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ABSTRACT

Proximal gradient algorithms (PGA), while foundational for inverse problems like
image reconstruction, often yield unstable convergence and suboptimal solutions
by violating the critical non-negativity constraint. We identify the gradient de-
scent step as the root cause of this issue, which introduces negative values and
induces high sensitivity to hyperparameters. To overcome these limitations, we
propose a novel multiplicative update proximal gradient algorithm (SSO-PGA)
with convergence guarantees, which is designed for robustness in non-negative in-
verse problems. Our key innovation lies in superseding the gradient descent step
with a learnable sigmoid-based operator, which inherently enforces non-negativity
and boundedness by transforming traditional subtractive updates into multiplica-
tive ones. This design, augmented by a sliding parameter for enhanced stability
and convergence, not only improves robustness but also boosts expressive capacity
and noise immunity. We further formulate a degradation model for multi-modal
restoration and derive its SSO-PGA-based optimization algorithm, which is then
unfolded into a deep network to marry the interpretability of optimization with the
power of deep learning. Extensive numerical and real-world experiments demon-
strate that our method significantly surpasses traditional PGA and other state-of-
the-art algorithms, ensuring superior performance and stability.

1 INTRODUCTION

This paper focuses on the following convex optimization problems:

min
x

F (x), s.t. x > 0, where
{
F (x) = f(x), (Problem I),
F (x) = f(x) + g(x), (Problem II).

(1)

Here, f is a convex and differentiable function, while g is a convex but not necessarily smooth func-
tion. For Problem I (unconstrained convex and differentiable problem), researchers commonly use
the classic gradient descent method for a solution Ruder (2016). However, for Problem II (non-
smooth composite optimization problem), which includes a non-differentiable term, researchers
have explored various solution methods Li et al. (2021). The most common among these are splitting
algorithms Goldfarb & Ma (2012), which use first-order information to minimize the objective func-
tion. These include: the proximal gradient algorithm (PGA) Li & Lin (2015); Salim et al. (2020),
the alternating direction method of multipliers (ADMM) Boyd et al. (2011); Hong & Luo (2017),
the Douglas-Rachford splitting (DRS) Eckstein & Bertsekas (1992); Patrinos et al. (2014), and the
Pock-Chambolle (PC) algorithm Chambolle & Pock (2011). Among these, PGA is particularly
popular due to its sound theoretical foundation and ease of optimization Dai et al. (2024).

The core idea of PGA is to perform a standard gradient descent step on f followed by a proxi-
mal projection on g Laude & Patrinos (2025). To accelerate convergence and enhance stability,
researchers have introduced numerous improvements Li et al. (2019b); Iutzeler & Malick (2018); Si
et al. (2024). For instance, Keys et al. proposed the proximal distance algorithm, which combined
classical penalty methods with distance majorization techniques Keys et al. (2019). Additionally,
Malitsky et al. introduced an adaptive proximal gradient method that leveraged the local curvature
information of the smooth function to achieve full adaptivity Malitsky & Mishchenko (2024).

PGA provides a foundation for solving inverse problems in signal processing Antonello et al. (2018),
compressed sensing Yao & Dai (2025), and image reconstruction Shen et al. (2011). With the rise of
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Figure 1: Overview of our method. (a) A schematic comparison between PGA and SSO-PGA in the
gradient descent process. Compared to PGA, SSO-PGA benefits from the non-negativity constraint,
yielding more stable solutions and demonstrating a faster convergence trajectory. (b) Comparison
of test L1 loss curves between PGA and SSO-PGA on the WV3 dataset in the image fusion task
over training epochs, with a zoomed-in view highlighting the reconstructed results at epoch 200.
SSO-PGA exhibits a more stable training process and achieves superior fusion quality.

deep learning, PGA has been successfully integrated into deep unfolding networks, creating a hybrid
paradigm that integrates iterative optimization with learnable components to boost performance Wei
et al. (2022); Mou et al. (2022). This approach models the problem to be solved as an optimiza-
tion objective and uses deep priors as the function g. In this area, Mardani et al. first proposed a
novel neural proximal gradient descent algorithm that uses a recurrent ResNet to learn the proximal
mapping, enabling high-resolution image recovery from limited sensory data Mardani et al. (2018).
Xin et al. further improved deep unfolding networks by introducing an adaptive learning rate and
borrowing the momentum technique from gradient descent, proposing a multi-stage and multi-level
feature aggregation scheme for efficient MRI reconstruction Xin et al. (2024).

Despite the significant achievements of deep unfolding algorithms in vision tasks, their application
still faces challenges. Their performance is often limited by the hyperparameter settings of the
PGA, leading to unstable and suboptimal results. Furthermore, in vision tasks, images inherently
have a non-negativity constraint. However, traditional PGA can produce negative solutions during
the iterative process. Although these negative values may be numerically plausible, they violate
the physical constraints of images and can exacerbate instability within the deep network during
iteration.

To this end, we propose a novel robust non-negative proximal gradient algorithm (SSO-PGA), which
maintains the optimization simplicity of the traditional PGA while effectively overcoming its draw-
backs of instability and sensitivity. For Problem I, we reformulate the conventional additive gradient
descent step into a new multiplicative update scheme via a Sliding Sigmoid Operator (SSO). Un-
like traditional sensitive step sizes that often cause overshooting or vanishing updates, SSO adapts
dynamically to the local gradient landscape, allowing finer control over the descent direction and
magnitude. This leads to smoother convergence and mitigates abrupt changes. For Problem II,
we can naturally extend the gradient descent algorithm from Problem I to the proximal gradient
algorithm (SSO-PGA) by adding a proximal projection. Moreover, the inherent non-linearity and
non-negativity of the SSO-PGA enhance robustness to noise. These properties make SSO-PGA
particularly well-suited for vision tasks, as images inherently possess non-negative physical con-
straints. To our knowledge, this is the first work that improves upon PGA by using a multiplicative
approach to fundamentally guarantee non-negativity and robustness, and adapt it to a deep network
framework. As shown in Fig. 1, compared with the existing PGA, SSO-PGA achieves more stable
solutions, faster convergence, and superior performance, without introducing additional hyperpa-
rameters. The main contributions of this work are summarized as follows:

• We propose a novel robust non-negative proximal gradient algorithm (SSO-PGA) with the-
oretical convergence guarantees, which improves the gradient descent step of the traditional
PGA via the Sliding Sigmoid Operator. This innovation inherently enforces non-negativity
constraints, enhances nonlinear representation, and improves numerical stability.

• Based on the proposed SSO-PGA, we develop a novel inverse problems model with ef-
ficient optimization. Specifically, we formulate Problem II as a multi-modal restoration

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

problem and derive the corresponding optimization paradigm. This model is further un-
folded into a structured deep neural network.

• Numerical experiments demonstrate superior performance for both Problem I and Problem
II. Our deep unfolding network also shows a significant advantage in vision experiments,
surpassing both the PGA baseline and other state-of-the-art (SOTA) algorithms for vision
tasks. Moreover, compared to the PGA baseline, our SSO-PGA significantly improves
convergence speed, hyperparameter stability, and robustness against perturbations.

