
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TEXTURAL OR TEXTUAL: HOW VISUAL MODELS UN-
DERSTAND TEXTS IN IMAGES

Anonymous authors
Paper under double-blind review

ABSTRACT

It is widely assumed that typographic attacks succeed because multimodal pre-
trained visual models can recognize the semantics of text within images, allowing
text to interfere with image understanding. However, the assumption that these
models truly comprehend textual semantics remains unclear and underexplored.
We investigate how the CLIP encoder represents textual semantics and identify
the mechanisms through which text disrupts visual semantic understanding. To
facilitate this analysis, we propose a novel ToT (Texture or Textual) dataset, which
includes a paronyms-synonyms pair of subsets that disentangles orthographic
forms (i.e., the visual shape of words) from their semantics. Using Intrinsic Di-
mension (ID) to assess layer-wise representation complexity, we examine whether
the representations are built on texture or textual information under typographic
manipulations. Contrary to the common belief that semantics are progressively
built across layers, we find that texture and semantics compete in the early layers.
In the later layers, semantic accuracy improves mainly through texture learning that
aids orthographic recognition, while a semantically driven representation emerges
only in the final block.

1 INTRODUCTION

While visual models trained with vision-language supervision demonstrate the ability to interpret
text within images, a fundamental question remains: do these models capture the semantic meaning
of the text, or do they simply recognize it as a visual pattern? This distinction is critical, as textual
elements, despite their inherently different texture properties compared to visual objects, are often
encoded in a similar manner. Such encoding raises the possibility that these models achieve only a
superficial alignment of textures rather than a deeper cross-modal understanding. Furthermore, as
neural networks abstract textural information through successive layers, the point at which textual
input begins to influence the semantic interpretation of an image remains uncertain. These challenges
form the core motivation for our study, which aims to disentangle textual and textural representations
to better understand the semantic mechanisms of vision models.

One significant manifestation of these uncertainties is found in typographic attacks (Goh et al., 2021),
which expose the vulnerabilities inherent in contemporary vision-language models when interpreting
text within images. These attacks involve embedding misleading text into images, resulting in
substantial impacts on recognition and classification accuracy. For instance, an image of a dog
superimposed with the word "laptop" may be misclassified as an electronic device (Lemesle et al.,
2022). The consequences of such misclassifications depend significantly on the characteristics of
the text and image. As models like GPT-4 (vision) (Yang et al., 2023) become more advanced, their
susceptibility to these attacks raises important security concerns. These typographic manipulations
can lead to unintended command executions, akin to ’jailbreaking’ the model (Gong et al., 2023;
Robey et al., 2023; Wang et al., 2023).

While typographic attacks may not strictly qualify as traditional attacks, they demonstrate how pre-
trained models effectively learn multimodal representations. Models trained on diverse image-text
datasets implicitly learn correlations between text and its real-world meanings (Cao et al., 2023). For
instance, a model might link the image of a ’cat’ with the word and concept of a cat, suggesting a
unified representation of textual and conceptual semantics. However, this theory requires further
empirical validation, and alternative explanations should also be explored.
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In this work, we use Intrinsic Dimension (ID) as a measure of the complexity of data representation,
capturing the required degrees of freedom for accurate encoding. ID is particularly useful in under-
standing how subtle image perturbations, including those introduced by typographic attacks, affect
visual models (Amsaleg et al., 2017; Ma et al., 2018). Unlike pixel-level perturbations, typographic
attacks involve semantic changes that impact how models represent text in images. Our study extends
the use of ID to examine how these semantic variations influence model representations across
different layers.

We introduce the ToT (Textural or Textual) typographic attack dataset, comprising words that are
consistent, irrelevant, or nonsensical in relation to image content. This dataset enables an examination
of how a vision-language pre-trained model processes these varying types of texts. Additionally,
We create a subset of 10 paronyms-synonyms pairs to investigate how representations progressively
form to distinguish visual similarities from semantics. Our findings reveal a non-linear pattern in
representation; while texture representation evolves gradually in the earlier layers, significant shifts
in semantic understanding occur only in the final network block. Specifically, the main contributions
of this work are as follows:

• We present a detailed analysis of typographic attacks on visual models, examining their
processing of textual content within images. Through intrinsic dimension (ID), we find
that texture and semantic representations share significant features in most layers. Initially,
Texture and textual representations compete in the early layers. As the layers progress, the
complexity of the representation increases, and texture representation grows rapidly. While
the complexity begins to decrease, semantic understanding improves but relies on texture
learning for orthographic recognition. Notably, a semantically driven representation emerges
only in the final block.

