

# 000 001 002 003 004 005 ROBUST NON-NEGATIVE PROXIMAL GRADIENT AL- 006 GORITHM: THEORY AND APPLICATIONS 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027

## ABSTRACT

011 Proximal gradient algorithms (PGA), while foundational for inverse problems like  
012 image reconstruction, often yield unstable convergence and suboptimal solutions  
013 by violating the critical non-negativity constraint. We identify the gradient de-  
014 scent step as the root cause of this issue, which introduces negative values and  
015 induces high sensitivity to hyperparameters. To overcome these limitations, we  
016 propose a novel multiplicative update proximal gradient algorithm (SSO-PGA)  
017 with convergence guarantees, which is designed for robustness in non-negative in-  
018 verse problems. Our key innovation lies in superseding the gradient descent step  
019 with a learnable sigmoid-based operator, which inherently enforces non-negativity  
020 and boundedness by transforming traditional subtractive updates into multiplica-  
021 tive ones. This design, augmented by a sliding parameter for enhanced stability  
022 and convergence, not only improves robustness but also boosts expressive capacity  
023 and noise immunity. We further formulate a degradation model for multi-modal  
024 restoration and derive its SSO-PGA-based optimization algorithm, which is then  
025 unfolded into a deep network to marry the interpretability of optimization with the  
026 power of deep learning. Extensive numerical and real-world experiments demon-  
027 strate that our method significantly surpasses traditional PGA and other state-of-  
028 the-art algorithms, ensuring superior performance and stability.  
029

## 1 INTRODUCTION

031 This paper focuses on the following convex optimization problems:

$$032 \quad \min_x F(x), \quad \text{s.t. } x > 0, \quad \text{where} \quad \begin{cases} F(x) = f(x), & \text{(Problem I),} \\ F(x) = f(x) + g(x), & \text{(Problem II).} \end{cases} \quad (1)$$

035 Here,  $f$  is a convex and differentiable function, while  $g$  is a convex but not necessarily smooth func-  
036 tion. For Problem I (unconstrained convex and differentiable problem), researchers commonly use  
037 the classic gradient descent method for a solution Ruder (2016). However, for Problem II (non-  
038 smooth composite optimization problem), which includes a non-differentiable term, researchers  
039 have explored various solution methods Li et al. (2021). The most common among these are splitting  
040 algorithms Goldfarb & Ma (2012), which use first-order information to minimize the objective func-  
041 tion. These include: the proximal gradient algorithm (PGA) Li & Lin (2015); Salim et al. (2020),  
042 the alternating direction method of multipliers (ADMM) Boyd et al. (2011); Hong & Luo (2017),  
043 the Douglas-Rachford splitting (DRS) Eckstein & Bertsekas (1992); Patrinos et al. (2014), and the  
044 Pock-Chambolle (PC) algorithm Chambolle & Pock (2011). Among these, PGA is particularly  
045 popular due to its sound theoretical foundation and ease of optimization Dai et al. (2024).

046 The core idea of PGA is to perform a standard gradient descent step on  $f$  followed by a prox-  
047 imal projection on  $g$  Laude & Patrinos (2025). To accelerate convergence and enhance stability,  
048 researchers have introduced numerous improvements Li et al. (2019b); Iutzeler & Malick (2018); Si  
049 et al. (2024). For instance, Keys et al. proposed the proximal distance algorithm, which combined  
050 classical penalty methods with distance majorization techniques Keys et al. (2019). Additionally,  
051 Malitsky et al. introduced an adaptive proximal gradient method that leveraged the local curvature  
052 information of the smooth function to achieve full adaptivity Malitsky & Mishchenko (2024).

053 PGA provides a foundation for solving inverse problems in signal processing Antonello et al. (2018),  
compressed sensing Yao & Dai (2025), and image reconstruction Shen et al. (2011). With the rise of

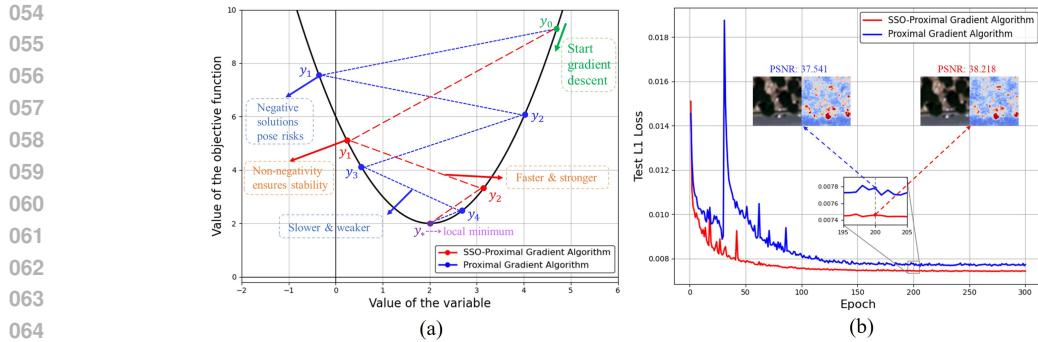


Figure 1: Overview of our method. (a) A schematic comparison between PGA and SSO-PGA in the gradient descent process. Compared to PGA, SSO-PGA benefits from the non-negativity constraint, yielding more stable solutions and demonstrating a faster convergence trajectory. (b) Comparison of test L1 loss curves between PGA and SSO-PGA on the WV3 dataset in the image fusion task over training epochs, with a zoomed-in view highlighting the reconstructed results at epoch 200. SSO-PGA exhibits a more stable training process and achieves superior fusion quality.

deep learning, PGA has been successfully integrated into deep unfolding networks, creating a hybrid paradigm that integrates iterative optimization with learnable components to boost performance Wei et al. (2022); Mou et al. (2022). This approach models the problem to be solved as an optimization objective and uses deep priors as the function  $g$ . In this area, Mardani et al. first proposed a novel neural proximal gradient descent algorithm that uses a recurrent ResNet to learn the proximal mapping, enabling high-resolution image recovery from limited sensory data Mardani et al. (2018). Xin et al. further improved deep unfolding networks by introducing an adaptive learning rate and borrowing the momentum technique from gradient descent, proposing a multi-stage and multi-level feature aggregation scheme for efficient MRI reconstruction Xin et al. (2024).

Despite the significant achievements of deep unfolding algorithms in vision tasks, their application still faces challenges. Their performance is often limited by the hyperparameter settings of the PGA, leading to unstable and suboptimal results. Furthermore, in vision tasks, images inherently have a non-negativity constraint. However, traditional PGA can produce negative solutions during the iterative process. Although these negative values may be numerically plausible, they violate the physical constraints of images and can exacerbate instability within the deep network during iteration.

To this end, we propose a novel robust non-negative proximal gradient algorithm (SSO-PGA), which maintains the optimization simplicity of the traditional PGA while effectively overcoming its drawbacks of instability and sensitivity. For Problem I, we reformulate the conventional additive gradient descent step into a new multiplicative update scheme via a Sliding Sigmoid Operator (SSO). Unlike traditional sensitive step sizes that often cause overshooting or vanishing updates, SSO adapts dynamically to the local gradient landscape, allowing finer control over the descent direction and magnitude. This leads to smoother convergence and mitigates abrupt changes. For Problem II, we can naturally extend the gradient descent algorithm from Problem I to the proximal gradient algorithm (SSO-PGA) by adding a proximal projection. Moreover, the inherent non-linearity and non-negativity of the SSO-PGA enhance robustness to noise. These properties make SSO-PGA particularly well-suited for vision tasks, as images inherently possess non-negative physical constraints. *To our knowledge, this is the first work that improves upon PGA by using a multiplicative approach to fundamentally guarantee non-negativity and robustness, and adapt it to a deep network framework.* As shown in Fig. 1, compared with the existing PGA, SSO-PGA achieves more stable solutions, faster convergence, and superior performance, without introducing additional hyperparameters. The main contributions of this work are summarized as follows:

- We propose a novel robust non-negative proximal gradient algorithm (SSO-PGA) with theoretical convergence guarantees, which improves the gradient descent step of the traditional PGA via the Sliding Sigmoid Operator. This innovation inherently enforces non-negativity constraints, enhances nonlinear representation, and improves numerical stability.
- Based on the proposed SSO-PGA, we develop a novel inverse problems model with efficient optimization. Specifically, we formulate Problem II as a multi-modal restoration

108 problem and derive the corresponding optimization paradigm. This model is further un-  
 109 folded into a structured deep neural network.  
 110

- 111 Numerical experiments demonstrate superior performance for both Problem I and Problem  
 112 II. Our deep unfolding network also shows a significant advantage in vision experiments,  
 113 surpassing both the PGA baseline and other state-of-the-art (SOTA) algorithms for vision  
 114 tasks. Moreover, compared to the PGA baseline, our SSO-PGA significantly improves  
 115 convergence speed, hyperparameter stability, and robustness against perturbations.

116 **2 RELATED WORK**

118 Inverse problems are widespread across various fields, where one seeks to recover an unknown  
 119  $\mathbf{y} \in \mathbb{R}^m$  from partial observations  $\mathbf{x} \in \mathbb{R}^n$  Deng et al. (2018); Farahmand-Tabar et al. (2024). This  
 120 is often based on a Gaussian noise assumption ( $\mathbf{x} = \mathbf{H}\mathbf{y} + \mathbf{n}$ ) and can be represented as:

$$121 \min_{\mathbf{y}} \|\mathbf{x} - \mathbf{H}\mathbf{y}\|_2^2, \quad (\text{Problem I}), \quad (2)$$

123 To achieve a more accurate recovery, researchers often introduce prior information Nan & Ji (2020):

$$124 \min_{\mathbf{y}} \|\mathbf{x} - \mathbf{H}\mathbf{y}\|_2^2 + \lambda f(\mathbf{y}), \quad (\text{Problem II}), \quad (3)$$

126 where  $\mathbf{H} \in \mathbb{R}^{n \times m}$  is a degradation operator, and  $f(\mathbf{y})$  is a regularization term that encodes prior  
 127 knowledge about  $\mathbf{y}$ . When  $f(\mathbf{y})$  is convex but possibly non-smooth (e.g.,  $\ell_1$ -norm He et al. (2014))  
 128 or total variation Palsson et al. (2013)), the proximal gradient algorithm provides an efficient first-  
 129 order method to solve the problem. Specifically, the update rule of the proximal gradient algorithm  
 130 at the  $t$ -th iteration is given by Beck & Teboulle (2009):

$$131 \mathbf{y}^t = \text{Prox}_f(\mathbf{y}^{t-1} - \rho \nabla \mathcal{E}(\mathbf{y}^{t-1})), \quad \mathcal{E}(\mathbf{y}^{t-1}) = \|\mathbf{x} - \mathbf{H}\mathbf{y}^{t-1}\|_2^2, \quad (4)$$

132 where  $\rho$  is a step size, and the proximal operator is defined as:

$$134 \text{Prox}_f(\mathbf{v}) = \arg \min_{\mathbf{z}} \left\{ \frac{1}{2} \|\mathbf{z} - \mathbf{v}\|_2^2 + \lambda f(\mathbf{z}) \right\}. \quad (5)$$

136 Although the proximal gradient algorithm enjoys fast convergence, it suffers from a major draw-  
 137 back: in imaging applications, pixel intensities are inherently non-negative, yet the update rule in  
 138 Eq. (4) may yield negative values. This not only violates the natural characteristics of images but  
 139 also introduces vanishing gradient issues when implemented in deep unfolding networks. A straight-  
 140 forward solution to this problem is to restrict the update step by setting the step size  $\rho$  as follows  
 141 Lee & Seung (2000):

$$142 \rho_i = \frac{\mathbf{y}_i^{t-1}}{(\mathbf{H}^\top \mathbf{H} \mathbf{y}^{t-1})_i}, \quad \text{for } i = 1, \dots, m. \quad (6)$$

144 Substituting this into Eq. (4) yields the following update rule:

$$146 \mathbf{y}_i^t = \text{Prox}_f \left( \mathbf{y}_i^{t-1} - \frac{\mathbf{y}_i^{t-1}}{(\mathbf{H}^\top \mathbf{H} \mathbf{y}^{t-1})_i} ((\mathbf{H}^\top \mathbf{H} \mathbf{y}^{t-1})_i - (\mathbf{H}^\top \mathbf{x})_i) \right) \\ 147 \\ 148 = \text{Prox}_f \left( \frac{\mathbf{y}_i^{t-1}}{(\mathbf{H}^\top \mathbf{H} \mathbf{y}^{t-1})_i} (\mathbf{H}^\top \mathbf{x})_i \right). \quad (7)$$

151 While this formulation guarantees non-negativity, it introduces a new numerical challenge: division  
 152 by zero. Even when a small stabilization constant is introduced, this issue still results in numerical  
 153 instability. This problem becomes more pronounced in deep unfolding networks, where it will prone  
 154 to yield convergence failure or gradient explosion.

155 **3 METHOD**

158 **3.1 SSO-ENHANCED PROXIMAL GRADIENT ALGORITHM**

160 The motivation of this work is to address the non-negativity constraint in the proximal gradient  
 161 algorithm while ensuring stability and robustness in both iterative optimization and deep learning  
 frameworks. First, we give the definition of the Sliding Sigmoid Operator.

162 **Definition 1.** We define the Sliding Sigmoid Operator (SSO) as follows:  
 163

$$SSO_\alpha(z) = 2\sigma(-z - \alpha) + 2\sigma(\alpha) - 1, \quad (8)$$

164 where  $\sigma(c) = \frac{1}{1+e^{-c}}$  denotes the sigmoid function, and  $\alpha$  is the sliding parameter.  
 165

166 As shown in Fig. 2, SSO is essentially a sigmoid function augmented with a sliding parameter  
 167  $\alpha$ . Specifically, as  $\alpha$  varies, the sigmoid curve  
 168 slides along the coordinate point  $(0, 1)$ , adjusting  
 169 its upper and lower bounds accordingly. Notably,  
 170 the function always passes through the  
 171 point  $(0, 1)$ , ensuring that its output is less than  
 172 1 when the input is positive, and greater than 1  
 173 when the input is negative. When the gradient  
 174 is used as the input variable, this property, com-  
 175 bined with the multiplicative update, naturally  
 176 implements a gradient descent behavior. Fur-  
 177 thermore, by adjusting  $\alpha$ , SSO adaptively con-  
 178 trols the step size in the gradient descent pro-  
 179 cess. Thereby, we can define the update rule of  
 180 the SSO-enhanced proximal gradient algorithm  
 181 in **Definition 2**:  
 182

183 **Definition 2.** The update rule of the SSO-enhanced proximal gradient algorithm (SSO-PGA) to the  
 184 inverse problem in Eq. (3) at the  $t$ -th iteration is defined as follows:  
 185

$$\begin{aligned} \mathbf{y}^t &= \mathbf{y}^{t-1} \odot SSO_\alpha(\nabla \mathcal{E}(\mathbf{y}^{t-1})), & \text{(For Problem I),} \\ \mathbf{y}^t &= \text{Prox}_f(\mathbf{y}^{t-1} \odot SSO_\alpha(\nabla \mathcal{E}(\mathbf{y}^{t-1}))), & \text{(For Problem II),} \end{aligned} \quad (9)$$

188 where  $\odot$  denotes the element-wise product. Through SSO-PGA, we not only preserve the original  
 189 gradient descent mechanism, but also constrain the updated variable within a multiplicative range  
 190 of  $(2\sigma(\alpha) - 1, 2\sigma(\alpha) + 1)$  relative to the original variable, thereby enabling more robust gradient  
 191 descent. Moreover, the SSO multiplier enforces non-negativity of the updated variable, which better  
 192 aligns with the characteristics of natural images. Then, we provide the following **Theorem 1**.

193 **Theorem 1.** There exists  $\rho_i > 0$  such that the SSO update rule is equivalent to a standard gradient  
 194 descent step:  
 195

$$\mathbf{y}_i^t = \mathbf{y}_i^{t-1} \cdot SSO_\alpha(\nabla \mathcal{E}(\mathbf{y}_i^{t-1})) = \mathbf{y}_i^{t-1} - \rho_i \nabla \mathcal{E}(\mathbf{y}_i^{t-1}), \quad \text{for } i = 1, \dots, m. \quad (10)$$

197 Please refer to the APPENDIX for the proof. **Theorem 1** demonstrates that SSO-PGA retains the  
 198 fundamental logic of traditional gradient descent. SSO-PGA integrates the nonlinear representa-  
 199 tional capacity of the Sliding Sigmoid Operator with the theoretical foundation of gradient descent,  
 200 enabling it to maintain stability while offering greater flexibility for adaptive adjustment.

201 Here, we prove the convergence of SSO-PGA. As the proximal step is unchanged from PGA, we  
 202 only prove the gradient descent part. First, we introduce three lemmas.

203 **Lemma 1.** For every  $\alpha \geq 0$  and every  $z \in \mathbb{R}$ , the following hold:  
 204

$$|SSO_\alpha(z) - 1| \leq \eta(\alpha) |z|, \quad \eta(\alpha) = \frac{1 + \alpha}{2}. \quad (11)$$

205 **Lemma 2.** Let  $\mathcal{E}: \mathbb{R}^n \rightarrow \mathbb{R}$  have  $L$ -Lipschitz gradient. Then for any  $\mathbf{y}, \mathbf{d} \in \mathbb{R}^n$  Nesterov (2013):  
 206

$$\mathcal{E}(\mathbf{y} + \mathbf{d}) \leq \mathcal{E}(\mathbf{y}) + \langle \nabla \mathcal{E}(\mathbf{y}), \mathbf{d} \rangle + \frac{L}{2} \|\mathbf{d}\|_2^2. \quad (12)$$

210 **Lemma 3.** Given  $\mathcal{E}(\mathbf{y}) = \|\mathbf{x} - \mathbf{H}\mathbf{y}\|_2^2$ , for all  $\mathbf{y}, \mathbf{z} \in \mathbb{R}^n$ , the following hold:  
 211

$$\|\nabla \mathcal{E}(\mathbf{y}) - \nabla \mathcal{E}(\mathbf{z})\|_2 \leq L \|\mathbf{y} - \mathbf{z}\|_2, \quad L = 2 \|\mathbf{H}\|_2^2. \quad (13)$$

213 **Theorem 2.** Let  $0 \leq \alpha \leq 2/(\kappa \|\mathbf{H}\|_2^2) - 1$ , the inverse problem  $\|\mathbf{x} - \mathbf{H}\mathbf{y}\|_2^2$  is nonincreasing under  
 214 the update rule:  
 215

$$\mathbf{y}^t = \mathbf{y}^{t-1} \odot SSO_\alpha(\nabla \mathcal{E}(\mathbf{y}^{t-1})), \quad (14)$$

where  $\kappa = \|\mathbf{y}^{t-1}\|_\infty$ .