2 RELATED WORK

Inverse problems are widespread across various fields, where one seeks to recover an unknown
y ∈ Rm from partial observations x ∈ Rn Deng et al. (2018); Farahmand-Tabar et al. (2024). This
is often based on a Gaussian noise assumption (x = Hy + n) and can be represented as:

min
y

∥x−Hy∥22, (Problem I), (2)

To achieve a more accurate recovery, researchers often introduce prior information Nan & Ji (2020):

min
y

∥x−Hy∥22 + λf(y), (Problem II), (3)

where H ∈ Rn×m is a degradation operator, and f(y) is a regularization term that encodes prior
knowledge about y. When f(y) is convex but possibly non-smooth (e.g., ℓ1-norm He et al. (2014)
or total variation Palsson et al. (2013)), the proximal gradient algorithm provides an efficient first-
order method to solve the problem. Specifically, the update rule of the proximal gradient algorithm
at the t-th iteration is given by Beck & Teboulle (2009):

yt = Proxf

(
yt−1 − ρ∇E(yt−1)

)
, E(yt−1) = ∥x−Hyt−1∥22, (4)

where ρ is a step size, and the proximal operator is defined as:

Proxf (v) = argmin
z

{
1

2
∥z − v∥22 + λf(z)

}
. (5)

Although the proximal gradient algorithm enjoys fast convergence, it suffers from a major draw-
back: in imaging applications, pixel intensities are inherently non-negative, yet the update rule in
Eq. (4) may yield negative values. This not only violates the natural characteristics of images but
also introduces vanishing gradient issues when implemented in deep unfolding networks. A straight-
forward solution to this problem is to restrict the update step by setting the step size ρ as follows
Lee & Seung (2000):

ρi =
yt−1
i

(H⊤Hyt−1)i
, for i = 1, . . . ,m. (6)

Substituting this into Eq. (4) yields the following update rule:

yt
i = Proxf

(
yt−1
i − yt−1

i

(H⊤Hyt−1)i

(
(H⊤Hyt−1)i − (H⊤x)i

))
= Proxf

(
yt−1
i

(H⊤Hyt−1)i
(H⊤x)i

)
.

(7)

While this formulation guarantees non-negativity, it introduces a new numerical challenge: division
by zero. Even when a small stabilization constant is introduced, this issue still results in numerical
instability. This problem becomes more pronounced in deep unfolding networks, where it will prone
to yield convergence failure or gradient explosion.

3 METHOD

3.1 SSO-ENHANCED PROXIMAL GRADIENT ALGORITHM

The motivation of this work is to address the non-negativity constraint in the proximal gradient
algorithm while ensuring stability and robustness in both iterative optimization and deep learning
frameworks. First, we give the definition of the Sliding Sigmoid Operator.

3
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Definition 1. We define the Sliding Sigmoid Operator (SSO) as follows:

SSOα(z) = 2σ(−z − α) + 2σ(α)− 1, (8)

where σ(c) = 1
1+e−c denotes the sigmoid function, and α is the sliding parameter.

As shown in Fig. 2, SSO is essentially a sigmoid
function augmented with a sliding parameter
α. Specifically, as α varies, the sigmoid curve
slides along the coordinate point (0, 1), adjust-
ing its upper and lower bounds accordingly. No-
tably, the function always passes through the
point (0, 1), ensuring that its output is less than
1 when the input is positive, and greater than 1
when the input is negative. When the gradient
is used as the input variable, this property, com-
bined with the multiplicative update, naturally
implements a gradient descent behavior. Fur-
thermore, by adjusting α, SSO adaptively con-
trols the step size in the gradient descent pro-
cess. Thereby, we can define the update rule of
the SSO-enhanced proximal gradient algorithm
in Definition 2:

Figure 2: SSO working mechanism and its func-
tion curves under different α values.

Definition 2. The update rule of the SSO-enhanced proximal gradient algorithm (SSO-PGA) to the
inverse problem in Eq. (3) at the t-th iteration is defined as follows:

yt = yt−1 ⊙ SSOα(∇E(yt−1)), (For Problem I),

yt = Proxf

(
yt−1 ⊙ SSOα(∇E(yt−1))

)
, (For Problem II),

(9)

where ⊙ denotes the element-wise product. Through SSO-PGA, we not only preserve the original
gradient descent mechanism, but also constrain the updated variable within a multiplicative range
of (2σ(α) − 1, 2σ(α) + 1) relative to the original variable, thereby enabling more robust gradient
descent. Moreover, the SSO multiplier enforces non-negativity of the updated variable, which better
aligns with the characteristics of natural images. Then, we provide the following Theorem 1.
Theorem 1. There exists ρi > 0 such that the SSO update rule is equivalent to a standard gradient
descent step:

yt
i = yt−1

i · SSOα

(
∇E(yt−1

i )
)
= yt−1

i − ρi∇E(yt−1
i ), for i = 1, . . . ,m. (10)

Please refer to the APPENDIX for the proof. Theorem 1 demonstrates that SSO-PGA retains the
fundamental logic of traditional gradient descent. SSO-PGA integrates the nonlinear representa-
tional capacity of the Sliding Sigmoid Operator with the theoretical foundation of gradient descent,
enabling it to maintain stability while offering greater flexibility for adaptive adjustment.

Here, we prove the convergence of SSO-PGA. As the proximal step is unchanged from PGA, we
only prove the gradient descent part. First, we introduce three lemmas.
Lemma 1. For every α ≥ 0 and every z ∈ R, the following hold:∣∣SSOα(z)− 1

∣∣ ≤ η(α) |z|, η(α) =
1 + α

2
. (11)

Lemma 2. Let E : Rn → R have L–Lipschitz gradient. Then for any y,d ∈ Rn Nesterov (2013):

E(y + d) ≤ E(y) + ⟨∇E(y),d⟩+ L

2
∥d∥22. (12)

Lemma 3. Given E(y) = ∥x−Hy∥22, for all y, z ∈ Rn, the following hold:∥∥∇E(y)−∇E(z)
∥∥
2
≤ L∥y − z∥2, L = 2∥H∥22. (13)

Theorem 2. Let 0 ≤ α ≤ 2/(κ∥H∥22)−1, the inverse problem ∥x−Hy∥22 is nonincreasing under
the update rule:

yt = yt−1 ⊙ SSOα(∇E(yt−1)), (14)
where κ = ∥yt−1∥∞.
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Figure 3: The network architecture of our method. (a) SSO-PGA consists of T iterative steps, where
each iteration includes (b) the update of H and (c) the update of T . (d) The detailed network
architecture of SSO-PGA, including the init module, MSFB block, and Proxϕ(·) from left to right.

Please refer to the APPENDIX for the proof. From Theorem 2, combined with the fact that E(yt) ≥
0 for every t ≥ 1, we can conclude that the inverse problem ∥x − Hy∥22 converges to a local
minimum under the gradient descent rule based on the SSO. It is worth noting that the condition
0 ≤ α ≤ 2/(κ∥H∥22)− 1, used in the proof is merely a sufficient condition for ease of analysis. In
experiments, we have found that α admits a much broader range of values.

