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Abstract

This paper proposes GO4Align, a multi-task optimization approach that tackles task
imbalance by explicitly aligning the optimization across tasks. To achieve this, we
design an adaptive group risk minimization strategy, comprising two techniques in
implementation: (i) dynamical group assignment, which clusters similar tasks based
on task interactions; (ii) risk-guided group indicators, which exploit consistent
task correlations with risk information from previous iterations. Comprehensive
experimental results on diverse benchmarks demonstrate our method’s performance
superiority with even lower computational costs.

1 Introduction

Gradient-oriented methods
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This paper
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Figure 1: Performance and computational effi-
ciency evaluation for MTO methods evaluated
on NYUv2. Each method’s training time is relative
to a baseline method, which minimizes the sum of
task-specific empirical risks. Left-bottom marks
comprehensive optimal results.

Multi-task learning is a promising paradigm
for handling several tasks simultaneously us-
ing a unified architecture. It can achieve data
efficiency, improve generalization, and reduce
computation costs compared with addressing
each task individually [1]. Due to these ben-
efits, there is a growing surge of applications
with multi-task learning in several domains, e.g.,
natural language processing [2–4], computer vi-
sion [1, 5, 6] and reinforcement learning [7, 8].
The crux of multi-task learning is to enable pos-
itive transfer among tasks while avoiding nega-
tive transfer, which usually exists among irrel-
evant tasks [9–11].

Existing Challenges: In avoiding the nega-
tive transfer, numerous multi-task optimization
(MTO) methods [5, 9, 12–14] have emerged and
attracted rising attention in recent years. A last-
ing concern in MTO is the task imbalance issue.
It describes a phenomenon where some tasks are severely under-optimized [1], which can lead to
worse overall performance with larger convergence differences across tasks.

To deal with the task imbalance issue, scaling methods are proposed for MTO. According to differ-
ences in scaling manipulations, we roughly divide MTO methods into gradient-oriented [12, 15–18]
and loss-oriented [5, 6, 19, 20]. The former tends to exhibit impressive results at the expense of
higher computational or memory requirements during training time due to the assessment of per-task
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gradients [19].2 In contrast, the latter preserves training-time efficiency but usually suffers from
unsatisfactory overall performance. As shown in Fig. 1, most existing methods cannot simultaneously
achieve superior performance and computational efficiency.

Proposed Solution: To improve the overall performance and maintain computational and memory
efficiency, we propose Group Optimization for multi-task Alignment (GO4Align), a novel and
effective loss-oriented method in MTO. As shown in Fig. 2, this work identifies multi-task alignment
as a crucial factor in solving task imbalance, which means learning progress across tasks should
synchronously achieve superior performance over all tasks. The proposed model dynamically aligns
learning progress across tasks by exploiting group-based task interactions for multi-task empirical
risk minimization. The rationale behind this is that groupings can implicitly capture task correlations
for more effective multi-task alignment and thus help multi-task optimizers benefit from positive
interactions among relevant tasks. The primary contribution is two-fold:

• As a new member of the loss-oriented MTO branch, GO4Align recasts the task imbalance
issue to a bi-level optimization problem, yielding an adaptive group risk minimization
principle for MTO. Such a principle allocates weights over task losses at a group level to
achieve learning progress alignment among relevant tasks.

• We develop a heuristic optimization pipeline in GO4Align to tractably achieve the principle,
involving dynamical group assignment and risk-guided group indicators. The pipeline incor-
porates beneficial task interactions into the group assignments and exploits task correlations
for multi-task alignment, improving overall multi-task performance.

Experimental results show that our approach can outperform existing state-of-the-art baselines in
extensive benchmarks. Moreover, it does not sacrifice computational efficiency.

2 Preliminary

Notations. This work considers a multi-task problem over an input space X and a collection of
task target spaces {Ym}Mm=1, where M ≥ 2 denotes the number of tasks. A composite dataset for
multi-task learning is {(xn, y

1
n, ..., y

M
n )}Nn=1, where N is the number of training samples. Let θs

and θm respectively be the shared and task-specific parameters in a given multi-task model, thus
we have a parametric hypothesis class for the m-th task as f(xn;θ

s,θm) ∶ X → Ym. Then the
empirical risk for the m-th task can be written as L̂m(θs,θm) = 1

N ∑
N
n=1 ℓ

m(f(xn;θ
s,θm), ymn ) ,

where ℓm(⋅, ⋅) ∶ Ym ×Ym → R+ denotes the task-specific loss function. The ultimate goal of MTO is
to achieve superior performance over all tasks.

Scale Empirical Risk Minimization (Scale-ERM). As preliminary, we recap a representative
and related strategy in MTO, Scale-ERM, through the lens of risk minimization. Scale-ERM
introduces a task-specific weight λm ≥ 0 to scale the corresponding empirical risk. For con-
ciseness, this principle is formulated using vector notations. Here, λ = [λ1, λ2,⋯, λM ]⊺ ∈
RM represents a M -dimensional vector comprising all task-specific weights. And L̂(θ) =
[L̂1(θs,θ1), L̂2(θs,θ2),⋯, L̂M(θs,θM)]⊺ ∈ RM denotes the corresponding vector of empirical
risks, where θ = {θs,θ1,θ2,⋯,θM} represents all learnable parameters in a multi-task backbone
network. Thus, we obtain the objective of Scale-ERM as follows:

min
θ,λ

λ⊺L̂(θ) +Ω(λ), (1)

where Ω(λ) is a regularization term over task weights, designed to prevent the rapid collapse of
these weights to zero, as discussed in Kendall et al. [5]. When all task weights are the same in scale,
Scale-ERM will degenerate to the most simple strategy in MTO, where each task is treated equally
during the joint training.

In Scale-ERM, each task weight controls task-specific learning progress, either by adapting the
task-specific weights with loss information (loss-oriented) or by operating on task-specific gradients
(gradient-oriented). As previously indicated, there still remains a research gap in MTO to improve
multi-task performance without affecting computational efficiency.

2In MTO, computational efficiency refers to training time efficiency.
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3 Methodology

In resolving the task imbalance issue effectively and efficiently, we develop GO4Align in this section.
Our approach relies on grouping-based task interactions to align learning progress across tasks. As a
new member of the loss-oriented branch, GO4Align holds the advantage of computational efficiency
without the requirements of per-task gradients.
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Figure 2: Multi-task alignment and effects on
performance. We visualize relative task perfor-
mance curves (lower is better) over training epochs.
Better overall performance usually occurs with
lower convergence differences. Our method ef-
fectively reduces the convergence difference and
achieves a better overall performance.