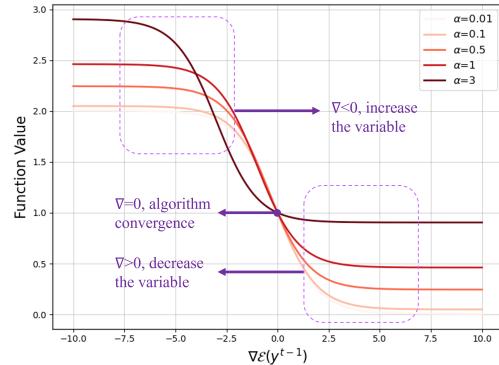


Figure 2: SSO working mechanism and its function curves under different  $\alpha$  values.

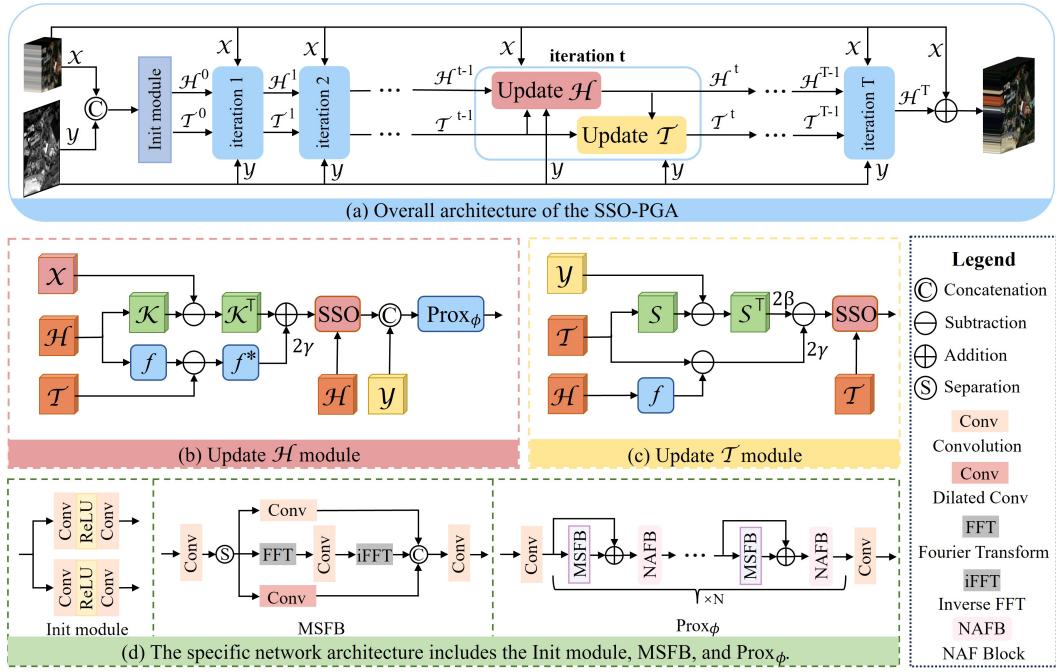


Figure 3: The network architecture of our method. (a) SSO-PGA consists of  $T$  iterative steps, where each iteration includes (b) the update of  $\mathcal{H}$  and (c) the update of  $\mathcal{T}$ . (d) The detailed network architecture of SSO-PGA, including the init module, MSFB, and  $\text{Prox}_\phi(\cdot)$  from left to right.

Please refer to the APPENDIX for the proof. From **Theorem 2**, combined with the fact that  $\mathcal{E}(\mathbf{y}^t) \geq 0$  for every  $t \geq 1$ , we can conclude that the inverse problem  $\|\mathbf{x} - \mathbf{H}\mathbf{y}\|_2^2$  converges to a local minimum under the gradient descent rule based on the SSO. It is worth noting that the condition  $0 \leq \alpha \leq 2/(\kappa\|\mathbf{H}\|_2^2) - 1$ , used in the proof is merely a sufficient condition for ease of analysis. In experiments, we have found that  $\alpha$  admits a much broader range of values.

### 3.2 FORMULATION AND OPTIMIZATION

We formulate the SSO-PGA framework for solving inverse problems. Using multi-modal restoration as an example, given an observed image  $\mathbf{X} \in \mathbb{R}^{h \times w \times C_1}$  and a guided image  $\mathbf{Y} \in \mathbb{R}^{H \times W \times C_2}$ , our goal is to reconstruct the target image  $\mathbf{H} \in \mathbb{R}^{H \times W \times C_1}$ . We explicitly model the degradation processes in both domains to capture the differences between different modalities:

$$\min_{\mathcal{H}, \mathcal{T}} \|\mathbf{X} - \mathcal{K}\mathbf{H}\|_F^2 + \beta \|\mathbf{Y} - \mathcal{S}\mathcal{T}\|_F^2, \quad (15)$$

where  $\mathcal{T} \in \mathbb{R}^{H \times W \times C_2}$  denotes the guided-aligned latent embedding of the target image.  $\mathcal{K}$  and  $\mathcal{S}$  represent different degradation operators. We further enforce cross-domain consistency between the target image features and their guided-aligned embedding, thereby jointly preserving details in both domains:

$$\min_{\mathcal{H}, \mathcal{T}} \|\mathbf{X} - \mathcal{K}\mathbf{H}\|_F^2 + \beta \|\mathbf{Y} - \mathcal{S}\mathcal{T}\|_F^2 + \gamma \|\mathcal{T} - f(\mathbf{H})\|_F^2, \quad (16)$$

where  $f(\cdot)$  is a feature transformation network. Finally, a deep prior  $\phi(\cdot)$  is incorporated to further enhance the reconstruction quality of the target image. The final optimization objective can be formulated as:

$$\min_{\mathcal{H}, \mathcal{T}} \|\mathbf{X} - \mathcal{K}\mathbf{H}\|_F^2 + \beta \|\mathbf{Y} - \mathcal{S}\mathcal{T}\|_F^2 + \gamma \|\mathcal{T} - f(\mathbf{H})\|_F^2 + \phi(\mathbf{H}). \quad (17)$$

Based on the SSO-PGA, we update each variable alternately.

**Step 1:**  $\mathcal{H}$  can be updated as follows at the  $t$ -th iteration:

$$\mathcal{H}^t = \text{Prox}_\phi(\mathcal{H}^{t-1} \odot \text{SSO}_{\alpha_1}(\nabla \mathcal{E}(\mathcal{H}^{t-1}))), \quad (18)$$

270 where

271 
$$\mathcal{E}(\mathcal{H}^{t-1}) = \|\mathcal{X} - \mathcal{K}\mathcal{H}^{t-1}\|_F^2 + \gamma\|\mathcal{T}^{t-1} - f(\mathcal{H}^{t-1})\|_F^2, \quad (19)$$
 272

273 and

274 
$$\nabla\mathcal{E}(\mathcal{H}^{t-1}) = 2\mathcal{K}^\top(\mathcal{K}\mathcal{H}^{t-1} - \mathcal{X}) + 2\gamma f^*(f(\mathcal{H}^{t-1}) - \mathcal{T}^{t-1}). \quad (20)$$
 275

276 Specifically,  $f^*(\cdot)$  is the subgradient of  $f(\cdot)$ , and the proximal operator  $Prox_\phi(\cdot)$  is a deep network  
277 related to  $\phi(\cdot)$ .278 **Step 2:** Similarly, we update  $\mathcal{T}$  as follows:

279 
$$\mathcal{T}^t = \mathcal{T}^{t-1} \odot SSO_{\alpha_2}(\nabla\mathcal{E}(\mathcal{T}^{t-1})), \quad (21)$$
 280

281 where

282 
$$\mathcal{E}(\mathcal{T}^{t-1}) = \beta\|\mathcal{Y} - \mathcal{S}\mathcal{T}^{t-1}\|_F^2 + \gamma\|\mathcal{T}^{t-1} - f(\mathcal{H}^t)\|_F^2, \quad (22)$$
 283

284 and

285 
$$\nabla\mathcal{E}(\mathcal{T}^{t-1}) = 2\beta\mathcal{S}^\top(\mathcal{S}\mathcal{T}^{t-1} - \mathcal{Y}) + 2\gamma(\mathcal{T}^{t-1} - f(\mathcal{H}^t)). \quad (23)$$
 286

## 287 3.3 DEEP UNFOLDING NETWORK

288 This subsection unfolds the SSO-PGA framework into a deep network architecture. As shown in  
289 Fig. 3, the network begins with an initialization module, followed by multiple iterative stages. Each  
290 iteration comprises two submodules: one for updating  $\mathcal{H}$  and the other for updating  $\mathcal{T}$ . In this  
291 formulation, the operators  $\mathcal{K}, \mathcal{K}^\top, \mathcal{S}, \mathcal{S}^\top$  in the original optimization steps are replaced by a multi-  
292 scale spatial frequency feature extraction module (MSFB), while the functions  $f(\cdot)$  and  $f^*(\cdot)$  are  
293 implemented using an NAFBlock Chen et al. (2022). The proximal operator  $Prox_\phi(\cdot)$  is modeled  
294 by a combination of multiple MSFBs and NAFBlocks Chen et al. (2022). Additionally, all hyperpa-  
295 rameters in each iteration, including  $\beta, \gamma, \alpha_1$ , and  $\alpha_2$ , are learnable and passed through a Softplus  
296 function to enforce non-negativity. Finally, the final network output is obtained by adding the  $\mathcal{H}$  in  
297 the last iteration and the initial input, and an L1 loss is applied against the ground truth.

## 298 4 EXPERIMENTS

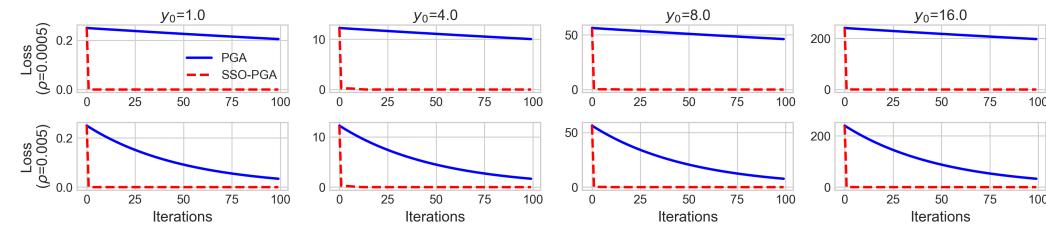
300 In this section, we conduct comprehensive experiments to validate the effectiveness of our method,  
301 including both numerical experiments and real-world vision experiments.

## 303 4.1 COMPARISON WITH TRADITIONAL PROXIMAL GRADIENT ALGORITHM

## 305 4.1.1 NUMERICAL EXPERIMENTS

306 In this subsection, we construct two convex optimization problems and perform numerical simula-  
307 tion experiments.

308 
$$\begin{aligned} & \min_y (y - 0.5)^2, & & \text{(Problem I),} \\ & \min_y (y - 0.5)^2 + \frac{1}{2}|y|, & & \text{(Problem II).} \end{aligned} \quad (24)$$
 309

310 We selected initial values of 1, 4, 8, and 16, with learning rates of 0.0005 and 0.005 (For additional  
311 experiments, please refer to the APPENDIX). Fig. 4 and Fig. 5 show that our SSO-PGA has a clear  
312 advantage over PGA, which can be attributed to the benefits of our multiplicative update rule.

323 Figure 4: Comparison of numerical simulation results for SSO-PGA and PGA on Problem I.

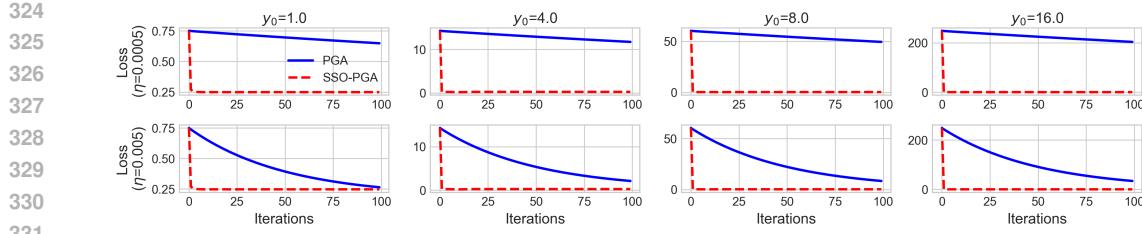


Figure 5: Comparison of numerical simulation results for SSO-PGA and PGA on Problem II.

#### 4.1.2 REAL-WORLD VISION EXPERIMENTS

In this subsection, we construct a PGA baseline by replacing the SSO update rule in Eq. (9) with the traditional gradient descent formulation in Eq. (4), while keeping all other components unchanged. We then conduct a comprehensive comparison with our proposed SSO-PGA.

**Performance Comparison.** To more intuitively verify the effectiveness of SSO, in addition to comparing SSO-PGA with PGA, we also replace the traditional gradient descent step in MDCUN Yang et al. (2022) with our SSO-based update rule and compare it with the original version. As shown in Tab. 1, the SSO-enhanced models significantly outperform the traditional gradient descent models across all three datasets, demonstrating the superiority of the proposed SSO update mechanism.

Table 1: Quantitative comparison of traditional proximal gradient algorithm and SSO-enhanced proximal gradient algorithm on three datasets: WV3, QB, and GF2. The better results are in **bold**.

| Methods                  | WV3           |              |              |              | QB            |              |              |              | GF2           |              |              |              |
|--------------------------|---------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|
|                          | PSNR↑         | SAM↓         | ERGAS↓       | Q8↑          | PSNR↑         | SAM↓         | ERGAS↓       | Q4↑          | PSNR↑         | SAM↓         | ERGAS↓       | Q4↑          |
| MDCUN Yang et al. (2022) | 37.973        | 3.298        | 2.479        | <b>0.909</b> | 36.178        | <b>4.963</b> | 4.698        | 0.915        | 41.138        | 0.870        | 0.815        | 0.974        |
| SSO-MDCUN                | <b>38.135</b> | <b>3.222</b> | <b>2.437</b> | <b>0.909</b> | <b>36.462</b> | 5.007        | <b>4.527</b> | <b>0.917</b> | <b>41.626</b> | <b>0.869</b> | <b>0.783</b> | <b>0.976</b> |
| PGA                      | 39.145        | 2.925        | 2.129        | 0.918        | 38.628        | 4.430        | 3.557        | 0.937        | 43.411        | 0.697        | 0.615        | 0.982        |
| SSO-PGA                  | <b>39.358</b> | <b>2.823</b> | <b>2.078</b> | <b>0.921</b> | <b>38.807</b> | <b>4.312</b> | <b>3.493</b> | <b>0.938</b> | <b>44.005</b> | <b>0.660</b> | <b>0.574</b> | <b>0.985</b> |

**Convergence Behavior.** Fig. 6 illustrates the convergence behavior of SSO-PGA and PGA under varying numbers of iterations. As observed, both methods perform comparably at the first iteration, because the model at this stage mainly behaves like a deep network, and the iterative formulation has not yet taken effect. However, with just two iterations, SSO-PGA already surpasses the three-iteration performance of PGA. By the third iteration, SSO-PGA exceeds the best performance achieved by PGA. Notably, at higher iteration counts, PGA exhibits signs of performance degradation, whereas SSO-PGA continues to improve steadily. This indicates that SSO-PGA not only converges faster but is also more robust against falling into poor local minima.

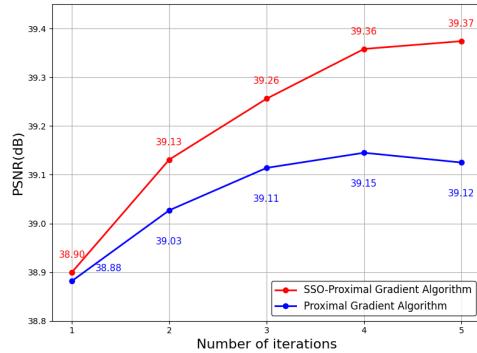
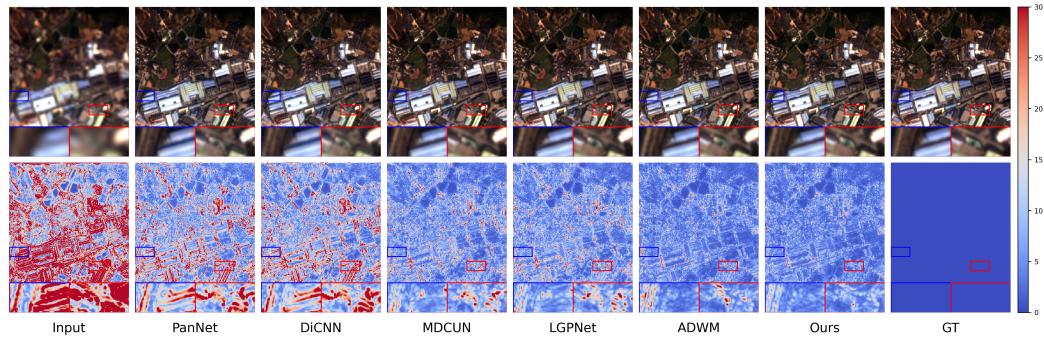


Figure 6: PSNR comparison of SSO-PGA and PGA over iterations on the WV3 dataset.

