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ABSTRACT

As diffusion models become increasingly popular, the misuse of copyrighted and
private images has emerged as a major concern. One promising solution to miti-
gate this issue is identifying the contribution of specific training samples in gen-
erative models, a process known as data attribution. Existing data attribution
methods for diffusion models typically quantify the contribution of a training
sample by evaluating the change in diffusion loss when the sample is included
or excluded from the training process. However, we argue that the direct us-
age of diffusion loss cannot represent such a contribution accurately due to the
calculation of diffusion loss. Specifically, these approaches measure the diver-
gence between predicted and ground truth distributions, which leads to an in-
direct comparison between the predicted distributions and cannot represent the
variances between model behaviors. To address these issues, we aim to measure
the direct comparison between predicted distributions with an attribution score
to analyse the training sample importance, which is achieved by Diffusion At-
tribution Score (DAS). Underpinned by rigorous theoretical analysis, we eluci-
date the effectiveness of DAS. Additionally, we explore strategies to accelerate
DAS calculations, facilitating its application to large-scale diffusion models. Our
extensive experiments across various datasets and diffusion models demonstrate
that DAS significantly surpasses previous benchmarks in terms of the linear data-
modelling score, establishing new state-of-the-art performance. Code is available
at [https://anonymous.4open.science/r/Diffusion-Attribution-Score-411H

1 INTRODUCTION

Diffusion models, highlighted in key studies (Ho et al.l 2020} |Song et al., |2021b)), are advancing
significantly in generative machine learning with broad applications from image generation to artis-
tic creation (Saharia et al., 2022} Hertz et al., 2023} [L1 et al., 2022; Ho et al.| [2022). As these
models, exemplified by projects like Stable Diffusion (Rombach et al.l|2022), become increasingly
capable of producing high-quality, varied outputs, the misuse of copyrighted and private images has
become a significant concern. A key strategy to address this issue is identifying the contributions of
training samples in generative models by evaluating their influence on the generated images, a task
known as data attribution. Data attribution in machine learning is essential for tracing model out-
puts back to influential training examples and understanding how specific data points affect model
behavior. In practical applications, data attribution spans various domains, including explaining
predictions (Koh & Liang, [2017; [Yeh et al., 2018} [Ilyas et al., 2022), curating datasets (Khanna
et al., 2019; Jia et al., [2021} [Liu et al.l |2021)), and dissecting the mechanisms of generative models
like GANs and VAEs (Kong & Chaudhuril 2021} Terashita et al., |2021), serving to enhance model
transparency and explore the effect of training data on model behaviors.

Data attribution methods generally fall into two categories. The first, based on sampling (Shap-
ley et all 1953} |Ghorbani & Zoul 2019 [Ilyas et al., [2022), involves retraining models to assess
how outputs change with the deletion of specific data. While effective, this method requires train-
ing thousands of models—a formidable challenge given today’s large-scale models. The second
approach uses approximations to assess the change in output for efficiency (Koh & Liang, 2017;
Feldman & Zhang| 2020; [Pruthi et al., |2020), which may compromise precision. We discuss more
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related work about data attribution, especially designed for diffusion models in Appendix [A]due to
limited pages. Recent advancements have led to innovative estimators like TRAK (Park et al.,|2023),
which linearizes model behavior using a kernel matrix analogous to the Fisher Information Matrix.
Additionally, [Zheng et al.| (2024) proposed D-TRAK, which adapts TRAK to diffusion models by
setting the output function as the diffusion loss. However, this setting conducts an indirect com-
parison between the predicted distributions since the diffusion loss is equivalent to the divergence
between predicted and ground truth distributions (Ho et al., 2020). They also reported counterintu-
itive findings that the diffusion loss can be replaced with other output functions without modifying
the form of the attribution score, and the results of these empirical designs surpass diffusion loss
with theoretical designs, highlighting the need for a deeper understanding of diffusion models in
data attribution.

In this paper, we first present a theoretical analysis to address the challenges associated with directly
applying TRAK to diffusion models, which also explain the counter-intuitive observations noted in
D-TRAK. Further, we propose a novel attribution method termed Diffusion Attribution Score (DAS),
specifically designed for diffusion models to quantitatively assess the impact of training samples on
model outputs by measuring the divergence between predicted distributions when the sample is
included or excluded from the training set, which includes a self-contained derivation. Additionally,
we explore several techniques to expedite the computation of DAS, such as compressing models
or datasets, enabling its application to large-scale diffusion models and significantly enhancing the
practicability of our approach. The primary contributions of our work are summarized as follows:

1. We offer a comprehensive analysis of the limitations when directly applying TRAK to
diffusion tasks. This theoretical examination sheds light on the empirical success of D-
TRAK and fosters the development of more effective attribution methods.

2. We introduce DAS, a theoretically solid metric designed to directly quantify discrepancies
in model outputs, supported by detailed derivations. We also discuss various techniques,
such as compressing models or datasets, to accelerate the computation of DAS, facilitating
its efficient implementation.

3. DAS demonstrates state-of-the-art performance across multiple benchmarks, notably ex-
celling in linear datamodeling scores.

2 PRELIMINARIES

2.1 DIFFUSION MODELS

Our study concentrates on discrete-time diffusion models, specifically Denoising Diffusion Proba-
bilistic Models (DDPMs) (Ho et al.l [2020) and Latent Diffusion Models (LDMs) which are foun-
dational to Stable Diffusion (Rombach et al.| 2022)). This paper grounds all theoretical derivations
within the framework of unconditional generation using DDPMs. Below, we detail the notation
employed in DDPMs that underpins all further theoretical discussions.

Consider a training set S = {z(1), ..., 2"} where each training sample z(*) := (¥ y()) ~ Z
is an input-label pailﬂ Given an input data distribution g(x), DDPMs aim to model a distribution
pe(x) to approximate g(x). The learning process is divided into forward and reverse process, con-
ducted over a series of timesteps in the latent variable space, with o denoting the initial image and
x; the latent variables at timestep ¢ € [1, 7). In the forward process, DDPMs sample an observation
x( from S and add noise on it across T timesteps: q(x¢|x;—1) := N (x4; /1 — By, By I), where
51, ..., Br constitute a variance schedule. As indicated in DDPMs, the latent variable x; can be
express as a linear combination of xg:

Ty = /oy + V1 — e, (D
where oy := 1 — B¢, a4 = Hi:l ag and € ~ N(0,I). In the reward process, DDPMs model a
distribution pg(2;—1|x¢) by minimizing the KL-divergence from data at ¢:
2

5; 2
ol —ay€eme@ ol @

Dxvpo(i—1]|es)l|g(xi—1]|Ts, 20)] = Eernr(o,n)l

'In text-to-image task, z := (x‘, y) represents an image-caption sample, whereas in unconditional gener-
ation, it solely contains an image z := ().
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where €y is a function implemented by models # which can be seen as a noise predictor. A simplified
version of objective function for a data point « used to train DDPMs is:

Lsimpe(,0) = Ee 4[| |€0 (x4, ) — €]|]. 3)

2.2 DATA ATTRIBUTION

Given a DDPM trained on dataset S, our objective is to trace the influence of the training data on
an output generated for a particular sample z. This task is commonly referred to as data attribution.
A common approach to data attribution involves addressing a counterfactual question: if a training
sample z(?) is removed from S and a model 6\, is retrained on the remaining subset S\ ;, the influence

of z(") on the sample z can be assessed by the change in the model output, computed as f(z,6) —
f(z,6\;). The function f(z,6), which represents the model output, has a variety of choices, such
as the direct output of the model or its loss function.

To circumvent the high computational costs associated with retraining models, some data attribution
methods compute a scoring function 7(z,S) : Z x Z™ — R", which assigns scores reflecting the
importance of each training sample in S for the sample z under consideration. For clarity, 7(z, S) ()
denotes the attribution score assigned to the influence of the individual training sample z(*) on z.

TRAK (Park et al.| 2023)) stands out as a representative data attribution method designed for large-
scale models focused on discriminative tasks. TRAK defines the model output function as:

frrax(z,0) = log[p(z, 0) /(1 — p(z, )], )

where p(x, 0) represents the probability of the corresponding class y for the sample z. TRAK
introduces an attribution function Trgax (2, S)(i) designed to approximate the change in fgak(2,6)
following the deletion of a data point. This is expressed as:

TTRAK(Z7S)(i) = (ZS(Z)T((I’T‘I))_l?b(Z(i))T(i) ~ fTRAK(Z79) - fTRAK(zve\i)s (5)

where (¥ = 1 — p(z?), §) denotes the residual for sample z(*). Here, ¢(2) :== P Vg frrak (2, 6)
and ® := [¢p(z(V), ..., p(2("™)] represents the matrix of stacked gradients from S. P ~ A/(0,1)?**
is a random projection matrix (Johnson & Lindenstrauss, |1984) employed to reduce the dimension
of the gradient Vg frrax(2;6) € R? to k. This function computes a score indicating the influence
of a training sample z; on the sample of interest z in a discriminative model setting.