Motivation of Multi-Task Alignment. Empir-
ically, we can observe that the overall perfor-
mance is worse when there is a larger conver-
gence difference between tasks. The conver-
gence difference is measured by the standard
deviation of the task-specific epoch numbers to
reach convergence. As shown in Fig. 2, UW [5]
underperforms FAMO [14] in terms of a over-
all MTL metric ∆m% (lower is better); while
UW has a larger convergence difference than
FAMO. Intuitively, a larger convergence differ-
ence means that per-task training dynamics are
more asynchronous, usually leading to worse
overall performance.

To perform MTO, we consider aligning tasks
with group information in the multi-task risk minimization. We first present an adaptive group
risk minimization principle for MTO, which targets the alignment of tasks’ learning progress from
grouping-based task interactions. Then, in tractable problem-solving, we decompose the whole
optimization process into two entangled phases: (i) dynamical group assignment and (ii) risk-guided
group indicators. The pseudo-code of GO4Align is provided in Appendix A.

3.1 Adaptive Group Risk Minimization Principle

Recent advances [21, 22] have explored incorporating multi-task grouping in feature sharing and
revealed its benefit of aligning the learning progress through task interactions. Nevertheless, their
grouping mechanisms ignore monitoring the learning progress, e.g., failure to capture variations in
loss scales among tasks, weakening the effectiveness of multi-task alignment.

As a result, we design a new grouping mechanism for MTO with task-specific learning dynamics,
which directly impacts the convergence behaviors in optimization. This induces the adaptive group
risk minimization principle suitable for multi-task alignment. The hypothesis is that the dynamical
grouping tends to implicitly exploit task correlations [21] and encourages beneficial task interactions
from empirical risk information along the learning progress. Meanwhile, such a principle retains
computational efficiency as it avoids the computations of per-task gradients.

Adaptive Group Risk Minimization (AGRM). We first achieve beneficial task interactions by
producing task weights with a grouping mechanism, which is adaptive to various loss scales and their
learning dynamics over time. Then, we recast the task imbalance issue with the grouping mechanism
into a bi-level optimization problem: (i) In the lower-level optimization, the model aims to cluster M
tasks of interest into K groups. This implicitly exploits task correlations, where similar tasks should
be clustered into one group, yielding more beneficial task interactions. With group assignments, group
weights are designed to conduct learning progress alignment at the group level. The group weights in
the multi-task objective are motivated as an extension of the observation that similar tasks benefit
greatly from training together through parameter sharing [21]. (ii) In the upper-level optimization,
the proposed principle updates model parameters from the grouped empirical risks, which implicitly
relies on the lower-level optimized results. We illustrate GO4Align’s bi-level optimization with
grouping-based task interactions in Fig. 3.

Given K as the number of groups, we denote the assignment matrix as Gt ∈ RK×M , where Gt(k,m)
equals 1 if the k-th group contains the m-th task and 0 otherwise. Note that Gt is updated in
the optimization, with t-th indexing iteration step. The group number generally is smaller than
the task number, e.g., 1 < K ≤ M . To balance different groups, we place weights over groups
ωt = [ω1

t , ω
2
t ,⋯, ωK

t ]
⊺ ∈ RK , where ωk

t ≥ 0 is specific to the k-th group at the t-th iteration.
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Figure 3: GO4Align using adaptive group risk minimization in the bi-level optimization frame-
work. In the lower-level optimization, the model assigns tasks to groups with different group weights,
encouraging task interactions and aligning learning progress. Such group information is nested into
the upper-level optimization for updating the multi-task model’s parameters.

Formally, we formulate the bi-level optimization problem as:

min
θ

ωt
⊺GtL̂(θ) s.t. {ωt,Gt} = argmin

ω,G
J(ω,G;θt), (2)

where ωt and Gt reflect adaptive group information in the lower-level optimization. J(ω,G;θt) is
the corresponding optimization objective for aligning the learning progress across tasks at the group
levels, which is further explained in Sec. 3.2.

To be specific, we perform the bi-level optimization in Eq. (2) according to the following steps. For
the t-th iteration, we first compute the group information ωt and Gt in the lower-level optimization;
and then we update the model’s parameter in the upper-level optimization. As a result, we obtain the
updated parameter θt+1, which is used to compute task-specific risk information at the next iteration.
In the proposed principle, intra-group tasks share the same scaling weight ωk ≥ 0 to prevent similar
tasks from inconsistent learning progress, improving knowledge sharing among similar tasks.

Important in AGRM is to accommodate the grouping during training dynamically. In practice, the
proposed principle is compatible with any gradient-based optimizer, such as SGD and Adam [23],
yielding dynamical training for each task. As a new member of the loss-oriented branch, the grouping
assignment matrix and group weights in GO4Align can sufficiently utilize the loss information over
time to adaptively assign tasks and weight groups.

Unlike prior works on multi-task grouping [21, 22], which require group-specific architectures, our
proposed principle focuses on group-specific scaling and adaptively executing grouping operations.
Considering the differences in architecture and optimization within grouping mechanisms, we provide
two insights: (i) the criteria for grouping tasks should take both learning dynamics and loss scales
into consideration so that similar tasks can benefit from each other’s intermediate feature information
and boost performance; (ii) adaptive grouping aligns learning progress across tasks and provides a
more effective way for across-task information transfer.

3.2 Dynamical Group Assignment

In solving the optimization problem in Eq. (2), the main challenge lies in the involvement of discrete
and continuous variables, which are implicitly entangled in the objective. In detail, the lower-level
optimization requires adaptively adjusting the discrete variable Gt and the continuous variable ωt for
the learning progress alignment such that the model’s parameter θ updates from the lastest grouping
information.

Before executing the lower-level optimization, we need to introduce task-specific group indicators
γt(θt) = [γ1

t (θs
t ,θ

1
t ), γ2

t (θs
t ,θ

2
t ),⋯, γM

t (θs
t ,θ

M
t )]

⊺ ∈ RM . In general, this involves the entan-
glement of the model’s parameters, which is obtained from high-level optimization. These group
indicators work for exploiting cross-task correlations along the learning progress and provide group
information to enable task interactions in the lower-level optimization. We will further discuss the
design of the group indicator in Sec. 3.3.