**Parameter Sensitivity.** Both SSO-PGA and PGA involve two hyperparameters during the update process: the sliding factor  $\alpha_1, \alpha_2$  for SSO-PGA and the step size  $\rho_1, \rho_2$  for PGA. As noted in our deep unfolding network, these hyperparameters are learnable. Here, we assign multiple initial values to  $\alpha$  and  $\rho$  to evaluate the sensitivity of SSO-PGA and PGA to the hyperparameter. Tab. 2 shows that PGA achieves its best performance when  $\rho = 0.1$ , and suboptimal results when  $\rho = 0.01$ . In contrast, SSO-PGA consistently performs well across all initial values. Notably, when the hyperparameter is set to relatively large values (e.g., 3.0 or 5.0), PGA fails to converge, whereas SSO-PGA still delivers strong performance. These results further confirm the robustness and stability of the proposed SSO-PGA framework.

378 Table 2: Quantitative comparison of SSO-PGA and PGA on the WV3 reduced-resolution dataset  
379 with varying parameter initialization settings. The better results are in **bold**.

| 380 Parameter | $\alpha, \rho = 0.01$ |              |              |              | $\alpha, \rho = 0.1$ |              |              |              | $\alpha, \rho = 0.5$ |              |              |              |
|---------------|-----------------------|--------------|--------------|--------------|----------------------|--------------|--------------|--------------|----------------------|--------------|--------------|--------------|
|               | PSNR↑                 | SAM↓         | ERGAS↓       | Q8↑          | PSNR↑                | SAM↓         | ERGAS↓       | Q8↑          | PSNR↑                | SAM↓         | ERGAS↓       | Q8↑          |
| 382 PGA       | 39.116                | 2.948        | 2.143        | 0.919        | 39.145               | 2.925        | 2.129        | 0.918        | 39.063               | 2.923        | 2.149        | 0.918        |
| 383 SSO-PGA   | <b>39.223</b>         | <b>2.859</b> | <b>2.119</b> | <b>0.920</b> | <b>39.191</b>        | <b>2.863</b> | <b>2.116</b> | <b>0.920</b> | <b>39.283</b>        | <b>2.847</b> | <b>2.095</b> | <b>0.920</b> |
| 385 Parameter | $\alpha, \rho = 1.0$  |              |              |              | $\alpha, \rho = 3.0$ |              |              |              | $\alpha, \rho = 5.0$ |              |              |              |
|               | PSNR↑                 | SAM↓         | ERGAS↓       | Q8↑          | PSNR↑                | SAM↓         | ERGAS↓       | Q8↑          | PSNR↑                | SAM↓         | ERGAS↓       | Q8↑          |
| 387 PGA       | 38.907                | 3.017        | 2.195        | 0.917        | 23.162               | 31.146       | 14.431       | 0.490        | 7.678                | 46.171       | 110.511      | 0.011        |
| 388 SSO-PGA   | <b>39.358</b>         | <b>2.823</b> | <b>2.078</b> | <b>0.921</b> | <b>39.225</b>        | <b>2.857</b> | <b>2.108</b> | <b>0.921</b> | <b>39.171</b>        | <b>2.876</b> | <b>2.123</b> | <b>0.919</b> |



401 Figure 7: Visual comparison (the first row) and the corresponding error map (the second row) of our  
402 methods and some representative methods on the GF2 reduced-resolution dataset.

## 4.2 COMPARISON WITH SOTAS

### 4.2.1 MULTISPECTRAL IMAGE FUSION

407 **Datasets and Setting.** We conducted experiments on three datasets consisting of satellite images  
408 captured by WorldView-3 (WV3), QuickBird (QB), and GaoFen-2 (GF2), provided by the PanCol-  
409 lection repository Deng et al. (2022). We evaluate our method using a set of widely used per-  
410 formance metrics. For reduced-resolution data, we use PSNR, SAM Boardman (1993), ERGAS Wald  
411 (2002), and Q4/Q8 Garzelli & Nencini (2009).

412 Table 3: Quantitative comparison for multispectral image fusion on reduced-resolution datasets:  
413 WV3, QB, and GF2. The best results are in **bold** and the second-best values are underlined.

| 415 Methods                         | WV3           |              |              |              | QB            |              |              |              | GF2           |              |              |              |
|-------------------------------------|---------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|
|                                     | PSNR↑         | SAM↓         | ERGAS↓       | Q8↑          | PSNR↑         | SAM↓         | ERGAS↓       | Q4↑          | PSNR↑         | SAM↓         | ERGAS↓       | Q4↑          |
| 416 MTF-GLP-FS Vivone et al. (2018) | 32.963        | 5.316        | 4.700        | 0.833        | 32.709        | 7.792        | 7.373        | 0.835        | 35.540        | 1.655        | 1.589        | 0.897        |
| 417 BDSID-PC Vivone (2019)          | 32.970        | 5.428        | 4.697        | 0.829        | 32.550        | 8.085        | 7.513        | 0.831        | 35.180        | 1.681        | 1.667        | 0.892        |
| 418 TV Palsson et al. (2013)        | 32.381        | 5.692        | 4.855        | 0.795        | 32.136        | 7.510        | 7.690        | 0.821        | 35.237        | 1.911        | 1.737        | 0.907        |
| 419 PNN Masi et al. (2016)          | 37.313        | 3.677        | 2.681        | 0.893        | 36.942        | 5.181        | 4.468        | 0.918        | 39.071        | 1.048        | 1.057        | 0.960        |
| 420 PanNet Yang et al. (2017)       | 37.346        | 3.613        | 2.664        | 0.891        | 34.678        | 5.767        | 5.859        | 0.885        | 40.243        | 0.997        | 0.919        | 0.967        |
| 421 DiCNN He et al. (2019)          | 37.390        | 3.592        | 2.672        | 0.900        | 35.781        | 5.367        | 5.133        | 0.904        | 38.906        | 1.053        | 1.081        | 0.959        |
| 422 FusionNet Deng et al. (2020)    | 38.047        | 3.324        | 2.465        | 0.904        | 37.540        | 4.904        | 4.156        | 0.925        | 39.639        | 0.974        | 0.988        | 0.964        |
| 423 MDCUN Yang et al. (2022)        | 37.973        | 3.298        | 2.479        | 0.909        | 36.178        | 4.963        | 4.698        | 0.915        | 41.138        | 0.870        | 0.815        | 0.974        |
| 424 LAGNet Jin et al. (2022)        | 38.592        | 3.103        | 2.291        | 0.910        | 38.209        | 4.534        | 3.812        | 0.934        | 42.735        | 0.786        | 0.687        | 0.980        |
| 425 LGPNet Zhao et al. (2023)       | 38.147        | 3.270        | 2.422        | 0.902        | 36.443        | 4.954        | 4.777        | 0.915        | 41.843        | 0.845        | 0.765        | 0.976        |
| 426 U2Net Peng et al. (2023)        | 39.117        | <u>2.888</u> | 2.149        | <u>0.920</u> | 38.065        | 4.642        | 3.987        | 0.931        | 43.379        | 0.714        | 0.632        | 0.981        |
| 427 CANNNet Duan et al. (2024)      | 39.003        | 2.941        | 2.174        | <u>0.920</u> | 38.488        | 4.496        | <u>3.698</u> | <u>0.937</u> | 43.496        | 0.707        | 0.630        | <u>0.983</u> |
| 428 PanMamba He et al. (2025)       | 39.012        | 2.913        | 2.184        | <u>0.920</u> | 37.356        | 4.625        | 4.277        | 0.929        | 42.907        | 0.743        | 0.684        | 0.982        |
| 429 ADWM Huang et al. (2025a)       | <u>39.170</u> | 2.913        | <u>2.145</u> | <b>0.921</b> | 38.466        | <u>4.450</u> | 3.705        | <u>0.937</u> | <u>43.884</u> | 0.672        | <u>0.597</u> | <b>0.985</b> |
| 430 SSO-PGA (ours)                  | <b>39.358</b> | <b>2.823</b> | <b>2.078</b> | <b>0.921</b> | <b>38.807</b> | <b>4.312</b> | <b>3.493</b> | <b>0.938</b> | <b>44.005</b> | <b>0.660</b> | <b>0.574</b> | <b>0.985</b> |

431 **Experimental Results.** As shown in Tab. 3, our proposed SSO-PGA consistently achieves the best  
432 results across all datasets compared to other methods. Specifically, in terms of PSNR, our method  
433 outperforms the second-best method by 0.188 dB, 0.319 dB, and 0.121 dB on the WV3, QB, and  
434 GF2 datasets, respectively. These consistent improvements validate the effectiveness of our deep

432 unfolding framework. Furthermore, Fig. 7 presents a qualitative visual comparison of the GF2  
 433 dataset against several representative methods. Our method produces reconstructions closer to the  
 434 ground truth with lower residuals, further highlighting its superiority.  
 435

#### 436 4.2.2 FLASH GUIDED NON-FLASH IMAGE DENOISING

437 **Datasets and Setting.** Following the experimental protocol in recent studies Deng et al. (2024); Xu  
 438 et al. (2024), we used the following datasets for training and testing: the Flash and Ambient Illu-  
 439 minations Dataset (FAID) Aksoy et al. (2018) and the Multi-Illumination Dataset (MID) Murmann  
 440 et al. (2019). We added varying levels of Gaussian noise to the non-flash images in each dataset and  
 441 used PSNR as the evaluation metric.  
 442

443 **Experimental Results.** As shown in Tab. 4, our method outperforms the others on MID and FAID  
 444 datasets. This not only highlights the performance of our method but also demonstrates its versatil-  
 445 ity and generalization capabilities across various tasks. It's worth noting that although our method's  
 446 performance is on par with DeepM<sup>2</sup>CDL Deng et al. (2024), our method has a parameter count of  
 447 just 2.90M, which is significantly smaller than DeepM<sup>2</sup>CDL Deng et al. (2024)'s 421.14M. This  
 448 highlights the lightweight and efficient nature of our approach, as it minimizes computational over-  
 449 head while maintaining comparable performance.  
 450

451 Table 4: Quantitative comparison for flash guided non-flash image denoising in terms of PSNR (dB)  
 452 on MID and FAID datasets. The best results are in **bold** and the second-best values are underlined.

| Methods                                                   | MID           |               |               | FAID          |               |               |
|-----------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|
|                                                           | $\sigma = 25$ | $\sigma = 50$ | $\sigma = 75$ | $\sigma = 25$ | $\sigma = 50$ | $\sigma = 75$ |
| DnCNN Zhang et al. (2017)                                 | 34.57         | 32.69         | 31.26         | 35.38         | 31.94         | 30.08         |
| DJFR Li et al. (2019a)                                    | 37.03         | 32.96         | 31.84         | 33.76         | 30.61         | 28.92         |
| CUNet Deng & Dragotti (2020)                              | 34.61         | 32.39         | 31.18         | 35.86         | 33.05         | 31.30         |
| UMGF Shi et al. (2021)                                    | 38.18         | 35.84         | 34.30         | 34.52         | 31.81         | 30.43         |
| MN Xu et al. (2022)                                       | 39.51         | 37.01         | 35.50         | 36.15         | 33.34         | 31.83         |
| FGDNet Sheng et al. (2022)                                | 38.38         | 35.88         | 34.39         | 34.99         | 32.15         | 30.81         |
| RIDFhF Oh et al. (2023)                                   | 38.31         | 35.33         | 33.74         | 36.25         | 33.48         | 31.92         |
| DeepM <sup>2</sup> CDL Deng et al. (2024) (Para: 421.14M) | <u>39.67</u>  | <u>37.61</u>  | <b>36.28</b>  | <u>36.86</u>  | <b>34.43</b>  | <b>32.95</b>  |
| SSO-PGA (ours) (Para: 2.90M)                              | <b>39.84</b>  | <b>37.66</b>  | <u>35.71</u>  | <b>36.88</b>  | <u>34.12</u>  | <u>32.92</u>  |

#### 462 4.3 ABLATION STUDY

463 We conduct a comprehensive ablation study on  
 464 the SSO-PGA network. First, we remove the  
 465  $Prox_\phi(\cdot)$  module to construct the variant V-1.  
 466 Then, we individually remove the standard con-  
 467 volution, dilated convolution, and frequency-  
 468 domain convolution from the MSFB to con-  
 469 struct variants V-2, V-3, and V-4, respectively.  
 470 The results in Tab. 5 show that SSO-PGA out-  
 471 performs variant V-1, which demonstrates the  
 472 importance of the deep prior. Furthermore, the superiority of SSO-PGA over V-2, V-3, and V-4  
 473 verifies that each branch in the MSFB module is indispensable and plays a critical role in enabling  
 474 comprehensive information fusion.  
 475

## 476 5 CONCLUSION

477 This paper proposes SSO-PGA, a novel multiplicative proximal gradient algorithm enhanced by  
 478 Sliding Sigmoid Operator, which improves stability and adaptivity. We replace the traditional gradi-  
 479 ent descent step with a learnable sigmoid-based operator, which inherently enforces non-negativity  
 480 and boundedness. SSO-PGA is formulated for multi-modal restoration. We then iteratively solve the  
 481 model and further unfold it into a deep neural network. Both numerical and real-world experiments  
 482 verify the superiority of SSO-PGA and its significant improvements in accuracy and convergence  
 483 speed over conventional PGA. Future work will focus on analyzing the theoretical convergence rate  
 484 of SSO-PGA and extending its application to broader vision tasks.  
 485

486 Table 5: Ablation Study of different variants.

| Variant | PSNR↑         | SAM↓         | ERGAS↓       | Q8↑          |
|---------|---------------|--------------|--------------|--------------|
| V-1     | 38.194        | 3.176        | 2.396        | 0.911        |
| V-2     | 39.301        | 2.849        | 2.088        | 0.920        |
| V-3     | 39.190        | 2.868        | 2.108        | 0.919        |
| V-4     | 39.236        | 2.854        | 2.106        | <b>0.921</b> |
| ours    | <b>39.358</b> | <b>2.823</b> | <b>2.078</b> | <b>0.921</b> |

486 REFERENCES  
487

488 Yagiz Aksoy, Changil Kim, Petr Kellnhofer, Sylvain Paris, Mohamed Elgharib, Marc Pollefeys,  
489 and Wojciech Matusik. A dataset of flash and ambient illumination pairs from the crowd. In  
490 *Proceedings of the European Conference on Computer Vision (ECCV)*, pp. 634–649, 2018.

491 Niccolò Antonello, Lorenzo Stella, Panagiotis Patrinos, and Toon Van Waterschoot. Proximal gra-  
492 dient algorithms: Applications in signal processing. *arXiv preprint arXiv:1803.01621*, 2018.

493 Alberto Arienzo, Gemine Vivone, Andrea Garzelli, Luciano Alparone, and Jocelyn Chanussot. Full-  
494 resolution quality assessment of pansharpening: Theoretical and hands-on approaches. *IEEE*  
495 *Geoscience and Remote Sensing Magazine*, 10(3):168–201, 2022.

496

497 Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse  
498 problems. *SIAM journal on imaging sciences*, 2(1):183–202, 2009.

499

500 Joseph W Boardman. Automating spectral unmixing of aviris data using convex geometry concepts.  
501 In *JPL, Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS*  
502 *Workshop*, 1993.

503

504 Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimiza-  
505 tion and statistical learning via the alternating direction method of multipliers. *Foundations and*  
506 *Trends® in Machine learning*, 3(1):1–122, 2011.

507

508 Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems  
509 with applications to imaging. *Journal of mathematical imaging and vision*, 40(1):120–145, 2011.

510

511 Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration.  
512 In *European Conference on Computer Vision*, pp. 17–33. Springer, 2022.

513

514 Yutong Dai, Xiaoyi Qu, and Daniel P Robinson. A proximal-gradient method for constrained opti-  
515 mization. *arXiv preprint arXiv:2404.07460*, 2024.

516

517 Liang-Jian Deng, Gemine Vivone, Weihong Guo, Mauro Dalla Mura, and Jocelyn Chanussot. A  
518 variational pansharpening approach based on reproducible kernel hilbert space and heaviside  
519 function. *IEEE Transactions on Image Processing*, 27(9):4330–4344, 2018.

520

521 Liang-Jian Deng, Gemine Vivone, Cheng Jin, and Jocelyn Chanussot. Detail injection-based deep  
522 convolutional neural networks for pansharpening. *IEEE Transactions on Geoscience and Remote*  
523 *Sensing*, 59(8):6995–7010, 2020.

524

525 Liang-Jian Deng, Gemine Vivone, Mercedes E Paoletti, Giuseppe Scarpa, Jiang He, Yongjun Zhang,  
526 Jocelyn Chanussot, and Antonio Plaza. Machine learning in pansharpening: A benchmark, from  
527 shallow to deep networks. *IEEE Geoscience and Remote Sensing Magazine*, 10(3):279–315,  
528 2022.

529

530 Xin Deng and Pier Luigi Dragotti. Deep convolutional neural network for multi-modal image  
531 restoration and fusion. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43  
532 (10):3333–3348, 2020.

533

534 Xin Deng, Jingyi Xu, Fangyuan Gao, Xiancheng Sun, and Mai Xu. DeepM<sup>2</sup>cdl: Deep multi-scale  
535 multi-modal convolutional dictionary learning network. *IEEE Transactions on Pattern Analysis*  
536 *and Machine Intelligence*, 46(5):2770–2787, 2024. doi: 10.1109/TPAMI.2023.3334624.

537

538 Yule Duan, Xiao Wu, Haoyu Deng, and Liang-Jian Deng. Content-adaptive non-local convolution  
539 for remote sensing pansharpening. In *Proceedings of the IEEE/CVF Conference on Computer*  
540 *Vision and Pattern Recognition*, pp. 27738–27747, 2024.