3.2 FORMULATION AND OPTIMIZATION

We formulate the SSO-PGA framework for solving inverse problems. Using multi-modal restoration
as an example, given an observed image X ∈ Rh×w×C1 and a guided image Y ∈ RH×W×C2 , our
goal is to reconstruct the target image H ∈ RH×W×C1 . We explicitly model the degradation
processes in both domains to capture the differences between different modalities:

min
H,T

∥X −KH∥2F + β∥Y − ST ∥2F , (15)

where T ∈ RH×W×C2 denotes the guided-aligned latent embedding of the target image. K and S
represent different degradation operators. We further enforce cross-domain consistency between the
target image features and their guided-aligned embedding, thereby jointly preserving details in both
domains:

min
H,T

∥X −KH∥2F + β∥Y − ST ∥2F + γ∥T − f(H)∥2F , (16)

where f(·) is a feature transformation network. Finally, a deep prior ϕ(·) is incorporated to further
enhance the reconstruction quality of the target image. The final optimization objective can be
formulated as:

min
H,T

∥X −KH∥2F + β∥Y − ST ∥2F + γ∥T − f(H)∥2F + ϕ(H). (17)

Based on the SSO-PGA, we update each variable alternately.

Step 1: H can be updated as follows at the t-th iteration:

Ht = Proxϕ

(
Ht−1 ⊙ SSOα1

(
∇E(Ht−1)

))
, (18)

5
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where
E(Ht−1) = ∥X −KHt−1∥2F + γ∥T t−1 − f(Ht−1)∥2F , (19)

and
∇E(Ht−1) = 2K⊤(KHt−1 −X ) + 2γf∗(f(Ht−1)− T t−1

)
. (20)

Specifically, f∗(·) is the subgradient of f(·), and the proximal operator Proxϕ(·) is a deep network
related to ϕ(·).
Step 2: Similarly, we update T as follows:

T t = T t−1 ⊙ SSOα2

(
∇E(T t−1)

)
, (21)

where
E(T t−1) = β∥Y − ST t−1∥2F + γ∥T t−1 − f(Ht)∥2F , (22)

and
∇E(T t−1) = 2βS⊤(ST t−1 −Y) + 2γ(T t−1 − f(Ht)). (23)

3.3 DEEP UNFOLDING NETWORK

This subsection unfolds the SSO-PGA framework into a deep network architecture. As shown in
Fig. 3, the network begins with an initialization module, followed by multiple iterative stages. Each
iteration comprises two submodules: one for updating H and the other for updating T . In this
formulation, the operators K,K⊤,S,S⊤ in the original optimization steps are replaced by a multi-
scale spatial frequency feature extraction module (MSFB), while the functions f(·) and f∗(·) are
implemented using an NAFBlock Chen et al. (2022). The proximal operator Proxϕ(·) is modeled
by a combination of multiple MSFBs and NAFBlocks Chen et al. (2022). Additionally, all hyperpa-
rameters in each iteration, including β, γ, α1, and α2, are learnable and passed through a Softplus
function to enforce non-negativity. Finally, the final network output is obtained by adding the H in
the last iteration and the initial input, and an L1 loss is applied against the ground truth.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to validate the effectiveness of our method,
including both numerical experiments and real-world vision experiments.

4.1 COMPARISON WITH TRADITIONAL PROXIMAL GRADIENT ALGORITHM

4.1.1 NUMERICAL EXPERIMENTS

In this subsection, we construct two convex optimization problems and perform numerical simula-
tion experiments.

min
y

(y − 0.5)2, (Problem I),

min
y

(y − 0.5)2 +
1

2
|y|, (Problem II).

(24)

We selected initial values of 1, 4, 8, and 16, with learning rates of 0.0005 and 0.005 (For additional
experiments, please refer to the APPENDIX). Fig. 4 and Fig. 5 show that our SSO-PGA has a clear
advantage over PGA, which can be attributed to the benefits of our multiplicative update rule.

Figure 4: Comparison of numerical simulation results for SSO-PGA and PGA on Problem I.

6
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Figure 5: Comparison of numerical simulation results for SSO-PGA and PGA on Problem II.

4.1.2 REAL-WORLD VISION EXPERIMENTS

In this subsection, we construct a PGA baseline by replacing the SSO update rule in Eq. (9) with the
traditional gradient descent formulation in Eq. (4), while keeping all other components unchanged.
We then conduct a comprehensive comparison with our proposed SSO-PGA.

Performance Comparison. To more intuitively verify the effectiveness of SSO, in addition to com-
paring SSO-PGA with PGA, we also replace the traditional gradient descent step in MDCUN Yang
et al. (2022) with our SSO-based update rule and compare it with the original version. As shown in
Tab. 1, the SSO-enhanced models significantly outperform the traditional gradient descent models
across all three datasets, demonstrating the superiority of the proposed SSO update mechanism.

Table 1: Quantitative comparison of traditional proximal gradient algorithm and SSO-enhanced
proximal gradient algorithm on three datasets: WV3, QB, and GF2. The better results are in bold.

Methods
WV3 QB GF2

PSNR↑ SAM↓ ERGAS↓ Q8↑ PSNR↑ SAM↓ ERGAS↓ Q4↑ PSNR↑ SAM↓ ERGAS↓ Q4↑

MDCUN Yang et al. (2022) 37.973 3.298 2.479 0.909 36.178 4.963 4.698 0.915 41.138 0.870 0.815 0.974
SSO-MDCUN 38.135 3.222 2.437 0.909 36.462 5.007 4.527 0.917 41.626 0.869 0.783 0.976

PGA 39.145 2.925 2.129 0.918 38.628 4.430 3.557 0.937 43.411 0.697 0.615 0.982
SSO-PGA 39.358 2.823 2.078 0.921 38.807 4.312 3.493 0.938 44.005 0.660 0.574 0.985

Convergence Behavior. Fig. 6 illustrates the con-
vergence behavior of SSO-PGA and PGA under
varying numbers of iterations. As observed, both
methods perform comparably at the first iteration,
because the model at this stage mainly behaves
like a deep network, and the iterative formulation
has not yet taken effect. However, with just two
iterations, SSO-PGA already surpasses the three-
iteration performance of PGA. By the third iter-
ation, SSO-PGA exceeds the best performance
achieved by PGA. Notably, at higher iteration
counts, PGA exhibits signs of performance degra-
dation, whereas SSO-PGA continues to improve
steadily. This indicates that SSO-PGA not only
converges faster but is also more robust against
falling into poor local minima.

Figure 6: PSNR comparison of SSO-PGA and
PGA over iterations on the WV3 dataset.

Parameter Sensitivity. Both SSO-PGA and PGA involve two hyperparameters during the update
process: the sliding factor α1, α2 for SSO-PGA and the step size ρ1, ρ2 for PGA. As noted in our
deep unfolding network, these hyperparameters are learnable. Here, we assign multiple initial val-
ues to α and ρ to evaluate the sensitivity of SSO-PGA and PGA to the hyperparameter. Tab. 2 shows
that PGA achieves its best performance when ρ = 0.1, and suboptimal results when ρ = 0.01. In
contrast, SSO-PGA consistently performs well across all initial values. Notably, when the hyperpa-
rameter is set to relatively large values (e.g., 3.0 or 5.0), PGA fails to converge, whereas SSO-PGA
still delivers strong performance. These results further confirm the robustness and stability of the
proposed SSO-PGA framework.
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Table 2: Quantitative comparison of SSO-PGA and PGA on the WV3 reduced-resolution dataset
with varying parameter initialization settings. The better results are in bold.