Intuitively, we conduct the group assignment as a clustering process based on these group indicators
γt(θt). In this case, each cluster represents a group, and the cluster center is set to the group weight.
Many clustering algorithms are available to achieve this. In this work, we take the K-means clustering
algorithm [24–26] as a practical clustering implementation. Thus, we specify the optimization
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objective of the dynamical group assignment as:

min
ω,G

J(ω,G;θt) ∶= ∣∣γ⊺t (θt) −ω⊺G∣∣
2
, (3)

where ω⊺t = γ⊺t (θt)G−1t indicates that the cluster center closely relates to the group assignment
matrix. It is worth noting that G−1t is a generalized inverse, especially one-sided right inverse,
G−1 = G⊺(GG⊺)−1. The designed dynamical group assignment plays an important role in the lower-
level optimization of the proposed AGRM, and it tends to cluster similar tasks into the same group
while scattering dissimilar ones in clusters.

By integrating the dynamical group assignment in Eq. (3) and the group indicators into Eq. (2), we
provide an instantiation for the AGRM’s optimization objective:

min
θ

ωt
⊺GtL̂(θ) s.t. {ωt,Gt} = arg min

ω,G
∣∣γ⊺t (θt) −ω⊺G∣∣

2
. (4)

Moreover, the dynamic group assignment heuristically clusters tasks from the group indicators, which
avoids the exhausted search of appropriate task combinations for performance gains like previous
works [21].

3.3 Risk-guided Group Indicators

This subsection discusses the appropriate design of the group indicators for dynamic group assignment
introduced in Sec. 3.2.

The misalignment of learning across tasks can usually be attributed to various risk scales and
asynchronous learning dynamics among tasks over time. To address this, we take two operations
with risk information, scale-balance and smooth-alignment, into consideration and then obtain the
risk-guided group indicators by combining them. The role of the group indicators is to use the risk
information to explore the relationships among tasks without incurring the expensive computational
cost associated with gradients. Compared with other loss-oriented methods, our group indicator can
capture the differences in the per-task risk scale and fully utilize the learning dynamics over time,
yielding better representations of risk information.

Scale-balance. To alleviate the misalignment caused by differences in per-task risk scales, we intro-
duce scale-balance, which enlarges the importance of tasks with smaller risks in optimization. Given
task-specific risks at iteration t, we normalize them to their average risk for efficient scale balancing. In
each iteration, the scale vector for all tasks is denoted as Pt(θt) = [p1t (θt), p2t (θt), . . . , pMt (θt)]

⊺ ∈
RM , which can be calculated as:

Pt(θt) = diag(L̂(θt))−1[ ¯̂L(θt)]
M
, (5)

where diag(⋅) constructs a diagonal matrix with the elements of the vector placed on the diagonal.
¯̂
L(θt) is a scalar to represent the average risk, and [⋅]M represents the construction of an M -
dimentional vector whose elements are all equal to the average risk. To avoid the upper-level
optimization degenerating into a fixed scalar, the gradients of empirical risks in the lower-level
optimization are not being computed through them. However, in practice, the learning dynamics over
time tend to make the scale vector inconsistent over iterations [12, 16], which is not conducive to
aligning learning progress. We therefore introduce smooth-alignment to update the scale vector with
historical information from previous iterations.

Smooth-alignment. To avoid sudden fluctuations of scale vectors over iterations, we introduce
the smoothness vector Qt(θ1∶t) = [q1t (θ1∶t), q2t (θ1∶t), . . . , qMt (θ1∶t)]

⊺ ∈ RM , which smooths the
updating of the scale vector with previous risk information. Thus, the smoothness vector can deal
with asynchronous learning dynamics over time, which helps the model reduce the imbalance of
training across tasks. To be specific, we compute the smoothness vector by a normalized exponential
moving average as follows:

Qt(θ1∶t) = σ[Qt−1(θ1∶t−1)⊙ exp(−βL̂(θt))], (6)

where ⊙ denotes the element-wise multiplication and σ[⋅] normalizes the sum of all smoothness
elements to be 1. β is a temperature hyperparameter to control the influence of current risk information.
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Note that when β is close to zero, each element in the smoothness vector will degrade to a fixed value
1
M

, which does not capture any historical information to group indicators.

Risk-guided Group Indicators. By element-wise multiplying the scale vector in Eq. (5) and the
smoothness vector in Eq. (6), we obtain the group indicators with sufficient risk information as:

γt(θt) = Pt(θt)⊙Qt(θ1∶t). (7)

Then, with the group indicators γt(θt), we optimize the dynamical group assignment in Eq. (3) to
assign tasks into groups in the lower-level optimization.

For each group indicator, the role of Pt(θt) in Eq. (5) and Qt(θ1∶t) in Eq. (6) differs in optimization:
the smoothness vector requires the accumulated loss information from previous iterations, while the
scale vector are independent of iterations. Thus, the smoothness vector can iteratively exploit more
consistent task correlations to better align learning progress across tasks. The experimental section
will show that the risk-guided group indicators empirically boost the proposed adaptive group risk
minimization in aligning learning tasks.

4 Related Work

Multi-Task Optimization. Multi-task optimization addresses the task imbalance issue in multi-
task learning, where each task usually influences a shared network differently. Task-imbalance in
MTO [1, 27] refers to imbalanced optimization rather than uneven data distributions in the task
space. According to different manipulations in optimization, we roughly divide MTO methods
into two branches: (i) gradient-oriented methods, which solve the task balancing problem by
fully utilizing the gradient information of the shared network from different tasks. Some studies
report impressive performance based on Pareto optimal solutions [18], gradient normalization [27],
gradient conflicting [12], gradient sign Dropout [17], conflict-averse gradient [16], Nash bargaining
solution [13]. However, most gradient manipulation methods usually suffer from high computational
cost [19]. (ii) loss-oriented methods, which reweight task-specific losses with the help of inductive
biases from the loss space, e.g., using homoscedastic uncertainty [5], task prioritization [28], self-
paced learning [29], similar learning paces [6, 14], random loss weight [20]. Although loss-oriented
methods are more computationally efficient, they often underperform gradient-oriented ones in most
multi-task benchmarks. This paper tries to trade off the overall performance and computational
efficiency.