541

542 Jonathan Eckstein and Dimitri P Bertsekas. On the douglas—rachford splitting method and the  
543 proximal point algorithm for maximal monotone operators. *Mathematical programming*, 55(1):  
544 293–318, 1992.

545

546 Salar Farahmand-Tabar, Fahimeh Abdollahi, and Masoud Fatemi. Robust conjugate gradient meth-  
547 ods for non-smooth convex optimization and image processing problems. In *Handbook of formal*  
548 *optimization*, pp. 19–43. Springer, 2024.

540 Andrea Garzelli and Filippo Nencini. Hypercomplex quality assessment of multi/hyperspectral im-  
 541 ages. *IEEE Geoscience and Remote Sensing Letters*, 6(4):662–665, 2009.

542

543 Donald Goldfarb and Shiqian Ma. Fast multiple-splitting algorithms for convex optimization. *SIAM*  
 544 *Journal on Optimization*, 22(2):533–556, 2012.

545 Lin He, Yizhou Rao, Jun Li, Jocelyn Chanussot, Antonio Plaza, Jiawei Zhu, and Bo Li. Pansharpening  
 546 via detail injection based convolutional neural networks. *IEEE Journal of Selected Topics*  
 547 *in Applied Earth Observations and Remote Sensing*, 12(4):1188–1204, 2019.

548

549 Xiyan He, Laurent Condat, José M Bioucas-Dias, Jocelyn Chanussot, and Junshi Xia. A new pan-  
 550 sharpening method based on spatial and spectral sparsity priors. *IEEE Transactions on Image*  
 551 *Processing*, 23(9):4160–4174, 2014.

552

553 Xuanhua He, Ke Cao, Jie Zhang, Keyu Yan, Yingying Wang, Rui Li, Chengjun Xie, Danfeng Hong,  
 554 and Man Zhou. Pan-mamba: Effective pan-sharpening with state space model. *Information*  
 555 *Fusion*, 115:102779, 2025.

556

557 Mingyi Hong and Zhi-Quan Luo. On the linear convergence of the alternating direction method of  
 558 multipliers. *Mathematical Programming*, 162(1):165–199, 2017.

559

560 Jie Huang, Haorui Chen, Jiaxuan Ren, Siran Peng, and Liangjian Deng. A general adaptive dual-  
 561 level weighting mechanism for remote sensing pansharpening. *arXiv preprint arXiv:2503.13214*,  
 562 2025a.

563

564 Jie Huang, Rui Huang, Jinghao Xu, Siran Peng, Yule Duan, and Liang-Jian Deng. Wavelet-assisted  
 565 multi-frequency attention network for pansharpening. In *Proceedings of the AAAI Conference on*  
 566 *Artificial Intelligence*, volume 39, pp. 3662–3670, 2025b.

567

568 Franck Iutzeler and Jérôme Malick. On the proximal gradient algorithm with alternated inertia.  
 569 *Journal of Optimization Theory and Applications*, 176(3):688–710, 2018.

570

571 Zi-Rong Jin, Tian-Jing Zhang, Tai-Xiang Jiang, Gemine Vivone, and Liang-Jian Deng. Lagconv:  
 572 Local-context adaptive convolution kernels with global harmonic bias for pansharpening. In *Pro-  
 573 ceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 1113–1121, 2022.

574

575 Kevin L Keys, Hua Zhou, and Kenneth Lange. Proximal distance algorithms: Theory and practice.  
 576 *Journal of Machine Learning Research*, 20(66):1–38, 2019.

577

578 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*  
 579 *arXiv:1412.6980*, 2014.

580

581 Emanuel Laude and Panagiotis Patrinos. Anisotropic proximal gradient. *Mathematical Program-  
 582 ming*, pp. 1–45, 2025.

583

584 Daniel Lee and H Sebastian Seung. Algorithms for non-negative matrix factorization. *Advances in*  
 585 *Neural Information Processing Systems*, 13, 2000.

586

587 Huan Li and Zhouchen Lin. Accelerated proximal gradient methods for nonconvex programming.  
 588 *Advances in neural information processing systems*, 28, 2015.

589

590 Huaqing Li, Jinhui Hu, Liang Ran, Zheng Wang, Qingguo Lü, Zhenyuan Du, and Tingwen Huang.  
 591 Decentralized dual proximal gradient algorithms for non-smooth constrained composite optimiza-  
 592 tion problems. *IEEE Transactions on Parallel and Distributed Systems*, 32(10):2594–2605, 2021.

593

594 Yijun Li, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Joint image filtering with deep  
 595 convolutional networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 41(8):  
 596 1909–1923, 2019a.

597

598 Zhi Li, Wei Shi, and Ming Yan. A decentralized proximal-gradient method with network indepen-  
 599 dent step-sizes and separated convergence rates. *IEEE Transactions on Signal Processing*, 67  
 600 (17):4494–4506, 2019b.

601

602 Yura Malitsky and Konstantin Mishchenko. Adaptive proximal gradient method for convex opti-  
 603 mization. *Advances in Neural Information Processing Systems*, 37:100670–100697, 2024.

594 Morteza Mardani, Qingyun Sun, David Donoho, Vardan Papyan, Hatef Monajemi, Shreyas  
 595 Vasanawala, and John Pauly. Neural proximal gradient descent for compressive imaging. *Ad-*  
 596 *vances in Neural Information Processing Systems*, 31, 2018.

597 Giuseppe Masi, Davide Cozzolino, Luisa Verdoliva, and Giuseppe Scarpa. Pansharpening by con-  
 598 volutional neural networks. *Remote Sensing*, 8(7):594, 2016.

600 Chong Mou, Qian Wang, and Jian Zhang. Deep generalized unfolding networks for image resto-  
 601 ration. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,  
 602 pp. 17399–17410, 2022.

603 Lukas Murmann, Michael Gharbi, Miika Aittala, and Fredo Durand. A dataset of multi-illumination  
 604 images in the wild. In *Proceedings of the IEEE/CVF International Conference on Computer*  
 605 *Vision*, pp. 4080–4089, 2019.

607 Yuesong Nan and Hui Ji. Deep learning for handling kernel/model uncertainty in image deconvolu-  
 608 tion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,  
 609 pp. 2388–2397, 2020.

610 Yurii Nesterov. *Introductory lectures on convex optimization: A basic course*, volume 87. Springer  
 611 Science & Business Media, 2013.

613 Geunwoo Oh, Jonghee Back, Jae-Pil Heo, and Bochang Moon. Robust image denoising of no-flash  
 614 images guided by consistent flash images. In *Proceedings of the AAAI Conference on Artificial*  
 615 *Intelligence*, volume 37, pp. 1993–2001, 2023.

616 Frosti Palsson, Johannes R Sveinsson, and Magnus O Ulfarsson. A new pansharpening algorithm  
 617 based on total variation. *IEEE Geoscience and Remote Sensing Letters*, 11(1):318–322, 2013.

618 Panagiotis Patrinos, Lorenzo Stella, and Alberto Bemporad. Douglas-rachford splitting: Complexity  
 619 estimates and accelerated variants. In *53rd IEEE Conference on Decision and Control*, pp. 4234–  
 620 4239. IEEE, 2014.

622 Siran Peng, Chenhao Guo, Xiao Wu, and Liang-Jian Deng. U2net: A general framework with  
 623 spatial-spectral-integrated double u-net for image fusion. In *Proceedings of the 31st ACM Inter-*  
 624 *national Conference on Multimedia*, pp. 3219–3227, 2023.

625 Sebastian Ruder. An overview of gradient descent optimization algorithms. *arXiv preprint*  
 626 *arXiv:1609.04747*, 2016.

628 Adil Salim, Anna Korba, and Giulia Luise. The wasserstein proximal gradient algorithm. *Advances*  
 629 *in Neural Information Processing Systems*, 33:12356–12366, 2020.

630 Zuowei Shen, Kim-Chuan Toh, and Sangwoon Yun. An accelerated proximal gradient algorithm for  
 631 frame-based image restoration via the balanced approach. *SIAM Journal on Imaging Sciences*, 4  
 632 (2):573–596, 2011.

633 Zehua Sheng, Xiongwei Liu, Si-Yuan Cao, Hui-Liang Shen, and Huaqi Zhang. Frequency-domain  
 634 deep guided image denoising. *IEEE Transactions on Multimedia*, 25:6767–6781, 2022.

636 Zenglin Shi, Yunlu Chen, Efstratios Gavves, Pascal Mettes, and Cees GM Snoek. Unsharp mask  
 637 guided filtering. *IEEE transactions on image processing*, 30:7472–7485, 2021.

638 Wutao Si, P-A Absil, Wen Huang, Rujun Jiang, and Simon Vary. A riemannian proximal newton  
 639 method. *SIAM Journal on Optimization*, 34(1):654–681, 2024.

641 Gemine Vivone. Robust band-dependent spatial-detail approaches for panchromatic sharpening.  
 642 *IEEE transactions on Geoscience and Remote Sensing*, 57(9):6421–6433, 2019.

643 Gemine Vivone, Rocco Restaino, and Jocelyn Chanussot. Full scale regression-based injection  
 644 coefficients for panchromatic sharpening. *IEEE Transactions on Image Processing*, 27(7):3418–  
 645 3431, 2018.

647 Lucien Wald. *Data fusion: definitions and architectures: fusion of images of different spatial reso-*  
 648 *lutions*. Presses des MINES, 2002.

648 Xinyi Wei, Hans Van Gorp, Lizeth Gonzalez-Carabarin, Daniel Freedman, Yonina C Eldar, and  
 649 Ruud JG van Sloun. Deep unfolding with normalizing flow priors for inverse problems. *IEEE*  
 650 *Transactions on Signal Processing*, 70:2962–2971, 2022.

651

652 Bingyu Xin, Meng Ye, Leon Axel, and Dimitris N Metaxas. Rethinking deep unrolled model  
 653 for accelerated mri reconstruction. In *European Conference on Computer Vision*, pp. 164–181.  
 654 Springer, 2024.

655 Jingyi Xu, Xin Deng, Chenxiao Zhang, Shengxi Li, and Mai Xu. Laplacian gradient consistency  
 656 prior for flash guided non-flash image denoising. *IEEE Transactions on Image Processing*, 2024.

657

658 Shuang Xu, Jiangshe Zhang, Jialin Wang, Kai Sun, Chunxia Zhang, Junmin Liu, and Junying Hu.  
 659 A model-driven network for guided image denoising. *Information Fusion*, 85:60–71, 2022.

660

661 Gang Yang, Man Zhou, Keyu Yan, Aiping Liu, Xueyang Fu, and Fan Wang. Memory-augmented  
 662 deep conditional unfolding network for pan-sharpening. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1788–1797, 2022.

663

664 Junfeng Yang, Xueyang Fu, Yuwen Hu, Yue Huang, Xinghao Ding, and John Paisley. Pannet: A  
 665 deep network architecture for pan-sharpening. In *Proceedings of the IEEE International Conference on Computer Vision*, pp. 5449–5457, 2017.

666

667 Xi Yao and Wei Dai. A low-rank projected proximal gradient method for spectral compressed  
 668 sensing. *IEEE Transactions on Signal Processing*, 2025.

669

670 Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser:  
 671 Residual learning of deep cnn for image denoising. *IEEE transactions on image processing*, 26  
 672 (7):3142–3155, 2017.

673

674 Chen-Yu Zhao, Tian-Jing Zhang, Ran Ran, Zhi-Xuan Chen, and Liang-Jian Deng. Lgpconv: Learn-  
 675 able gaussian perturbation convolution for lightweight pansharpening. In *IJCAI*, pp. 4647–4655,  
 676 2023.

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**

704 This supplementary material provides additional technical and experimental details that support the  
 705 main paper. It is organized as follows:  
 706

- 707 • **Sec.A.1 Additional Proofs:** We provide detailed theoretical proofs of Theorem 1, Lemma  
 708 1, Lemma 2, Lemma 3, and Theorem 2 related to the SSO-PGA.
- 709 • **Sec.A.2 Limitations:** We discuss the known limitation of our work and how to address it.
- 710 • **Sec.A.3 Broader Impact:** We reflect on the potential applications and societal impact of  
 711 our proposed method and framework.
- 712 • **Sec.A.4 Datasets:** We provide an overview of the datasets employed in this work.
- 713 • **Sec.A.5 Implementation Details:** We describe the compute resources, hyperparameters,  
 714 and training strategies used in our experiments.
- 715 • **Sec.A.6 Experimental Results on Real-world Dataset:** We provide the experimental re-  
 716 sults on a full-resolution dataset to indicate the strong potential of our SSO-PGA for real-  
 717 world applications.
- 718 • **Sec.A.7 Additional Comparison with Traditional Proximal Gradient Algorithm:** We  
 719 provide additional comparison with traditional proximal gradient algorithm to validate the  
 720 advantages of our method.
- 721 • **Sec.A.8 Additional Ablation Study:** We provide additional ablation studies to validate  
 722 the effectiveness of each component of our method.
- 723 • **Sec.A.9 Additional Numerical Experiments:** We provide additional numerical experi-  
 724 ment results to further validate the advantages of our method.
- 725 • **Sec.A.10 Additional Visual Experimental Results:** We include extended visual compar-  
 726 isons to further validate the effectiveness of our approach.
- 727 • **Sec.A.11 The Use of LLMs:** We describe the use of LLMs in our work.

731 **A.1 ADDITIONAL PROOFS**

732 **Proof of Theorem 1**

733 *Proof.* Using the identity  $\sigma(z) + \sigma(-z) = 1$ , we have:

$$734 \begin{aligned} SSO_\alpha(\nabla \mathcal{E}(\mathbf{y}_i^{t-1})) - 1 &= 2[\sigma(-\nabla \mathcal{E}(\mathbf{y}_i^{t-1}) - \alpha) + \sigma(\alpha) - 1] \\ 735 &= 2[\sigma(-\nabla \mathcal{E}(\mathbf{y}_i^{t-1}) - \alpha) - \sigma(-\alpha)]. \end{aligned} \quad (25)$$

736 According to the Lagrange Mean Value Theorem, there exists  $\xi_i^t$  between  $-\alpha$  and  $-\nabla \mathcal{E}(\mathbf{y}_i^{t-1}) - \alpha$   
 737 such that

$$738 \sigma(-\nabla \mathcal{E}(\mathbf{y}_i^{t-1}) - \alpha) - \sigma(-\alpha) = (-\nabla \mathcal{E}(\mathbf{y}_i^{t-1})) \sigma'(\xi_i^t), \quad (26)$$

739 where  $\sigma'(z) = \sigma(z)[1 - \sigma(z)] \in (0, \frac{1}{4}]$ ,  $\forall z \in \mathbb{R}$ .

740 Therefore,

$$741 SSO_\alpha(\nabla \mathcal{E}(\mathbf{y}_i^{t-1})) - 1 = -2\nabla \mathcal{E}(\mathbf{y}_i^{t-1}) \sigma'(\xi_i^t). \quad (27)$$

742 Set  $\theta_i^t = 2\sigma'(\xi_i^t)$ . Then  $SSO_\alpha(\nabla \mathcal{E}(\mathbf{y}_i^{t-1})) = 1 - \theta_i^t \nabla \mathcal{E}(\mathbf{y}_i^{t-1})$ , and since  $\sigma'(z) \in (0, \frac{1}{4}]$ , it follows  
 743 that  $\theta_i^t \in (0, \frac{1}{2}]$ . Thus, we have:

$$744 \mathbf{y}_i^t = \mathbf{y}_i^{t-1} \cdot SSO_\alpha(\nabla \mathcal{E}(\mathbf{y}_i^{t-1})) = \mathbf{y}_i^{t-1} - \mathbf{y}_i^{t-1} \theta_i^t \nabla \mathcal{E}(\mathbf{y}_i^{t-1}). \quad (28)$$

745 Set  $\rho_i = \mathbf{y}_i^{t-1} \theta_i^t$ , proof complete. □

746 **Proof of Lemma 1**

756 *Proof.* Recall that the sliding sigmoid operator is defined as:  
 757

$$758 \quad SSO_\alpha(z) = 2\sigma(-z - \alpha) + 2\sigma(\alpha) - 1, \quad \text{where } \sigma(u) = \frac{1}{1 + e^{-u}}. \quad (29)$$

760 Since  $SSO_\alpha(0) = 1$ , by the Lagrange Mean Value Theorem, for some  $\xi \in (0, z)$  (or  $(z, 0)$ ), we  
 761 have:  
 762

$$SSO_\alpha(z) - 1 = SSO'_\alpha(\xi) \cdot z. \quad (30)$$

763 Now compute the derivative:  
 764

$$765 \quad SSO'_\alpha(u) = \frac{d}{du} [2\sigma(-u - \alpha)] = -2\sigma(-u - \alpha)(1 - \sigma(-u - \alpha)). \quad (31)$$

767 The maximum of  $\sigma(v)(1 - \sigma(v))$  over  $v \in \mathbb{R}$  is  $\frac{1}{4}$ , hence:  
 768

$$769 \quad |SSO'_\alpha(u)| \leq \frac{1}{2} \leq \frac{1 + \alpha}{2} = \eta(\alpha). \quad (32)$$

771 Thus:  
 772

$$|SSO_\alpha(z) - 1| \leq |SSO'_\alpha(\xi)| \cdot |z| \leq \eta(\alpha)|z|. \quad (33)$$

□

## 775 Proof of Lemma 2

776 *Proof.* Consider the scalar function  $\varphi(t) = \mathcal{E}(\mathbf{y} + t\mathbf{d})$ ,  $t \in [0, 1]$ . We have:  
 777

$$779 \quad \mathcal{E}(\mathbf{y} + \mathbf{d}) - \mathcal{E}(\mathbf{y}) = \varphi(1) - \varphi(0) = \int_0^1 \varphi'(t) dt = \int_0^1 \langle \nabla \mathcal{E}(\mathbf{y} + t\mathbf{d}), \mathbf{d} \rangle dt. \quad (34)$$