To adapt TRAK in diffusion models, D-TRAK (Zheng et al.| [2024) modifies the output function to
align with the objective function described in Eq.[3} fp1rak(2;6) = Lsimpie (€, #), and simplifies the
residual term to an identity matrix I. The attribution function in D-TRAK is defined as follows:

TD-TRAK(zaS)(i) = ¢(Z)T(‘I>T‘I’)_1¢(z(i))1 ~ fD-TRAK(z7 9) - fD-TRAK(Z79\i), (6)

where ¢(z) := P"Vqformak(z,0) mirrors the gradient term used in TRAK. Interestingly, D-
TRAK has observed that substituting the function fprrax With other functions can yield supe-
rior attribution performance. Examples of these include Lsyue(2,0) = E;[||€s(zs,)||?] and
Lavernge( 2, 0) = Ey [Avg(€g (¢, t))], both of which have enhanced attribution capabilities.

3 METHODOLOGY

In this section, we introduce the Diffusion Attribution Score (DAS), a novel data attribution method
designed specifically for diffusion models to assess the impact of training samples on the generative
process. While D-TRAK adapts TRAK for generative tasks using the Simple Loss as the output
function, we critically evaluate its limitations in Section [3.T]and propose a more appropriate output
function for diffusion models. Based on this improved output function, we formally define DAS in
Section [3.2] tailored specifically for generative tasks in diffusion models. Finally, in Section [3.3]
we explore the application of DAS to large-scale diffusion models and present strategies to enhance
computational efficiency.
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3.1 RETHINKING THE DESIGN OF MODEL OUTPUT FUNCTION

Reviewing the goal of data attribution within diffusion models, suppose we have a set of training
data S and wish to measure the influence of a specific training sample z(?) on a generated sample
z#". This task can be approached by addressing the counterfactual question: How would the model
output change for z#" if we removed z(*) from S and retrained the model on the subset S\;? D-
TRAK proposes using 7p.trak t0 approximate this difference based on the Simple Loss:

Torak (25, S)(i) ~ forrak (25", 0) — forrax (257, 9\1‘)
= Ectlllea(®i™, 1) — €l’] — Eclllen,, (257, 1) — €[], @)

where €y, , denotes the noise predictor trained on S\ ;. However, from a distribution perspective, this
approach involves an indirect comparison of KL-divergences between the model distributions and
the data distribution to indicate the distances between model distributions:

Tomak (257, 8)) & Dic[po(2*")||a(@*")] — Dk [po,, (@) [la(*")]. ®)

This indirect comparison may introduce errors when evaluating the differences between pg (") and
o, (z*"). For instance, both distributions might approach the data distribution g(z#") from dif-
ferent directions, yet exhibit similar distances. To enable a more direct comparison, we propose the
Diffusion Attribution Score (DAS) to assess the KL-divergence between the predicted distributions:

Toas (25, S)1) & Dicr [po () [po,, ()]
~ Eetllles (i ) — eq,, (i, 1)]]%]. ©)
The output function in DAS is defined as fpas(z,6) = ep(xf™", t), which is able to directly reflect
the differences between the noise predictors of the original and the retrained models. Eq. 9] also
validates the effectiveness of employing L. as the output function, which is formulated as:

Tquee (27, 6) 1~ Ec[llea (5, )[|°] — Eeolll€o,, (5, 1)]%]- (10)

This approach also mitigates the influence of indirect comparisons. However, the subtraction used
here does not constitute any recognized type of distance metric. Furthermore, the matrices €y and
€p,, Which retain the same high dimensionality as the input images x*", should not be represented

merely by scalar values, whether by average or L? norm, as this leads to a loss of dimensional
information. For instance, these matrices might exhibit identical differences across various dimen-
sions, an aspect that scalar representations fail to capture. This dimensional consistency is crucial
for understanding the full impact of training data alterations on model outputs.

3.2 DIFFUSION ATTRIBUTION SCORE

In diffusion models, the generative process involves a series of generative steps, and the model
produces outputs at 7" different timesteps. In this section, we explore methods to approximate Eq. 0]
at a specific timestep ¢ without the necessity for retraining the model, which aims to evaluate the
influence of training data on the model’s generation.

gen

Linearing Output Function. Computing the output of the retrained model €y, , (x5, t) is compu-
tationally expensive. To enhance computational efficiency, we propose linearizing the model output
function using its Taylor expansion centered around the final model parameters 6*, simplifying the
calculation as follows:

fons(24,0) = €+ (x4, 1) + Voege (x4, 1) T (6 — 67%). (11)
By substituting Eq. [T1]into Eq.[9] we derive:
Tons (227, );") & Ee[| Voeo- (57, 1) T (0" — 65,)]°). (12)

The subscript ¢ indicates the attribution score for the model output at timestep . Consequently,
the influence of removing a sample from subset S\; on the model output can now be quantitatively
evaluated through the changes in model parameters, which can be measured by the leave-one-out
method, thereby significantly reducing the computational overhead.
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Estimating the model parameter. Consider using the leave-one-out method, the variation of the
diffusion model parameters can be assessed by Newton’s Method (Pregibon, [1981). By removing
a training sample z(), the counterfactual parameters 0@ can be approximated by taking a single
Newton step from the optimal parameters 6*:

0" —05; < *[Vaee*(S\iﬁt)TVeee* (S\it,t)rlveee*(g\mt)TR\it, (13)

where €+ (S¢, t) 1= [€p= (mgl), t), ..., €p (:cgn), t)] represents the stacked output matrix for the set S
at timestep ¢, and R; := diag[eg(:cgz), t) — €] is a diagonal matrix describing the residuals among S.
A detailed proof of Eq.[T3]is provided in Appendix

Let g;(x() = Vgeg*(wgi),t) and G¢(S) = Vpep-(Ss,t). The inverse term in Eq. |13| can be
reformulated as:

Gt(S\i)TGt(S\i) = Gt(S)TGt(S) - gt(m(i))—l—gt(iv(i))- (14)
Applying the Sherman-Morrison formula to Eq. [T4] simplifies Eq.[13]as follows:

[G4(S) T G4(S)] gy (a@)r(”

O T T @) (G S TGO s (@)’

5)

where rfi) is the ¢-th element of R;. A detailed proof of Eq in provided in Appendix

Diffusion Attribution Score. By substituting Eq[I5]into Eq[T2] we derive the formula for comput-
ing the DAS at timestep ¢:

9:(@=")[G(S) T G(S)] ' gi(xV)r(”
1— g, (@) T[(G,(S)TG,(S)] g, (2®)

This equation estimates the impact of training samples at a specific timestep ¢. The overall influence
of a training sample z() on the target sample z#" throughout the entire generation process can be
computed as an expectation over timestep t. However, directly calculating these expectations is
extremely costly. In the next section, we discuss methods to expedite this computation.

Toas(25",S){) = B[ Ik (16)

3.3 EXTEND DAS TO LARGE-SCALE DIFFUSION MODEL

There are some difficulty in calculating Eq.[16]on large-scale diffusion model, where the calculation
of inverse term is extremely costly. Besides, we need to calculate gradients for all training samples
in S and the dimension of gradient is large. In this subsection, we discuss some techniques to speed
up the calculation of Eq.[I6] These methods can be roughly divided by two kinds, the first is to
reduce the dimension of gradient, which accelerates the computation of inverse term. The other is
to reduce the computation of gradients, by reducing the calculation of expectations and candidate
training samples.

Reducing Dimension of Gradients. The dimension of g;(z(")) is as large as that of the diffusion
model itself, which poses a challenge in calculating the inverse term due to its substantial size. There
are strategies to simplify this calculation by reducing the dimensionality of the gradient.

One effective method is to apply the Johnson and Lindenstrauss Projection (Johnson & Linden-
strauss, [1984). This technique involves multiplying the gradient vector g;(z(”)) € RP by a random
matrix P ~ A(0,1) € RP*¥(k < p), which can preserve inner product with high probability while
significantly reducing the dimension of the gradient. This projection method has been validated in
previous studies (Malladi et al.| 2023 Jacot et al.| 2018} |[Park et al.}[2023), demonstrating its efficacy
in maintaining the integrity of the gradients while easing computational demands. With the above
speed up techniques, we summarize our algorithms in Algorithm |I]

In addition to projection methods, other techniques can be employed to reduce the dimension of
gradients in diffusion models. For instance, as noted by Ma et al.| (2024), the up-block of the U-
Net architecture in diffusion models plays a pivotal role in the generation process. Therefore, we
can focus solely on the gradients of the up-block for dimension reduction purposes, optimizing
computational efficiency.
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Furthermore, when applying large-scale diffusion models to downstream tasks, various strategies
have been proposed to fine-tune these models efficiently. One such approach is LoRA (Hu et al.,
2022), which involves freezing the pre-trained model weights while utilizing trainable rank de-
composition matrices. This significantly reduces the number of trainable parameters required for
fine-tuning. Consequently, when attributing the influence of training samples in a fine-tuned dataset,
we can selectively use the gradients of these trainable parameters to compute the DAS.