Recent work [30] weights tasks under the meta-learning setup but has lower training-time efficiency
for large-scale systems with high dimensional parameter space, such as deep neural networks, limiting
their applications for dense prediction tasks in MTL. The closest method to ours is the recent work
FAMO [14], which balances task-specific losses by decreasing task loss approximately at an equal
rate. However, GO4Align proposes a new MTL optimizer that dynamically aligns learning progress
across tasks by introducing group-based task interactions.

Multi-Task Grouping. Multi-task grouping [11, 21, 31] assigns tasks into different groups and
trains intra-group tasks together in a shared multi-task network. Previous work [11] first evaluates
the transferring gains for 2M − 1 candidate multi-task networks (M is the number of tasks) and then
conducts the brute-force search for the best grouping. Some works follow high-order approximation
(HOA) [11] to reduce the prohibitive computational cost. However, they also suffer from inaccurate
estimations due to non-linear relationships between high-order gains and corresponding pairwise
gains [31]. Meanwhile, Yao et al. [32] represents a clustered multi-task learning method, which
clusters tasks into several groups by learning the representative tasks. The benefit of multi-task
grouping is performance gains by training similar tasks together, and this inspires us to capture
helpful group information in multi-task optimization. Also, rather than employing different multi-task
networks, GO4Align introduce group-based task interactions in scaling for multi-task alignment.
Moreover, we share a high-level idea of task clustering with [33]. However, task clustering in [33]
is limited to pairwise relationships among tasks; meanwhile, our work allows grouping-based task
interactions, thus capturing more complex relationships among tasks.
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Table 1: Results on NYUv2 (3 tasks). The upper and lower tables categorize baseline methods into
gradient-oriented and loss-oriented types, respectively. Each experiment is repeated over 3 random
seeds, and the mean is reported. The best average result is marked in bold. MR and ∆m% are the
main metrics for overall MTL performance. Metrics with ↓ denote that the lower the better.

Segmentation Depth Surface Normal

Method mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Angle Dist ↓ Within t○ ↑ MR ↓ ∆m% ↓
Mean Median 11.25 22.5 30

STL 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15 - -

MGDA 30.47 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 7.00 1.38
PCGRAD 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 9.00 3.97
GRADDROP 39.39 65.12 0.5455 0.2279 27.48 22.96 23.38 49.44 62.87 7.89 3.58
CAGRAD 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 5.33 0.20
IMTL-G 39.35 65.60 0.5426 0.2256 26.02 21.19 26.20 53.13 66.24 4.56 -0.76
NASHMTL 40.13 65.93 0.5261 0.2171 25.26 20.08 28.40 55.47 68.15 2.89 -4.04

LS 39.29 65.33 0.5493 0.2263 28.15 23.96 22.09 47.50 61.08 9.89 5.59
SI 38.45 64.27 0.5354 0.2201 27.60 23.37 22.53 48.57 62.32 8.78 4.39
RLW 37.17 63.77 0.5759 0.2410 28.27 24.18 22.26 47.05 60.62 12.22 7.78
DWA 39.11 65.31 0.5510 0.2285 27.61 23.18 24.17 50.18 62.39 8.67 3.57
UW 36.87 63.17 0.5446 0.2260 27.04 22.61 23.54 49.05 63.65 8.33 4.05
FAMO 38.88 64.90 0.5474 0.2194 25.06 19.57 29.21 56.61 68.98 4.33 -4.10
GO4Align 40.42 65.37 0.5492 0.2167 24.76 18.94 30.54 57.87 69.84 2.11 -6.08

(a) NYU-v2 (3 tasks) (b) QM9 (11 tasks) (c) CityScapes (2 tasks) (d) CelebA (40 tasks)

LS
MGDA
PCGrad
CAGrad
IMTL-G

NashMTL
FAMO

GO4Align

Figure 4: Efficiency comparisons on training time. Each method’s training time is relative to a
simple baseline method with Eq. (1), which minimizes the sum of task-specific empirical risks.

5 Experiments

5.1 Comparisons on MTL Benchmarks

Datasets and Settings. We conduct experiments on four benchmarks commonly used in multi-task
optimization literature [6, 13, 14, 16]: NYUv2 [34], CityScapes [35], QM9 [36], and CelebA [37].
For all benchmarks, we follow the training and evaluation protocol in [13, 14].

Baselines. We compare GO4Align with a single-task learning baseline, six gradient-oriented methods,
and six loss-oriented methods. Note that single-task learning (STL) trains an independent deep
network for each task. The gradient-oriented methods include MGDA [18], PCGRAD [12], CA-
GRAD [16], IMTL-G [38], GRADDROP [17], and NASHMTL [13]. As for the loss-oriented methods,
they are Linear scalarization (LS), Scale-invariant (SI), Dynamic Weight Average (DWA) [6], Un-
certainty Weighting (UW) [5], Random Loss Weighting (RLW) [39], and FAMO [14]. Detailed
information about datasets and baselines is in Appendix B.

Evaluations. Following previous work [13, 16, 40], we report two MTL metrics that demonstrate the
overall performance over various task-specific metrics: (1) ∆m% is the average per-task performance
drop relative to STL. We assume there are S metrics for all tasks.Ms denote the s-th metric value
of a multi-task method, while Bs is the corresponding metric value of the STL baseline. Thus, we
formulate the average relative performance drop as:∆m% = 1

S ∑
S
s=1(−1)δ

s (Ms−Bs)
Bs , where δs = 1

if higher values for the s-th metric are better and 0 otherwise. (2) MR = 1
S ∑

S
s=1 rank(Ms) is the

average rank of all task-specific metrics, where rank(Ms) denotes the ranking of the s-th metric
value of the model among all comparison methods. Note that in practice the lower ∆m% and MR,
the better overall performance.
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Table 2: Comparisons on QM9 (11 tasks),
CityScapes (2 tasks) and CelebA (40 tasks).
Detailed results are in Appendix C.