781 Add and subtract  $\nabla \mathcal{E}(\mathbf{y})$  inside the inner product and apply Cauchy–Schwarz:  
 782

$$\begin{aligned} 783 \quad \mathcal{E}(\mathbf{y} + \mathbf{d}) - \mathcal{E}(\mathbf{y}) &= \int_0^1 \langle \nabla \mathcal{E}(\mathbf{y}), \mathbf{d} \rangle dt + \int_0^1 \langle \nabla \mathcal{E}(\mathbf{y} + t\mathbf{d}) - \nabla \mathcal{E}(\mathbf{y}), \mathbf{d} \rangle dt \\ 784 \\ 785 &= \langle \nabla \mathcal{E}(\mathbf{y}), \mathbf{d} \rangle + \int_0^1 \langle \nabla \mathcal{E}(\mathbf{y} + t\mathbf{d}) - \nabla \mathcal{E}(\mathbf{y}), \mathbf{d} \rangle dt \\ 786 \\ 787 &\leq \langle \nabla \mathcal{E}(\mathbf{y}), \mathbf{d} \rangle + \int_0^1 \|\nabla \mathcal{E}(\mathbf{y} + t\mathbf{d}) - \nabla \mathcal{E}(\mathbf{y})\|_2 \|\mathbf{d}\|_2 dt \\ 788 \\ 789 &\leq \langle \nabla \mathcal{E}(\mathbf{y}), \mathbf{d} \rangle + \int_0^1 L t \|\mathbf{d}\|_2^2 dt \quad (\text{by } L\text{--Lipschitzness}) \\ 790 \\ 791 &= \langle \nabla \mathcal{E}(\mathbf{y}), \mathbf{d} \rangle + \frac{L}{2} \|\mathbf{d}\|_2^2. \\ 792 \\ 793 \end{aligned} \quad (35)$$

794 Thus, proof complete. □

## 797 Proof of Lemma 3

798 *Proof.* The gradient of the objective is:  
 799

$$\nabla \mathcal{E}(\mathbf{y}) = 2\mathbf{H}^\top(\mathbf{H}\mathbf{y} - \mathbf{x}). \quad (36)$$

800 So for any  $\mathbf{y}, \mathbf{z}$ , we have:  
 801

$$\begin{aligned} 803 \quad \|\nabla \mathcal{E}(\mathbf{y}) - \nabla \mathcal{E}(\mathbf{z})\|_2 &= 2\|\mathbf{H}^\top \mathbf{H}(\mathbf{y} - \mathbf{z})\|_2 \\ 804 \\ 805 &\leq 2\|\mathbf{H}^\top \mathbf{H}\|_2 \cdot \|\mathbf{y} - \mathbf{z}\|_2 \\ 806 \\ 807 &= 2\|\mathbf{H}\|_2^2 \cdot \|\mathbf{y} - \mathbf{z}\|_2. \end{aligned} \quad (37)$$

808 Thus,  
 809

$$\|\nabla \mathcal{E}(\mathbf{y}) - \nabla \mathcal{E}(\mathbf{z})\|_2 \leq L\|\mathbf{y} - \mathbf{z}\|_2, \quad L = 2\|\mathbf{H}\|_2^2. \quad (38)$$

□

810 **Proof of Theorem 2**  
811812 *Proof.* Fix  $t$ , and denote  $\mathbf{y} = \mathbf{y}^{t-1}$ ,  $\mathbf{y}^+ = \mathbf{y}^t$ ,  $\mathbf{g} = \nabla \mathcal{E}(\mathbf{y})$  and  $\mathbf{s} = SSO_\alpha(\mathbf{g}) - \mathbf{1}$  for simplicity..  
813 From Eq. (14), we have  $\mathbf{y}^+ = \mathbf{y} + \mathbf{d}$  with  $\mathbf{d} = \mathbf{y} \odot \mathbf{s}$ . Then, we have:  
814

815 
$$\langle \mathbf{g}, \mathbf{d} \rangle = - \sum_i |d_i| |g_i|, \quad (39)$$
  
816

817 **Lemma 1** with  $z = g_i$  yields  $|s_i| \leq \eta(\alpha) |g_i|$ . Hence:  
818

819 
$$\|\mathbf{d}\|_2^2 = \sum_i |d_i| |s_i| y_i \leq \eta(\alpha) \sum_i |d_i| |g_i| y_i. \quad (40)$$
  
820

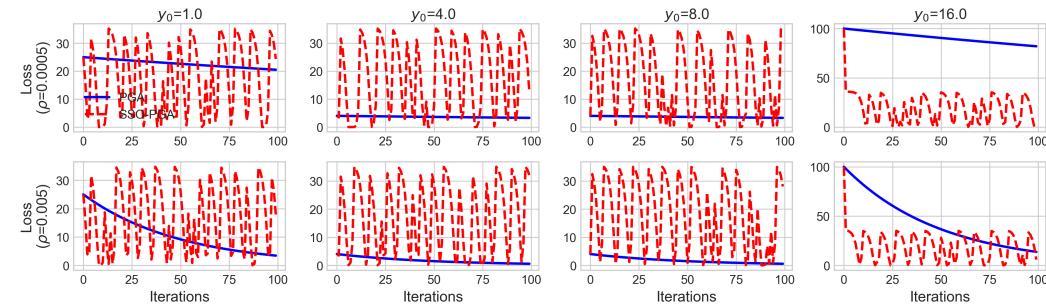
821 From **Lemma 3**,  $\alpha \leq 2/(\kappa \|\mathbf{H}\|_2^2) - 1 = 4/(\kappa L) - 1$ , we have  $\eta(\alpha) = (\alpha + 1)/2 \leq 2/(\kappa L)$ .  
822 Combining this with the bound on  $\|\mathbf{d}\|_2^2$  gives:  
823

824 
$$\frac{L}{2} \|\mathbf{d}\|_2^2 \leq \sum_i |d_i| |g_i| = -\langle \mathbf{g}, \mathbf{d} \rangle. \quad (41)$$
  
825

826 Inserting the bounds into **Lemma 2**:  
827

828 
$$\mathcal{E}(\mathbf{y}^+) - \mathcal{E}(\mathbf{y}) \leq \langle \mathbf{g}, \mathbf{d} \rangle + \frac{L}{2} \|\mathbf{d}\|_2^2 \quad (42)$$
  
829

830 
$$\leq \langle \mathbf{g}, \mathbf{d} \rangle - \langle \mathbf{g}, \mathbf{d} \rangle = 0. \quad (43)$$
  
831

832 Thus,  $\mathcal{E}(\mathbf{y}^t) \leq \mathcal{E}(\mathbf{y}^{t-1})$  for every  $t \geq 1$ .  $\square$   
833834 **A.2 LIMITATIONS**835 A limitation of our study is that SSO-PGA performs well when the solution to the optimization prob-  
836 lem lies between 0 and 1, but exhibits oscillatory, non-convergent behavior when the true solution is  
837 large. For example, when we set the optimal solution to 6, as shown in Fig. 8 and Fig. 9, this issue  
838 becomes apparent.  
839840 Figure 8: Comparison of numerical simulation results for SSO-PGA and PGA on Problem I when  
841 the true solution is large.  
842843 This specific instability is circumvented when SSO-PGA is integrated with a deep network. This is  
844 because, in deep learning, it's standard practice to normalize network inputs and outputs to the  $[0, 1]$   
845 range. The final results are then obtained through inverse normalization. This preprocessing step  
846 naturally prevents the instability observed with large solution values.  
847848 Furthermore, we've identified that this oscillatory behavior is caused by excessively large gradients.  
849 We propose a straightforward solution to mitigate this problem during the optimization process:  
850 gradient clipping. For instance, by clipping the gradients of SSO-PGA to a range of  $[-0.1, 0.1]$ , as  
851 shown in Fig. 10 and Fig. 11, SSO-PGA still demonstrates a faster convergence rate compared to  
852 PGA.  
853

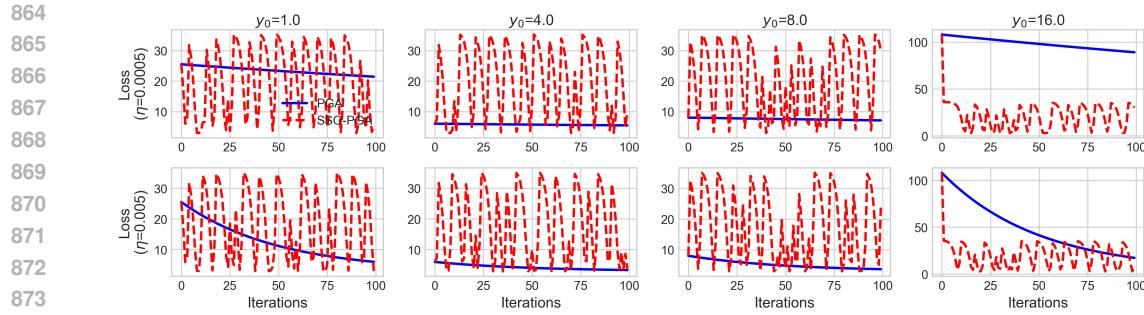


Figure 9: Comparison of numerical simulation results for SSO-PGA and PGA on Problem II when the true solution is large.

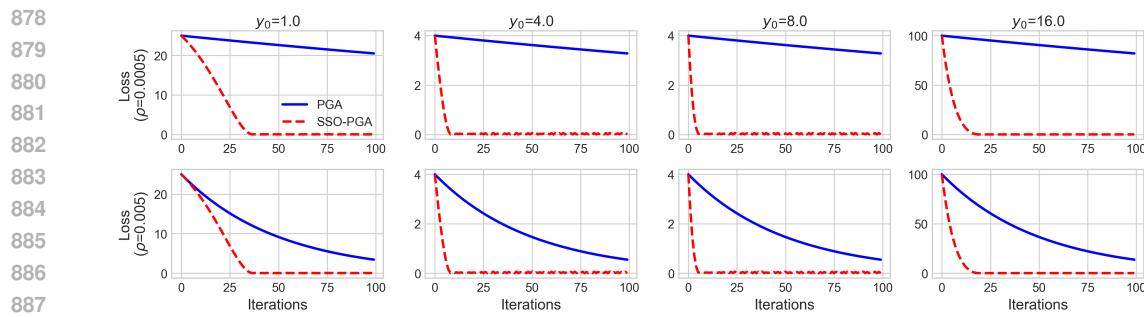


Figure 10: Comparison of numerical simulation results for SSO-PGA (with gradient clipping) and PGA on Problem I when the true solution is large.

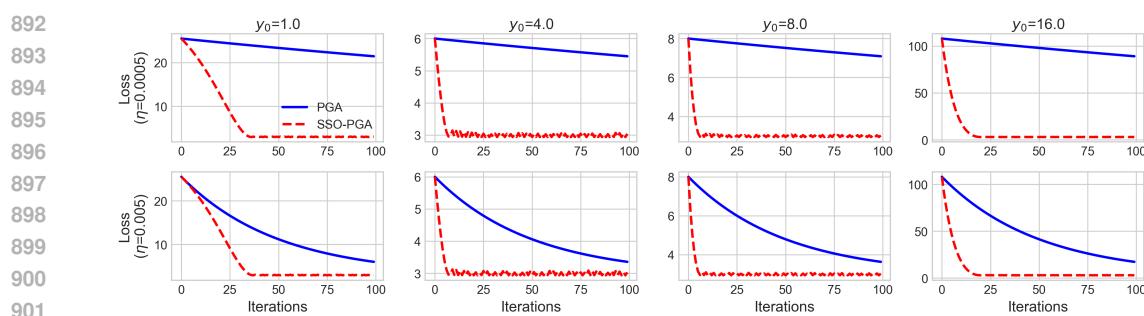


Figure 11: Comparison of numerical simulation results for SSO-PGA (with gradient clipping) and PGA on Problem II when the true solution is large.

### A.3 BROADER IMPACT

The proposed SSO-PGA framework offers a robust and interpretable optimization strategy that extends beyond the task of multispectral image fusion and flash guided non-flash image denoising. The SSO-PGA framework is built upon a gradient-based update mechanism that naturally enforces non-negativity, making it easily adaptable to various inverse problems in computer vision and image reconstruction tasks. These include, but are not limited to, image deblurring, denoising, super-resolution, compressive sensing reconstruction, and medical image enhancement. The deep unfolding nature of SSO-PGA not only enables convergence-guaranteed iterative learning but also offers structural transparency, which is particularly desirable in safety-critical applications like healthcare and autonomous navigation. The strong empirical performance and theoretical convergence guarantee of SSO-PGA make it a promising foundation for future research on interpretable and robust optimization in deep learning systems.

918 A.4 DATASETS  
919

920 In our experiments on multispectral image fusion, we utilized remote sensing image datasets from  
921 the PanCollection repository Deng et al. (2022), encompassing three satellite sources: WorldView-3  
922 (WV3), QuickBird (QB), and GaoFen-2 (GF2). Each dataset is divided into training and testing  
923 subsets. A detailed summary of the sample counts and image dimensions under both reduced- and  
924 full-resolution settings is provided in Table 6.

925 Table 6: Summary of WorldView-3 (WV3), QuickBird (QB), and GaoFen-2 (GF2) datasets.  
926

| 927                       | 928 | Dataset | Samples                    | Image Size (PAN / LRMS / GT) |
|---------------------------|-----|---------|----------------------------|------------------------------|
| <i>Reduced-Resolution</i> |     |         |                            |                              |
| 930                       | 931 | WV3     | 10,000 (train) / 20 (test) | 64×64 / 16×16×8 / 64×64×8    |
| 932                       | 933 | QB      | 17,000 (train) / 20 (test) | 64×64 / 16×16×4 / 64×64×4    |
| 934                       | 935 | GF2     | 20,000 (train) / 20 (test) | 64×64 / 16×16×4 / 64×64×4    |
| <i>Full-Resolution</i>    |     |         |                            |                              |
| 936                       | 937 | WV3     | 20 (test)                  | 512×512 / 128×128×8 / None   |
| 938                       | 939 | QB      | 20 (test)                  | 512×512 / 128×128×4 / None   |
| 940                       | 941 | GF2     | 20 (test)                  | 512×512 / 128×128×4 / None   |

941 In our experiments on flash guided non-flash image denoising, we utilized two common datasets:  
942 the Flash and Ambient Illuminations Dataset (FAID) Aksoy et al. (2018) and the Multi-Illumination  
943 Dataset (MID) Murmann et al. (2019). Each dataset is divided into training and testing subsets. A  
944 detailed summary of the sample counts and image dimensions is provided in Table 7.

945 Table 7: Summary of the Flash and Ambient Illuminations Dataset (FAID) Aksoy et al. (2018) and  
946 the Multi-Illumination Dataset (MID) Murmann et al. (2019).  
947

| 948 | 949 | Dataset | Samples                 | Image Size    |
|-----|-----|---------|-------------------------|---------------|
| 950 | 951 | FAID    | 404 (train) / 12 (test) | 900×600 × 3   |
| 952 | 953 | MID     | 983 (train) / 30 (test) | 1500×1000 × 3 |

954 A.5 IMPLEMENTATION DETAILS  
955

956 All training procedures are conducted on a high-performance computing server equipped with 8  
957 NVIDIA RTX 4090 GPUs. Our training pipeline is implemented in Python 3.8.20 with PyTorch  
958 2.4.1 + cu121, leveraging CUDA 12.1 for efficient GPU acceleration.

959 For multispectral image fusion, we employ the Adam optimizer Kingma & Ba (2014) with an initial  
960 learning rate of  $1 \times 10^{-3}$  and a weight decay of  $1 \times 10^{-8}$ , and the learning rate is halved every  
961 100 epochs. The model is trained for 300 epochs. During training, we apply dropout regularization  
962 with rates of 0.1 on the WV3 and QB datasets, and 0.25 on the GF2 dataset. To ensure high-  
963 quality reconstruction, we adopt a batch size of 32 throughout the training process. The entire  
964 model contains approximately 1.07 million trainable parameters and requires around 15.20 GiB of  
965 GPU memory. We compare our method with several state-of-the-art methods, including 3 traditional  
966 algorithms: MTF-GLP-FS Vivone et al. (2018), BDSD-PC Vivone (2019), and TV Palsson et al.  
967 (2013), and 11 deep learning/unfolding-based models: PNN Masi et al. (2016), PanNet Yang et al.  
968 (2017), DiCNN He et al. (2019), FusionNet Deng et al. (2020), MDCUN Yang et al. (2022), LAGNet  
969 Jin et al. (2022), LGPNet Zhao et al. (2023), U2Net Peng et al. (2023), CANNet Duan et al. (2024),  
970 PanMamba He et al. (2025), and ADWM Huang et al. (2025a).

971 For flash guided non-flash image denoising, we employ the Adam optimizer Kingma & Ba (2014)  
972 with an initial learning rate of  $1 \times 10^{-3}$  and a weight decay of  $1 \times 10^{-8}$ , and the learning rate is

972 halved every 300 epochs. The model is trained for 2000 epochs. To ensure high-quality reconstruction,  
 973 we adopt a batch size of 16 and a patch size of  $128 \times 128$  throughout the training process.  
 974 The entire model contains approximately 2.90 million trainable parameters and requires around  
 975 39.91 GiB of GPU memory. We compared our results against the following representative methods:  
 976 DnCNN Zhang et al. (2017), DJFR Li et al. (2019a), CUNet Deng & Dragotti (2020), UMGF Shi  
 977 et al. (2021), MN Xu et al. (2022), FGDNet Sheng et al. (2022), RIDFhF Oh et al. (2023), and  
 978 DeepM<sup>2</sup>CDL Deng et al. (2024).