Reducing Calculation of Expectations. Computing ¢ times the equation specified in Eq. [16] is
highly resource-intensive due to the necessity of calculating inverse terms. To simplify this process,
we consider using the average gradient g(«) and average residual 7, which allows for a singular
computation of Eq.[T6]to evaluate the overall influence. However, during averaging, these terms may
exhibit varying magnitudes across different timesteps, potentially leading to the loss of significant
information. To address this, we normalize the gradients and residuals over the entire generative
process before averaging:

) (1)

:1:(1 , . (17
; zj ng(ww)] TZ ST el

Thus, to attribute the influence of a training sample z() on a generated sample 22" throughout the
entire generation process, we redefine Eq.[16|as follows:

g@)"[GES) GE) gz E
1-g(")T[GE)TGES)g(=)

TDAS(den7S)(i) = || (18)

Reducing the amount of timesteps. The computation of Eq. [I7|requires performing back propa-
gation 7' times to calculate the gradients, which is highly resource-intensive. The need to calculate
gradients at multiple timesteps can be effectively reduced by sampling fewer timesteps. This method
leverages statistical sampling techniques to estimate gradient behaviors across the generative process
while significantly reducing computational overhead.

Reducing Candidate Training Sample. The necessity to traverse the entire training set when
computing the DAS poses a significant challenge. To alleviate this, a practical approach involves
conducting a preliminary screening to identify the most influential training samples. Techniques
such as CLIP (Radford et al.,|2021) or cosine similarity can be effectively employed to locate sam-
ples that are similar to the target. By using these methods, we can form a preliminary candidate set
and concentrate DAS computations on this subset, rather than on the entire training dataset.

4 EXPERIMENTS

In this section, we conducted comparative analyses of our method, Diffusion Attribution Score
(DAS), against existing data attribution methods under various experimental settings. The primary
metric used for assessing attribution performance is the Linear Datamodeling Score (LDS) (llyas
et al., 2022)). Additionally, we evaluated the effectiveness of the speed-up techniques discussed in
Section Our findings indicate that DAS significantly outperforms other methods in terms of
attribution performance, confirming its capability to accurately identify influential training samples.

4.1 DATASETS AND MODELS

This subsection provides an overview of datasets and diffusion models utilized in our experiments.
A detailed description of each dataset and model configuration is available in the Appendix

CIFAR10 (32x32). The CIFAR-10 dataset (Krizhevsky, |2009) contains 50,000 training samples
across 10 classes. To evaluate DAS, we conducted experiments on the full CIFAR-10 dataset and a
subset, CIFAR-2, with 5,000 samples randomly selected from the automobile” and “horse” cat-
egories for computational efficiency and ablation studies. We used a 35.7M-parameter DDPM
model (Ho et al., 2020), generating images during inference with a 50-step DDIM solver (Song
et al.l[2021a).

CelebA (64 < 64). From original CelebA dataset training and test sets (Liu et al.,|2015)), we extracted
5,000 training samples. Following preprocessing steps outlined by [Song et al.|(2021b), images were
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Table 1: LDS (%) on CIFAR-2/CIFAR-10 with timesteps (10 or 100).

\ CIFAR2 \ CIFAR10
Method Validation Generation Validation Generation
10 100 10 100 10 100 10 100
Raw pixel (dot prod.) 7.77+0.57 4.89+0.58 2.504+0.42 2.254+0.39
Raw pixel (cosine) 7.87+0.57 5.444+0.57 2.71+0.41 2.614+0.38
CLIP similarity (dot prod.) 6.51+1.06 3.00+0.95 2.394+0.41 1.114+0.47
CLIP similarity (cosine) 8.54+1.01 4.01+0.85 3.394+0.38 1.694+0.49
Gradient (dot prod.) 5.144+0.60 5.07+0.55|2.80+0.55 4.03+0.51|0.794£0.43 1.40+0.42|0.74+£0.45 1.85+0.54
Gradient (cosine) 5.084+0.59 4.89+0.50 | 2.78+0.54 3.92+0.49 | 0.66+0.43 1.24+0.41|0.58+0.42 1.82+0.51
TracInCP 6.26+0.84 5.47+0.87 | 3.76+0.61 3.70+0.66 | 0.98+0.44 1.26+0.38 | 0.96+0.40 1.39+0.54
GAS 5.784+0.82 5.154+0.87 | 3.34+0.56 3.30+0.68 | 0.89+0.48 1.25+0.38 | 0.90+0.41 1.61+0.54
Journey TRAK / / 7.73+0.65 12.2140.46 / / 3.71+£0.37 7.26+0.43
Relative IF 11.20+0.51 23.43+0.46| 5.86+0.48 15.91+0.39| 2.76+0.45 13.56+0.39| 2.424+0.36 10.65+0.42
Renorm. IF 10.8940.46 21.46+0.42| 5.69+0.45 14.65+0.37| 2.73+0.46 12.58+0.40| 2.104+0.34 9.34+0.43
TRAK 11.4240.49 23.59+0.46| 5.78+0.48 15.87+0.39| 2.93+0.46 13.62+0.38| 2.20+0.38 10.33+0.42
D-TRAK 26.79+0.33 33.74+0.37|18.82+0.43 25.67+0.40{14.69+0.46 20.56+0.42(11.05+0.43 16.11+0.36
DAS \33.90:!:0.69 43.08:|:0.37\20.88:|:0.27 30.68:|:0.76\24.74:|:0.41 33.23+0.35 \15.24:!:0.51 23.69+0.47

initially center cropped to 140x140 and then resized to 64x64. The diffusion model used mirrors the
CIFAR-10 setup but includes an expanded U-Net architecture with 118.8 million parameters.

ArtBench (256 x256). ArtBench (Liao et al.,[2022) is a dataset of 60,000 images across 10 artistic
styles, curated for generating artwork. For our studies, we derived two subsets: ArtBench-2, with
5,000 samples from “post-impressionism” and “ukiyo-e,” and ArtBench-5, with 12,500 samples
from five styles—"post-impressionism,” ukiyo-e,” “romanticism,” “renaissance,” and “baroque.”
We fine-tuned a Stable Diffusion model on these datasets using LoRA (Hu et al., 2022) with 128
rank and 25.5M parameters. During inference, new images were generated using a 50-step DDIM

solver with a classifier-free guidance scale of 7.5 (Ho & Salimans) 2021}).

4.2 EVALUATION METHOD FOR DATA ATTRIBUTION

Various methods are available for evaluating data attribution techniques, including the leave-one-
out influence method (Koh & Liang) 2017; Basu et al.l [2021) and Shapley values (Lundberg &
Lee, [2017). These methods, however, present significant computational challenges in large-scale
settings. To overcome these issues, the Linear Datamodeling Score (LDS) (Ilyas et al.| [2022) has
been developed as an effective way to assess data attribution methods.

Given a model trained 6 on datset S, LDS evaluates the effectiveness of a data attribution method
7 by initially sampling a sub-dataset S’ C S and retraining a model 6’ on S’. The attribution-based
output prediction for an interested sample z'** is then calculated as:

gr(2,8'.8) == Y 7(z*.5)Y (19)

z(es!

The underlying premise of LDS is that the predicted output g, (z,S’,S) should correspond closely
to the actual model output f (2", 8’). To validate this, LDS samples M subsets of fixed size and
predicted model outputs across these subsets:

LDS(T, 2) := p ({f(2*%,0pm) : m € [M]},{g,- (2, S"™;D) : m € [M]}) (20)

where p denotes the Spearman rank correlation, S™ is the m-th subset and 6,, is the model trained
on that subset.