Method QM9 CityScapes CelebA
MR ↓ ∆m% ↓ MR ↓ ∆m% ↓ MR ↓ ∆m% ↓

MGDA 7.73 120.5 10.00 44.14 10.05 14.85
PCGRAD 6.09 125.7 6.25 18.29 6.05 3.17
CAGRAD 7.09 112.8 5.00 11.64 5.65 2.48
IMTL-G 5.91 77.2 4.00 11.10 4.08 0.84
NASHMTL 3.64 62.0 2.50 6.82 4.53 2.84

LS 8.00 177.6 8.50 14.11 5.55 4.15
SI 5.09 77.8 8.50 14.11 7.10 7.20
RLW 9.36 203.8 7.75 24.38 4.60 1.46
DWA 7.64 175.3 6.00 21.45 6.25 3.20
UW 6.64 108.0 5.75 5.89 5.18 3.23
FAMO 4.73 58.5 5.50 8.13 4.10 1.21
GO4Align 4.55 52.7 7.00 8.11 3.10 0.88

Effectiveness Comparison. We provide perfor-
mance comparisons on NYUv2 in Table 1. In
this benchmark, our method achieves the best
overall MTL performance among both gradient-
oriented and loss-oriented methods. We observe
that our work is the only one that improves each
task’s performance relative to the corresponding
STL performance. This suggests that grouping-
based task interactions can adequately alleviate
the imbalance of learning progress across tasks.

The experimental results on QM9, CityScapes
and CelebA are reported in Table 2. GO4Align
obtains the lowest ∆m% on QM9. It also
shows comparable performance with FAMO
on CityScapes, one possible reason could be that this dataset only contains 2 tasks, which limits
the potential of the grouping mechanism in our method. In CelebA, even though our work does not
achieve the lowest average performance drop, it outperforms all loss-oriented methods, which further
verifies the effectiveness of the proposed method.

Efficiency Comparison. To show the computational efficiency, in Fig. 4, we report the average
training time per epoch over 5 epochs for each method. We choose LS as the relative baseline for
training time (cf. RLW [39] and FAMO [14]) as it is a commonly used MTL baseline with equal
weights for each task, and it does not require additional loss-oriented or gradient-oriented techniques.
We note that we run all experiments on an NVIDIA A100 and the code of baseline methods comes

from Liu et al. [14] and Navon et al. [13].

As shown in this figure, the proposed method GO4Align, as a new member of the loss-oriented
branch, can perform more efficiently than most gradient-oriented methods. Moreover, when the
number of tasks scales up from 2 to 40, the reduction in computational cost between our method
and other gradient-oriented methods becomes increasingly significant, e.g., NashMTL (2.07) versus
Ours (1.01) with 2 tasks, NashMTL (12.49) versus Ours (1.01) with 40 tasks. The main reason is
that the training time of gradient-oriented methods is proportional to the number of tasks, but our
work can avoid this. More experimental results are provided in Appendix C.

5.2 Ablation Study

The effectiveness and efficiency of our proposed method are shown in Sec. 5.1. Next, we answer the
following questions with our ablation study: (1) Can we quantify the contributions of each phrase?
(2) Can we disentangle the roles of the group assignment and group weights? (3) Can the proposed
AGRM principle seamlessly integrate with existing MTO methods? (4) Are there practical ways to
appropriately configure hyperparameters, e.g., group number K? (5) Why do we choose the K-means
clustering in the proposed method?

Table 3: Effectiveness of each phase in GO4Align
on NYUv2. ✓ denote whether the component joins
the pipeline.

Eq.(5) Eq.(6) Eq.(4) ∆seg.% ↓ ∆depth% ↓ ∆normal% ↓ ∆m% ↓
✓ -0.02 -21.76 13.14 2.46
✓ ✓ 14.22 -15.27 2.52 1.16
✓ ✓ ✓ -4.03 -20.37 -1.18 -6.08

Contributions of Each Phase. To quantify the
contributions of each phase in achieving the pro-
posed AGRM principle on NYUv2, we report
the detailed performance of our method in each
phase. As the grouping is performed by Eq.(4),
the first two rows in Table 3 are the variants of
our method without grouping, and the last row is
our method with grouping. Table 3 empirically
examines the performance gains of the variant with task grouping over without grouping.

In detail, compared with the scale vector in Eq. (5), the smoothness vector in Eq. (6) can compromise
the performance of the “Normal” and “Depth” tasks, however, scarifying that of “Seg.”. Based on
the scale and smoothness vectors, the proposed method employs dynamical group assignment in
Eq. (4) to exploit the grouping-based task interactions, thus well aligning the learning progress of
similar tasks “Depth” and “Seg.”. We also observe that our method with both phases can improve
the task-specific performance relative to STL. This demonstrates that each phase in the method
complements each other, resulting in more balanced performance across tasks.
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Figure 5: Comparative analysis of the influence of the group assignment matrix and group
weights on NYUv2. The x-axis in the subplots denotes the epoch, and the intensity of the color
indicates the weight value. (a-d) have fixed group weights ω = [ω1, ω2] but various group assignment
matrices G. (f-i) have various group weights ω but a fixed group assignment matrix G. (e) is our
method that dynamically exploits a group assignment matrix and group weights for each iteration.
The right side of each method shows relative performance drops on each task and their average one.

Influence of Group Assignment Matrix. To explore the influence of the group assignment matrix
G, we assume the group number is 2 on NYUv2 and make comparisons with several variants, which
have various group assignments with fixed group weights ω = [0.8,0.1]. As shown in Fig. 5 (a-c),
grouping “Seg." and “Depth" outperforms other options. The main reason could be that these two
tasks are very similar and far away from the “Normal” task [21]. We observe that variant (d) with
a random grouping strategy shows lower performance than the fixed grouping options (a) and (c),
which further implies the importance of appropriate group assignment. It is worth mentioning that
the proposed method in (e) without the prior information of the appropriate group assignment also
captures such task correlations and each task can get performance gains compared with STL. This
demonstrates that group assignment plays an important role in exploring task correlations over time
in the proposed method.

Influence of Group Weights. To study the influence of group weights, we conduct another visualiza-
tion in Fig. 5 (f-i), where we focus on various group weights ω with the “optimal" group assignment
matrix G = {Normal;Seg,Depth}. We observe that with the fixed group assignment matrix, group
weights have effects on the extent of compromising among different groups. On the NYUv2 dataset,
lower weights for the first groups obtain better overall performance. The variant method (i) with
random group weights achieves surprising performance, 1.75%, in terms of the average relative
performance drop. (e) shows that our method also tends to dynamically weight the first group with
a high value. This demonstrates that group weights are necessary to align the learning progress of
different groups over time.

