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OmniStitch: Depth-Aware Stitching Framework for
Omnidirectional Vision with Multiple Cameras

Omitted for Double-blind Review
ABSTRACT
Omnidirectional vision systems provide a 360-degree panoramic
view, enabling full environmental awareness in various fields, such
as Advanced Driver Assistance Systems (ADAS) and Virtual Reality
(VR). Existing omnidirectional stitching methods rely on a single
specialized 360-degree camera. However, due to hardware limita-
tions such as high mounting heights and blind spots, adapting these
methods into vehicles of varying sizes and geometries is challeng-
ing. These challenges include limited generalizability due to the
reliance on predefined stitching regions for fixed camera arrays,
performance degradation from distance parallax leading to large
depth differences, and the absence of suitable datasets with ground
truth for multi-camera omnidirectional systems. To overcome these
challenges, we propose a novel omnidirectional stitching frame-
work and publicly available dataset tailored for varying distance
scenarios with multiple cameras. The framework, referred to as
, consists of a Stitching Region Maximisation (SRM) module for
automatic adaptation to different vehicles with multiple cameras
and a Depth-Aware Stitching (DAS) module to handle depth dif-
ferences caused by distance parallax between cameras. In addition,
we create and release an omnidirectional stitching dataset, called
which provides ground truth images that maintain the perspective
of the 360-degree FOV, specifically designed for vehicle-agnostic
systems. Extensive evaluations of this dataset demonstrate that
our framework outperforms state-of-the-art stitching models, espe-
cially in handling varying distance parallax. The proposed dataset
and code are publicly available in URL.
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• Computing methodologies → Image processing; Virtual
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1 INTRODUCTION
Omnidirectional vision systems are becoming increasingly impor-
tant in a wide range of applications, from advanced driver-assistant
systems (ADAS), Virtual Reality (VR) to Unmanned Robotics and
Mars exploration [8, 43, 44, 46], providing essential 360-degree
environmental awareness. Traditional image stitching methods
for omnidirectional vision [17, 30, 32, 51, 55] that rely on special-
ized 360° cameras (e.g., Samsung Gear 3601 and Insta3602) mainly
focus on single camera settings with multiple wide-angle lenses
and synthesize the images from difference views overcoming large
angular parallax. However, the single-camera setting is not suit-
able for general vehicle applications such as autonomous driv-
ing [14, 16, 47, 48, 58] due to high installation requirements [21, 26]
and blind spots [15, 45], which limit their effectiveness across differ-
ent vehicle sizes and designs. To provide all-around 360° coverage
for vehicle-agnostic omnidirectional vision system (VA-OVS), im-
age stitching techniques with multiple camera settings should be
adopted as illustrated in Figure 1.

Addressing the technical challenges of omnidirectional image
stitching in VA-OVS scenarios presents several technical difficulties.
First, the existing image stitching methods are limited to inputs
from 360° cameras [17, 24, 35, 51] or specific camera arrays designed
for predefined [23, 56], manually crafted stitching regions. When
adapting to different camera settings, manually aligning the images,
transforming the viewpoint, and selecting a well-matched stitching
region require redundant human efforts. Second, these methods
struggle with distance parallax between different camera inputs.
Our observation indicates that increased distance parallax leads to
diminished stitching performance, as illustrated in Figure 1. This
degradation is mainly due to the extreme depth differences across
images, which prior methods overlook, resulting in errors such
as ghosting and misalignment artifacts. Third, there are no data
sets with ground truths for omnidirectional image stitching with
dynamic distance parallax that can be applied to VA-OVS scenarios.

To address these challenges, we propose a novel omnidirectional
stitching framework, called OmniStitch for dynamic distance con-
sideration with multiple cameras. OmniStitch has two main mod-
ules: Stitching RegionMaximization (SRM) and Depth-Aware Stitch-
ing (DAS). The SRM module solves the stitching region decision
difficulty by simplifying the image alignment and viewpoint trans-
formation process by statically matching half of the image for each
stitching input pair. By maximizing the candidate size of image
stitching, the framework can learn dynamic distance parallax be-
tween cameras and eliminate the need for pre-processing and post-
processing. After the SRM process, the DAS module transforms
image pairs by considering large depth differences between im-
age pixels and extracted context features to generate a seamless

1https://www.samsung.com/sec/gear/360/
2https://www.insta360.com/
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Figure 1: Examples of Vehicle Agnostic Omnidirectional Vision System (VA-OVS) (a): Inputs with dynamic distance for four-way
camera configuration. (b): Comparison of the outputs of the image stitching methods with the ground truth image.