In our evaluation, we adopt the model output function setup from D-TRAK (Zheng et al.| |2024),
setting f (2", ) as the Simple Loss described in Eq. [3| for fair comparison. Although the output
functions differ between D-TRAK fp1rak(2,6) and our DAS fpas(z,6), both methods provide
consistent rankings among different subsets. We elaborate on the rationale behind the choice of
model output function in LDS evaluations in Appendix [E|

For the LDS setting, we set M = 64 in accordance with D-TRAK’s methodology, with each subset
containing half of the entire dataset’s size. For the CIFAR-2, ArtBench-2, and ArtBench-5 datasets,



Under review as a conference paper at ICLR 2025

Table 2: LDS (%) on ArtBench-2/ArtBench-5 with timesteps (10 or 100)

| ArtBench2 | ArtBench5
Method Validation Generation Validation Generation
10 100 10 100 10 100 10 100
Raw pixel (dot prod.) 2.444+0.56 2.60+0.84 1.8440.42 2.774+0.80
Raw pixel (cosine) 2.584+0.56 2.71+0.86 1.974+0.41 3.224+0.78
CLIP similarity (dot prod.) 7.184+0.70 5.33+1.45 5.2940.45 4.47+1.09
CLIP similarity (cosine) 8.62+0.70 8.66+1.31 6.571+0.44 6.63+1.14
Gradient (dot prod.) 7.684+0.43 16.00+0.51|4.07+1.07 10.23+1.08| 4.77+0.36 10.02+0.45| 3.89+0.88 8.17+1.02
Gradient (cosine) 7.724+0.42 16.04+0.49| 4.50+0.97 10.714+1.07| 4.96+0.35 9.85+0.44 | 4.14+0.86 8.18+1.01
TracInCP 9.69+0.49 17.83+0.58| 6.36+0.93 13.85+1.01| 5.33+0.37 10.87+0.47| 4.34+0.84 9.02+1.04
GAS 9.651+0.46 18.04+0.62| 6.74+0.82 14.274+0.97| 5.52+0.38 10.71+0.48| 4.48+0.83 9.13+1.01
Journey TRAK / / 5.96+0.97 11.41+1.02 / / 7.59+0.78 13.314+0.68
Relative IF 12.2240.43 27.25+0.34| 7.62+0.57 19.78+0.69| 9.77+0.34 20.97+0.41| 8.89+0.59 19.56+0.62
Renorm. IF 11.90+0.43 26.49+0.34| 7.83+0.64 19.86+0.71| 9.574+0.32 20.72+0.40| 8.974+0.58 19.38+0.66
TRAK 12.26+0.42 27.28+0.34| 7.784+0.59 20.02+0.69| 9.794+0.33 21.03+0.42| 8.794+0.59 19.54+0.61
D-TRAK 27.61+0.49 32.38+0.41|24.16+0.67 26.53+0.64|22.84+0.37 27.46+0.37|21.56+0.71 23.85+0.71
DAS \37.96:!:0.64 40.77:|:0.47\30.81:|:0.31 32.31:|:0.42\35.33:|:0.49 37.67:|:0.68\31.74:t0.75 32.77+0.53

we train three models per subset using different random seeds to ensure robustness. Conversely, for
the CIFAR-10 and CelebA datasets, a single model is trained per subset. Each experimental setup
involves creating a validation set from the original test set and a generated dataset, each containing
1,000 samples, which serve as z** for LDS calculations. Model outputs for validation and gener-
ation samples across these datasets are derived using three random seeds. Further details on these
configurations are available in the Appendix Additionally, a comprehensive description of the
LDS benchmarks is provided in Appendix

4.3 EVALUATION FOR SPEED UP TECHNIQUES

In this section, we detail the experiments conducted to evaluate the effectiveness of the speed-up
techniques applied in computing the DAS. The diffusion models used in our experiments vary sig-
nificantly in complexity, with parameter counts of 35.7M, 118.8M, and 25.5M respectively. These
large dimensions pose considerable challenges in calculating the attribution score efficiently. To
address this, we implemented speed-up techniques as discussed in Section [3.3] Due to space con-
straints, the results of these evaluations in this section are reported in the Appendix [F4]

Normalization. We evaluated the normalization of gradients and residuals, as proposed in Eq.
to stabilize gradient variability across timesteps and enhance computational efficiency and accuracy.
By normalizing gradients and residuals across all generation processes before averaging, as detailed
in Eq. we observed improved performance for both DAS and D-TRAK (Table ).

Number of timesteps. Computing DAS (Eq. [I8) requires balancing effectiveness and computa-
tional efficiency, as more timesteps improve performance through averaging but increase back-
propagation costs, especially for large datasets and projection dimensions. Experiments on CIFAR-2
(k = 4096) show that while increasing timesteps enhances LDS results (Table[5), using 100 or even
10 timesteps achieves comparable performance to 1000 timesteps with much lower computational
demands. Thus, subsequent experiments will default to 10 and 100 timesteps for optimal efficiency.

Projection. We applied the projection technique from Section to reduce gradient dimensions
and analyzed the impact of projection dimension k£ on LDS performance. As noted by |Johnson
& Lindenstrauss| (1984), higher projection dimensions better preserve inner products but increase
computational costs. Figure 2] shows that LDS scores for both D-TRAK and DAS improve with in-
creasing k before plateauing. Based on these results, we set k = 32768 as the default for subsequent
experiments.

Compress Model Parameters. We investigated reducing gradient dimensions at the model level
by computing gradients using only the up-block of the U-Net. As shown in Table [6] this ap-
proach achieves performance comparable to the full model configuration. Further experiments on
ArtBench-2 and ArtBench-5, using a LoRA fine-tuned Stable Diffusion model, confirmed the effec-
tiveness of using LoRA to compress model parameters.
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Table 3: LDS (%) on CelebA with timesteps (10 or 100)

Results on CelebA
Method | Validation | Generation
\ 10 100 \ 10 100
Raw pixel (dot prod.) 5.58+0.73 -4.9441.58
Raw pixel (cosine) 6.161+0.75 -4.384+1.63
CLIP similarity (dot prod.) 8.87+1.14 2.51£1.13
CLIP similarity (cosine) 10.92+0.87 3.03+1.13
Gradient (dot prod.) 3.82+0.50 4.8940.65 3.83+1.06 4.5340.84
Gradient (cosine) 3.654+0.52 4.7940.68 3.86+0.96 4.401+0.86
TracInCP 5.14+0.75 4.8940.86 5.18£1.05 4.50+0.93
GAS 5.4440.68 5.1940.64 4.6940.97 3.98+0.97
Journey TRAK / / 6.53+1.06 10.87+0.84
Relative IF 11.10+0.51 19.8940.50 6.8040.77 14.66+0.70
Renorm. IF 11.014+0.50 18.67+0.51 6.74+0.82 13.2440.71
TRAK 11.28+0.47 20.02+0.47 7.0240.89 14.71£0.70
D-TRAK 22.8340.51 28.6940.44 16.84+0.54 21.47+0.48
DAS 29.38+0.51 33.79+0.23 28.73+0.49 30.68+0.31

Candidate Training Sample. Another technique to speed up the process involves reducing the
number of training samples considered. We conducted an experiment using CLIP to select the
training samples most similar to the target sample. Specifically, we generated a candidate dataset
comprising 1,000 training samples that CLIP identified as most similar to the generated or validated
image on CIFAR-2. We then computed the attribution scores for this candidate set, assigning a
score of 0 to all other samples, and calculated the LDS. The results, detailed in Table[/} validate the
efficacy of this method.

4.4 MAIN EXPERIMENT

In this section, we evaluate the performance of the Diffusion Attribution Score (DAS) against exist-
ing attribution baselines that can be applied in our experimental settings, following methodologies
similar to those described by [Zheng et al.|(2024). We limit the use of techniques to projection only,
omitting others like normalization to ensure fair comparisons across different attribution methods.
Our primary focus is on post-hoc data attribution methods, which are applied after the model’s
training is complete. These methods are categorized into similarity-based, gradient-based (with-
out kernel), and gradient-based (with kernel) approaches, with detailed explanations provided in
Appendix [F:3] The outcomes are documented in Tables[T} [2] and 3] where DAS consistently outper-
forms existing methods across all datasets.

Compared to D-TRAK, DAS shows substantial improvements. For instance, on a validation set
utilizing 100 timesteps, DAS achieves improvements of +9.33% on CIFAR-2, +8.39% on ArtBench-
2, and +5.1% on CelebA. In the generation set, the gains continue with +5.01% on CIFAR-2, +5.78%
on ArtBench-2, and +9.21% on CelebA. Notably, DAS also achieves significant improvements on
larger datasets like CIFAR10 and ArtBench5, outperforming D-TRAK by +12.07% and +10.21%
on their respective validation sets.

Analysis of results. Other methods generally underperform on larger datasets such as ArtBench5
and CIFAR10 compared to smaller datasets like CIFAR2 and ArtBench2. Conversely, our method
performs better on ArtBenchS than on ArtBench2. Remarkably, our findings suggest that while with
more timesteps for calculating gradients generally leads to a better approximation of the expectation
E,, DAS, employing only a 10-timestep computation budget, still outperforms D-TRAK, which
uses a 100-timestep budget in most cases, which underscores the effectiveness of our approach.
Additionally, the modest improvements on CIFAR10 and CelebA may be attributed to the LDS setup
for these datasets, which employs only one random seed per subset for training a model, whereas
other datasets utilize three random seeds, potentially leading to inaccuracies in LDS evaluation.
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Random D-TRAK DAS Random D-TRAK DAS

Figure 1: We conduct an visualization experiment to explore DAS effectiveness. We retrain the
model after deleting 1000 most influential training samples detected by D-TRAK and DAS. We
also add an baseline that randomly delete 1000 samples. From Left to Right, they are the original
generated image and generated by retrained model with random deletion, D-TRAK deletion and
DAS deletion. Detail Results are reported in Appendix [H]

Another observation is that DAS performs better on the validation set than on the generation set. This
could indicate that the quality of generated images may have a significant impact on data attribution
performance. However, further investigation is needed to validate this hypothesis.