Table 4: Comparisons of existing MTO methods
with the proposed AGRM on NYUv2.

Methods ∆seg.% ↓ ∆depth% ↓ ∆normal% ↓ ∆m% ↓
MGDA 13.25 -9.11 0.83 1.38
MGDA + AGRM 6.06 -11.69 -1.14 -1.89

NASHMTL -4.09 -22.01 3.15 -4.04
NASHMTL + AGRM -7.75 -20.14 3.60 -4.20

FAMO -1.65 -20.02 1.29 -4.10
FAMO + AGRM 1.76 -21.17 -0.03 -4.32

GO4Align -4.03 -20.37 -1.18 -6.08

Effect of Adaptive Group Risk Minimization
Principle. Empirically, the proposed adaptive
group risk minimization principle (AGRM) in
Sec. 3.1 can be seamlessly integrated with ex-
isting MTO methods, taking their updated task
weights as group indicators. As detailed in Ta-
ble 4, MTO methods combined with AGRM con-
sistently show improved performance. MGDA
with adaptive group risk minimization achieves
the biggest improvement gap. Moreover, our method still outperforms others. The reason could be
that the designed risk-guided group indicators are more suitable for AGRM by balancing risk scales
and exploiting historical information from previous iterations.
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Table 5: Comparisons between different clustering methods in the proposed framework.

Methods ∆seg.% ↓ ∆depth% ↓ ∆normal% ↓ ∆m% ↓ Relative runtime ↓
SDP-based clustering [41] -2.97 -18.76 -1.09 -5.44 1.20×
Spectral clustering [42] -1.78 -18.58 -0.06 -4.56 1.17×
Ours -4.03 -20.37 -1.18 -6.08 1.02×

(a) NYU-v2 (3 tasks) (b) QM9 (11 tasks)

Figure 6: Identification of “elbow” points on
NYUv2 and QM9. According to the conventional
elbow method, we set the group number of the two
datasets as 2 and 5, respectively.

Influence of Group Number. In the proposed
method, group number K is an important hyper-
parameter, especially when we instantiate the
clustering process in dynamical group assign-
ment with K-means. In this case, there are
many different techniques for choosing the right
K. To be visualizable, here we apply the con-
ventional elbow method. As shown in Fig. 6,
the overall performance (lower is better) of our
method in (a) and (b) drops at 2 and 5, respec-
tively, after that both reach a plateau when the
group numbers increase. Thus, in this paper we
set K = 2 and K = 5 for NYUv2 and QM9.

Effect of different clustering methods. In our main experiments, we employed standard K-means
for instantiation. K-means is a widely used clustering approach. To investigate the effect of different
clustering methods, we evaluate the impact of using alternative clustering algorithms.

Specifically, we tested our proposed method on NYUv2 by substituting K-means with SDP-based
clustering [41] and spectral clustering [42]. As demonstrated in Table 5, these alternative clustering
methods also outperform state-of-the-art approaches (FAMO, −4.10%), particularly by enhancing the
performance of each task over STL. Interestingly, our experiments show that the K-means clustering
algorithm outperforms spectral and SDP-based clustering methods.

6 Conclusion

Technical Discussion. This paper focuses on the task imbalance issue in MTO. Previous MTO
methods suffer from either intensive computations or non-competitive performance. Our proposed
GO4Align addresses the issue by aligning learning progress across tasks with the help of the AGRM
principle. In problem-solving, we present a tractable optimization pipeline, which incorporates
grouping-based task interactions into the loss scaling of MTO.

Limitation. The main limitation of this work is the heuristic configuration of the group numbers.
Although the search space is significantly smaller than some grouping multi-task methods [31], it
still needs maximum M runs to find the best number. Some related techniques [43] automatically set
the group number can be added to avoid this limitation in future work.

Broader Impact. This paper is the first to consider task grouping in multi-task optimization with
deep multi-task models. We propose a simple and principled way to fasten multi-task optimization
with better training-time efficiency, which has many potential societal impacts, especially in dense
prediction tasks. We provide the code for our method to encourage follow-up work.3
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Appendix

A Algorithm of GO4Align

The pseudo-code of GO4Align is provided in Algorithm 1. For clarity, we also illustrate the
optimization process in Fig. 7.

Algorithm 1 Group Optimization for Multi-Task Alignment (GO4Align)
1: Input: Maximum iteration number T ; Batch size Nbz; Learning rate α; Temperature hyperpa-

rameter β; Task number M ; Group number (1 <K ≤M);
2: Initialize model parameters θ0 = {θs

0,θ
1
0,θ

2
0,⋯,θM

0 };
3: for t = 0 ∶ T do
4: Randomly sample a batch of training samples:

{(xn, y
1
n, ..., y

M
n )}Nbz

n=1 ,where xn ∈ X , ymn ∈ Ym;
5: Compute the empirical risk for each task at the t-th iteration:

L̂m(θs
t ,θ

m
t ) = 1

Nbz
∑Nbz

n=1 ℓ
m(f(xn;θ

s
t ,θ

m
t ), ymn );

// Lower-level optimization for grouping-based task interactions.
6: Compute the scale vector Pt(θt) in Eq. (5);
7: Compute the smoothness vector Qt(θ1∶t) in Eq. (6);
8: Obtain the group indicators γt(θ1∶t) with Eq.(7);
9: Update the group information ωt and Gt with Eq. (3) and the obtained γt(θ1∶t).

// Upper-level optimization for model parameters.
10: Update the model parameters θ with Eq. (4): θt+1 ← argminθ ωt

⊺GtL̂(θ).
11: end for

Data Batch(t-1)

...

...

Data Batch(t)

...

...

Data Batch(t+1)

Lower level optimization

Upper level optimization

Lower level optimization

Upper level optimization

Lower level optimization

Upper level optimization

Figure 7: Optimization process of the proposed adaptive group risk minimization principle. At
each iteration, given the randomly sampled mini-batch data, we first compute the group information
ω and G in the lower-level optimization and then update the model’s parameter θ in the upper-level
optimization.

B Experimental Set-Up & Implementation Details

B.1 Benchmark Descriptions

NYUv2 [34] is an indoor scene dataset consisting of 1449 RGBD images and dense per-pixel la-
beling with 13 classes. The learning objectives include 3 different dense prediction tasks: image
segmentation, depth prediction, and surface normal prediction based on any scene image.