360-degree image. It enhances traditional flow estimation by incor-
porating additional depth information computed from 3D feature
matching, and warps the images with learnable weights at the pixel
level to consider large depth differences between the images.

For the challenge of dataset scarcity in the field of omnidirec-
tional vision, we release the General-purpose Vehicle’s 360-degree
(GV360) dataset, leveraging the CARLA [10] simulator to gener-
ate ground-truth images in a virtual environment. This dataset is
designed with data captured from four-way multiple cameras, in-
corporating a wide range of dynamic distance parallax inputs and
preserving a 360° FOV perspective. The use of virtual environments
overcomes the limitations associated with real-world data collec-
tion, broadening the scope for future research in vehicle-agnostic
omnidirectional vision systems (VA-OVS). Experimental results
using the GV360 demonstrate that our framework outperforms the
state-of-the-art stitching model by an average of 18.5% of PSNR
and 18.0% of LPIPS for all tested distance parallax scenarios. Fur-
thermore, our framework demonstrates superior performance on
unseen datasets in qualitative results.

The main contributions are summarized as follows:

• We propose a novel end-to-end omnidirectional image stitch-
ing framework for dynamic distance parallax inmultiple cam-
era settings. It enhances generalization of stitching frame-
work to multi-camera Vehicle-Agnostic Omnidirectional Vi-
sion System (VA-OVS) scenarios by effectively eliminating
the need for a hand-crafted stitching region decision process.
• Our framework outperforms the state-of-the-art stitching
methods, regardless of variations in distance parallax be-
tween cameras. The SRM module simplifies the manual pro-
cess of identifying stitching regions for multiple cameras,
and the DAS module effectively handles the artifacts caused
by distance parallax between cameras.
• To tackle the dataset sparsity problem in omnidirectional
stitching fields, we release a dataset for omnidirectional vi-
sion stitching, referred to as GV360. This dataset includes
ground-truth images that capture 360-degree perspectives
and simulate varying distance parallax scenarios across dif-
ferent vehicle types.

2 RELATEDWORK
2.1 Unidirectional Stitching
Most image stitching models are designed for unidirectional vision
applications, which generate a panoramic image from the view-
point of a reference image. Unidirectional stitching methods merge
two images by warping one towards the other to seamlessly stitch
boundary regions [4, 6, 11, 13, 18, 25, 27, 28, 31, 36, 40, 54, 59? , 60].
Various techniques were proposed to divide the image into sub-
regions and estimate homography for each region, using ground
and distance planes [13], grid units [28, 59, 60], triangles [27, 36],
and superpixels [25]. Other enhancements have included maintain-
ing image structure through local or global similarity transforma-
tions [4, 6, 11, 18, 31] and leveraging deep learning-based stitching
models [40] for improved geometric integrity. However, these meth-
ods still suffer from projective distortion and misalignment artifacts
in the case of wide parallax, due to the homography transformation
process, which distorts the target image to fit the viewpoint of a
reference image. Although VSLA [23] proposes to use bi-directional
flow estimation to synthesize an intermediate view for wide par-
allax between cameras, the need for specific camera arrays and
extensive pre-processing reveals the limited adaptability to various
vehicles in VA-OVS scenarios.

2.2 Omnidirectional Stitching
Omnidirectional stitching combines images from all directions to
create a 360-degree view, providing a perspective view of spherical
maps such as the equirectangular projection (ERP) format. It is com-
monly used with 360-degree cameras [17, 51] or circular rig cam-
eras [2, 35], which can produce 360-degree images by synthesizing
each viewpoint. Traditional stitching methods for omnidirectional
vision rely on mathematical approaches, focusing on geometric cal-
ibration through feature points [7, 17, 32, 55], calibration boxes[57],
and depth map integration for seamless multi-camera setting [2], as
well as advanced optical flowmethods [35]. On the other hand, deep-
learning approaches can significantly enhance the performance of
omnidirectional stitching, such as attention mechanisms [12, 30] for
matching SR to human visual perceptions and weakly-supervised

2024-04-13 11:53. Page 2 of 1–10.
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Figure 2: Overview of image stitching framework. In (a) and (c), the borderline boxes represent the modified process, and the
solid lines represent the deleted process from the previous stitching framework thanks to the stitching region maximization
(SRM) module. (b) and (c) are divided into the previous method and our proposed method. In (c), the orange, yellow, and purple
boxes mean each of the consequent steps.

learning [51] for real-world ground truth image training. However,
despite their efforts for wide parallax, they only support fixed cam-
era formations (e.g., dual 195° FOV lenses or quad 190° FOV lenses)
with a single 360° camera, and do not consider dynamic distance
parallax in scenarios requiring flexible camera positioning.