• Building on these observations, we defend against typographic attacks by simply fine-
tuning only the final block of the model to better distinguish between textural and textual
representations. Experimental results show that our strategy effectively balances the perfor-
mance between the original image and the typographic classification, achieving significant
improvements across diverse defense scenarios.

2 RELATED WORK

2.1 TYPOGRAPHIC ATTACK

CLIP (Radford et al., 2021) is known for its ability to joint understanding of language and vision.
Due to its large amount and spin of training images, many of which incorporate both visual and
textual features, it can read visually presented text, or scene-text (Materzyńska et al., 2022; Cao et al.,
2023). A notable aspect of CLIP is its tendency, in certain instances, to rely predominantly on text for
image classification. This reliance can lead to what’s termed a typographic attack (Goh et al., 2021),
where misclassification occurs due to overemphasis on text.

In response to such vulnerabilities, various defense strategies have been explored. Materzyńska
et al. (2022) implement a linear transformation to bifurcate the model into two distinct streams: one
dedicated to visual information and the other to textual data. Azuma & Matsui (2023) introduce the
Dense-Prefix token in conjunction with prompt learning, placing it before class names to significantly
enhance accuracy against real-world typographic attack scenarios. PAINT Ilharco et al. (2022)
involves a method that interpolates between a model’s pre- and post-fine-tuning weights, showing
notable success in mitigating typographic attacks. Cao et al. (2023) takes a different route by filtering
out dataset samples containing text regions within images, leading to not only improved defense
against typographic attacks but also heightened accuracy in other tasks.

2.2 DISENTANGLING VISUAL AND TEXTUAL SEMANTICS IN VISION-AND-LANGUAGE
MODELS

Large vision-and-language pre-trained models like CLIP (Radford et al., 2021) showcase their efficacy
through extensive pre-training on diverse datasets, excelling in tasks such as image classification
(Zhang et al., 2022), visual question answering (VQA) (Song et al., 2022), and image captioning
(Mokady et al., 2021). The treatment of visually presented text within these models sparks debate in
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the field. Some researchers recommend removing the language representation from the visual aspects
of the model (Materzyńska et al., 2022; Cao et al., 2023). In contrast, other researchers underscore
the indispensable role of language comprehension in tasks like Text-VQA and Text-Captioning (Yang
et al., 2021; Kil et al., 2023). They advocate for a harmonious integration of visual and textual
information, pointing out that such synergy is crucial for a more holistic understanding of images.

In line with this debate, our research undertakes a series of comparative experiments focusing on
CLIP’s Vision Transformer (Dosovitskiy et al., 2020). These experiments aim to unravel the intricate
dynamics between scene-text recognition and the multi-modal properties inherent in CLIP. Addressing
the complexities of multi-modal models, particularly their challenge in differentiating visual elements
from textual semantics, our study seeks to fine-tune this delicate balance. We endeavor to enhance the
model’s capability to discern physical objects from scene text, thereby enriching its understanding
and interpretation of both visual and textual components in a unified and coherent manner.

2.3 INTRINSIC DIMENSION IN ADVERSARIAL ATTACK

The Intrinsic Dimension (ID) is the minimum number of dimensions required to represent data effec-
tively (Levina & Bickel, 2004). In neural networks, ID is derived from the model’s representations,
indicating the fewest parameters needed to capture specific features (Amsaleg et al., 2015). Ansuini
et al. (2019) demonstrated a correlation between the final layer’s ID and the model’s accuracy, noting
that ID typically follows a hunchback-shaped curve across layers, reflecting the learning process
(Ansuini et al., 2019). Moreover, ID is crucial for interpreting learned representations and exploring
its relationship with neural network training (Aghajanyan et al., 2020; Pope et al., 2021).

Amsaleg et al. (2017) and Ma et al. (2018) used local ID to assess adversarial robustness, finding
that LID increases with noise in adversarial perturbations. This connection emphasizes how ID
influences a model’s vulnerability. Tulchinskii et al. (2024) further explored ID in textual data,
revealing that human-generated texts have an average ID of 7 to 9, while AI-generated texts often
fall below 1.5. This distinction enables classifiers to effectively differentiate between human and
AI-generated content.