CityScapes [35] contains 5000 street-view RGBD images with per-pixel annotations. It needs to
predict 2 dense prediction tasks: image segmentation and depth prediction.

QM9 [36] is a benchmark for group neural networks to predict 11 properties of molecules. It consists
of >130K molecules represented as graphs annotated with node and edge features. We use 110K
molecules from the QM9 example in PyTorch Geometric [44], 10K molecules for validation, and the
rest of 10K molecules as a test set.
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CelebA [37] contains 200K face images of 10K different celebrities, and each face image is provided
with 40 facial binary attributes. As the protocol provided in previous work [14], each attribute
corresponds to one task. Thus, we consider CelebA as a 40-task MTL problem.

This work follows the same experimental setting used in NashMTL [13] and FAMO [14], including
the dataset partition for training, validation, and testing. The benchmark partition is shown in Table 6.
We also note that NYUv2 and Cityscapes do not have validation sets. Following the protocol in
[13, 14], we report the test performance averaged over the last ten epochs.

Table 6: Benchmark partition for training, validation, and testing.

Datasets Total Training Validation Test
NYUv2 1449 795 N/A 654

CityScapes 3475 2975 N/A 500
QM9 ∼130k ∼110k 10k 10k

CelebA 202,599 162,770 19,867 19,962

B.2 Compared Multi-task Learning Baselines

From the gradient manipulation branch, (1) MGDA [18] that finds the equal descent direction for
each task; (2) PCGRAD [12] proposes to project each task gradient to the normal plan of that of
other tasks and combining them together in the end; (3) CAGRAD [16] optimizes the average loss
while explicitly controls the minimum decrease across tasks; (4) IMTL-G [38] finds the update
direction with equal projections on task gradients; (5) GRADDROP [17] that randomly dropout certain
dimensions of the task gradients based on how much they conflict; (6) NASHMTL [13] formulates
MTL as a bargaining game and finds the solution to the game that benefits all tasks.

From the loss scaling branch, (1) Linear scalarization (LS) is the sum of empirical risk minimization;
(2) Scale-invariant (SI) is invariant to any scalar multiplication of task losses; (3) Dynamic Weight
Average (DWA) [6], a heuristic for adjusting task weights based on rates of loss changes; (4)
Uncertainty Weighting (UW) [5] uses task uncertainty as a proxy to adjust task weights; (5) Random
Loss Weighting (RLW) [39] that samples task weighting whose log-probabilities follow the normal
distribution; (6) FAMO [14] decreases task losses approximately at equal rates.

B.3 Neural Architectures & Training Details

For NYUv2 and CityScapes, we follow the training and evaluation protocol in [13], which adds
data augmentations during training for all compared methods. We train each method for 200 epochs
with an initial learning rate of 1e − 4 and reduce the learning rate to 5e − 5 after 100 epochs. The
architecture is Multi-Task Attention Network (MTAN) [6] built upon SegNet [45]. Batch sizes for
NYUv2 and CityScapes are set as 2 and 8 respectively. To make a fair comparison with previous
works [6, 12, 14, 16], we report the test performance averaged over the last 10 epochs.

We follow the protocol in Navon et al. [13] to normalize each task target at the same scale for fairness.
We train each method for 300 epochs with a batch size of 120 and search for the best learning rate in
{1e − 3,5e − 4,1e − 4}. We take ReduceOnPlateau [13] as the learning-rate scheduler to decrease
the lr once the validation overall performance stops improving. The validation set is also used for
early stopping.

Following [14], we use a neural network with five convolutional and two fully connected layers as
the shared encoder. The decoder of each task is implemented by another fully connected layer. We
train the model for 15 epochs with a batch size of 256. We adopt Adam as the optimizer with a fixed
learning rate of 1e−3. Similar to QM9, we use the validation set for early stopping and hyperparameter
selection, such as the number of groups K and the step size of smoothness value β. We conduct all
experiments on a single NVIDIA A100 GPU.
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Table 7: Detailed results on QM9. Each experiment is repeated over 3 random seeds and the mean is
reported. The best average result is marked in bold. MR and ∆m% are the main metrics for MTL
performance.

Method µ α ϵHOMO ϵLUMO ⟨R2⟩ ZPVE U0 U H G cv MR ↓ ∆m% ↓
MAE ↓

STL 0.07 0.18 60.6 53.9 0.50 4.53 58.8 64.2 63.8 66.2 0.07 - -

MGDA 0.22 0.37 126.8 104.6 3.23 5.69 88.4 89.4 89.3 88.0 0.12 7.73 120.5
PCGRAD 0.11 0.29 75.9 88.3 3.94 9.15 116.4 116.8 117.2 114.5 0.11 6.09 125.7
CAGRAD 0.12 0.32 83.5 94.8 3.22 6.93 114.0 114.3 114.5 112.3 0.12 7.09 112.8
IMTL-G 0.14 0.29 98.3 93.9 1.75 5.70 101.4 102.4 102.0 100.1 0.10 5.91 77.2
NASHMTL 0.10 0.25 82.9 81.9 2.43 5.38 74.5 75.0 75.1 74.2 0.09 3.64 62.0

LS 0.11 0.33 73.6 89.7 5.20 14.06 143.4 144.2 144.6 140.3 0.13 8.00 177.6
SI 0.31 0.35 149.8 135.7 1.00 4.51 55.3 55.8 55.8 55.3 0.11 5.09 77.8
RLW 0.11 0.34 76.9 92.8 5.87 15.47 156.3 157.1 157.6 153.0 0.14 9.36 203.8
DWA 0.11 0.33 74.1 90.6 5.09 13.99 142.3 143.0 143.4 139.3 0.13 7.64 175.3
UW 0.39 0.43 166.2 155.8 1.07 4.99 66.4 66.8 66.8 66.2 0.12 6.64 108.0
FAMO 0.15 0.30 94.0 95.2 1.63 4.95 70.82 71.2 71.2 70.3 0.10 4.73 58.5
GO4Align 0.17 0.35 102.4 119.0 1.22 4.94 53.9 54.3 54.3 53.9 0.11 4.55 52.7

Table 8: Detailed results on CityScapes. Each experiment is repeated over 3 random seeds and
the mean is reported. The best average result is marked in bold. MR and ∆m% are the main metrics
for MTL performance.