2.3 Image Stitching Datasets
Datasets are crucial for the development of image stitching meth-
ods, particularly those that require ground truth (GT) or deal with
parallax. View-free [37], Stitched MS-COCO [41], and DIR-D [39]
provide GT for unidirectional stitching but lack parallax consid-
eration. In contrast, datasets for large parallax such as VSLA [23],
UDIS-D [38] and PDIS [22] suffer from restricted access or lack
of GT, limiting their applicability. For omnidirectional stitching,
CROSS [29] and WSSN [51] provide accessible GT but are con-
fined to single camera systems, restricting the versatility of camera
configurations. The GV360 dataset fills these gaps by supporting
multiple camera settings for VA-OVS using virtual environments
to ensure adaptability across different scenarios, thus broadening
the scope for stitching algorithm development.

3 DEPTH-AWARE OMNIDIRECTIONAL
STITCHING FRAMEWORK

3.1 Overview
Our goal is to integrate images from multiple cameras into a single
omnidirectional image, accommodating variations in distance par-
allax that arise due to the diverse sizes and geometries of vehicles.
In this work, we identify two requirements for VA-OVS scenarios:

1) the implementation of a multi-camera setting and 2) adaptabil-
ity to dynamic distance between cameras depending on diverse
vehicle types. This approach assumes a configuration with four
surrounding cameras mounted on the vehicle’s body. This is the
minimum number of cameras in a typical scenario with multiple
cameras [15, 47, 48, 58], arranged at 90° angles between them, pro-
viding an omnidirectional configuration ideal for vehicles of various
shapes and sizes. We consider a dynamic distance parallax scenario
where the distance between two cameras can vary from 0.01m to
1.4m, which is suitable for various vehicles.

The overall process of the omnidirectional stitching framework
is illustrated in Figure 2. Given the input {𝐼𝑀𝐺𝑖 }𝑁𝑖=1, where 𝑁 is the
number of image inputs (i.e., 𝑁 = 4), the general framework first
identifies the optimal stitching regions for each pair of adjacent
images. These regions are denoted as {𝐼𝑀𝐺 (𝑖, 𝑟 ) , 𝐼𝑀𝐺 (𝑖+1, 𝑙 ) }𝑁𝑖=1,
where 𝑟 and 𝑙 indicate the identified right and left parts of the
images, respectively. These paired images undergo bidirectional
flow estimation and pixel-level warping during the stitching phase,
resulting in the output {𝑂𝑖 }𝑁𝑖=1, where each output

𝑂𝑖 = 𝑆𝑡𝑖𝑡𝑐ℎ𝑖𝑛𝑔(𝐼𝑀𝐺 (𝑖, 𝑟 ) , 𝐼𝑀𝐺 (𝑖+1, 𝑙 ) )

is a segment of the panoramic image created by the stitching
process. We simplify the notation of stitching region pairs from
{𝐼𝑀𝐺 (𝑖, 𝑟 ) , 𝐼𝑀𝐺 (𝑖+1, 𝑙 ) } to {𝐼𝐿, 𝐼𝑅}.

To ensure automatic adaptation of stitching region pairs {𝐼𝐿, 𝐼𝑅}
to input images with dynamic distance parallax caused by multiple
camera settings, we suggest using the Stitching Region Maximiza-
tion (SRM) module instead of the manual process before stitching.
Furthermore, the Depth-Aware Stitching (DAS) module is proposed

2024-04-13 11:53. Page 3 of 1–10.
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Figure 3: The step-wise details of the DAS module. The refined flow estimation process (Step 1) from input images to refined
flow is illustrated in (a), while (b) and (c) present the input and output configurations for the learnable forward warping and
synthesis process, respectively.

to address artifacts of synthesized outputs 𝑂𝑖 caused by depth dif-
ferences by utilizing additional depth information and an advanced
warping network.

3.2 Stitching Region Maximization Module
In previous approaches, the SR decision for each input pair typically
involves manually transforming the viewpoint and aligning the
images or using automatic algorithms such as PTGui3. In this case,
the region near the seamline of the aligned images is defined as the
SR pairs. Only this region will be masked and stitched, followed by a
post-processing step such as blending with other unmasked regions.
Conversely, we implement half-cropping and full-region matching
for each pair 𝐼𝐿, 𝐼𝑅 , thereby maximizing the stitching region. This
technique simplifies the SR decision process by eliminating the
need for manual pre-processing (e.g., image alignment, viewpoint
transformation, and stitching region decision) and post-processing
(e.g., blending with unmasked regions), facilitating adaptation to
various camera formations with dynamic distance.

