longer one if it was there — I assume that blue
would be likely to pick the longest possible stick as they have an incentive to make me think the
average is above 5in; if they only present a 6in stick, it is likely that the average is under 5in.

weaker
evidence

tried to do a average — Felt the pink player was bluffing — thge average of the 2

sticks was shorter than 5 — Looking at the average of the values I’d been given so far
— seemed similar to how I played it so assumed there were more long ones to come

like in my strategy — the contestant is likely to trick you

Table A.3: Sample responses from the end of the judge phase, from both participants who expected the
strongest evidence and those who expected less strong evidence.
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Appendix B

Appendix to Chapter 4

B.1 Full results across multiple welfare functions

We evaluate the cooperativeness measure on each game using three different welfare metrics. Let V1, V2, ..., VN

denote the values for N agents in the environment. These metrics are then defined as:

• Total Value:
∑N

i=1 Vi.

• Minimum Value: mini=1,2,...,N Vi.

• Equality: 1−
∑N

i=1

∑N
j=1|Vi−Vj |

2N
∑N

i=1 Vi
.
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Figure B.1: Cooperativeness of six common deterministic policies in the Iterated Prisoner’s Dilemma, in the
context of each other policy. The cooperativeness is valued on the initial state, with a discount factor γ = 0.9.

89



A
lw

ay
s 

C
le

an

A
lw

ay
s 

E
at

A
lw

ay
s 

P
un

is
h

N
as

h

P
ro

so
ci

al

TF
T

Ta
ke

 T
ur

ns

Context Policy

Always Clean

Always Eat

Always Punish

Nash

Prosocial

TFT

Take Turns

E
va

lu
at

ed
 P

ol
ic

y

-7.5 1.4 -4.5 1.2 -0.8 -5.9 -1.4

-1.1 -2.7 -2.5 -1.4 -1.4 -3.9 -2.0

-37.5 -32.9 -34.5 -31.8 -33.8 -62.9 -32.7

0.0 0.0 -0.0 0.0 0.0 0.0 -0.0

-0.5 1.4 -0.6 1.4 -0.2 0.8 1.2

-8.2 -3.6 -32.3 -1.2 -1.8 -23.3 -1.1

-2.6 -0.5 -0.9 0.0 -0.2 0.1 0.0

Total Utility

A
lw

ay
s 

C
le

an

A
lw

ay
s 

E
at

A
lw

ay
s 

P
un

is
h

N
as

h

P
ro

so
ci

al

TF
T

Ta
ke

 T
ur

ns

Context Policy

0.0 -2.4 -4.5 -3.1 -0.9 -1.8 -2.7

0.0 -1.3 -2.5 -0.7 -0.0 -0.6 -0.9

-20.0 -20.4 -14.5 -18.7 -17.0 -30.2 -19.1

0.0 0.0 -0.0 0.0 0.0 0.0 0.0

0.0 -1.6 -0.6 -2.3 2.9 1.4 -0.0

-0.7 -1.9 -13.6 -2.0 1.6 -10.2 -0.2

0.0 -0.7 -0.9 -0.5 1.8 1.4 0.5

Minimum Payoff

A
lw

ay
s 

C
le

an

A
lw

ay
s 

E
at

A
lw

ay
s 

P
un

is
h

N
as

h

P
ro

so
ci

al

TF
T

Ta
ke

 T
ur

ns

Context Policy

0.5 -0.5 0.1 -0.5 -0.1 0.6 -0.4

0.0 0.0 0.0 0.0 0.0 0.2 -0.0

0.7 0.1 -0.1 0.1 0.5 0.3 0.2

0.0 0.0 0.0 0.0 -0.0 -0.0 0.0

0.0 -0.4 0.0 -0.4 0.4 0.2 -0.1

0.9 -0.1 -0.1 -0.3 0.3 0.3 0.1

0.0 -0.1 0.0 -0.1 0.2 0.3 0.1

1  Gini Coefficient

Figure B.2: Cooperativeness of seven deterministic policies in the 2-player Tabular Cleanup, in the context
of each other policy, for all three welfare functions. The cooperativeness is valued on the initial state, with
a discount factor γ = 0.9.
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Figure B.3: Cooperativeness of eight deterministic policies in the 3-player Tabular Cleanup, in the context
of two players playing the same context policy, for all three welfare functions. The cooperativeness is valued
on the initial state, with a discount factor γ = 0.9.
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