Method Segmentation Depth MR ↓ ∆m% ↓
mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓

STL 74.01 93.16 0.0125 27.77

MGDA 68.84 91.54 0.0309 33.50 10.00 44.14
PCGRAD 75.13 93.48 0.0154 42.07 6.25 18.29
CAGRAD 75.16 93.48 0.0141 37.60 5.00 11.64
IMTL-G 75.33 93.49 0.0135 38.41 4.00 11.10
NASHMTL 75.41 93.66 0.0129 35.02 2.50 6.82

LS 70.95 91.73 0.0161 33.83 8.50 14.11
SI 70.95 91.73 0.0161 33.83 8.50 14.11
RLW 74.57 93.41 0.0158 47.79 7.75 24.38
DWA 75.24 93.52 0.0160 44.37 6.00 21.45
UW 72.02 92.85 0.0140 30.13 5.75 5.89
FAMO 74.54 93.29 0.0145 32.59 5.50 8.13
GO4Align 72.63 93.03 0.0164 27.58 7.00 8.11

C Additional Experimental Results

C.1 Detailed Results on QM9 and CityScapes

We provide task-specific performance on QM9 in Table 7. The proposed GO4Align obtains the best
performance in terms of the average performance drop ∆m%. And its average rank MR is lower
than all loss-oriented methods, which demonstrates the proposed method can get a more balanced
performance for each task.

As shown in Table 8, our method achieves competitive performance on CityScapes with other
alternatives except for NASHMTL and UW. The main reason can be that there are only two tasks in
the datasets, which constrains the effectiveness of the grouping mechanism in our method.

C.2 Training Time Comparisons

In Fig. 4, we show the training time of MTO methods relative to a baseline method (LS). Here we
provide real training time (seconds) in Table 9, where we compute the average training time of 5
epochs. From this table, we observe that loss-oriented methods in general use less time for one epoch
than gradient-oriented methods. GO4Align requires the second lowest time cost during training on
all four datasets, demonstrating its good computational efficiency.
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Table 9: Detailed training time (seconds) for one epoch of different methods. In addition to LS,
our method requires the lowest time cost during training on all 4 datasets.

Method NYU-v2 QM9 CityScapes CelebA
MGDA 199.73 601.52 136.69 902.53
PCGRAD 192.41 352.05 100.21 1486.71
CAGRAD 180.37 296.36 107.84 590.05
IMTL-G 180.67 306.11 113.51 522.22
NASHMTL 201.30 585.37 138.26 2134.75

LS 86.21 88.95 66.63 170.81
FAMO 102.87 100.40 78.70 183.46
GO4Align 87.78 93.50 67.30 171.69

C.3 Visualizations on Risk Ratios

To investigate the influence of different scaling methods on the training of tasks, we illustrate the
ratios between task-specific empirical risk and the sum of all empirical risks before and after scaling
on NYUv2. In each small figure, the three shadows from top to down represent the ratios of “Normal”,
“Seg.” and “Depth”, respectively. The x-axis represents epochs ranging from 1 to 200. Note that
MGDA and NASHMTL scale task-specific gradients. For direct comparisons, here we provide the
scaled loss ratios, which are equivalent to gradient scaling for the shared network.

As shown in Fig. 8, all methods have similar ratios over epochs on the unscaled risks but perform
differently on the scaled risks. We observe that MGDA have a significantly larger ratio on the
“Normal” task, which means MGDA prefers to optimize the “Normal” task. Compared with related
works, our method has more stable ratios of different tasks. The possible reason could be that our
method benefits from historical information, which avoids training instability among tasks.
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Figure 8: Analysis on risk ratios. Compared with other works, the proposed GO4Align shows
more stable ratios among tasks over epochs, indicating that GO4Align can maintain better alignment
throughout the training process.

D Additional Related Work

In MTL, we group multi-task learning methods into three categories: multi-task optimization, multi-
task grouping, and deep multi-task architecture. The first two categories are most related to this paper
and are mentioned in the main paper. To be self-contained, here we provide detailed discussions
about deep multi-task architecture.

Our method GO4Align builds on multi-task grouping and multi-task optimization, inheriting advan-
tages from both to balance different tasks in joint learning. In the following, we discuss each category
of multi-task learning methods and explain how they relate to our proposed method.
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Deep Multi-Task Architecture. Multi-task architecture design can be roughly categorized into
either a hard-parameter sharing design [46, 47] or a soft-parameter sharing design [6, 48, 49]. The
hard-parameter sharing design generally contains a shared encoder and several task-specific decoders.
Branching points between the shared encoder and decoders are determined in an ad-hoc way [1, 50],
resulting in a suboptimal solution. Some work [47, 51, 52] automatically learns where to share or
branch with a network. The soft-parameter sharing design considers all parameters task-specific
and instead learns feature-sharing mechanisms to handle the cross-task interactions [48, 53]. Some
work [54, 55] are probabilistic multi-task learning methods, which introduce latent variables to
encode task-specific information and enable knowledge sharing in the latent spaces. Soft-parameter
sharing methods usually struggle with model scalability as the model size grows linearly with the
number of tasks. GO4Align focuses on the optimization of multi-task learning, which adopts a simple
hard-parameter sharing architecture as the backbone and subsequently reduces task interference in
the gradient space of the shared encoder or the loss space.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions and scope of this paper are claimed in the abstract. Detailed
information can be found in the introduction section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a "limitation" subsection in the conclusion section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the details of the experiment in the experiment section. The
algorithm and Python codes of our method can be found in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide all experimental details in the experiment section. The algo-
rithm and Python codes of our method can be found in Appendix A. Details about MTL
benchmarks in this paper are provided in Appendix B.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We follow the standard experimental setup in MTO, where the data splits,
hyperparameters, and optimizer are set as the same as previous works (nashMTL, CAGrad,
and FAMO). Detailed information can be found in Appendix B.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Following the standard experimental setup, we repeat each experiment over 3
random seeds and report the mean of the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the computing resources in Appendix B.3. The training-time
efficiency is provided in Figure 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed and followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide the potential broader impacts in the conclusion section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The data and models pose no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers that produced the code package and datasets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The provided Python code cannot be used without the authors’ permission.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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