Although the SRM allows for adaptation to various vehicles with
multiple camera settings, its performance may decrease when ad-
justing to situations with large distance parallax. This is due to the
increased candidate size for flow estimation, which can confuse
the pixel-wise warping process. To handle the increased number
of candidates resulting from SRM, we use a cascaded refinement
strategy. It is based on the up-sampled features, flow, and synthe-
sis results, which are fed into the next level of an image pyramid
structure inspired by the frame interpolation network [19, 49, 61].
This structure organizes the stitching process into multiple levels,
with each level 𝑘 of the total 𝐾 levels refining the input by incor-
porating up-sampled output from the previous level. This iterative
refinement process ensures a more accurate and robust output.

3.3 Depth-Aware Stitching Module
While addressing the challenge of stitching region decisions to han-
dle variations in distance parallax, it was observed that stitching
performance decreases in scenarios with large distance parallax,
as shown in Figure 1. Taking inspiration from the task of Video
3https://ptgui.com

Frame Interpolation (VFI) [9] tasks, which manage large motions
and depth differences – challenges similar to those in large distance
parallax stitching – we develop the Depth-Aware Stitching (DAS)
module. The DAS module incorporates a methodological enhance-
ment inspired by video frame interpolation models [19, 42, 52],
which are tolerant of large motion. It modifies each step of the tra-
ditional image stitching process to address such challenges related
to dynamic distance parallax. The module consists of three main
steps: Refined Flow Estimation (Step 1), Learnable Forward Warp-
ing (Step 2), and Synthesis Network (Step 3). Each step integrates
elements of the UPR-Net [19] structure adapted to the specific re-
quirements of VA-OVS scenarios, with further details provided in
Figure 3.

3.3.1 Step 1: Refined Flow Estimation. Traditionally, pixel-level
flow features are extracted directly from the input pair’s stitch-
ing region {𝐼𝐿, 𝐼𝑅} using a basic flow estimator F (·) composed of
stacked convolution layers. At each pyramid level 𝑘 , traditional
methods utilize outputs from the fifth and sixth layers of a stacked
convolution neural network (CNN) to define flow features 𝐹𝑘 and
flow 𝐹𝑘 respectively as:

𝐹𝑘 = 𝐶𝑁𝑁5 (𝐼𝑘 ), 𝐹𝑘 = 𝐶𝑁𝑁6 (𝐼𝑘 )

with bi-directional flow estimation.
To enhance flow estimation in the context of large distance paral-

lax, our framework inspired by frame interpolationmethods [19, 20],
leveraging multi-scale feature extraction, up-sampled flow from
previous pyramid level, and 3D depth costs. This approachmitigates
flow estimation errors caused by large candidate sizes from stitch-
ing region maximization using up-sampled flow and brightness
discrepancies caused by large parallax. Incorporating high-level
contextual information via multi-scale features effectively reduces
these impacts, providing additional spherical depth information
and considering both explicit and implicit structural information.

Specifically, the feature extractor consists of three multi-scale
stages, with each stage comprising 3, 4, and 4 convolution layers, re-
spectively, which process both left and right images to produce con-
text features {𝐶𝑘(𝐿, 0) ,𝐶

𝑘
(𝑅, 0) }, {𝐶

𝑘
(𝐿, 1) ,𝐶

𝑘
(𝑅, 1) }, and {𝐶

𝑘
(𝐿, 2) ,𝐶

𝑘
(𝑅, 2) }

at increasing channel depths of 24, 48, and 96. These features are
2024-04-13 11:53. Page 4 of 1–10.
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Table 1: Comparison of datasets for wide parallax stitching. It includes camera settings, input types, camera formats, distance
parallax, availability, and output field-of-view. The camera format contains the degree of utilized lenses.