To more intuitively assess the faithfulness of DAS, we also conduct an toy example, that generate
images using models trained before and after the exclusion of the top-1000 positive influencers iden-
tified by DAS and D-TRAK, using the same random seeds on ArtBench-2. We utilize 100 timesteps
and a projection dimension of kK = 32768 to identify the top-1000 influencers. Additionally, we
conduct a baseline experiment where 1000 training images are randomly removed before retraining.
The results of this experiment are visualized in Figure[I]

5 CONCLUSION

In this paper, we introduce the Diffusion Attribution Score (DAS) to address the existing gap in data
attribution methodologies for generative models. We conducted a comprehensive theoretical anal-
ysis to elucidate the inherent challenges in applying TRAK to diffusion models. Subsequently, we
derived DAS theoretically based on the properties of diffusion models for attributing data throughout
the entire generation process. We also discuss strategies to accelerate computations to extend DAS
to large-scale diffusion models. Our extensive experimental evaluations on datasets such as CIFAR,
CelebA, and ArtBench demonstrate that DAS consistently surpasses existing baselines in terms of
Linear Datamodeling Score (LDS) evaluation. This paper underscores the crucial role of data attri-
bution in ensuring transparency and fairness in the use of diffusion models, especially when dealing
with copyrighted or sensitive content. Looking forward, our future work aims to extend DAS to
other generative models and real-world applications to further ascertain its effectiveness and appli-
cability.
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A RELATED WORKS

A.1 DATA ATTRIBUTION

The training data exerts a significant influence on the behavior of machine learning models. Data
attribution aims to accurately assess the importance of each piece of training data in relation to the
desired model outputs. However, methods of data attribution often face the challenge of balancing
computational efficiency with accuracy. Sampling-based approaches, such as empirical influence
functions (Feldman & Zhang| 2020), Shapley value estimators (Ghorbani & Zoul [2019; Jia et al.,
2019), and datamodels (Ilyas et al.| 2022)), are able to precisely attribute influences to training data
but typically necessitate the training of thousands of models to yield dependable results. On the
other hand, methods like influence approximation (Koh & Liang} 2017; Schioppa et al., 2022)) and
gradient agreement scoring (Pruthi et al., |2020) provide computational benefits but may falter in
terms of reliability in non-convex settings (Basu et al., 2021} [Ilyas et al., 2022} |Akyurek et al.,
2022).

A.2 DATA ATTRIBUTION IN GENERATIVE MODELS

The discussed methods address counterfactual questions within the context of discriminative models,
focusing primarily on accuracy and model predictions. Extending these methodologies to genera-
tive models presents complexities due to the lack of clear labels or definitive ground truth. Re-
search in this area includes efforts to compute influence within Generative Adversarial Networks
(GANS) (Terashita et al., 2021) and Variational Autoencoders (VAEs) (Kong & Chaudhuri, [2021).
Recently, [Park et al.| (2023) developed TRAK, a new attribution method that is both effective and
computationally feasible for large-scale models. In the realm of diffusion models, earlier research
has explored influence computation by employing ensembles that necessitate training multiple mod-
els on varied subsets of training data—a method less suited for traditionally trained models (Da1 &
Gifford, 2023). In Datalnf (Kwon et al.| 2024), influence function using the loss gradient and Hes-
sian have been improved for greater accuracy and efficiency in attributing diffusion models. Journey
TRAK (Georgiev et al., [2023) extends TRAK to diffusion models by attributing influence across
individual denoising timesteps. Moreover, D-TRAK (Zheng et al.l 2024) has revealed surprising
results, indicating that theoretically dubious choices in the design of TRAK might enhance per-
formance, highlighting the imperative for further exploration into data attribution within diffusion
models. These studies are pivotal in advancing our understanding and fostering the development
of instance-based interpretations in unsupervised learning contexts. Additionally, some other meth-
ods have been proposed for the data attribution in diffusion by modifying the model. |Wang et al.
(2023) suggest an alternative termed “customization,” which involves adapting or tuning a pretrained
text-to-image model through a specially designed training procedure. MONTAGE (Brokman et al.,
20235)) integrates a novel technique to monitor generations throughout the training via internal model
representations. We give a more detail discussion about the existing data attribution methods in
diffusion model in Appendix [F:3]

A.3 APPLICATION

Recent research has underscored the effectiveness of data attribution methods in a variety of ap-
plications. These include explaining model predictions (Koh & Liang, 2017} [llyas et al., 2022),
debugging model behaviors (Shah et al., 2023)), assessing the contributions of training data (Ghor-
bani & Zou, 2019; Jia et al., [2019), identifying poisoned or mislabeled data (Lin et al., [2022), most
influential subset selection (Hu et al., [2024) and managing data curation (Khanna et al.l [2019; Liu
et al., 2021; [Jia et al.l [2021). Additionally, the adoption of diffusion models in creative industries,
as exemplified by Stable Diffusion and its variants, has grown significantly (Rombach et al., [2022;
Zhang et al., 2023)). This trend highlights the critical need for fair attribution methods that appro-
priately acknowledge and compensate artists whose works are utilized in training these models.
Such methods are also crucial for addressing related legal and privacy concerns (Carlini et al.| |2023;
Somepalli et al., 2023)).
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B PROOF OF EQUATION

In this section, we provide a detailed proof of Eq. We utilize the Newton Method (Pregibon,
1981)) to update the parameters in the diffusion model, where the parameter update theta’ is defined
as:

9/ «— 0 + H(;tl(‘CSimple(9))v0£5imple(9>’ (2])
Here, Hy, (Lsimpi(0)) represents the Hessian matrix, and V Lginpe is the gradient w.r.t the Simple

Loss in the diffusion model. At convergence, the model reaches the global optimum parameter
estimate 6%, satisfying:

He_tl(ESimp]C(9*))v9‘csimp]c(0*) =0. (22)

Additionally, the Hessian matrix and gradient associated with the objective function at timestep ¢
are defined as:

Hy. = Voeg- (St,t) ' Voeg-(Si,t), VoL (%) = Voo (St 1) Ry, (23)
where €g« (S¢,t) := [€g~ (w,gl), t), ..., €p= (mE”), t)] denotes a stacked output matrix on S at timestep

tand R, := diag[eg(a:,gl), t) — €] is a diagonal matrix on S describing the residual among S. Thus,
the update defined in Eq. 2T]around the optimum parameter6* is:

0 — 6« [V@Eg* (St, t)TVQEQ* (St, t)] _IVQEQ* (St, t)TRt. 24)

Upon deleting a training sample () from S, the counterfactual parameters 0%, can be estimated by

applying a single step of Newton’s method from the optimal parameter 6* with the modified set S\ ;,
as follows:

0" — 0; < —[Voeo- (S, t)Tvoee*(S\it,t)]flveee*(g\it’t)TR\it- (25)

C PROOF OF EQUATION

In this section, we provide a detailed proof of Eq.[I5] The Sherman-Morrison formula is defined as:

_ o, A lweTA?
(A + 'U/UT) 1 - A 1 - m. (26)
et H=G; ¢ and u = g, (™). in .[26|in Eq. |14} we derive:
Let H = G(S) " G4(S) and (z(®). Applying Eq.[26in Eq.[14] we d
B N N H luu"H!
Gu(S\) T GilS\)] " = [H —wu) = B T @)

Additionally, we have:
Gi(Sv) "Ry, = Gi(S) TRy — gu(2®) e, = —u T, (28)
Applying Eq. 27]and Eq. 28]to Eq.[25] we obtain:

H 'uu"H? i
T o i -To JuTr, (29)

0 — 67, =[H '+
Let @ = u' H~'u. Eq. 29 simplifies to:
* * — o %
=H 'u- b r
l—a !
_ [Gu®)TGu(S)  gu(a )y
1—gi () T[(G:(S)TG(S)] ' ge (V)

(30)

D ALGORITHM OF DAS

In this section, we provide a algorithm about DAS in Algorithm 1]
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Algorithm 1 Diffusion Attribution Score

1: Input: Learning algorithm .4, Training dataset S of size n, Training data dimension p, Max-
imum timesteps for diffusion model 7', Unet output in diffusion model €y(x,t), Projection
dimension k, A standard gaussian noise € ~ N (0, I), Normalization and average method N, A
generated sample z&*"

2: QOutput: Matrix of attribution scores T' € R"

3: 0 < A(S) > Train a diffusion model on S
4: P~ N(0,1)PxF > Sample projection matrix
5: R+ Opxn

6: fori =1tondo

7: fort =1to 7 do

8: e ~N(0,1)P > Sample a gaussian noise
9: g:(z)) « PTVyeq (2 1) > Compute gradient on training set and project
10: e (@) 1) — € > Compute residual term
11: end for 4
12 g(x®) = N(gs(x)) > Normalize projected gradient term
132 7@ = N@ED) > Normalize residual term
14: end for

15: G(S) « [g(z?), ..., g(=™)]"
16: R « diag(7 ", ..., 7(™)
17: fort =1to T do

18: e~ N(0,1)P > Sample a gaussian noise
19: gi(2=") < PTVpeq- (x5, 1) > Compute gradient for generated sample and project
20: end for

21 ga=n) = N(gy(as))

. gt (G(5)TGE) EOR |2
2 T 5 @oeoce |
23: return (7T")

> Compute attribution matrix

E EXPLANATION ABOUT THE CHOICE OF MODEL OUTPUT FUNCTION IN LDS
EVALUATION

In the LDS framework, we evaluate the ranking correlation between the ground-truth and the pre-
dicted model outputs following a data intervention. In our evaluations, the output function used in
JourneyTRAK and D-TRAK is shown to provide the same ranking as our DAS output function.
Below, we provide a detailed explanation of this alignment.