Parameter
α, ρ = 0.01 α, ρ = 0.1 α, ρ = 0.5

PSNR↑ SAM↓ ERGAS↓ Q8↑ PSNR↑ SAM↓ ERGAS↓ Q8↑ PSNR↑ SAM↓ ERGAS↓ Q8↑

PGA 39.116 2.948 2.143 0.919 39.145 2.925 2.129 0.918 39.063 2.923 2.149 0.918
SSO-PGA 39.223 2.859 2.119 0.920 39.191 2.863 2.116 0.920 39.283 2.847 2.095 0.920

Parameter
α, ρ = 1.0 α, ρ = 3.0 α, ρ = 5.0

PSNR↑ SAM↓ ERGAS↓ Q8↑ PSNR↑ SAM↓ ERGAS↓ Q8↑ PSNR↑ SAM↓ ERGAS↓ Q8↑

PGA 38.907 3.017 2.195 0.917 23.162 31.146 14.431 0.490 7.678 46.171 110.511 0.011
SSO-PGA 39.358 2.823 2.078 0.921 39.225 2.857 2.108 0.921 39.171 2.876 2.123 0.919

Figure 7: Visual comparison (the first row) and the corresponding error map (the second row) of our
method and some representative methods on the GF2 reduced-resolution dataset.

4.2 COMPARISON WITH SOTAS

4.2.1 MULTISPECTRAL IMAGE FUSION

Datasets and Setting. We conducted experiments on three datasets consisting of satellite images
captured by WorldView-3 (WV3), QuickBird (QB), and GaoFen-2 (GF2), provided by the PanCol-
lection repository Deng et al. (2022). We evaluate our method using a set of widely used perfor-
mance metrics. For reduced-resolution data, we use PSNR, SAM Boardman (1993), ERGAS Wald
(2002), and Q4/Q8 Garzelli & Nencini (2009).

Table 3: Quantitative comparison for multispectral image fusion on reduced-resolution datasets:
WV3, QB, and GF2. The best results are in bold and the second-best values are underlined.

Methods
WV3 QB GF2

PSNR↑ SAM↓ ERGAS↓ Q8↑ PSNR↑ SAM↓ ERGAS↓ Q4↑ PSNR↑ SAM↓ ERGAS↓ Q4↑

MTF-GLP-FS Vivone et al. (2018) 32.963 5.316 4.700 0.833 32.709 7.792 7.373 0.835 35.540 1.655 1.589 0.897
BDSD-PC Vivone (2019) 32.970 5.428 4.697 0.829 32.550 8.085 7.513 0.831 35.180 1.681 1.667 0.892
TV Palsson et al. (2013) 32.381 5.692 4.855 0.795 32.136 7.510 7.690 0.821 35.237 1.911 1.737 0.907
PNN Masi et al. (2016) 37.313 3.677 2.681 0.893 36.942 5.181 4.468 0.918 39.071 1.048 1.057 0.960
PanNet Yang et al. (2017) 37.346 3.613 2.664 0.891 34.678 5.767 5.859 0.885 40.243 0.997 0.919 0.967
DiCNN He et al. (2019) 37.390 3.592 2.672 0.900 35.781 5.367 5.133 0.904 38.906 1.053 1.081 0.959
FusionNet Deng et al. (2020) 38.047 3.324 2.465 0.904 37.540 4.904 4.156 0.925 39.639 0.974 0.988 0.964
MDCUN Yang et al. (2022) 37.973 3.298 2.479 0.909 36.178 4.963 4.698 0.915 41.138 0.870 0.815 0.974
LAGNet Jin et al. (2022) 38.592 3.103 2.291 0.910 38.209 4.534 3.812 0.934 42.735 0.786 0.687 0.980
LGPNet Zhao et al. (2023) 38.147 3.270 2.422 0.902 36.443 4.954 4.777 0.915 41.843 0.845 0.765 0.976
U2Net Peng et al. (2023) 39.117 2.888 2.149 0.920 38.065 4.642 3.987 0.931 43.379 0.714 0.632 0.981
CANNet Duan et al. (2024) 39.003 2.941 2.174 0.920 38.488 4.496 3.698 0.937 43.496 0.707 0.630 0.983
PanMamba He et al. (2025) 39.012 2.913 2.184 0.920 37.356 4.625 4.277 0.929 42.907 0.743 0.684 0.982
ADWM Huang et al. (2025a) 39.170 2.913 2.145 0.921 38.466 4.450 3.705 0.937 43.884 0.672 0.597 0.985
SSO-PGA (ours) 39.358 2.823 2.078 0.921 38.807 4.312 3.493 0.938 44.005 0.660 0.574 0.985

Experimental Results. As shown in Tab. 3, our proposed SSO-PGA consistently achieves the best
results across all datasets compared to other methods. Specifically, in terms of PSNR, our method
outperforms the second-best method by 0.188 dB, 0.319 dB, and 0.121 dB on the WV3, QB, and
GF2 datasets, respectively. These consistent improvements validate the effectiveness of our deep
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unfolding framework. Furthermore, Fig. 7 presents a qualitative visual comparison of the GF2
dataset against several representative methods. Our method produces reconstructions closer to the
ground truth with lower residuals, further highlighting its superiority.

4.2.2 FLASH GUIDED NON-FLASH IMAGE DENOISING

Datasets and Setting. Following the experimental protocol in recent studies Deng et al. (2024); Xu
et al. (2024), we used the following datasets for training and testing: the Flash and Ambient Illu-
minations Dataset (FAID) Aksoy et al. (2018) and the Multi-Illumination Dataset (MID) Murmann
et al. (2019). We added varying levels of Gaussian noise to the non-flash images in each dataset and
used PSNR as the evaluation metric.

Experimental Results. As shown in Tab. 4, our method outperforms the others on MID and FAID
datasets. This not only highlights the performance of our method but also demonstrates its versatil-
ity and generalization capabilities across various tasks. It’s worth noting that although our method’s
performance is on par with DeepM2CDL Deng et al. (2024), our method has a parameter count of
just 2.90M, which is significantly smaller than DeepM2CDL Deng et al. (2024)’s 421.14M. This
highlights the lightweight and efficient nature of our approach, as it minimizes computational over-
head while maintaining comparable performance.

Table 4: Quantitative comparison for flash guided non-flash image denoising in terms of PSNR (dB)
on MID and FAID datasets. The best results are in bold and the second-best values are underlined.