Model Camera setting Input type Camera format Distance parallax Availability Output FOV

CROSS[29] Single 360° camera Dual 180° Fisheye (195°) 0.01 m Y 360°
WSSN[51] Single 360° camera Triple 120° Fisheye (195°) 0.01 m Y 360°
Quad-fisheye[7] Single 360° camera Quadratic 90° Fisheye (190°) 0.01 m N 360°

VSLA[23] Multicamera Triple 45° Rectilinear (120°) 1.28 m N 210°
GV360 (Ours) Multicamera Quadratic 90° Fisheye (185°) 0.01 m - 1.4 m Y 360°

then used to compute the 3D depth cost, accurately match features
between aligned images, and adjust for spherical depth differences.
The refined flow encoder integrates these depth costs with up-
sampled flow, formulated as:

𝐹𝑘 = F (𝐹𝑘−1 ⊕ 𝐹𝑘−1 ⊕ 𝐶𝑜𝑠𝑡 (𝐶𝑘2 ) ⊕ 𝐶
𝑘
2 )

with 3D depth cost 𝐶𝑜𝑠𝑡 (𝐶𝑘2 ) and warped feature 𝐶𝑘2 related to the
current feature level.

3.3.2 Step 2: Learnable Forward Warping. Given the input image
pair 𝐼𝑘

𝐿
, 𝐼𝑘
𝑅
and optical flow 𝐹𝑘

𝐿
, 𝐹𝑘
𝑅
, the traditional flow-based warp-

ing methods typically use mathematical backward warping to pro-
duce the warped image pair:

{𝐼̂𝑘𝐿 , 𝐼̂
𝑘
𝑅 } =W(𝐼

𝑘
𝐿 , 𝐼

𝑘
𝑅 , 𝐹

𝑘
𝐿 , 𝐹

𝑘
𝑅 )

However, these methods result in issues such as object occlusion
or duplication in scenarios with large depth differences. To address
these challenges effectively, we employ a learnable forwardwarping
technique inspired by the softmax splatting method [42], which
enhances the handling of depth differences and reduces artifacts in
the warped images. Specifically, given the input image pair {𝐼𝑘

𝐿
, 𝐼𝑘
𝑅
}

and refined flow {𝐹𝑘
𝐿
, 𝐹𝑘
𝑅
}, the warped left image is defined by the

equation:

𝐼̂𝑘𝐿 =
−→𝑤 (𝐼𝑘𝐿 , 𝐹

𝑘−1
𝐿 /2, 𝑍 )

where −→𝑤 represents the forward warping function. It utilizes half
of the up-sampled flow 𝐹𝑘−1

𝐿
to find intermediate pixel positions

between the left and right images, while a depth metric 𝑍 aids in
accurate pixel mapping. Adopting the softmax splatting approach,
the depth metric 𝑍 is used to assign appropriate weights to pixels
within 𝐼𝑘

𝐿
for their projection onto corresponding target pixels in

𝐼𝑘
𝑅
, expressed as:

𝑍 = 𝜆 · 𝑣 (𝐶𝑘𝐿 , (∥ 𝐶
𝑘
𝐿 −
←−𝑤 (𝐶𝑘𝑅, 𝐹𝑅/2) ∥1)

where the weighting procedure is derived from backward warping
←−𝑤 and a scaling map 𝜆, with 𝑣 representing a U-Net for training.

The core of our learnable forward warping technique lies in its
capacity to adaptively determine the source of pixels, especially in
scenarios where multiple pixels may target the exact location of the
image. This process is made differentiable, allowing for effective
learning and optimization. This warping process is also used for
feature warping 𝐶𝑘 during the flow estimation process as outlined
in Step 1.

3.3.3 Step 3: Synthesis Process. Finally, recursively warped images
𝐼𝑘
𝐿
and 𝐼𝑘

𝑅
are combined using an encoder-decoder structure based

on the U-Net framework [19, 20, 61] to generate an intermediate
view between two images. Given synthesis network inputs, which
include the current stitching sources 𝐼𝑘 , 𝐼̂𝑘 , 𝐹𝑘 , and the recursive
output 𝑂𝑘−1 from the prior pyramid level, the stitched image for
each pyramid level 𝑘 is formulated as:

𝑂𝐾𝑖 =
𝑀𝑘
𝐿
⊙ 𝐼̂𝑘

𝐿
+𝑀𝑘

𝑅
⊙ 𝐼̂𝑘

𝑅

𝑀𝑘
𝐿
+𝑀𝑘

𝑅

+ Δ𝑘

where𝑀𝑘
𝐿
and𝑀𝑘

𝑅
are the masking maps generated by the synthesis

network, located in the fourth and fifth channels, respectively, and
Δ𝑘 represents a residual map contained within the first three chan-
nels. The final omnidirectional image 𝑂 is obtained by smoothly
concatenating the stitched segments {𝑂𝑖 }𝑁𝑖=1.