Defining the function f(z,6) as Lgimpe, D-TRAK predicts the change in output as:
F(250,0) = f(257,0m) = Ee[lle — €(25™, 1)|°] — Eelll€ — e, (25", 1)1, @31

where 6 and 6,,, represent the models trained on the full dataset S and a subset S,,,, respectively.
With the retraining of the model on subset S,,, while fixing all randomness, the real change can be
computed as:
F(25,0) = f(2*",0m) =Eellleo (2", t) — €q,, (25", 1)|°]
+ 2B (€0 (7, 1) — €0, (£57,)) - (e — €0, (=" D). (32)

The first expectation represents the predicted output change in DAS as well as the ground truth
output, while the term (e — €y, (2™, t)) is recognized as the error of the MMSE estimator.

In our evaluations, the sampling noise € is fixed and €y (2", ) is a given value since the model
is frozen. Therefore, the second term equals zero, following the orthogonality principle. It can be
stated as a more general result that,

Vi, E[f(eq,,,2z5") - (€ — €g,, (257))] = 0. (33)
The error (€ — €g,, (2%")) must be orthogonal to any estimator f. If not, we could use f to construct

an estimator with a lower MSE than €g,, (Z4en ), contradicting our assumption that (e — €g,, (25))
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is the MMSE estimator. Applications of the orthogonality principle in diffusion models have been
similarly proposed (Kong et al., 2024; [Banerjee et al., 2005). Thus, given that we have a frozen
model 6, fixed sampling noise € and a specific generated sample z#*", the change in the output
function in DAS provides the same rank as the one in JourneyTRAK and D-TRAK.

F IMPLEMENTATION DETAILS

F.1 DATASETS AND MODELS

CIFAR10(32%x32). The CIFAR-10 dataset, introduced by |Krizhevsky| (2009), consists of 50,000
training images across various classes. For the Linear Datamodeling Score evluation, we utilize
a subset of 1,000 images randomly selected from CIFAR-10’s test set. To manage computational
demands effectively, we also create a smaller subset, CIFAR-2, which includes 5,000 training images
and 1,000 validation images specifically drawn from the “automobile” and “horse” categories of
CIFAR-10’s training and test sets, respectively.

In our CIFAR experiments, we employ the architecture and settings of the Denoising Diffusion
Probabilistic Models (DDPMs) as outlined by |[Ho et al|(2020). The model is configured with ap-
proximately 35.7 million parameters (d = 35.7 x 10° for § € R%). We set the maximum number of
timesteps (7') at 1,000 with a linear variance schedule for the forward diffusion process, beginning at
B1 = 10~* and escalating to 7 = 0.02. Additional model specifications include a dropout rate of
0.1 and the use of the AdamW optimizer (Loshchilov & Hutter, 2019) with a weight decay of 109,
Data augmentation techniques such as random horizontal flips are employed to enhance model ro-
bustness. The training process spans 200 epochs with a batch size of 128, using a cosine annealing
learning rate schedule that incorporates a warm-up period covering 10% of the training duration,
beginning from an initial learning rate of 10~%. During inference, new images are generated using
the 50-step Denoising Diffusion Implicit Models (DDIM) solver (Song et al., 2021a)).

CelebA(64x64). We selected 5,000 training samples and 1,000 validation samples from the orig-
inal training and test sets of CelebA (Liu et al.| [2015), respectively. Following the preprocessing
method described by Song et al.|(2021b), we first center-cropped the images to 140x 140 pixels and
then resized them to 64 x64 pixels. For the CelebA experiments, we adapted the architecture to ac-
commodate a 64 x64 resolution while employing a similar unconditional DDPM implementation as
used for CIFAR-10. However, the U-Net architecture was expanded to 118.8 million parameters to
better capture the increased complexity of the CelebA dataset. The hyperparameters, including the
variance schedule, optimizer settings, and training protocol, were kept consistent with those used
for the CIFAR-10 experiments.

ArtBench(256 x256). ArtBench (Liao et al., |2022) is a dataset specifically designed for gener-
ating artwork, comprising 60,000 images across 10 unique artistic styles. Each style contributes
5,000 training images and 1,000 testing images. We introduce two subsets from this dataset for
focused evaluation: ArtBench-2 and ArtBench-5. ArtBench-2 features 5,000 training and 1,000 val-
idation images selected from the “post-impressionism” and “ukiyo-e” styles, extracted from a total
of 10,000 training and 2,000 test images. ArtBench-5 includes 12,500 training and 1,000 valida-
tion images drawn from a larger pool of 25,000 training and 5,000 test images across five styles:

2 9 93 9 99 9

’post-impressionism,” ’ukiyo-e,” “romanticism,” ’renaissance,” and “baroque.”

For our experiments on ArtBench, we fine-tune a Stable Diffusion model (Rombach et al.| [2022)
using Low-Rank Adaptation (LoRA) (Hu et al.|2022) with a rank of 128, amounting to 25.5 million
parameters. We adapt a pre-trained Stable Diffusion checkpoint from a resolution of 512x512
to 256256 to align with the ArtBench specifications. The model is trained conditionally using
textual prompts specific to each style, such as ”a class painting,” e.g., ”a romanticism painting.”
We set the dropout rate at 0.1 and employ the AdamW optimizer with a weight decay of 1075,
Data augmentation is performed via random horizontal flips. The training is conducted over 100
epochs with a batch size of 64, under a cosine annealing learning rate schedule that includes a 0.1
fraction warm-up period starting from an initial rate of 3 x 10~*. During the inference phase, we
generate new images using the 50-step DDIM solver with a classifier-free guidance scale of 7.5 (Ho
& Salimans), [2021)).
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F.2 LDS EVALUATION SETUP

For the LDS evaluation, we construct 64 distinct subsets S,,, from the training dataset S, each consti-
tuting 50% of the total training set size. To ensure robustness and mitigate any effects of randomness,
three separate models are trained on each subset using different random seeds. The LDS is computed
by measuring the Spearman rank correlation between the model outputs and the attribution-based
output predictions for selected samples. Specifically, we evaluate the Simple Loss Lgine(2,6) as
defined in Eq 3| for samples of interest from both the validation and generation sets. To better ap-
proximate the expectation E;, we utilize 1,000 timesteps, evenly spaced within the range [1, T]. At
each timestep, three instances of standard Gaussian noise € ~ A/ (0, I') are introduced to approxi-
mate the expectation [E.. The calculated LDS values are then averaged across the selected samples
from both the validation and generation sets to determine the overall LDS performance.

F.3 BASELINES

In this paper, our focus is primarily on post-hoc data attribution, which entails applying attribution
methods after the completion of model training. These methods are particularly advantageous as
they do not impose additional constraints during the model training phase, making them well-suited
for practical applications (Ribeiro et al., 2016).

Following the work of Hammoudeh & Lowd| (2024), we evaluate various attribution baselines that
are compatible with our experimental framework. We exclude certain methods that are not fea-
sible for our settings, such as the Leave-One-Out approach (Cook, [1977) and the Shapley Value
method (Shapley et al.| |1953; |Ghorbani & Zou, 2019). These methods, although foundational, do
not align well with the requirements of DDPMs due to their intensive computational demands and
model-specific limitations. Additionally, we do not consider techniques like Representer Point (Yeh
et al., [2018), which are tailored for specific tasks and models, and thus are incompatible with
DDPMs. Moreover, we disregard HYDRA (Chen et al., 2021), which, although related to Trac-
InCP (Pruthi et al., 2020), compromises precision for incremental speed improvements as critiqued
by Hammoudeh & Lowd|(2024).

Two works focus on diffusion model that also fall outside our framework. |Dai & Gifford|(2023) pro-
pose a method for training data attribution on diffusion models using machine unlearning (Bourtoule
et al., 2021)); however, their approach necessitates a specific machine unlearning training process,
making it non-post-hoc and thus unsuitable for standard settings. Similarly, [Wang et al.| (2023) ac-
knowledge the current challenges in conducting post-hoc training influence analysis with existing
methods. They suggest an alternative termed “customization,” which involves adapting or tuning a
pretrained text-to-image model through a specially designed training procedure.