Methods MID FAID
σ = 25 σ = 50 σ = 75 σ = 25 σ = 50 σ = 75

DnCNN Zhang et al. (2017) 34.57 32.69 31.26 35.38 31.94 30.08
DJFR Li et al. (2019a) 37.03 32.96 31.84 33.76 30.61 28.92
CUNet Deng & Dragotti (2020) 34.61 32.39 31.18 35.86 33.05 31.30
UMGF Shi et al. (2021) 38.18 35.84 34.30 34.52 31.81 30.43
MN Xu et al. (2022) 39.51 37.01 35.50 36.15 33.34 31.83
FGDNet Sheng et al. (2022) 38.38 35.88 34.39 34.99 32.15 30.81
RIDFhF Oh et al. (2023) 38.31 35.33 33.74 36.25 33.48 31.92
DeepM2CDL Deng et al. (2024) (Para: 421.14M) 39.67 37.61 36.28 36.86 34.43 32.95
SSO-PGA (ours) (Para: 2.90M) 39.84 37.66 35.71 36.88 34.12 32.92

4.3 ABLATION STUDY

We conduct a comprehensive ablation study on
the SSO-PGA network. First, we remove the
Proxϕ(·) module to construct the variant V-1.
Then, we individually remove the standard con-
volution, dilated convolution, and frequency-
domain convolution from the MSFB to con-
struct variants V-2, V-3, and V-4, respectively.
The results in Tab. 5 show that SSO-PGA out-
performs variant V-1, which demonstrates the

Table 5: Ablation Study of different variants.

Variant PSNR↑ SAM↓ ERGAS↓ Q8↑

V-1 38.194 3.176 2.396 0.911
V-2 39.301 2.849 2.088 0.920
V-3 39.190 2.868 2.108 0.919
V-4 39.236 2.854 2.106 0.921
ours 39.358 2.823 2.078 0.921

importance of the deep prior. Furthermore, the superiority of SSO-PGA over V-2, V-3, and V-4
verifies that each branch in the MSFB module is indispensable and plays a critical role in enabling
comprehensive information fusion.

5 CONCLUSION

This paper proposes SSO-PGA, a novel multiplicative proximal gradient algorithm enhanced by
Sliding Sigmoid Operator, which improves stability and adaptivity. We replace the traditional gradi-
ent descent step with a learnable sigmoid-based operator, which inherently enforces non-negativity
and boundedness. SSO-PGA is formulated for multi-modal restoration. We then iteratively solve the
model and further unfold it into a deep neural network. Both numerical and real-world experiments
verify the superiority of SSO-PGA and its significant improvements in accuracy and convergence
speed over conventional PGA. Future work will focus on analyzing the theoretical convergence rate
of SSO-PGA and extending its application to broader vision tasks.
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A APPENDIX

This supplementary material provides additional technical and experimental details that support the
main paper. It is organized as follows:

• Sec.A.1 Additional Proofs: We provide detailed theoretical proofs of Theorem 1, Lemma
1, Lemma 2, Lemma 3, and Theorem 2 related to the SSO-PGA.

• Sec.A.2 Limitations: We discuss the known limitation of our work and how to address it.

• Sec.A.3 Broader Impact: We reflect on the potential applications and societal impact of
our proposed method and framework.

• Sec.A.4 Datasets: We provide an overview of the datasets employed in this work.

• Sec.A.5 Implementation Details: We describe the compute resources, hyperparameters,
and training strategies used in our experiments.

• Sec.A.6 Experimental Results on Real-world Dataset: We provide the experimental re-
sults on a full-resolution dataset to indicate the strong potential of our SSO-PGA for real-
world applications.

• Sec.A.7 Additional Comparison with Traditional Proximal Gradient Algorithm: We
provide additional comparison with traditional proximal gradient algorithm to validate the
advantages of our method.

• Sec.A.8 Additional Ablation Study: We provide additional ablation studies to validate
the effectiveness of each component of our method.

• Sec.A.9 Additional Numerical Experiments: We provide additional numerical experi-
ment results to further validate the advantages of our method.

• Sec.A.10 Additional Visual Experimental Results: We include extended visual compar-
isons to further validate the effectiveness of our approach.

• Sec.A.11 The Use of LLMs: We describe the use of LLMs in our work.

A.1 ADDITIONAL PROOFS

Proof of Theorem 1

Proof. Using the identity σ(z) + σ(−z) = 1, we have:

SSOα

(
∇E(yt−1

i )
)
− 1 = 2

[
σ(−∇E(yt−1

i )− α) + σ(α)− 1
]

= 2
[
σ(−∇E(yt−1

i )− α)− σ(−α)
]
.

(25)

According to the Lagrange Mean Value Theorem, there exists ξti between −α and −∇E(yt−1
i )− α

such that
σ(−∇E(yt−1

i )− α)− σ(−α) = (−∇E(yt−1
i ))σ′(ξti), (26)

where σ′(z) = σ(z)[1− σ(z)] ∈ (0, 1
4 ], ∀z ∈ R.

Therefore,
SSOα

(
∇E(yt−1

i )
)
− 1 = −2∇E(yt−1

i )σ′(ξti). (27)

Set θti = 2σ′(ξti). Then SSOα

(
∇E(yt−1

i )
)
= 1−θti∇E(yt−1

i ), and since σ′(z) ∈ (0, 1
4 ], it follows

that θti ∈ (0, 1
2 ]. Thus, we have:

yt
i = yt−1

i · SSOα

(
∇E(yt−1

i )
)
= yt−1

i − yt−1
i θti∇E(yt−1

i ). (28)

Set ρi = yt−1
i θti , proof complete.

Proof of Lemma 1
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Proof. Recall that the sliding sigmoid operator is defined as:

SSOα(z) = 2σ(−z − α) + 2σ(α)− 1, where σ(u) =
1

1 + e−u
. (29)

Since SSOα(0) = 1, by the Lagrange Mean Value Theorem, for some ξ ∈ (0, z) (or (z, 0)), we
have:

SSOα(z)− 1 = SSO′
α(ξ) · z. (30)

Now compute the derivative:

SSO′
α(u) =

d

du
[2σ(−u− α)] = −2σ(−u− α)(1− σ(−u− α)). (31)

The maximum of σ(v)(1− σ(v)) over v ∈ R is 1
4 , hence:

|SSO′
α(u)| ≤

1

2
≤ 1 + α

2
= η(α). (32)

Thus:
|SSOα(z)− 1| ≤ |SSO′

α(ξ)| · |z| ≤ η(α)|z|. (33)

Proof of Lemma 2

Proof. Consider the scalar function φ(t) = E(y + td), t ∈ [0, 1]. We have:

E(y + d)− E(y) = φ(1)− φ(0) =

∫ 1

0

φ′(t) dt =

∫ 1

0

〈
∇E(y + td),d

〉
dt. (34)

Add and subtract ∇E(y) inside the inner product and apply Cauchy–Schwarz:

E(y + d)− E(y) =
∫ 1

0

〈
∇E(y),d

〉
dt+

∫ 1

0

〈
∇E(y + td)−∇E(y),d

〉
dt

= ⟨∇E(y),d⟩+
∫ 1

0

〈
∇E(y + td)−∇E(y),d

〉
dt

≤ ⟨∇E(y),d⟩+
∫ 1

0

∥∇E(y + td)−∇E(y)∥2 ∥d∥2 dt

≤ ⟨∇E(y),d⟩+
∫ 1

0

L t ∥d∥22 dt (by L–Lipschitzness)

= ⟨∇E(y),d⟩+ L

2
∥d∥22.

(35)

Thus, proof complete.