3.4 Training Loss
OmniStitch framework aims to optimize the parameters 𝜃 across
the feature encoder, flow encoder F , warping networkW, and
stitching network S, jointly minimizing the three distinct losses
during the training phase. These include the Charbonnier [5] and
VGG loss [50] for pixel-level accuracy and assessing perceptual
quality, respectively. In addition, the Census loss L𝑐𝑒𝑛 , known
for its effectiveness in handling object occlusion [34], is used to
consider large depth differences between two images. The overall
training loss is expressed as:

L𝑡𝑟𝑎𝑖𝑛 = L𝐶ℎ𝑎𝑟 + 𝛼L𝑣𝑔𝑔 + 𝛽L𝑐𝑒𝑛
where 𝛼 and 𝛽 are calibrating each loss term’s scale.

4 GV360 DATASETS
Our goal is to facilitate supervised learning for omnidirectional
image stitching to produce precise 360°Equirectangular Projection
(ERP) images, addressing the need for accurate ground-truth (GT)
data and adaptability to multi-camera configurations in typical ve-
hicles that closely mirror real-world conditions. As shown in Table
1, although several datasets exist for wide parallax image stitch-
ing [7, 23], there are still limitations in terms of public availability
and provision of accurate GT images required for training super-
vised image stitching models. Certain omnidirectional stitching
datasets [29, 51] provide GT images captured with specialized cam-
eras, but these do not align with the requirements of the VA-OVS
scenarios. To address these issues, we introduce a new method for
generating datasets that can be used in multi-camera settings and
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Table 2: Quantitative result of the GV360 dataset. The bold represents the best performance and the underline represents the
secondary performance.

Approach Method
GV360 dataset

(a) 0.01 m (b) 0.8 m (c) 1.4 m

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Unidirectional

APAP 11.586 0.087 0.310 11.362 0.073 0.350 10.688 0.051 0.411

UDIS++ 13.435 0.129 0.215 12.724 0.104 0.266 10.903 0.066 0.375

LPC 13.531 0.111 0.193 13.416 0.094 0.216 12.831 0.072 0.233

VSLA-like 23.634 0.815 0.143 23.398 0.780 0.206 23.857 0.779 0.224

Omnidirectional
Samsung Gear 360 14.772 0.079 0.241 14.430 0.073 0.256 14.341 0.071 0.262

PTGui 18.885 0.227 0.229 14.832 0.153 0.284 12.597 0.061 0.327

OmniStitch 29.146 0.911 0.108 27.147 0.871 0.169 27.710 0.870 0.192

are not specific to a particular vehicle. We present the General-
Purpose Vehicle’s 360-degree (GV360) dataset generated by this
method. This GV360 dataset is created using the CARLA simula-
tor, an open-source platform that can simulate various traffic and
weather conditions and camera configurations.

We render images using fisheye lenses with a wide 185-degree
field of view. To satisfy vehicle-agnostic quadratic multi-camera
settings [15, 47, 48, 58], we attach a total of four cameras to the
upper side (U), downside (D), left (L), and right (R) of each vehicle
as illustrated in Figure 1. The distance between cameras varied
from 0.01m to 1.4m, adjusting to the various shapes and sizes of
the vehicles. The four ground-truth images are aligned for different
input pairings: front-right (RU), right-back (RD), back-left (LD),
and left-front (LU). These GT images are derived by collecting
the center pixels from camera inputs and continuously placing
them along an ellipse. This approach minimizes distortion and
closely replicates a real-world panoramic view for each side. We
place 29 cameras on each of the four intermediate sides to ensure
comprehensive coverage. We then un-warp the camera inputs, crop
the pixels closest to the center, and align and blend the cropped
pixels to reduce camera distortion, creating what we consider to
be the ground truth image. The camera arrangement in this setup
is inspired by the traditional rigged camera systems (e.g., Google
Jump [1]), where cameras are placed at 3° intervals from the center
to produce a high-fidelity intermediate image. The dataset consists
of 12,724 training samples and 1,284 test samples. The proposed
dataset and codes are made publicly available via a provided URL.