3 METHOD

3.1 TOT (TEXTURAL OR TEXTUAL) DATASETS

3.1.1 SUBSET 1: SEMANTIC CONFUSION

We propose the ToT (Textural or Textual) dataset, derived from ImageNet-1k, which features 100
categories of common objects overlaid with texts of varying semantics. The dataset contains 50,000
images, with 500 randomly selected images per category. These categories represent frequently
encountered real-world objects with short, distinct names and minimal semantic overlap, making
the dataset highly relevant for studying typographic attack scenarios in practical contexts. Figure 1
illustrates the three types of textual modifications applied to the images to generate a diverse set of
compositions.

Figure 1: Example images from our ToT (Textural or Textual) dataset, demonstrating consistent,
irrelevant, and nonsensical text superimpositions.

Original. The unmodified ImageNet-1k images serve as a control group, establishing a baseline
for comparative analysis. Consistent. Texts corresponding to the image’s category from the ToT
dataset are superimposed, allowing the evaluation of the model’s ability to represent information with
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consistent semantics across different modalities. Irrelevant. Images are paired with unrelated text
from the ToT dataset. For example, an image of a ’candle’ might be overlaid with the text ’tiger.’ This
subset contrasts with the "Consistent" subset, providing a dataset where text disrupts the semantic
understanding of the image. Nonsense. Images are overlaid with nonsensical strings, formed from
random combinations of letters averaging six characters in length, similar in structure to the dataset’s
category names. This subset allows for the evaluation of the model’s ability to distinguish between
meaningful words and random characters. For instance, the string ‘MxlRgR’ might be superimposed
on an image.

3.1.2 SUBSET 2: VISUAL VS. SEMANTIC CONFUSION

Since the form of a word is often intrinsically linked to its meaning, variations in word structure
typically lead to words with distinct semantic differences. This suggests that neural networks may
distinguish words based solely on superficial textural features, leading to what appears to be semantic-
level comprehension. To explore this hypothesis, we design a subset of 10 word pairs specifically
aimed at disentangling the relationship between word form and meaning.

Figure 2: Examples of paronyms and synonyms
pairs in the ToT typographic datasets.

This subset explores how models differentiate
between words that are visually similar but se-
mantically distinct, as well as those that share se-
mantic meaning but have different visual forms.
Each of the 10 word pairs consists of a base
word (selected from the ToT dataset) and two
related words: the Paronyms Pair, which refers
to words that are visually similar but differ in
meaning, and the Synonyms Pair, which refers
to words that have similar meanings but distinct
spellings. All words are real-world entities and
are commonly used. For example, as shown in
Figure 2, ’goose’ is paired with ’moose’ as its
Paronyms Pair and ’gander’ as its Synonyms
Pair. This dataset enables a detailed analysis of
how models process both visual and semantic
similarities in language.

3.2 ESTIMATING THE INTRINSIC DIMENSIONS OF TOT DATASETS

For images containing varying levels of seman-
tic complexity, we estimate the Intrinsic Dimen-
sion (ID) of their representations layer by layer.
This process involves using the ID’s magnitude
as a metric to evaluate how specific layers of the
model articulate the textual semantics embedded
within the images.

To clarify the scope of our study, we focus on
ViT-based vision models, particularly the CLIP
ViT-B/16 (cli), due to their dominance in multi-
modal pretraining and widespread use in current
large vision-language models (LVLMs). This
model employs a Vision Transformer architecture
consisting of 12 blocks, and our analysis concen-
trates on the output representations from each
of these blocks. Within each block, we evaluate
three sequential layers:

Algorithm 1 Intrinsic Dimension Estimation
Across Network Layers
Require: n: Number of images

Λ: Number of network layers
model(·, λ): Image representation from layer λ

Ensure: ID: Estimated intrinsic dimensions per layer
S ← select n random images
for λ = 1 to Λ do

F [λ]← model(S, λ)
for each i in n do

N1, N2 ← nearest neighbors of F [λ][i]
d1, d2 ← distances to N1, N2

R[i]← d1/d2
end for
ID[λ]← linear regression on R

end for
return ID

Attn, the output after the attention linear transformation; c_fc, a linear layer that projects input
features from 768 dimensions to 3072 dimensions; and c_proj, which projects features back from
3072 dimensions to 768 dimensions.
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The TwoNN algorithm (Facco et al., 2017) quantifies the intrinsic dimension (ID) of visual repre-
sentations within the dataset. Algorithm 1 illustrates the procedure applied to layers in a pre-trained
model. The function model(S, λ) extracts the representation of layer λ for the image set S, while
ID[λ] holds the estimated IDs for each layer.