Building upon recent advancements, Park et al.[(2023) introduced an innovative estimator that lever-
ages a kernel matrix analogous to the Fisher Information Matrix (FIM), aiming to linearize the
model’s behavior. This approach integrates classical random projection techniques to expedite the
computation of Hessian-based influence functions (Koh & Liang},|2017), which are typically compu-
tationally intensive. Zheng et al.|(2024)) adapted TRAK to diffusion models, empirically designing
the model output function. Intriguingly, they reported that the theoretically designed model output
function in TRAK performs poorly in unsupervised settings within diffusion models. However, they
did not provide a theoretical explanation for these empirical findings, leaving a gap in understanding
the underlying mechanics.

Our study concentrates on retraining-free methods, which we categorize into three distinct types:
similarity-based, gradient-based (without kernel), and gradient-based (with kernel) methods. For
similarity-based approaches, we consider Raw pixel similarity and CLIP similarity (Radford et al.,
2021). The gradient-based methods without a kernel include techniques such as Gradient (Charpiat
et al., [2019), TracInCP (Pruthi et al., 2020) and GAS (Hammoudeh & Lowd, [2022). In the domain
of gradient-based methods with a kernel, we explore several methods including D-TRAK (Zheng
et al., 2024), TRAK (Park et al.l 2023)), Relative Influence (Barshan et al., 2020), Renormalized
Influence (Hammoudeh & Lowd, |2022)), and Journey TRAK (Georgiev et al., 2023).

We next provide definition and implementation details of the baselines used in Section[d.4]

Raw pixel. This method employs a naive similarity-based approach for data attribution by using
the raw image data itself as the representation. Specifically, for experiments on ArtBench, which
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utilizes latent diffusion models (Rombach et al.| [2022), we represent the images through the VAE
encodings (Van Den Oord et al., |2017) of the raw image. The attribution score is calculated by
computing either the dot product or cosine similarity between the sample of interest and each training
sample, facilitating a straightforward assessment of similarity based on pixel values.

CLIP Similarity. This method represents another similarity-based approach to data attribution.
Each sample is encoded into an embedding using the CLIP model (Radford et al.,|2021)), which cap-
tures semantic and contextual nuances of the visual content. The attribution score is then determined
by computing either the dot product or cosine similarity between the CLIP embedding of the target
sample and those of the training samples. This method leverages the rich representational power of
CLIP embeddings to ascertain the contribution of training samples to the generation or classification
of new samples.

Gradient. This method employs a gradient-based approach to estimate the influence of training
samples, as described by (Charpiat et al.| (2019). The attribution score is calculated by taking the
dot product or cosine similarity between the gradients of the sample of interest and those of each
training sample. This technique quantifies how much the gradient (indicative of the training sample’s
influence on the loss) of a particular training sample aligns with the gradient of the sample of interest,
providing insights into which training samples most significantly affect the model’s output.

T<Z7S)i = (P)Tveﬁsimple(w79))—r . (PTVQESimple)(w(i)ae*)’
T(Z S)Z _ (‘P—rveﬁsimple(w79))—r . (PTvecsimple(m(i)7 9))
7 1P TV o Lsimpe (@, O)|[T||PT Vo Lsimpe (2, 0)]]

TracInCP. We implement the TracInCP estimator, as outlined by [Pruthi et al.[(2020), which quan-
tifies the influence of training samples using the following formula:
i1
- C
where C' represents the number of model checkpoints selected evenly from the training trajectory,
and #¢ denotes the model parameters at each checkpoint. For our analysis, we select four specific
checkpoints along the training trajectory to ensure a comprehensive evaluation of the influence over
different phases of learning. For example, in the CIFAR-2 experiment, the chosen checkpoints occur
at epochs 50, 100, 150, and 200, capturing snapshots of the model’s development and adaptation.

T(Z7 S) ZCC:l('PCTve'CSimple(w’ 96))T ' (PCTVG‘CSimple (a:ia 9(:))7

GAS. The GAS method is essentially a “renormalized” version of TracInCP that employs cosine
similarity for estimating influence, rather than relying on raw dot products. This method was intro-
duced by Hammoudeh & Lowd)(2022) and aims to refine the estimation of influence by normalizing
the gradients. This approach allows for a more nuanced comparison between gradients, considering
not only their directions but also normalizing their magnitudes to focus solely on the directionality
of influence.

TRAK. The retraining-free version of TRAK (Park et al.| [2023)) utilizes a model’s trained state to es-
timate the influence of training samples without the need for retraining the model at each evaluation
step. This version is implemented using the following equations:

Prrax = [®(z'), -, <I>(33N)} ! , where ®(z) = P Vg Lgimpe(, 0),
. -1 .
T(Zv S)l = (PTveﬁsimple(xv 0))T : (QTRAKT(ﬁTRAK + >\I) . PTVH*CSimple(xlv 9),

where A is included for numerical stability and regularization. The impact of this term is further
explored in Appendix

D-TRAK. Simliar to TRAK, as elaborated in Section we adapt the D-TRAK (Zheng et al., [2024)
as detailed in Eq @ We implent the model output function f(z,6) as Lsquare. The D-TRAK is
implemented using the following equations:

Py rak = [@(ml), cee tI>(wN)]T , where ®(x) = PTV(;ESimple(m, 0),
. -1 .
7(2,S)" = (P Vo Lsimpe(x, 0)) " - (‘I’TRAKT‘PTRAK + /\I) - PV L (T, 0),

where A/ is also included for numerical stability and regularization as TRAK. Additionally, the
output function f(z, ) could be replaced to other functions.
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Table 4: We compare D-TRAK and our methods DAS with the normalization and without normal-
ization on CIFAR2. Besides, we also select 10, 100 and 1000 timesteps evenly spaced within the
interval [1, T] and calculate the average of LDS(%) among the timesteps.

. Validation Generation
Method Normalization 10 100 1000 10 100 1000
D-TRAK No Normalization | 24.78 30.81 32.37 | 16.20 22.62 23.94

Normalization 26.11 31.50 32.51 | 17.09 2292 24.10

No Normalization | 33.04 42.02 43.13 | 20.01 29.58 30.58
Normalization 33.77 4226 43.28 | 21.24 29.60 30.87

DAS

Relative Influence. Barshan et al.| (2020) introduce the O-relative influence functions estimator,
which normalizes the influence functions estimator from Koh & Liang| (2017) by the magnitude
of the Hessian-vector product (HVP). This normalization enhances the interpretability of influence
scores by adjusting for the impact magnitude. We have adapted this method to our experimental
framework by incorporating scalability optimizations from TRAK. The adapted equation for the
Relative Influence is formulated as follows:

1 ]
(z.5)) (PTVoLsimpe(x,0)) " - (’1’ TRAK | @ TRAK + /\I> - PV Limpe(x ), 0%)
7(z, = — : )
I ((I’TRAKT(P TRAK + AI) - PTV g Lsimpe (@), 6%)]|

Renormalized Influence. Hammoudeh & Lowd| (2022) propose a method to renormalize influence
by considering the magnitude of the training sample’s gradients. This approach emphasizes the rel-
ative strength of each sample’s impact on the model, making the influence scores more interpretable
and contextually relevant. We have adapted this method to our settings by incorporating TRAK’s
scalability optimizations, which are articulated as:

1 )
(PTVQ‘cSimple(w7 9))T . (‘P TRAKT(P TRAK + )\I) . PTVQ‘CSimple(w(Z)a 9)

Y@ — i
T(Z, ) HPTVG»CSimple(w(l)aa)”

Journey TRAK. Journey TRAK (Georgiev et al.l 2023) focuses on attributing influence to noisy
images x; at a specific timestep ¢ throughout the generative process. In contrast, our approach aims
to attribute the final generated image x#", necessitating an adaptation of their method to our context.
We average the attributions across the generation timesteps, detailed in the following equation:

. 1 T -1 .
7(z, S)(Z) = FEtT:1(PTV9£§imple($t, 0)" - (‘I’ TRAK P TRAK + /\I> . PTVF)ESimple(m(l)7 0),
where T’ represents the number of inference steps, set at 50, and x; denotes the noisy image gener-
ated along the sampling trajectory.

F.4 EXPERIMENTS RESULT

In this subsection, we present the outcomes of experiments detailed in Section The results,
which illustrate the effectiveness of various techniques designed to expedite computational pro-
cesses in data attribution, are summarized in several tables and figures. These include Table [Z_f],
Table[5] Table[6] and Table[7} as well as Figure[2] Each of these displays key findings relevant to the
specific speed-up technique tested, providing a comprehensive view of their impacts on attribution
performance.

G ABLATION STUDIES

We conduct additional ablation studies to evaluate the performance differences between D-TRAK
and DAS. In this section, CIFAR-2 serves as our primary setting. Further details on these settings
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Table 5: We compare our methods with TRAK and D-TRAK by LDS method on CIFAR-2 among
different selected timesteps. The projected dimension k = 4096.