979

980

981

982 **A.6 EXPERIMENTAL RESULTS ON REAL-WORLD DATASET**

983

984 Following Huang et al. (2025b), for full-resolution data, we apply  $D_s$ ,  $D_\lambda$ , and HQNR Arienzo  
 985 et al. (2022) as the evaluation metric, which collectively provide a comprehensive measure of image  
 986 fusion quality. We evaluate SSO-PGA on the full-resolution WV3 dataset, where it demonstrates  
 987 significant advantages in Tab. 8. This outstanding performance not only validates the effectiveness  
 988 of our method but also underscores its robustness and profound potential for real-world applications  
 989 requiring high-fidelity image fusion.

990

991

992 Table 8: Quantitative comparison on WV3 dataset with 20 full-resolution samples. The best results  
 993 are in **bold** and the second-best values are underlined.

994

| Methods                | BDSD-PC Vivone (2019)      | TV Palsson et al. (2013)  | PNN Masi et al. (2016)    | PanNet Yang et al. (2017) |
|------------------------|----------------------------|---------------------------|---------------------------|---------------------------|
| $D_\lambda \downarrow$ | 0.063                      | 0.023                     | 0.021                     | <b>0.017</b>              |
| $D_s \downarrow$       | 0.073                      | 0.039                     | 0.043                     | 0.047                     |
| HQNR $\uparrow$        | 0.870                      | 0.938                     | 0.937                     | 0.937                     |
| Methods                | DiCNN He et al. (2019)     | LAGNet Jin et al. (2022)  | LGPNet Zhao et al. (2023) | U2Net Peng et al. (2023)  |
| $D_\lambda \downarrow$ | 0.036                      | 0.037                     | 0.022                     | 0.020                     |
| $D_s \downarrow$       | 0.046                      | 0.042                     | 0.039                     | <u>0.028</u>              |
| HQNR $\uparrow$        | 0.920                      | 0.923                     | 0.940                     | <u>0.952</u>              |
| Methods                | CANNNet Duan et al. (2024) | PanMamba He et al. (2025) | ADWM Huang et al. (2025a) | SSO-PGA (ours)            |
| $D_\lambda \downarrow$ | 0.020                      | <u>0.018</u>              | 0.024                     | 0.022                     |
| $D_s \downarrow$       | 0.030                      | 0.053                     | 0.029                     | <b>0.026</b>              |
| HQNR $\uparrow$        | 0.951                      | 0.930                     | 0.948                     | <b>0.953</b>              |

1007

1008

1009

1010

1011

1012 **A.7 ADDITIONAL COMPARISON WITH TRADITIONAL PROXIMAL GRADIENT ALGORITHM**

1013

1014

1015 In this subsection, we provide a supplementary perturbation analysis for both PGA and SSO-PGA.  
 1016 Additionally, we present further experimental results for SSO-PGA at different iteration counts, as  
 1017 detailed in Tab. 9.

1018

1019

1020

1021

1022

1023

**Perturbation Analysis.** Fig. 12 and Tab. 10 present the comparison between SSO-PGA and PGA  
 under varying levels of missing MS input (10%, 20%, and 50%) on the WV3 dataset. Across all  
 perturbation levels, SSO-PGA consistently yields superior visual reconstruction and achieves higher  
 PSNR and Q8 scores compared to PGA. Especially under a high missing rate (50%), the Q8 value  
 of PGA drops to only 0.901, while SSO-PGA still maintains a result of 0.910. This demonstrates the  
 strong robustness of the proposed SSO-PGA method in handling degraded and incomplete inputs.

1024

1025

In conclusion, comparing SSO-PGA with the PGA baseline, the results in Tab. 9 validate that SSO-  
 PGA achieves faster and more stable convergence, while the perturbation experiments in Tab. 10  
 confirm its robustness under various missing ratios.

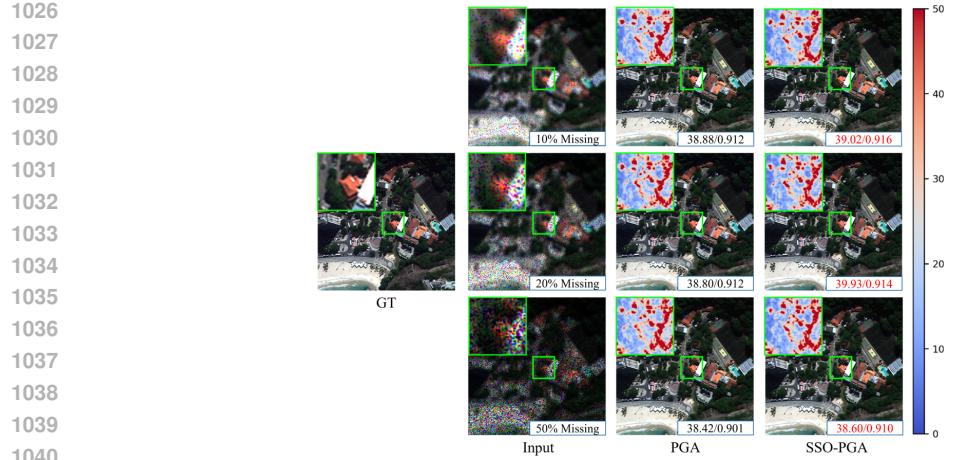


Figure 12: Visual comparison along with the corresponding PSNR and Q8 values of SSO-PGA and PGA on the WV3 dataset under varying missing ratios.

Table 9: Quantitative comparison of SSO-PGA and PGA on the WV3 reduced-resolution dataset over different iterations. The better results are in **bold**.

|             | PGA    |       |              |       | SSO-PGA       |              |              |              |
|-------------|--------|-------|--------------|-------|---------------|--------------|--------------|--------------|
|             | PSNR↑  | SAM↓  | ERGAS↓       | Q8↑   | PSNR↑         | SAM↓         | ERGAS↓       | Q8↑          |
| Iteration 1 | 38.882 | 2.961 | <b>2.193</b> | 0.916 | <b>38.900</b> | <b>2.960</b> | 2.200        | <b>0.917</b> |
|             | PGA    |       |              |       | SSO-PGA       |              |              |              |
|             | PSNR↑  | SAM↓  | ERGAS↓       | Q8↑   | PSNR↑         | SAM↓         | ERGAS↓       | Q8↑          |
| Iteration 2 | 39.027 | 2.944 | 2.160        | 0.916 | <b>39.131</b> | <b>2.892</b> | <b>2.138</b> | <b>0.918</b> |
|             | PGA    |       |              |       | SSO-PGA       |              |              |              |
|             | PSNR↑  | SAM↓  | ERGAS↓       | Q8↑   | PSNR↑         | SAM↓         | ERGAS↓       | Q8↑          |
| Iteration 3 | 39.114 | 2.913 | 2.142        | 0.919 | <b>39.256</b> | <b>2.855</b> | <b>2.104</b> | <b>0.920</b> |
|             | PGA    |       |              |       | SSO-PGA       |              |              |              |
|             | PSNR↑  | SAM↓  | ERGAS↓       | Q8↑   | PSNR↑         | SAM↓         | ERGAS↓       | Q8↑          |
| Iteration 4 | 39.145 | 2.925 | 2.129        | 0.918 | <b>39.358</b> | <b>2.823</b> | <b>2.078</b> | <b>0.921</b> |
|             | PGA    |       |              |       | SSO-PGA       |              |              |              |
|             | PSNR↑  | SAM↓  | ERGAS↓       | Q8↑   | PSNR↑         | SAM↓         | ERGAS↓       | Q8↑          |
| Iteration 5 | 39.125 | 2.916 | 2.139        | 0.918 | <b>39.374</b> | <b>2.818</b> | <b>2.072</b> | <b>0.921</b> |

Table 10: Quantitative comparison of SSO-PGA and PGA on the WV3 reduced-resolution dataset under varying missing ratios. The better results are in **bold**.

|             | PGA    |       |        |       | SSO-PGA       |              |              |              |
|-------------|--------|-------|--------|-------|---------------|--------------|--------------|--------------|
|             | PSNR↑  | SAM↓  | ERGAS↓ | Q8↑   | PSNR↑         | SAM↓         | ERGAS↓       | Q8↑          |
| Missing 10% | 38.875 | 3.039 | 2.196  | 0.912 | <b>39.016</b> | <b>2.931</b> | <b>2.157</b> | <b>0.916</b> |
|             | PGA    |       |        |       | SSO-PGA       |              |              |              |
|             | PSNR↑  | SAM↓  | ERGAS↓ | Q8↑   | PSNR↑         | SAM↓         | ERGAS↓       | Q8↑          |
| Missing 20% | 38.804 | 3.056 | 2.210  | 0.912 | <b>38.928</b> | <b>2.972</b> | <b>2.184</b> | <b>0.914</b> |
|             | PGA    |       |        |       | SSO-PGA       |              |              |              |
|             | PSNR↑  | SAM↓  | ERGAS↓ | Q8↑   | PSNR↑         | SAM↓         | ERGAS↓       | Q8↑          |
| Missing 30% | 38.420 | 3.415 | 2.301  | 0.901 | <b>38.599</b> | <b>3.079</b> | <b>2.270</b> | <b>0.910</b> |

1080 A.8 ADDITIONAL ABLATION STUDY  
1081

1082 **Different Sliding Parameter Settings.** Besides the parameter learning method described in the  
1083 deep network architecture, there are two other ways to set the sliding parameter: manually fixed  
1084 value and automated learning via a simple neural network (with a Convolution layer, a Sigmoid  
1085 activation, another Convolution layer, and finally a Softplus activation). We've conducted additional  
1086 experiments to compare these two approaches (Tab. 11), where the SSO-PGA-1 and SSO-PGA-0.1  
1087 are our method with fixed  $\alpha$  values (1/0.1), and SSO-PGA-Auto is the automated way. From the  
1088 table, we can observe that the performance of the fixed-value sliding parameter and the automated  
1089 approach is slightly lower than that of our method in the paper.

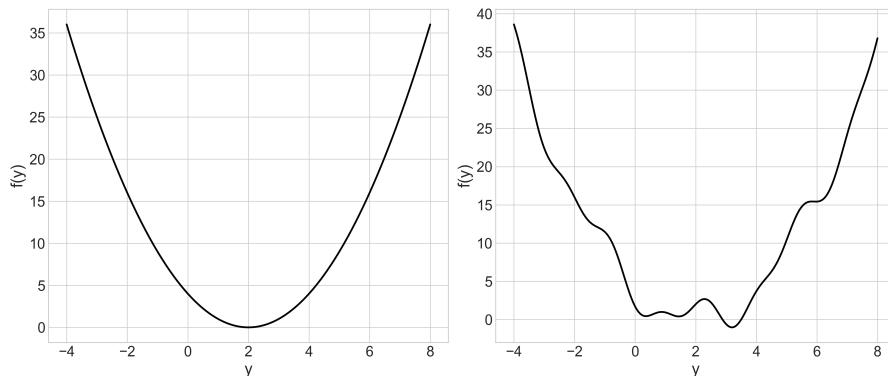
1090  
1091 Table 11: Comparison of Different Sliding Parameter Settings.  
1092

|              | PSNR $\uparrow$ | SAM $\downarrow$ | ERGAS $\downarrow$ | Q2N $\downarrow$ |
|--------------|-----------------|------------------|--------------------|------------------|
| SSO-PGA-Auto | 39.280          | 2.841            | 2.099              | <b>0.921</b>     |
| SSO-PGA-1    | 39.287          | 2.824            | 2.092              | <b>0.921</b>     |
| SSO-PGA-0.1  | 39.147          | 2.884            | 2.115              | 0.920            |
| SSO-PGA      | <b>39.358</b>   | <b>2.823</b>     | <b>2.078</b>       | <b>0.921</b>     |

1100 **Comparison with Traditional Projected Operator.** To compare with traditional post-projection  
1101 methods, we attempted to enforce non-negativity by applying activation functions (ReLU and Soft-  
1102 plus) as projection operations after the gradient descent step in traditional PGA. The experimental  
1103 results are shown in Tab. 12. However, both approaches performed even worse than PGA. The rea-  
1104 son for this is that while these projection methods enforce non-negativity, they unfortunately lose  
1105 information from negative values and alter the original gradient information during the process. In  
1106 contrast, SSO-PGA guarantees non-negativity through a direct mapping while fully preserving the  
1107 gradient information.

1108 Table 12: Comparison with Traditional Projected Gradient Descent Methods.  
1109

|              | PSNR $\uparrow$ | SAM $\downarrow$ | ERGAS $\downarrow$ | Q2N $\downarrow$ |
|--------------|-----------------|------------------|--------------------|------------------|
| ReLU-PGA     | 36.600          | 3.557            | 2.825              | 0.900            |
| Softplus-PGA | 38.957          | 2.926            | 2.167              | 0.916            |
| PGA          | 39.145          | 2.925            | 2.129              | 0.918            |
| SSO-PGA      | <b>39.358</b>   | <b>2.823</b>     | <b>2.078</b>       | <b>0.921</b>     |

1118 A.9 ADDITIONAL NUMERICAL EXPERIMENTS  
11191120  
1121 Figure 13: Landscapes for Problem I (left) and Problem I+ (right).  
1122

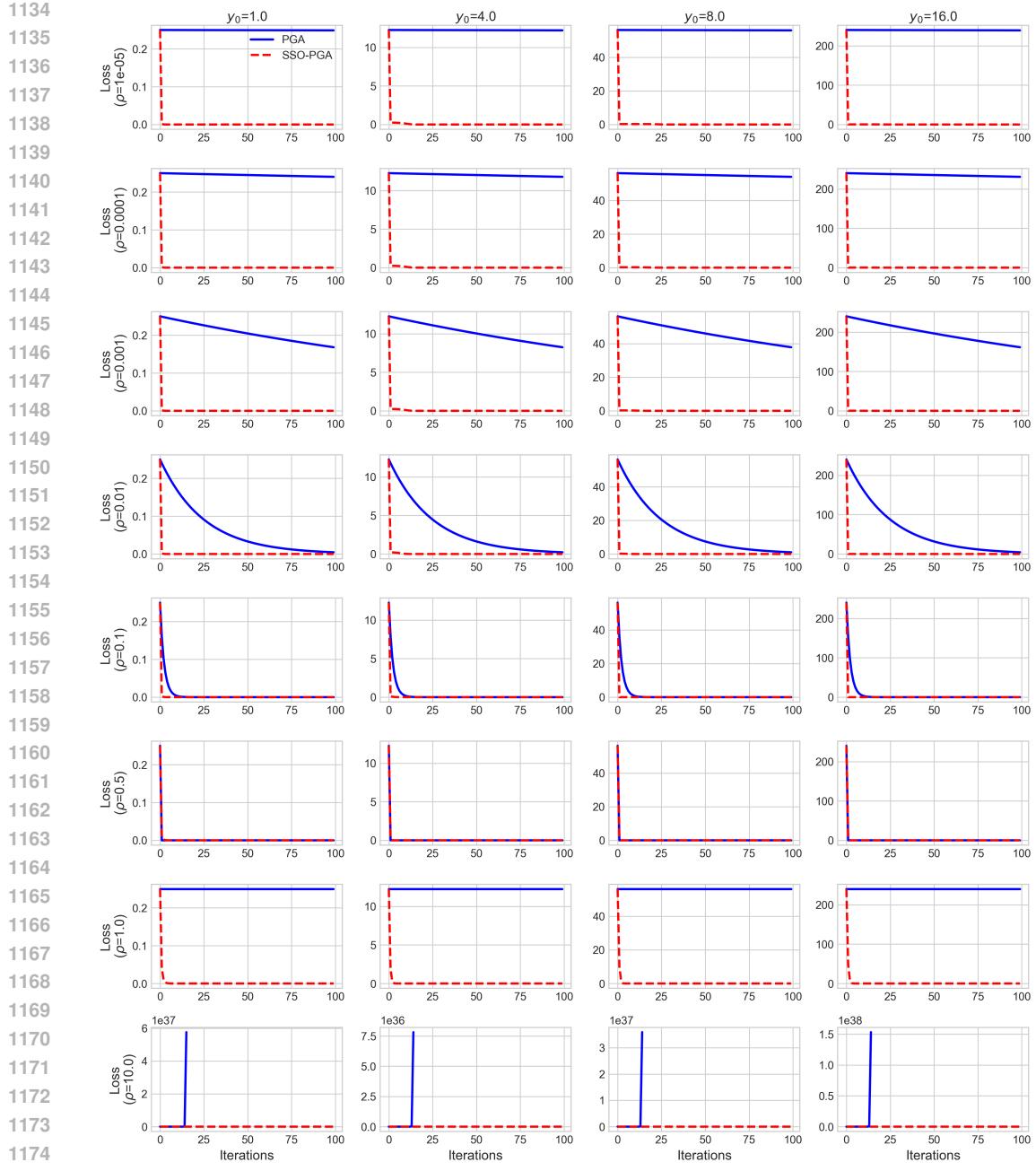


Figure 14: Additional comparison of numerical simulation results for SSO-PGA and PGA on Problem I.