5 EXPERIMENTS
5.1 Implementation Details
The weights in the training loss (3.4) are set to be 𝛼 = 1 and 𝛽 = 0.01.
The training process spans 300,000 iterations with a batch size of 10,
utilizing the AdamW optimizer [33] with a weight decay of 10−4.
The learning rate is gradually reduced through cosine annealing
from 10−4 to 10−5. The implementation is based on Pytorch 2.1.0
with CUDA 12.1 on Ubuntu 18.04, and the training is performed
on two GPUs (NVIDIA RTX 4090 and RTX A6000). To augment

the training data, we randomly crop 480 × 480 patches from the
original data and apply random rotations, vertical flips, and channel
inversion. For the image pyramid architecture, we decided to use a
pyramid level of 4 and skip the flow estimation in the last level of
the pyramid, instead using the cascaded flow empirically.

5.2 Baselines
To validate the performance of models in omnidirectional image
stitching for general vehicle scenarios, we examine two categories
of state-of-the-art models. First, we focus on undirectional stitching
methods, which predominantly handle pair-wise or linear arrays
of image inputs.

• APAP [59] is a widely adopted stitching method, recognized
for an As-Projective-As-Possible approach. It blends non-
projective deviations into a globally projective framework.
• LPC [18] emerges as a novel solution aimed to overcome the
wide parallax issue. It leverages co-planar region matching
alongside global colinear structures, ensuring the preserva-
tion of geometrical integrity on both local and global scales.
• UDIS++ [40] is a parallax-tolerant, unsupervised deep-learning
model for image stitching that handles large parallax chal-
lenges and improves generalization across different datasets
and resolutions.
• VSLA-like [23] is a representative stitching model that uti-
lizes partial stitching regions. Since the original code is not
open source, we built our own version based on the descrip-
tions in the paper. We trained it with GV360 dataset and
set the stitching regions to the same proportions as in the
original model (40% of the input image).

Second, we explore omnidirectional stitching methods designed
to produce 360° panoramic images.

• Samsung Gear 360 [17] is a commercial stitching solution
using dual fisheye lenses. Due to the limited reproducibility
of many stitching methods, it is a benchmark for generating
omnidirectional images.
• PTGui is a widely used commercial software for automatic
stitching that employs feature points for image alignment,
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Figure 4: Qualitative results on GV360 dataset. Distance parallax = 1.4 m (1 and 2 rows), and 0.8 m (3 and 4 rows)

Figure 5: Qualitative results on the real dataset in large distance parallax (1.4 m between cameras) scenario.

similar to the Autostitch [3] method. It supports various
camera inputs, but its automatic stitching often failed in the
GV360 test set, particularly in instances with large distance
parallax.

5.3 Quantitative Results
The effectiveness of our framework is evaluated by comparing it
with popular image stitching methods, as outlined in 5.2. This com-
parison uses standard metrics such as Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM) [53], and Learned Per-
ceptual Image Patch Similarity (LPIPS) [62]. The comprehensive
results are presented in Table 2. Our experiments span various dis-
tance parallax scenarios – 0.01 m, 0.8 m, and 1.4 m – to evaluate
the adaptability of the stitching methods for general vehicle appli-
cations. Our framework, equipped with the SRM module, shows
superior performance over the VSLA-like method, achieving an
average 18.5% improvement of PSNR, 11.7% improvement of SSIM,
and 18.0% decrease of LPIPS. It verifies the benefits of applying
full region adaptation with depth-aware flow refinement and a
learnable warping network in stitching multiple images, thereby
enhancing model adaptability for general vehicles and improving

performance in large parallax situations. Notably, our framework
shows a 14.3% decrease in LPIPS over the VSLA method in the large
distance parallax scenario. This significant performance gap high-
lights the importance of considering depth differences and reducing
flow estimation errors through additional depth information and a
fine-grained warping network configuration.

5.4 Qualitative results
For qualitative evaluation, we compare image stitching methods on
GV360 and additional unseen datasets, focusing on the presence
of visual artifacts (e.g., misalignment, ghosting, and duplication)
and the ability to generate natural and seamless images from a
human-centric perspective for omnidirectional vision. This analysis
includes three different distance parallax scenarios, similar to our
quantitative multi-camera VA-OVS evaluation.

5.4.1 GV360 dataset. The qualitative results from our dataset are
illustrated in Figure 4. The results reveal that LPC and UDIS++
methods are incompatible with omnidirectional stitching due to
their symmetric properties, leading to significantly inferior results.

2024-04-13 11:53. Page 7 of 1–10.
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Table 3: Self-comparison with SRM and DAS module experi-
ments on the full test dataset. ‘P’ means partial (40%) and ‘M’
means maximum stitching region.