To estimate the intrinsic dimension (ID) using the TwoNN method, we first compare the distances to
the nearest neighbors, denoted as d1 and d2, and compute the ratio R[i] = d1

d2
for each sample. As

the intrinsic dimension increases, the ratio R typically decreases, which is consistent with a Pareto
distribution represented by Pa(d+ 1). The relationship is described by the likelihood function:

P (R|d) = dN
N∏
i=1

R[i]−d−1

P (R|d) represents the likelihood of observing the vector R given a particular intrinsic dimension d.
Linear regression is then applied to maximize this likelihood function, allowing for the estimation of
the intrinsic dimension that best captures the local structure of the data.

4 ANALYSIS OF TEXTUAL AND TEXTURAL REPRESENTATIONS ACROSS
LAYERS

4.1 LAYER SENSITIVITY TO TYPOGRAPHIC ATTACKS

We begin by examining how different layers of visual models respond to semantic variations, clus-
tering image representations that include various textual overlays. Since t-SNE provides a limited
two-dimensional view of these representations, we then estimate the intrinsic dimensions of each
layer, enabling us to assess whether the intermediate layers capture semantic distinctions in higher-
dimensional spaces.

Representation Clustering. We sample image representations from different network depths and
visualize them with t-SNE (Van der Maaten & Hinton, 2008), as shown in Figure 3. In the initial four
samplings, the representations appear to cluster into two groups, seemingly influenced by the image
background content. In contrast, the final sampling shows eight clusters that align with a combination
of the image and text semantics. These patterns suggest the possibility that multi-modal visual models
may process text as a textural feature in the earlier layers, with a shift toward capturing semantic
information in later layers. This hypothesis is further examined in the next section by estimating the
intrinsic dimensions (ID) of representations across different depths.

Figure 3: t-SNE visualization of representations with varied semantics, sampled at different depths.
Only the final depth distinctly separates all representations, independent of solely image or text
semantics.

Intrinsic Dimensionality Estimation. We randomly sampled 2,000 images from each subset in
the ToT dataset to estimate the Intrinsic Dimension (ID) of representations of the CLIP visual
model. The results are illustrated in Figure 4. A swell-shrink pattern is observed across the net-
work layers, where representation complexity first increases and then decreases. This pattern,
previously identified in CNN visual models (Ansuini et al., 2019; Muratore et al., 2022), also
appears in Transformer-based models, aligning with the information bottleneck theory Shwartz-
Ziv & Tishby (2017), which describes an initial fitting phase followed by a compression phase.
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Despite the fluctuating ID values, their ratios to the original image’s ID remain stable, with
typography generally increasing representational complexity by 1.2 to 1.3 across most layers.

Figure 4: The Intrinsic Dimension (ID) variations
across layers for the ToT typographic datasets.

However, in the final block, nonsensical and ir-
relevant subsets show significantly higher IDs
than the original, while consistent images ex-
hibit a notable decrease. This discrepancy, par-
ticularly pronounced in the last layer closest to
the classification layer, suggests that the final
block has a significant impact on the semantic
representation of the entire image.

Overall, typography increases the complexity
of representations in the intermediate layers, re-
gardless of the semantic relationship between
the image and text. However, in the final block,
text overlay primarily influences the semantic
aspect of representations. Notably, when the text
closely relates to the image content, it appears to
reduce representational complexity, as indicated
by lower ID values in this layer.

4.2 DISENTANGLING TEXTUAL AND TEXTURAL REPRESENTATIONS ACROSS LAYERS

To further investigate the findings in Section 4, we design two experiments to disentangle text or-
thography from its meaning and analyze their effects on image representation. Semantic Constancy
examines how varying font sizes influence texture-level representations while preserving seman-
tic consistency. Linear Probe uses Paronyms-Synonyms pairs to evaluate the model’s progressive
disentanglement and formation of textual and textural representations across layers. Though dif-
fering in implementation, both experiments investigate the disentanglement of textual and textural
representations.