Proof of Lemma 3

Proof. The gradient of the objective is:

∇E(y) = 2H⊤(Hy − x). (36)

So for any y, z, we have:

∥∇E(y)−∇E(z)∥2 = 2∥H⊤H(y − z)∥2
≤ 2∥H⊤H∥2 · ∥y − z∥2
= 2∥H∥22 · ∥y − z∥2.

(37)

Thus,
∥∇E(y)−∇E(z)∥2 ≤ L∥y − z∥2, L = 2∥H∥22. (38)
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Proof of Theorem 2

Proof. Fix t, and denote y = yt−1, y+ = yt, g = ∇E(y) and s = SSOα(g) − 1 for simplicity..
From Eq. (14), we have y+ = y + d with d = y ⊙ s. Then, we have:

⟨g,d⟩ = −
∑
i

|di||gi|, (39)

Lemma 1 with z = gi yields |si| ≤ η(α)|gi|. Hence:

∥d∥22 =
∑
i

|di||si|yi ≤ η(α)
∑
i

|di||gi|yi. (40)

From Lemma 3, α ≤ 2/(κ∥H∥22) − 1 = 4/(κL) − 1, we have η(α) = (α + 1)/2 ≤ 2/(κL).
Combining this with the bound on ∥d∥22 gives:

L

2
∥d∥22 ≤

∑
i

|di||gi| = −⟨g,d⟩. (41)

Inserting the bounds into Lemma 2:

E(y+)− E(y) ≤ ⟨g,d⟩+ L

2
∥d∥22 (42)

≤ ⟨g,d⟩ − ⟨g,d⟩ = 0. (43)

Thus, E(yt) ≤ E(yt−1) for every t ≥ 1.

A.2 LIMITATIONS

A limitation of our study is that SSO-PGA performs well when the solution to the optimization prob-
lem lies between 0 and 1, but exhibits oscillatory, non-convergent behavior when the true solution is
large. For example, when we set the optimal solution to 6, as shown in Fig. 8 and Fig. 9, this issue
becomes apparent.

Figure 8: Comparison of numerical simulation results for SSO-PGA and PGA on Problem I when
the true solution is large.

This specific instability is circumvented when SSO-PGA is integrated with a deep network. This is
because, in deep learning, it’s standard practice to normalize network inputs and outputs to the [0,
1] range. The final results are then obtained through inverse normalization. This preprocessing step
naturally prevents the instability observed with large solution values.

Furthermore, we’ve identified that this oscillatory behavior is caused by excessively large gradients.
We propose a straightforward solution to mitigate this problem during the optimization process:
gradient clipping. For instance, by clipping the gradients of SSO-PGA to a range of [-0.1, 0.1], as
shown in Fig. 10 and Fig. 11, SSO-PGA still demonstrates a faster convergence rate compared to
PGA.
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Figure 9: Comparison of numerical simulation results for SSO-PGA and PGA on Problem II when
the true solution is large.

Figure 10: Comparison of numerical simulation results for SSO-PGA (with gradient clipping) and
PGA on Problem I when the true solution is large.

Figure 11: Comparison of numerical simulation results for SSO-PGA (with gradient clipping) and
PGA on Problem II when the true solution is large.

A.3 BROADER IMPACT

The proposed SSO-PGA framework offers a robust and interpretable optimization strategy that ex-
tends beyond the task of multispectral image fusion and flash guided non-flash image denoising.
The SSO-PGA framework is built upon a gradient-based update mechanism that naturally enforces
non-negativity, making it easily adaptable to various inverse problems in computer vision and image
reconstruction tasks. These include, but are not limited to, image deblurring, denoising, super-
resolution, compressive sensing reconstruction, and medical image enhancement. The deep unfold-
ing nature of SSO-PGA not only enables convergence-guaranteed iterative learning but also offers
structural transparency, which is particularly desirable in safety-critical applications like healthcare
and autonomous navigation. The strong empirical performance and theoretical convergence guar-
antee of SSO-PGA make it a promising foundation for future research on interpretable and robust
optimization in deep learning systems.
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A.4 DATASETS

In our experiments on multispectral image fusion, we utilized remote sensing image datasets from
the PanCollection repository Deng et al. (2022), encompassing three satellite sources: WorldView-3
(WV3), QuickBird (QB), and GaoFen-2 (GF2). Each dataset is divided into training and testing
subsets. A detailed summary of the sample counts and image dimensions under both reduced- and
full-resolution settings is provided in Table 6.

Table 6: Summary of WorldView-3 (WV3), QuickBird (QB), and GaoFen-2 (GF2) datasets.

Dataset Samples Image Size (PAN / LRMS / GT)

Reduced-Resolution

WV3 10,000 (train) / 20 (test) 64×64 / 16×16×8 / 64×64×8
QB 17,000 (train) / 20 (test) 64×64 / 16×16×4 / 64×64×4
GF2 20,000 (train) / 20 (test) 64×64 / 16×16×4 / 64×64×4

Full-Resolution

WV3 20 (test) 512×512 / 128×128×8 / None
QB 20 (test) 512×512 / 128×128×4 / None
GF2 20 (test) 512×512 / 128×128×4 / None

In our experiments on flash guided non-flash image denoising, we utilized two common datasets:
the Flash and Ambient Illuminations Dataset (FAID) Aksoy et al. (2018) and the Multi-Illumination
Dataset (MID) Murmann et al. (2019). Each dataset is divided into training and testing subsets. A
detailed summary of the sample counts and image dimensions is provided in Table 7.

Table 7: Summary of the Flash and Ambient Illuminations Dataset (FAID) Aksoy et al. (2018) and
the Multi-Illumination Dataset (MID) Murmann et al. (2019).

Dataset Samples Image Size

FAID 404 (train) / 12 (test) 900×600 × 3
MID 983 (train) / 30 (test) 1500×1000 × 3

A.5 IMPLEMENTATION DETAILS

All training procedures are conducted on a high-performance computing server equipped with 8
NVIDIA RTX 4090 GPUs. Our training pipeline is implemented in Python 3.8.20 with PyTorch
2.4.1 + cu121, leveraging CUDA 12.1 for efficient GPU acceleration.

For multispectral image fusion, we employ the Adam optimizer Kingma & Ba (2014) with an initial
learning rate of 1 × 10−3 and a weight decay of 1 × 10−8, and the learning rate is halved every
100 epochs. The model is trained for 300 epochs. During training, we apply dropout regularization
with rates of 0.1 on the WV3 and QB datasets, and 0.25 on the GF2 dataset. To ensure high-
quality reconstruction, we adopt a batch size of 32 throughout the training process. The entire
model contains approximately 1.07 million trainable parameters and requires around 15.20 GiB of
GPU memory. We compare our method with several state-of-the-art methods, including 3 traditional
algorithms: MTF-GLP-FS Vivone et al. (2018), BDSD-PC Vivone (2019), and TV Palsson et al.
(2013), and 11 deep learning/unfolding-based models: PNN Masi et al. (2016), PanNet Yang et al.
(2017), DiCNN He et al. (2019), FusionNet Deng et al. (2020), MDCUN Yang et al. (2022), LAGNet
Jin et al. (2022), LGPNet Zhao et al. (2023), U2Net Peng et al. (2023), CANNet Duan et al. (2024),
PanMamba He et al. (2025), and ADWM Huang et al. (2025a).