Validation Generation
10 100 1000 10 100 1000

TRAK | 10.66 19.50 2242 | 5.14 12.05 1546
D-TRAK | 2491 3091 3239 | 1676 22.62 23.94
DAS | 33.04 42.02 43.13 | 20.01 29.58 30.58

Method
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Figure 2: The LDS(%) on CIFAR-2 under different projection dimension k. We consider 10 and 100
timesteps selected to be evenly spaced within the interval [1, T'], which are used to approximate the
expectation E;. For each sampled timestep, we sample one standard Gaussian noise € ~ AN (|0, T)
to approximate the expectation E..

Table 6: We compute DAS only with the Up-Block gradients in U-Net and evaluate by LDS method
on CIFAR-2 among different selected timesteps. The projected dimension £ = 32768.

Validation Generation
10 100 10 100

D-TRAK | 2491 3091 | 16.76  22.62
DAS(Up-Block) | 32.60 37.90 | 18.47 27.54
DAS(U-Net) | 33.77 42.26 | 21.24  29.60

Method
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Table 7: 'We compute DAS only with the Up-Block gradients in U-Net and evaluate by LDS method
on CIFAR-2 among different selected timesteps. The projected dimension k& = 32768.

Validation Generation
Method 10 100 | 10 100
D-TRAK \ 2491 3091 \ 16.76  22.62

DAS(Candidate Set) | 31.53 37.75 | 17.73 2331
DAS(Entire Training Set) \ 33.77 42.26 \ 21.24  29.60

LDS (%) over Epochs LDS (%) over Epochs LDS (%) over Epochs LDS (%) over Epochs
“ = DTRAK | 4 = DTRAK | 45 = DTRAK | 45 B~ DTRAK
D-Cool D-Cook D-Cook D-Cook

= = = =
228 228 22 228
824 824 B2 824
T2 T2 T2 T2

16 16 16 /W'/' 16

[ 50 100 150 200 ] 50 100 150 200 o 50 100 150 200 o 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 3: The LDS(%) on CIFAR-2 varies across different checkpoints. We analyze the data using
10 and 100 timesteps, evenly spaced within the interval [1,T7], to approximate the expectation E;.
At each sampled timestep, we introduce one standard Gaussian noise € ~ A(0,I) to approximate
the expectation E.. We set the projection dimension k = 32768.

are available in Appendix We establish the corresponding LDS benchmarks as outlined in
Appendix [F2]

Checkpoint selection Following the approach outlined by Pruthi et al.| (2020), we investigated the
impact of utilizing different model checkpoints for gradient computation. As depicted in Figures 3]
our method achieves the highest LDS when utilizing the final checkpoint. This finding suggests that
the later stages of model training provide the most accurate reflections of data influence, aligning
gradients more closely with the ultimate model performance. Determining the optimal checkpoint
for achieving the best LDS score requires multiple attributions to be computed, which significantly
increases the computational expense. Additionally, in many practical scenarios, access may be
limited exclusively to the final model checkpoint. This constraint highlights the importance of de-
veloping efficient methods that can deliver precise attributions even when earlier checkpoints are
not available.

Value of )\ In our computation of the inverse of the Hessian matrix within the DAS framework, we
incorporate the regularization parameter A, as recommended by Hastie| (2020), to ensure numerical
stability and effective regularization. Traditionally, A is set to a value close to zero; however, in our
experiments, a larger A proved necessary. This is because we use the generalized Gauss-Newton
(GGN) matrix to approximate the Hessian in the computation of DAS. Unlike the Hessian, the GGN
is positive semi-definite (PSD), meaning it does not model negative curvature in any direction. The
main issue with negative curvature is that the quadratic model predicts unbounded improvement in
the objective when moving in those directions. Without certain techniques, minimizing the quadratic
model results in infinitely large updates along these directions. To address this, several methods
have been proposed, such as the damping technique discussed in (Martens|,[2020). In our paper, we
adopt the linear damping technique AI used in (Zheng et al., 2024} (Georgiev et al., [2023)), which
has proven effective on diffusion models. We show how X influence the LDS result in Figure
Figure[5] Figure[6] Figure[7]and Figure[§]

H COUNTER FACTUAL EXPERIMENT

Hu et al.| (2024) discuss some limitations of LDS evaluation in data attribution. To further validate
the effectiveness of DAS, we also conduct an counter-factual experiment, that 60 generate images
are attributed by different attribution method, including TRAK, D-TRAK and DAS. We detect the
top-1000 positive influencers identified by these methods and remove them from the training set and
re-train the model. We utilize 100 timesteps and a projection dimension of k = 32768 to identify the
top-1000 influencers for TRAK, D-TRAK and DAS. Additionally, we conduct a baseline experiment
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Figure 4: LDS (%) on CIFAR-2 under different A\. We consider 10, 100, and 1000 timesteps selected
to be evenly spaced within the interval [1, T'], which are used to approximate the expectation E;. We
set k = 4096.
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Figure 5: LDS (%) on ArtBench-2 under different A\. We consider 10 and 100 timesteps selected to
be evenly spaced within the interval [1, T, which are used to approximate the expectation E;. We
set k = 32768.
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Figure 6: LDS (%) on ArtBench-5 under different A\. We consider 10 and 100 timesteps selected to
be evenly spaced within the interval [1, T, which are used to approximate the expectation E;. We
set k = 32768.
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Figure 7: LDS (%) on CIFAR-10 under different \. We consider 10 and 100 timesteps selected to
be evenly spaced within the interval [1, 7], which are used to approximate the expectation E;. We
set k = 32768.
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Figure 8: LDS (%) on CelebA under different \. We consider 10 and 100 timesteps selected to be
evenly spaced within the interval [1, 7], which are used to approximate the expectation E,. We set
k = 32768.

where 1000 training images are randomly removed before retraining. The experiment is conducted
on ArtBench2 and CIFAR2. We generate the new images with same random seeds and compute
the pixel-wise L2-Distance and CLIP cosine similarity between the re-generated images and their
corresponding origin images. The result is reported in Figure 0] with boxplot. For the pixel-wise
L?-Distance, D-TRAK yields values of 8.97 and 187.61 for CIFAR-2 and ArtBench-2, respectively,
compared to TRAK’s values of 5.90 and 168.37, while DAS results in values of 10.58 and 203.76.
DAS achieves median similarities of 0.83 and 0.71 for ArtBench-2 and CIFAR-2, respectively, which
are notably lower than TRAK’s values of 0.94 and 0.84, as well as D-TRAK’s values of 0.88 and
0.77, demonstrating the effectiveness of our method.

I LIMITATIONS AND BROADER IMPACTS

1.1 LIMITATIONS

While our proposed Diffusion Attribution Score (DAS) showcases notable improvements in data
attribution for diffusion models, several limitations warrant attention. Firstly, although DAS reduces
the computational load compared to traditional methods, it still demands significant resources due
to the requirement to train multiple models and compute extensive gradients. This poses challenges
particularly for large-scale models and expansive datasets. Secondly, the current implementation
of DAS is tailored primarily to image generation tasks. Its effectiveness and applicability to other
forms of generative models, such as those for generating text or audio, remain untested and may not
directly translate. Furthermore, DAS operates under the assumption that the influence of individual
training samples is additive. This simplification may not accurately reflect the complex interactions
and dependencies that can exist between samples within the training data.
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Figure 9: Boxplots of counterfactual evaluation on ArtBench2 and CIFAR2. We assess the impact
of removing the 1,000 highest-scoring training samples and retraining the model using Random,
TRAK, D-TRAK, and DAS. The evaluation metrics include pixel-wise L2-Distance and CLIP co-
sine similarity between 60 generated samples and the corresponding images generated by the re-
trained models, sampled from the same random seed.

1.2 BROADER IMPACTS

The advancement of robust data attribution methods like DAS carries substantial ethical and practi-
cal implications. By enabling a more transparent linkage between generated outputs and their corre-
sponding training data, DAS enhances the accountability of generative models. Such transparency is
crucial in applications involving copyrighted or sensitive materials, where clear attribution supports
intellectual property rights and promotes fairness. Nonetheless, the capability to trace back to the
data origins also introduces potential privacy risks. It could allow for the identification and extrac-
tion of information pertaining to specific training samples, thus raising concerns about the privacy of
data contributors. This highlights the necessity for careful handling of data privacy and security in
the deployment of attribution techniques. The development of DAS thus contributes positively to the
responsible use and governance of generative models, aligning with ethical standards and fostering
greater trust in Al technologies. Moving forward, it is imperative to continue exploring these ethical
dimensions, particularly the balance between transparency and privacy. Ensuring that advancements
in data attribution go hand in hand with stringent privacy safeguards will be essential in maintaining
the integrity and trustworthiness of Al systems.
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