Semantic Constancy with Varying Font Size. As illustrated in Figure 8, images containing text
of varying sizes are often perceived as semantically identical, even though their visual appearances
differ. This observation prompts an investigation into how a visual model interprets this complexity.
We compare the performance of a multimodal CLIP model with a pure visual ViT/B-16 model
across different text sizes and semantic contexts. To ensure a fair comparison, a consistent network
structure is used for both models. The ViT/B-16 model (Dosovitskiy et al., 2022) pre-trained on
the ImageNet-1k dataset (Russakovsky, 2015), serves as the baseline for pure vision models. Both
models are tested for accuracy on the ToT typographic dataset, with the results shown in Table 1.

Table 1: Accuracy (%) of the visual model from CLIP and ViT/B-16 pretrain on the ToT dataset with
different semantics and font sizes, with numbers representing font sizes.

Orig Cons_80 Nons_80 Irr_20 Irr_40 Irr_60 Irr_80 Irr_100 Irr_120

CLIP 86.6 98.4 80.4 78.8 60.7 49.2 42.9 40.5 38.9
ViT 91.1 86.8 86.3 91.0 89.9 88.9 87.1 85.9 84.2

The multimodal CLIP model demonstrates considerable sensitivity to both word semantics and visual
form. For example, its accuracy achieves 98.4% in the ’Cons_80’ condition with relevant text, while
it declines to 80.4% in the ’Nons_80’ condition with irrelevant text, even though the font size remains
consistent. This observation suggests that visual models trained with vision-language supervision are
influenced by both the semantic relevance of the text and its textural complexity, with an increase in
irrelevant text size leading to further decreases in accuracy.

In contrast, the purely visual ViT model primarily perceives text as a visual disturbance. Its accuracy
decreases from 91.1% to 84.2% as font size increases, irrespective of the semantics involved. This
implies that the performance of pure visual models is mainly affected by text size or texture, rather
than the meaning of the text itself.
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Overall, these findings indicate that multimodal models like CLIP are affected by both semantic and
visual aspects of text, while purely visual models such as ViT/B-16 are largely influenced by visual
complexity.

Figure 5: Classifications accuracy of each layer
for orthographically similar (pink) and semanti-
cally similar (orange) pairs. Lighter lines represent
individual pairs, darker lines show the average ac-
curacy of 10 pairs.

Linear Probe on Paronyms-Synonyms Pairs.
We apply a linear binary classifier probe to the fi-
nal outputs (ln_2 layer) of all 12 Residual Atten-
tion Blocks for both Synonyms and Paronyms
pairs. For each pair in subset 2 of the ToT
dataset, we use 320 image samples for training
and 80 for testing. Following the approach used
in CLIP’s linear probe experiments, we employ
logistic regression as the classifier.

As shown in Figure 5, each lighter-colored
line represents an orthographically similar pair
(pink) or a semantically similar pair (orange),
the darker lines indicate the average accuracy of
the corresponding 10 pairs. It is evident that all
layers achieve higher accuracy when classifying
based on orthographic similarity. However, the
layers with the steepest slopes for these curves
show a distinct pattern: the significant improve-
ment for texture features occurs primarily in the middle layers, whereas the notable enhancement for
textual features is concentrated in the layers closer to the output.

To fully interpret how visual models develop textual representations across layers, we compare the
intrinsic dimensions (ID) of Figure 4 with the linear probe results. Our analysis reveals two phases:
an initial increase in representational complexity followed by compression. These findings align with
the information bottleneck theory Saxe et al. (2019), which describes deep networks undergoing
fitting and compression. A closer examination of each layer uncovers the following stages:

Figure 6: Combination of ID and linear probe results illustrating the progression of visual representa-
tions of text across several stages. The semantic accuracy demonstrates a rapid enhancement only as
the overall representation complexity decreases.

Random Initialization. In this phase, representational complexity gradually increases but contributes
little to orthographic or semantic understanding. Classification accuracy remains at the chance level,
indicating the model is still in its initial learning stage. Texture Maximization. Representational
complexity increases significantly, enhancing texture recognition. The accuracy of orthographic
classification improves rapidly as the model captures visual features. However, semantic under-
standing initially competes with texture representation and then rises slowly, yet it remains limited.
Compression and Semantic Integration. As the model compresses its representations, ID drops
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sharply, leading to rapid gains in semantic understanding. By the final block, the model effectively
integrates textual and visual features within the semantic space.

In summary, the process can be divided into four phases: initialization, competition, texture-dominated
collaboration, and semantic-dominated collaboration. Our key findings are:

Shared Features Between Textual and Textural Representations. In most layers, the features
that contribute to both texture and semantic representations are identical and shared, however, the
development of semantic representations lags behind that of texture.