For flash guided non-flash image denoising, we employ the Adam optimizer Kingma & Ba (2014)
with an initial learning rate of 1 × 10−3 and a weight decay of 1 × 10−8, and the learning rate is
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halved every 300 epochs. The model is trained for 2000 epochs. To ensure high-quality reconstruc-
tion, we adopt a batch size of 16 and a patch size of 128 × 128 throughout the training process.
The entire model contains approximately 2.90 million trainable parameters and requires around
39.91 GiB of GPU memory. We compared our results against the following representative methods:
DnCNN Zhang et al. (2017), DJFR Li et al. (2019a), CUNet Deng & Dragotti (2020), UMGF Shi
et al. (2021), MN Xu et al. (2022), FGDNet Sheng et al. (2022), RIDFhF Oh et al. (2023), and
DeepM2CDL Deng et al. (2024).

A.6 EXPERIMENTAL RESULTS ON REAL-WORLD DATASET

Following Huang et al. (2025b), for full-resolution data, we apply Ds, Dλ, and HQNR Arienzo
et al. (2022) as the evaluation metric, which collectively provide a comprehensive measure of image
fusion quality. We evaluate SSO-PGA on the full-resolution WV3 dataset, where it demonstrates
significant advantages in Tab. 8. This outstanding performance not only validates the effectiveness
of our method but also underscores its robustness and profound potential for real-world applications
requiring high-fidelity image fusion.

Table 8: Quantitative comparison on WV3 dataset with 20 full-resolution samples. The best results
are in bold and the second-best values are underlined.

Methods BDSD-PC Vivone (2019) TV Palsson et al. (2013) PNN Masi et al. (2016) PanNet Yang et al. (2017)

Dλ ↓ 0.063 0.023 0.021 0.017
Ds ↓ 0.073 0.039 0.043 0.047

HQNR ↑ 0.870 0.938 0.937 0.937

Methods DiCNN He et al. (2019) LAGNet Jin et al. (2022) LGPNet Zhao et al. (2023) U2Net Peng et al. (2023)

Dλ ↓ 0.036 0.037 0.022 0.020
Ds ↓ 0.046 0.042 0.039 0.028

HQNR ↑ 0.920 0.923 0.940 0.952

Methods CANNet Duan et al. (2024) PanMamba He et al. (2025) ADWM Huang et al. (2025a) SSO-PGA (ours)

Dλ ↓ 0.020 0.018 0.024 0.022
Ds ↓ 0.030 0.053 0.029 0.026

HQNR ↑ 0.951 0.930 0.948 0.953

A.7 ADDITIONAL COMPARISON WITH TRADITIONAL PROXIMAL GRADIENT ALGORITHM

In this subsection, we provide a supplementary perturbation analysis for both PGA and SSO-PGA.
Additionally, we present further experimental results for SSO-PGA at different iteration counts, as
detailed in Tab. 9.

Perturbation Analysis. Fig. 12 and Tab. 10 present the comparison between SSO-PGA and PGA
under varying levels of missing MS input (10%, 20%, and 50%) on the WV3 dataset. Across all
perturbation levels, SSO-PGA consistently yields superior visual reconstruction and achieves higher
PSNR and Q8 scores compared to PGA. Especially under a high missing rate (50%), the Q8 value
of PGA drops to only 0.901, while SSO-PGA still maintains a result of 0.910. This demonstrates the
strong robustness of the proposed SSO-PGA method in handling degraded and incomplete inputs.

In conclusion, comparing SSO-PGA with the PGA baseline, the results in Tab. 9 validate that SSO-
PGA achieves faster and more stable convergence, while the perturbation experiments in Tab. 10
confirm its robustness under various missing ratios.
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Figure 12: Visual comparison along with the corresponding PSNR and Q8 values of SSO-PGA and
PGA on the WV3 dataset under varying missing ratios.

Table 9: Quantitative comparison of SSO-PGA and PGA on the WV3 reduced-resolution dataset
over different iterations. The better results are in bold.

Iteration 1
PGA SSO-PGA

PSNR↑ SAM↓ ERGAS↓ Q8↑ PSNR↑ SAM↓ ERGAS↓ Q8↑
38.882 2.961 2.193 0.916 38.900 2.960 2.200 0.917

Iteration 2
PGA SSO-PGA

PSNR↑ SAM↓ ERGAS↓ Q8↑ PSNR↑ SAM↓ ERGAS↓ Q8↑
39.027 2.944 2.160 0.916 39.131 2.892 2.138 0.918

Iteration 3
PGA SSO-PGA

PSNR↑ SAM↓ ERGAS↓ Q8↑ PSNR↑ SAM↓ ERGAS↓ Q8↑
39.114 2.913 2.142 0.919 39.256 2.855 2.104 0.920

Iteration 4
PGA SSO-PGA

PSNR↑ SAM↓ ERGAS↓ Q8↑ PSNR↑ SAM↓ ERGAS↓ Q8↑
39.145 2.925 2.129 0.918 39.358 2.823 2.078 0.921

Iteration 5
PGA SSO-PGA

PSNR↑ SAM↓ ERGAS↓ Q8↑ PSNR↑ SAM↓ ERGAS↓ Q8↑
39.125 2.916 2.139 0.918 39.374 2.818 2.072 0.921

Table 10: Quantitative comparison of SSO-PGA and PGA on the WV3 reduced-resolution dataset
under varying missing ratios. The better results are in bold.

Missing 10%
PGA SSO-PGA

PSNR↑ SAM↓ ERGAS↓ Q8↑ PSNR↑ SAM↓ ERGAS↓ Q8↑
38.875 3.039 2.196 0.912 39.016 2.931 2.157 0.916

Missing 20%
PGA SSO-PGA

PSNR↑ SAM↓ ERGAS↓ Q8↑ PSNR↑ SAM↓ ERGAS↓ Q8↑
38.804 3.056 2.210 0.912 38.928 2.972 2.184 0.914

Missing 30%
PGA SSO-PGA

PSNR↑ SAM↓ ERGAS↓ Q8↑ PSNR↑ SAM↓ ERGAS↓ Q8↑
38.420 3.415 2.301 0.901 38.599 3.079 2.270 0.910
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A.8 ADDITIONAL ABLATION STUDY

Different Sliding Parameter Settings. Besides the parameter learning method described in the
deep network architecture, there are two other ways to set the sliding parameter: manually fixed
value and automated learning via a simple neural network (with a Convolution layer, a Sigmoid
activation, another Convolution layer, and finally a Softplus activation). We’ve conducted additional
experiments to compare these two approaches (Tab. 11), where the SSO-PGA-1 and SSO-PGA-0.1
are our method with fixed α values (1/0.1), and SSO-PGA-Auto is the automated way. From the
table, we can observe that the performance of the fixed-value sliding parameter and the automated
approach is slightly lower than that of our method in the paper.

Table 11: Comparison of Different Sliding Parameter Settings.