Module SR IP Cost LFW PSNR(↑) SSIM(↑) LPIPS(↓)

SRM
P 23.598 0.792 0.215
M 24.891 0.826 0.236

DAS

M ✓ 26.812 0.863 0.171
M ✓ ✓ 26.999 0.867 0.164
M ✓ ✓ 27.211 0.866 0.185
M ✓ ✓ ✓ 27.866 0.883 0.150

Commercial stitching methods such as Samsung Gear 360 and PT-
Gui, although designed for 360° image stitching, struggle with large
distance parallax in multi-camera settings, often resulting in dupli-
cate and misalignment artifacts. Among these methods, VSLA-like
is manually adjusted with hand-crafted image alignment and partial
SR decisions to achieve more natural and seamless images. How-
ever, it is still prone to ghosting artifacts, highlighting its inability
to handle depth differences. In contrast, our method effectively
mitigates unintended visual artifacts and produces images that are
both natural in appearance and seamlessly integrated.

5.4.2 Unseen dataset. We extend our comparison to include scenar-
ios involving unseen data, which comprises images from real-world
multi-camera settings, as shown in Figure 5. Despite the training of
our framework on virtual samples from simulations, it has demon-
strated robustness when applied to unseen datasets from real-world
contexts. This result highlights our framework’s generalizability to
a various omnidirectional vision scenarios.

5.5 Ablation Study
5.5.1 Effectiveness of Components. In the ablation study presented
in Table 3, we investigate the effectiveness of different compo-
nents within our proposed modules in improving the stitching
quality. First, we compare the performance of the Stitching Region
Maximization (SRM) module, which aims to maximize the stitch-
ing region against a traditional method focusing only on partial
stitching regions. The result shows a significant improvement in
performance metrics such as PSNR and SSIM, indicating numerical
and structural differences in image quality. Despite these gains,
extending flow estimation to the full region may cause subtle er-
rors, potentially leading to image-wide blurring. It can result in
perceptually uncomfortable outcomes, as quantified by the LPIPS
metric, highlighting a trade-off between maximizing stitching area
and maintaining image sharpness.

The DAS module addresses the depth difference caused by dis-
tance parallax through three key components: the image pyramid
(IP), 3D depth cost (Cost), and learnable forward warping (LFW).
Notably, the absence of 3D depth costs leads to a deterioration in
LPIPS scores, underscoring the pivotal role of 3D depth information
in the pursuit of more natural images in omnidirectional vision ap-
plications. In addition, omitting learnable forward warping reduces
PSNR and SSIM. It demonstrates the effectiveness of an integral

feature of learnable warping in detecting the importance of spe-
cific object pixels in situations with substantial depth differences
between images. This enables the accurate placement of objects in
the foreground, significantly enhancing the image quality.

Table 4: Ablation study of training loss functions.

Training loss PSNR(↑) SSIM(↑) LPIPS(↓)
Ours 27.866 0.883 0.150
w/o L𝑐𝑒𝑛𝑠𝑢𝑠 26.774 0.859 0.176

5.5.2 Effectiveness of additional training loss. We examine the ef-
fectiveness of incorporating an additional loss term, specifically
the Census loss, to improve the quality of image stitching. The
comparison detailed in Table 4 demonstrates the clear advantages
of integrating L𝑐𝑒𝑛𝑠𝑢𝑠 in our approach, as evidenced by the im-
provements across all the evaluated metrics. The PSNR and SSIM
values indicate higher similarities to the ground truth images in
pixel intensity and structural information. At the same time, the
decrease in the LPIPS score shows a closer perceptual resemblance
to the ground truth. This experiment demonstrates that including
additional census loss effectively refines the output of our image
stitching framework.

6 CONCLUSION
This paper introduces a novel omnidirectional stitching framework,
referred to as OmniStitch, which addresses the challenges of dy-
namic distance parallax in multi-camera Vehicle-Agnostic Omnidi-
rectional Vision Systems (VA-OVS). The framework incorporates
Stitching Region Maximization (SRM) and Depth-Aware Stitching
(DAS) modules to enhance stitching quality and robustness across
various vehicle configurations by automating stitching region de-
cisions and refining flow estimation with depth information to
minimize artifacts. To overcome the lack of suitable datasets for
VA-OVS, we provide the GV360 dataset with ground truth images
that preserve 360° perspective using virtual environments. Our
framework is superior in handling distance parallax variations and
provides more accurate and reliable omnidirectional images. Al-
though it currently operates with a limited number of cameras
and is not completely resistant to flow estimation errors such as
blurring, it provides valuable opportunities for future research to
enhance the scalability and efficiency of omnidirectional vision
systems for broader applications in ADAS, VR, and other fields.
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