Misleading Semantic Understanding via Texture. In the early stages of representation complexity
reduction (the shrink stage), a high level of semantic understanding is achieved; however, this
understanding is primarily based on texture features, akin to the recognition of word orthography.

Semantic Understanding in the Final Block. A clear distinction in intrinsic dimension (ID) between
semantics emerges only in the final block, indicating that semantically focused understanding is
achieved after processing textural information in previous layers.

4.3 CORRELATION BETWEEN ID AND ACCURACY

Table 2 shows the relationship between the ID of the last fully connected layer (ID_Last), the
maximum ID (ID_Max), and classification accuracy for ViT and CLIP models. The Spearman
correlation coefficient Spearman (1987) is used to measure the correlation between accuracy and ID
values.

The correlations for ViT are ρ(ID_Last,Acc) = −0.98 and ρ(ID_Max,Acc) = −0.63, while for
CLIP, they are ρ(ID_Last,Acc) = −0.13 and ρ(ID_Max,Acc) = −0.73. Overall, an inverse
correlation is observed, suggesting that lower ID values correspond to higher classification accuracy.
However, this trend is not consistent for the last layer ID, deviating from patterns typically found in
standard image classification tasks Ansuini et al. (2019).

Table 2: Correlation between classification accuracy and ID values for the last layer and maximum
ID across layers, differentiated by typography type and size. The models compared are pre-trained
via multimodal (CLIP) and pure vision (ViT) models.

Model Orig Cons_80 Nons_80 Irr_20 Irr_40 Irr_60 Irr_80 Irr_100 Irr_120
ViT Acc. 91.1 86.8 86.3 91.0 89.9 88.9 87.1 85.9 84.2

ID_Last 6.8 7.8 8.0 7.0 7.2 7.6 7.8 8.1 8.3
ID_Max 89.9 92.4 95.4 95.6 89.1 95.2 100.0 99.1 102.5

CLIP Acc. 86.6 98.4 80.4 78.8 60.7 49.2 42.9 40.5 38.9
ID_Last 12.4 9.8 14.0 14.8 14.3 13.0 12.7 12.5 12.6
ID_Max 26.2 29.4 29.6 29.2 29.5 29.4 29.5 29.8 29.8

For the ViT model, there is a clear correlation between accuracy and text size: as text size increases,
accuracy decreases, which aligns with changes in ID_last values. This observation supports findings
from Ansuini et al. (2019), where text size plays a significant textural role in pure vision models.

In contrast, the CLIP model shows that text semantics significantly impact accuracy, even when size
is controlled. The relationship between accuracy and ID metrics is more complex here; while no clear
correlation exists with ID_last for semantically irrelevant texts, there is a strong inverse correlation
between accuracy and ID_max as text size increases. This suggests that ID_max captures textural
complexity, whereas ID_last reflects both textural and textual features. CLIP’s representation of text
involves a complex interaction between these elements, with semantics heavily influencing accuracy,
yet no single layer fully captures this correlation.

5 DEFENSE AGAINST TYPOGRAPHIC ATTACKS THROUGH FINE-TUNING

Based on the observations in Section 4, different layers of the visual model encode text in distinct
ways, as indicated by the intrinsic dimension and linear probe results. These layers can be grouped into
three categories, each focusing on different aspects of visual or semantic representation. Depending
on the defense requirements, such as whether understanding the text’s meaning is necessary, it is
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possible to selectively fine-tune specific layers for defense. To verify this, we design three typographic
attack tasks of varying difficulty: Easy: Recognizing image content while ignoring text, similar to
the setup in most typography attack work (Materzyńska et al., 2022; Ilharco et al., 2022; Azuma &
Matsui, 2023). Medium: Detecting the presence of text without understanding its meaning. Hard:
Distinguishing the semantics of both text and image.

Figure 7: Examples of image-text pairs of easy to
hard defense level.

The progression from easy to hard illustrates the
increasing complexity of semantic understand-
ing required at each stage. Ideally, fine-tuning
only the swell blocks should not effectively de-
fend against any level of attack. In contrast, fine-
tuning the shrink and last in shrink blocks should
provide varying levels of defense based on se-
mantic comprehension. For example, medium
difficulty may only require recognition of word
orthography, necessitating adjustments to the
shrink blocks, while the hard level requires un-
derstanding specific meanings, thereby requir-
ing fine-tuning of the last block for effective
defense.