In this subsection, we provide additional numerical simulation experiments. Specifically, in addition to the two problems from Eq. (24), we include two non-convex problems, denoted as Problem I+ and Problem II+:

$$\begin{aligned}
 & \min_y (y - 0.5)^2 + \sin(4(x - 0.5)) + \cos(2(x - 0.5)), & \text{(Problem I+)}, \\
 & \min_y (y - 0.5)^2 + \sin(4(x - 0.5)) + \cos(2(x - 0.5)) + \frac{1}{2}|y|, & \text{(Problem II+)}.
 \end{aligned} \tag{44}$$

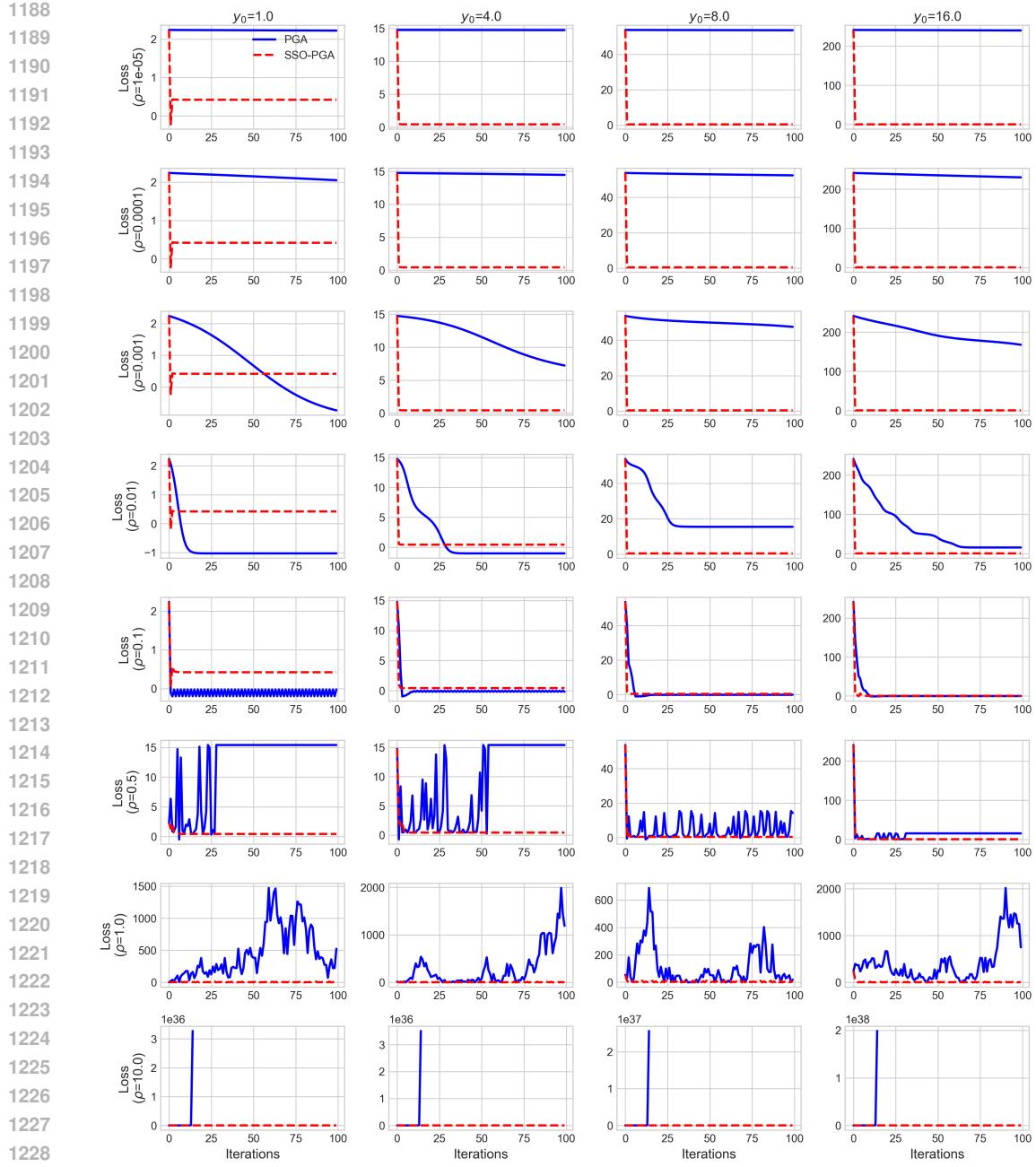


Figure 15: Additional comparison of numerical simulation results for SSO-PGA and PGA on Problem I+.

Fig. 13 shows the landscapes for Problem I (left) and Problem I+ (right), respectively. We tested a wide range of learning rates: 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 5e-1, 1, and 10. As shown in Fig. 14 to Fig. 17, our SSO-PGA consistently outperforms the traditional PGA under most parameter settings. This holds true for both convex and non-convex problems (Problem I and II, and their non-convex counterparts). We can observe that SSO-PGA is less sensitive to the learning rate. When the learning rate is small, SSO-PGA converges much faster than PGA. When the learning rate is large, SSO-PGA is more stable than PGA, especially with very large learning rates where PGA fails to converge. Additionally, in non-convex scenarios, SSO-PGA shows a slight advantage in avoiding local minima.

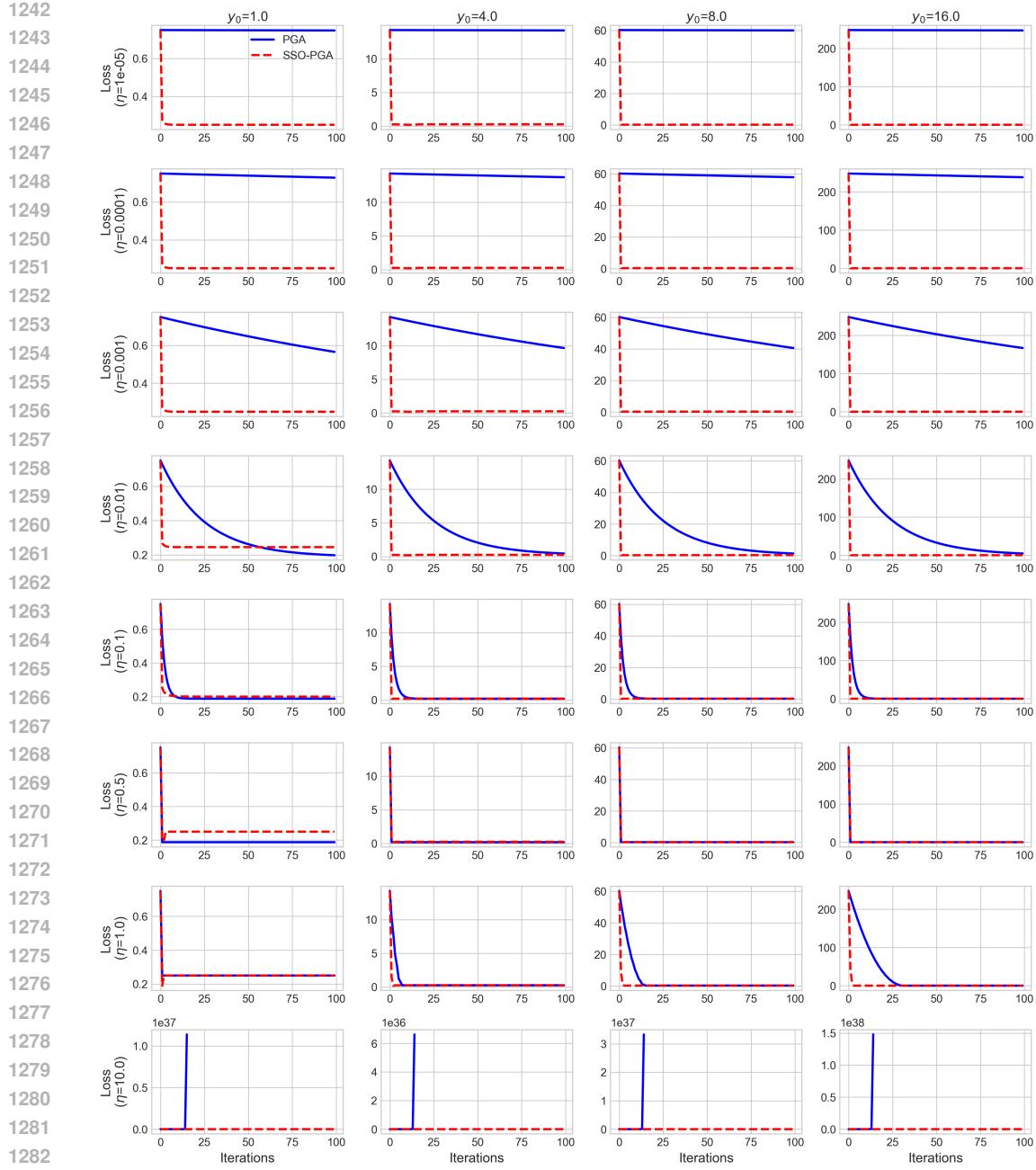


Figure 16: Additional comparison of numerical simulation results for SSO-PGA and PGA on Problem II.

This success is a direct result of the inherent advantages of the multiplicative update rule introduced by our novel SSO operator. By replacing the traditional subtractive gradient descent step with a sigmoid-based multiplicative update, our algorithm fundamentally transforms the optimization process, making it more stable, less sensitive to hyperparameters, and capable of achieving superior results. It's important to note that since this paper focuses on non-negative inverse problems, the optimal solutions in our numerical simulations are all greater than zero. If the optimal solution were less than zero, it would fall outside the scope of our study, and SSO-PGA would not be able to solve it.

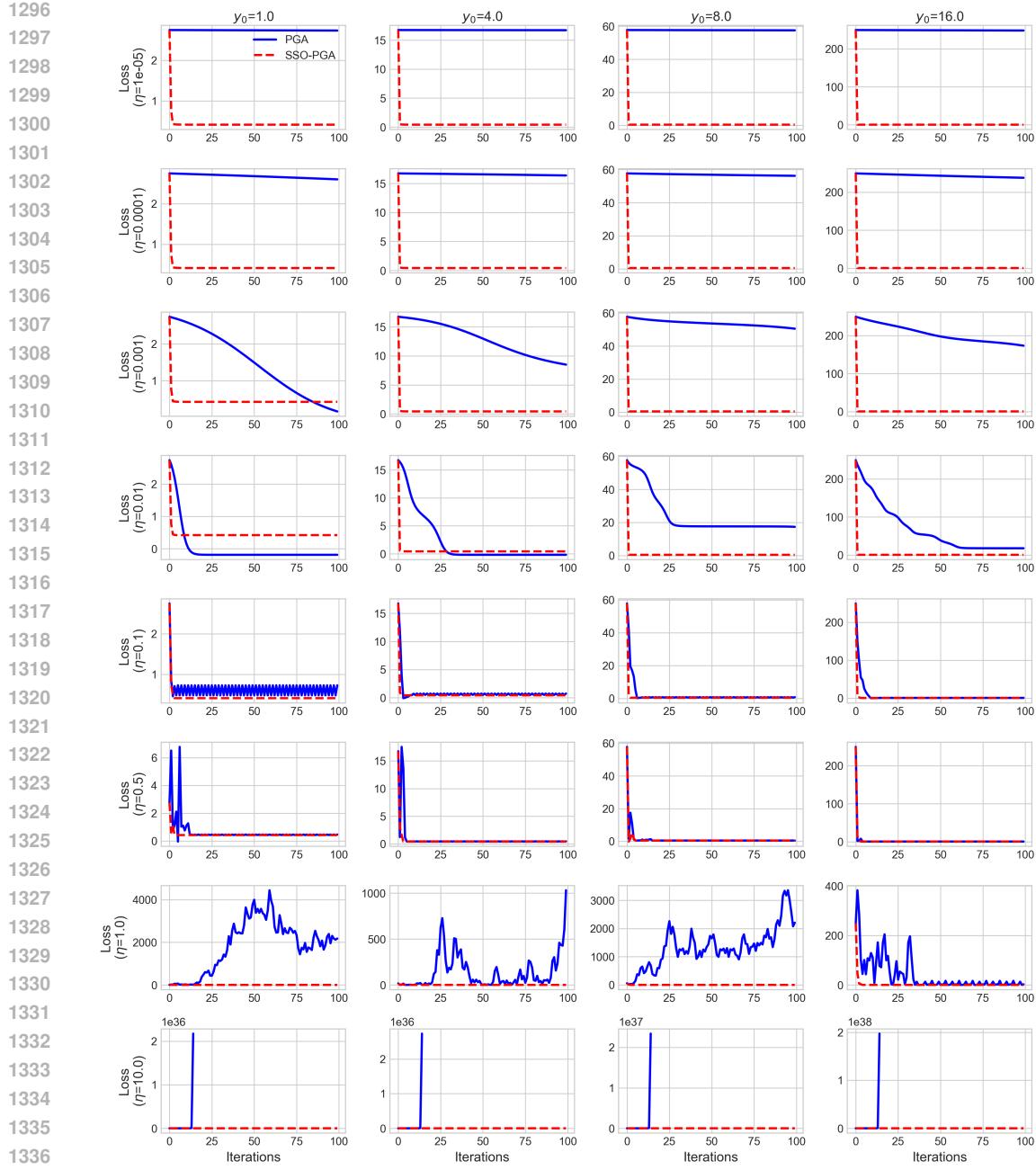


Figure 17: Additional comparison of numerical simulation results for SSO-PGA and PGA on Problem II+.

#### A.10 ADDITIONAL VISUAL EXPERIMENTAL RESULTS

In this subsection, we present additional experimental results to further demonstrate the effectiveness and robustness of our proposed SSO-PGA method. The results cover the following aspects:

- **Qualitative Comparison on Flash Guided Non-Flash Image Denoising (Fig. 18, and Fig. 19):** Visual comparisons between SSO-PGA and several representative SOTA methods are provided across the two benchmark datasets (FAID and MID). These results clearly demonstrate that SSO-PGA consistently achieves superior denoising performance compared to other methods, yielding results that are closer to the ground truth.

- **Qualitative Comparison on Multispectral Image Fusion (Fig. 20, Fig. 21, and Fig. 22):** Visual comparisons between SSO-PGA and several representative SOTA methods are provided across the three benchmark datasets (WV3, QB, and GF2). These results clearly show that SSO-PGA consistently reconstructs sharper spatial details and produces reconstructions closer to the ground truth with lower residual.
- **Visualization Under Different Iteration Steps (Fig. 23 and Fig. 24):** We further present the reconstructed outputs of both SSO-PGA and the PGA baseline under varying numbers of iterations. The results demonstrate that SSO-PGA achieves high-fidelity fusion even with fewer unfolding steps and maintains performance when increasing the number of iterations, unlike the PGA baseline, which may suffer from degradation.
- **SSO vs. Gradient Descent Visualization (Fig. 25, Fig. 26, and Fig. 27):** We provide side-by-side visual comparisons of SSO-based and gradient-descent-based models, namely SSO-PGA vs. PGA baseline, and SSO-MDCUN vs. MDCUN Yang et al. (2022), across all datasets. The SSO-enhanced variants consistently produce better reconstruction with fewer spectral distortions and residual artifacts.

These extended experimental results collectively confirm the superiority of our proposed SSO-PGA framework in terms of reconstruction accuracy, convergence stability, and robustness across different scenarios.



Figure 18: Visual comparison of our method and some representative methods on the FAID dataset.

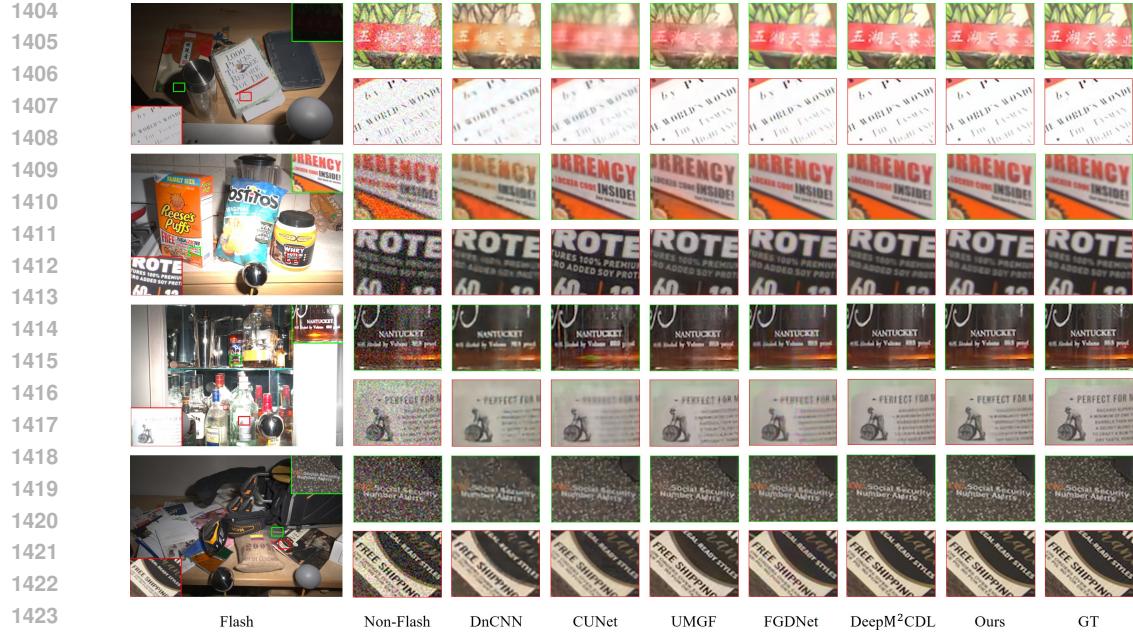


Figure 19: Visual comparison of our method and some representative methods on the MID dataset.

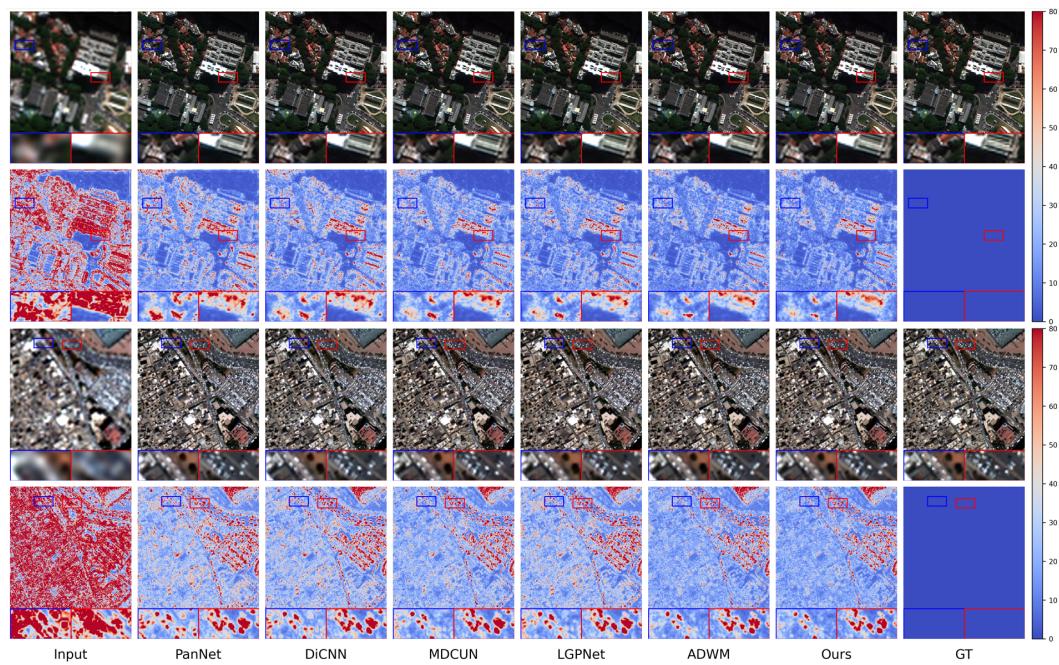


Figure 20: Visual comparison (the first row) and the corresponding error map (the second row) of our method and some representative methods on the WV3 reduced-resolution dataset.