PSNR ↑ SAM ↓ ERGAS ↓ Q2N ↓
SSO-PGA-Auto 39.280 2.841 2.099 0.921
SSO-PGA-1 39.287 2.824 2.092 0.921
SSO-PGA-0.1 39.147 2.884 2.115 0.920
SSO-PGA 39.358 2.823 2.078 0.921

Comparison with Traditional Projected Operator. To compare with traditional post-projection
methods, we attempted to enforce non-negativity by applying activation functions (ReLU and Soft-
plus) as projection operations after the gradient descent step in traditional PGA. The experimental
results are shown in Tab. 12. However, both approaches performed even worse than PGA. The rea-
son for this is that while these projection methods enforce non-negativity, they unfortunately lose
information from negative values and alter the original gradient information during the process. In
contrast, SSO-PGA guarantees non-negativity through a direct mapping while fully preserving the
gradient information.

Table 12: Comparison with Traditional Projected Gradient Descent Methods.

PSNR ↑ SAM ↓ ERGAS ↓ Q2N ↓
ReLU-PGA 36.600 3.557 2.825 0.900
Softplus-PGA 38.957 2.926 2.167 0.916
PGA 39.145 2.925 2.129 0.918
SSO-PGA 39.358 2.823 2.078 0.921

A.9 ADDITIONAL NUMERICAL EXPERIMENTS

Figure 13: Landscapes for Problem I (left) and Problem I+ (right).
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Figure 14: Additional comparison of numerical simulation results for SSO-PGA and PGA on Prob-
lem I.

In this subsection, we provide additional numerical simulation experiments. Specifically, in addition
to the two problems from Eq. (24), we include two non-convex problems, denoted as Problem I+
and Problem II+:

min
y

(y − 0.5)2 + sin(4(x− 0.5)) + cos(2(x− 0.5)), (Problem I+),

min
y

(y − 0.5)2 + sin(4(x− 0.5)) + cos(2(x− 0.5)) +
1

2
|y|, (Problem II+).

(44)
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Figure 15: Additional comparison of numerical simulation results for SSO-PGA and PGA on Prob-
lem I+.

Fig. 13 shows the landscapes for Problem I (left) and Problem I+ (right), respectively. We tested a
wide range of learning rates: 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 5e-1, 1, and 10. As shown in Fig. 14 to
Fig. 17, our SSO-PGA consistently outperforms the traditional PGA under most parameter settings.
This holds true for both convex and non-convex problems (Problem I and II, and their non-convex
counterparts). We can observe that SSO-PGA is less sensitive to the learning rate. When the learning
rate is small, SSO-PGA converges much faster than PGA. When the learning rate is large, SSO-PGA
is more stable than PGA, especially with very large learning rates where PGA fails to converge. Ad-
ditionally, in non-convex scenarios, SSO-PGA shows a slight advantage in avoiding local minima.
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Figure 16: Additional comparison of numerical simulation results for SSO-PGA and PGA on Prob-
lem II.

This success is a direct result of the inherent advantages of the multiplicative update rule introduced
by our novel SSO operator. By replacing the traditional subtractive gradient descent step with a
sigmoid-based multiplicative update, our algorithm fundamentally transforms the optimization pro-
cess, making it more stable, less sensitive to hyperparameters, and capable of achieving superior
results. It’s important to note that since this paper focuses on non-negative inverse problems, the
optimal solutions in our numerical simulations are all greater than zero. If the optimal solution were
less than zero, it would fall outside the scope of our study, and SSO-PGA would not be able to solve
it.
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Figure 17: Additional comparison of numerical simulation results for SSO-PGA and PGA on Prob-
lem II+.

A.10 ADDITIONAL VISUAL EXPERIMENTAL RESULTS

In this subsection, we present additional experimental results to further demonstrate the effectiveness
and robustness of our proposed SSO-PGA method. The results cover the following aspects:

• Qualitative Comparison on Flash Guided Non-Flash Image Denoising (Fig. 18, and
Fig. 19: Visual comparisons between SSO-PGA and several representative SOTA methods
are provided across the two benchmark datasets (FAID and MID). These results clearly
demonstrate that SSO-PGA consistently achieves superior denoising performance com-
pared to other methods, yielding results that are closer to the ground truth.
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• Qualitative Comparison on Multispectral Image Fusion (Fig. 20, Fig. 21, and Fig. 22):
Visual comparisons between SSO-PGA and several representative SOTA methods are pro-
vided across the three benchmark datasets (WV3, QB, and GF2). These results clearly
show that SSO-PGA consistently reconstructs sharper spatial details and produces recon-
structions closer to the ground truth with lower residual.

• Visualization Under Different Iteration Steps (Fig. 23 and Fig. 24): We further present
the reconstructed outputs of both SSO-PGA and the PGA baseline under varying numbers
of iterations. The results demonstrate that SSO-PGA achieves high-fidelity fusion even
with fewer unfolding steps and maintains performance when increasing the number of iter-
ations, unlike the PGA baseline, which may suffer from degradation.

• SSO vs. Gradient Descent Visualization (Fig. 25, Fig. 26, and Fig. 27): We provide
side-by-side visual comparisons of SSO-based and gradient-descent-based models, namely
SSO-PGA vs. PGA baseline, and SSO-MDCUN vs. MDCUN Yang et al. (2022), across
all datasets. The SSO-enhanced variants consistently produce better reconstruction with
fewer spectral distortions and residual artifacts.

These extended experimental results collectively confirm the superiority of our proposed SSO-PGA
framework in terms of reconstruction accuracy, convergence stability, and robustness across different
scenarios.

Figure 18: Visual comparison of our method and some representative methods on the FAID dataset.
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Figure 19: Visual comparison of our method and some representative methods on the MID dataset.

Figure 20: Visual comparison (the first row) and the corresponding error map (the second row) of
our method and some representative methods on the WV3 reduced-resolution dataset.
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Figure 21: Visual comparison (the first row) and the corresponding error map (the second row) of
our method and some representative methods on the QB reduced-resolution dataset.

Figure 22: Visual comparison (the first row) and the corresponding error map (the second row) of
our method and some representative methods on the GF2 reduced-resolution dataset.
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Figure 23: Visual comparison (the first row) and the corresponding error map (the second row) of
PGA baseline under different iteration steps on the WV3 reduced-resolution dataset.

Figure 24: Visual comparison (the first row) and the corresponding error map (the second row) of
our SSO-PGA under different iteration steps on the WV3 reduced-resolution dataset.
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Figure 25: Visual comparison (the first row) and the corresponding error map (the second row)
of SSO-PGA vs. PGA baseline, and SSO-MDCUN vs. MDCUN on the WV3 reduced-resolution
dataset.

Figure 26: Visual comparison (the first row) and the corresponding error map (the second row) of
SSO-PGA vs. PGA baseline, and SSO-MDCUN vs. MDCUN on the QB reduced-resolution dataset.
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Figure 27: Visual comparison (the first row) and the corresponding error map (the second row)
of SSO-PGA vs. PGA baseline, and SSO-MDCUN vs. MDCUN on the GF2 reduced-resolution
dataset.

A.11 THE USE OF LLMS

LLMs did not play a significant role in this research; they were only used for polishing the language
and formatting.
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