All of our experiments are conducted on a GeForce RTX 3090 GPU. We use a batch size of 512 and a
learning rate of 1× 10−4, with a weight decay of 0.2. The Adam optimizer is employed for training.

5.1 BLOCK-SPECIFIC FINE-TUNING FOR TEXTUAL AND TEXTURAL CONTROL

We divide the CLIP encoder into three sections: Swell, Shrink-Last, and Last, as described in Section
4. We fine-tune each section on the hard-level task and evaluate their performance across easy,
medium, and hard tasks. The results are summarized in Table 3.

Fine-tuning the Swell block alone yields suboptimal performance across all difficulty levels, particu-
larly in tasks requiring semantic understanding. Fine-tuning the Last block proves most effective,
particularly in handling higher complexity tasks like Hard-Nons (81.7%) and maintaining high Orig
performance (84.7%).

The Shrink strategy also performs well, especially in tasks requiring nuanced text-image understand-
ing, with strong results in Medium and Hard categories (70.8% in Hard-Irr). However, fine-tuning the
Shrink-Last module provides a balanced performance, almost matching Last in the most difficult tasks
while still lagging slightly in simpler cases like Orig (83.5%). This suggests that while Shrink-Last
captures some mid-layer texture refinement, it is not as adept at final-stage semantic comprehension
as Last alone.

Table 3: Performance comparison when fine-tuning different partial of the CLIP visual encoder.

Fine-tuned Orig Easy Medium Hard
Blocks Cons Irr Nons Cons Irr Nons Cons Irr Nons

CLIP w/o ft 82.3 97.3 50.6 73.7 94.5 65.9 77.4 14.5 59.9 77.2

Swell 62.8 85.8 39.1 51.2 79.0 52.1 56.3 6.6 29.7 56.2
Shrink 82.6 98.6 43.0 77.0 97.8 68.9 81.3 32.6 70.8 81.1
Shrink - Last 83.5 98.7 32.0 76.6 98.1 61.2 81.4 36.0 68.9 81.7
Last (Ours) 84.7 98.2 60.0 76.8 96.7 74.5 81.0 35.0 69.5 81.7

5.2 DEFENSE VIA FINE-TUNING THE LAST BLOCK

5.2.1 DEFENSE WITH IGNORING TYPOGRAPHY

Setup. Following common implementations, we fine-tune the model using subsets of orig-
inal and irrelevant images at the easy level, in a task that is similar to ignoring the text
content. To evaluate our method in real-world scenarios, we utilize publicly available typo-
graphic attack datasets, including Disentangle (Materzyńska et al., 2022), PAINT (Ilharco et al.,

9
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2022), and Prefix (Azuma & Matsui, 2023), which contain images with handwritten texts on
notepads. We perform cross-testing on each dataset using the methods from these studies.

Table 4: Comparison to SOTA defense methods on
handwritten typographic datasets.

Method Disentangle PAINT Prefix Avg.

CLIP 43.3 50.0 47.2 46.8

Disentangle 77.8 55.5 57.6 63.6
PAINT 53.2 58.2 53.6 55.0
Prefix 71.9 63.6 58.0 64.5
Ours 73.3 68.2 67.0 69.5

Results. Table 4 compares the performance of
SOTA defense methods. Notably, the Prefix
method fine-tunes only the language model,
while other approaches involve retraining both
the vision and language models. Our method
outperforms the comparison methods across all
datasets, although it is slightly surpassed by the
Disentangle method on the Disentangle dataset.

5.2.2 DEFENSE WITH
PRESERVING THE TYPOGRAPHY SEMANTICS

Table 5: Accuracy comparison with CLIP, Prefix (Azuma &
Matsui, 2023), Disentangle (Materzyńska et al., 2022) meth-
ods on various levels of defense.

Medium Hard
Method Orig Cons Irr Nons Cons Irr Nons

CLIP 82.3 94.5 66.0 77.4 14.5 59.9 77.2
Prefix 82.0 91.4 69.9 76.0 10.6 27.1 75.5
Disentangle 79.9 85.0 72.0 75.2 12.9 13.8 75.3

Ours_Med 83.5 92.2 82.4 82.9 8.1 22.0 82.4
Ours_Hard 84.7 96.7 74.5 81.0 35.0 69.5 81.7

Table 5 presents the evaluation re-
sults for medium and hard levels of
defense, which require the recogni-
tion of the absence of words and spe-
cific semantics, respectively. Our
method outperforms other models
across all difficulty levels. The Pre-
fix and Disentangle methods, trained
on datasets similar to those used for
easy-level tasks, reveal limitations
in recognizing character forms and
semantics, as demonstrated by their
performance in the hard-level results.
In contrast, our model exhibits supe-
rior comprehension across various difficulty levels, particularly when the image-text relationship is
semantically consistent.