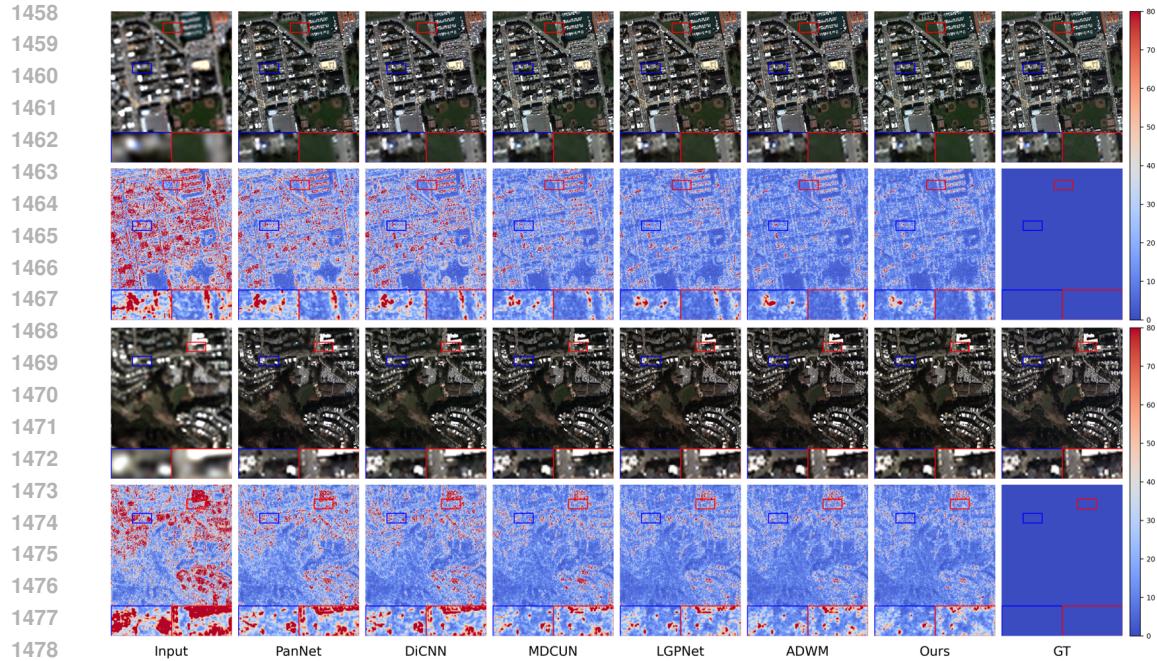


Figure 21: Visual comparison (the first row) and the corresponding error map (the second row) of our method and some representative methods on the QB reduced-resolution dataset.

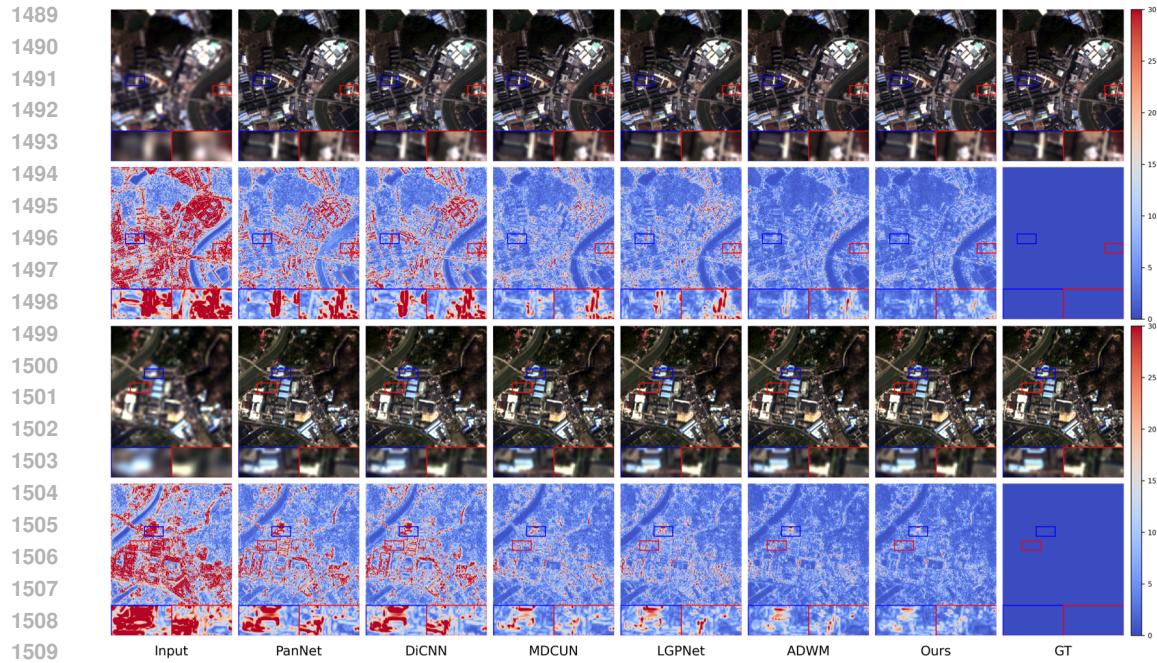


Figure 22: Visual comparison (the first row) and the corresponding error map (the second row) of our method and some representative methods on the GF2 reduced-resolution dataset.

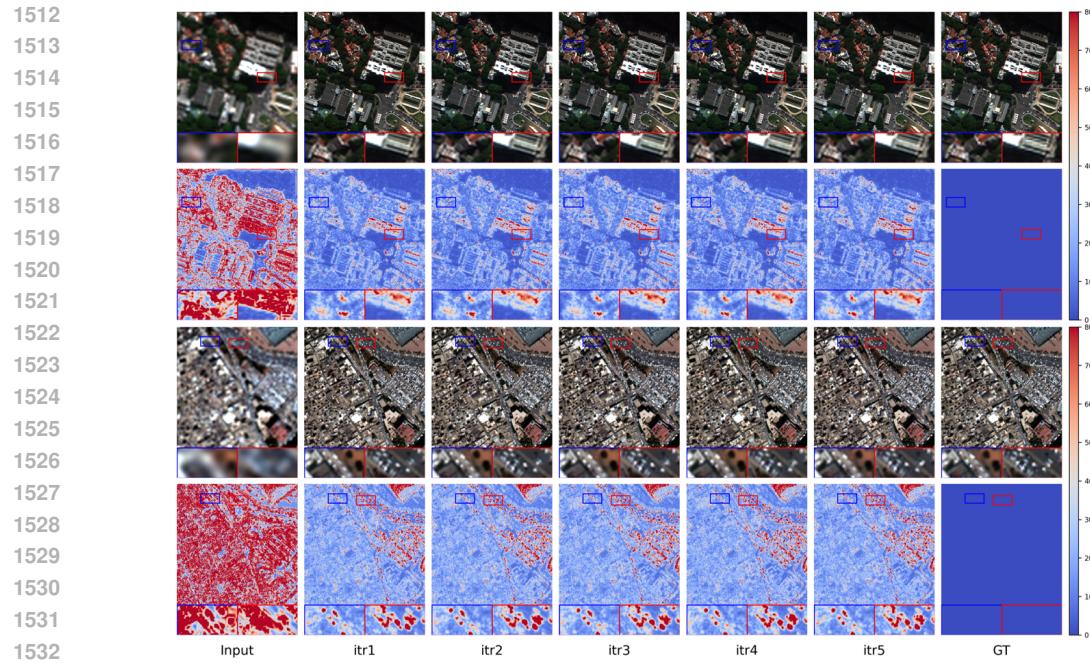


Figure 23: Visual comparison (the first row) and the corresponding error map (the second row) of PGA baseline under different iteration steps on the WV3 reduced-resolution dataset.

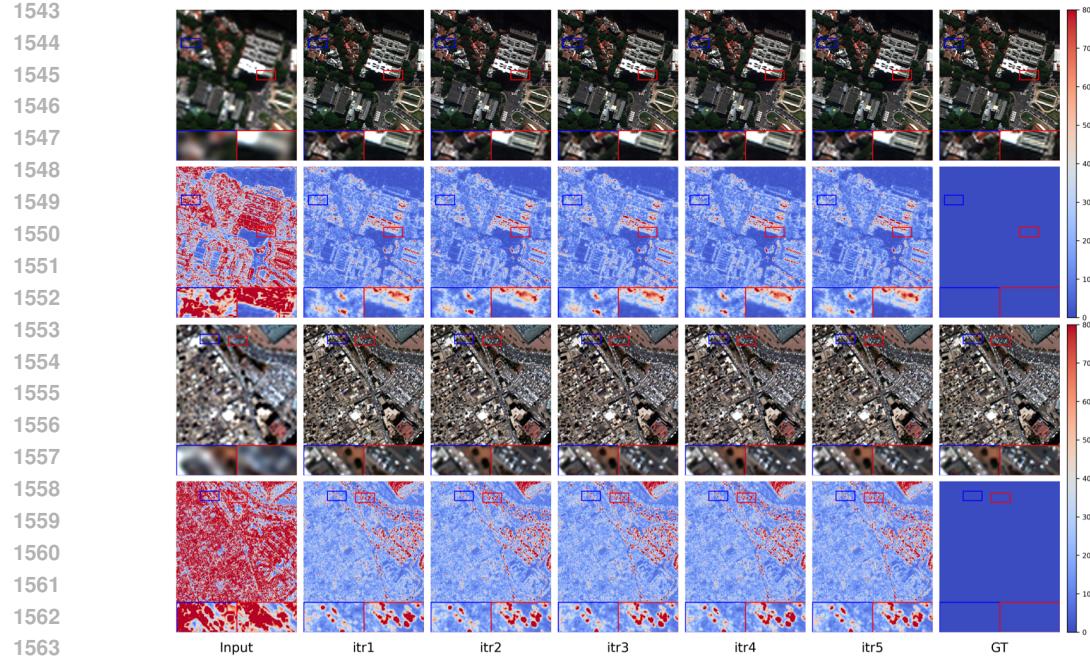


Figure 24: Visual comparison (the first row) and the corresponding error map (the second row) of our SSO-PGA under different iteration steps on the WV3 reduced-resolution dataset.

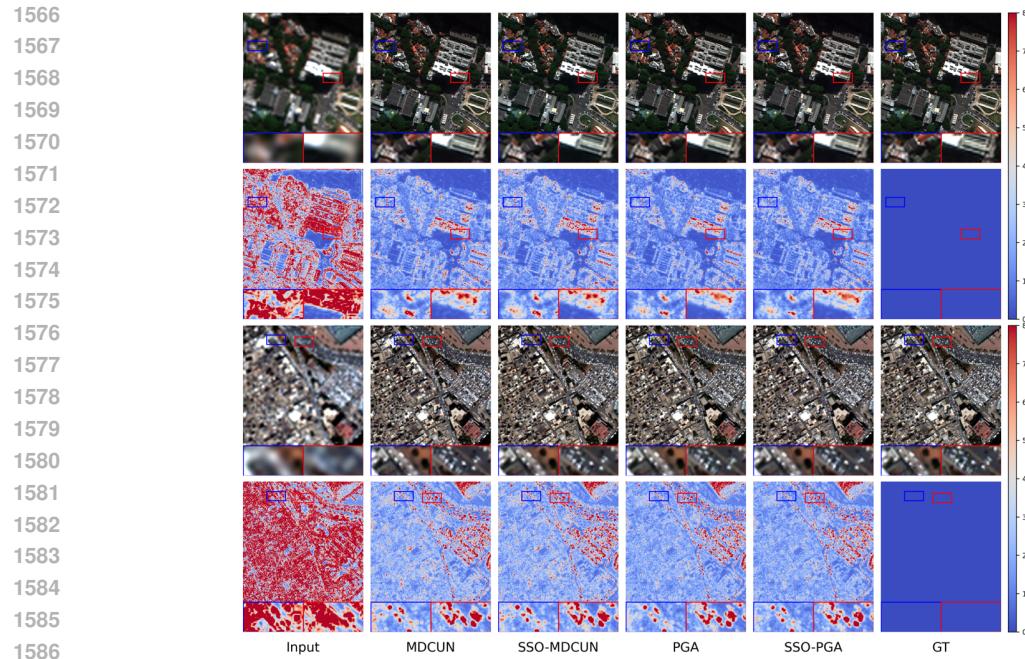


Figure 25: Visual comparison (the first row) and the corresponding error map (the second row) of SSO-PGA vs. PGA baseline, and SSO-MDCUN vs. MDCUN on the WV3 reduced-resolution dataset.

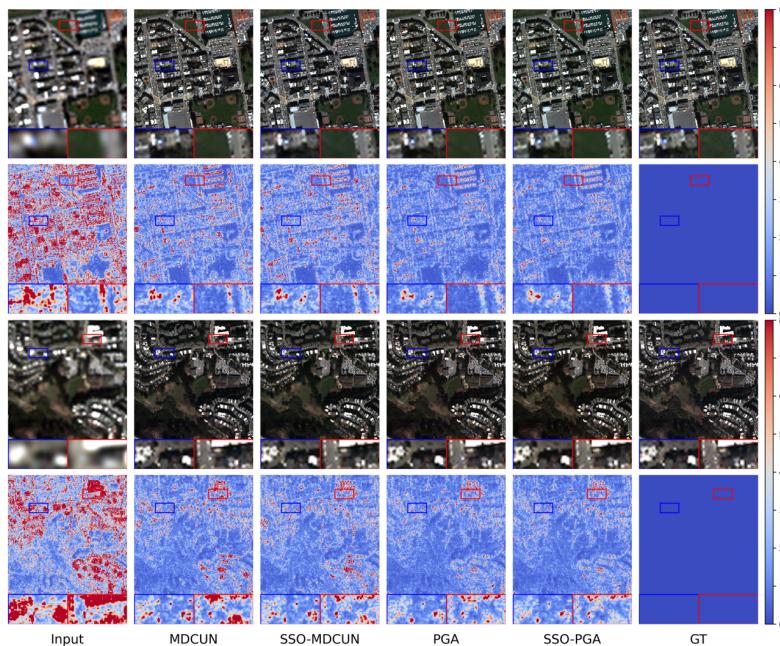


Figure 26: Visual comparison (the first row) and the corresponding error map (the second row) of SSO-PGA vs. PGA baseline, and SSO-MDCUN vs. MDCUN on the QB reduced-resolution dataset.

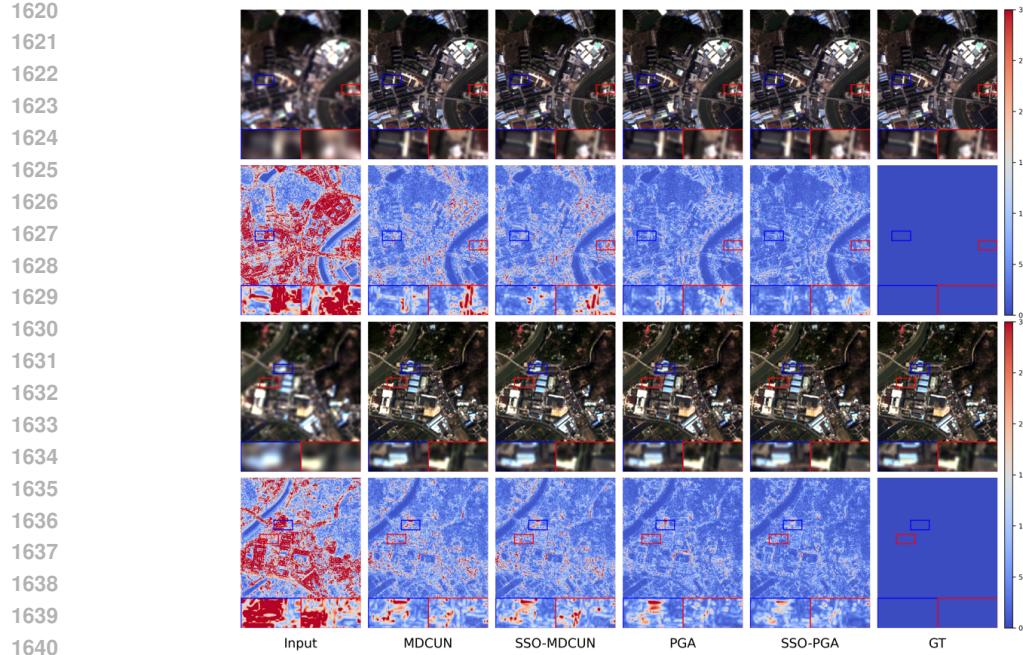


Figure 27: Visual comparison (the first row) and the corresponding error map (the second row) of SSO-PGA vs. PGA baseline, and SSO-MDCUN vs. MDCUN on the GF2 reduced-resolution dataset.

### A.11 THE USE OF LLMs

LLMs did not play a significant role in this research; they were only used for polishing the language and formatting.