Training on datasets with higher difficulty levels presents challenges in balancing ’Cons’ and ’Irr’
image-text pairings in the medium scenarios. However, in hard scenarios, where understanding both
textual and visual semantics is essential, performance can be improved simultaneously. With the
appropriate training data, our method effectively fine-tunes models to comprehend both textual and
visual semantics.

Another advantage of our approach is its ability to balance adversarial tasks with the original task. As
shown in the ’orig’ column of Table 5, our methods outperform all other models, despite primarily
being trained on typographic samples. Notably, the ’Ours_Hard’ model demonstrates improved ’orig’
accuracy, even when typographic semantics potentially conflict with original image classification.

6 CONCLUSION

We explore how visual models process textual semantics in the context of typographic attacks. By
introducing the ToT dataset and applying Intrinsic Dimension (ID) analysis, we reveal that early
layers of visual models primarily rely on texture features rather than true semantic understanding.
Only in the final block do models construct a semantically focused understanding after significant
compression of textural information. Furthermore, we demonstrate an effective defense strategy by
fine-tuning the final block, which enhances the model’s ability to distinguish between textural and
textual elements. This approach significantly improves performance across various defense scenarios,
offering a practical solution to typographic attacks.
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A APPENDIX

A.1 DETAILS OF THE TOT DATASETS

To create the Textural or Textual (ToT) dataset, we follow the approach of PAINT and Prefix. We
resize the images to 224 pixels in the shorter dimension using bicubic interpolation and crop a
224x224 pixel area from the center, consistent with standard CLIP resizing and cropping techniques.
The text is randomly overlaid at arbitrary positions on the images.

Font. We randomly select from Roman, Courier, and Times fonts and utilize eight colors: black,
blue, cyan, green, magenta, red, white, and yellow. The text is outlined with a 1-point shadow in a
contrasting color.

Font sizes. We use 80 points to generate images for the Consistent, Irrelevant, and Nonsense
categories. Additionally, to further investigate the impact of font size on identification (ID), Irrelevant
images are created in font sizes ranging from 20 to 120 points. The examples are shown in Figure 8.

Figure 8: Examples of typography with different sizes.

Category of Subset 1. The 100 categories of the ToT datasets are peacock, goose, koala, jellyfish,
snail, flamingo, sea lion, Chihuahua, tabby cat, lion, tiger, bee, dragonfly, zebra, pig, llama, panda,
backpack, barrel, basketball, bikini, bottlecap, bow, broom, bucket, buckle, candle, cannon, cardigan,
carton, coffee mug, coffeepot, crib, envelope, fountain, iPod, iron, jean, ladle, laptop, lighter, lipstick,
lotion, mailbox, mask, microwave, mitten, mouse, nail, necklace, paddle, pajama, perfume, pillow,
plastic bag, printer, projector, purse, radio, refrigerator, ruler, shovel, sock, stove, suit, sunglass,
swing, switch, table lamp, teapot, television, toaster, tray, tub, umbrella, vacuum, vase, violin, wallet,
whistle, ice cream, bagel, hotdog, cucumber, mushroom, Granny Smith, strawberry, orange, lemon,
banana, hay, dough, pizza, potpie, red wine, espresso, cup, volcano, daisy, and corn.

Category of Subset 2. The subset includes the following paronyms and synonyms pairs: Goose
(n01855672): Moose, Gander; Bee (n02206856): Beef, Wasp; Pig (n02395406): Fig, Hog; Fountain
(n03388043): Mountain, Spring; Mitten (n03775071): Kitten, Glove; Nail (n03804744): Mail,
Spike; Hay (n07802026): Ray, Straw; Espresso (n07920052): Express, Coffee; Lemon (n07749582):
Demon, Lime.
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Figure 9: ID Variations of the ShareGPT-4v’s Visual Encoder.

Figure 10: Original Task Accuracy Over 5 Epochs of Our Fine-Tuning.
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Figure 11: ID Variations with Different Typography Overlaid on the Caltech101 Dataset.

Figure 12: ID Variations of the ResNet-50×4 Encoder in CLIP.
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