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ABSTRACT

Adversarial robustness of deep neural networks has been studied extensively and
can bring security against adversarial attacks/examples. However, adversarially
robust training approaches require a training mechanism on the entire deep network
which can come at the cost of efficiency and computational complexity such as
runtime. As a pilot study, we develop in this paper a novel theoretical framework
that aims to answer the question of how can we make a whole model robust to adver-
sarial examples by making part of a model robust? Toward promoting subnetwork
robustness, we propose for the first time a new concept of semirobustness, which
indicates adversarial robustness of a part of the network. We provide a theoretical
analysis to show that if a subnetwork is robust and highly dependent to the rest of
the network, then the remaining layers are also guaranteed to be robust. To guide
the empirical investigation of our theoretical findings, we implemented our method
at multiple layer depths and across multiple common image classification datasets.
Experiments demonstrate that our method, with sufficient dependency between
subnetworks, successfully utilizes subnetwork robustness to match fully-robust
models’ performance across AlexNet, VGG16, and ResNet50 benchmarks, for
attack types FGSM, I-FGSM, PGD, C&W, and AutoAttack.

1 INTRODUCTION

Deep neural networks (DNNs) have been highly successful in computer vision, particularly in
image classification tasks, speech recognition, and natural language processing where they can often
outperform human abilities Mnih et al. (2015); Radford et al. (2015); Goodfellow et al. (2016).
Despite this, the reliability of deep learning algorithms is fundamentally challenged by the existence
of the phenomenon of “adversarial examples”, which are typically natural images that are perturbed
with random noise such that the networks misclassify them. In the context of image classification
an extremely small perturbation can change the label of a correctly classified image Szegedy et al.
(2014); Goodfellow et al. (2014). For this reason, adversarial examples present a major threat to
the security of deep-learning systems; however, a robust classifier can correctly label adversarially
perturbed images. For example, an adversary could alter images of the road to fool a self-driving
car’s neural network into misclassifying traffic signs Papernot et al. (2016a), reducing the car’s safety,
but a robust network would detect and reject the adversarial inputs Ma et al. (2018); Biggio et al.
(2013). The problem of finding perturbed inputs, known as adversarial attacks, has been studied
extensively Kurakin et al. (2017); Sharif et al. (2016); Brown et al. (2017); Eykholt et al. (2018).
To handle adversarial attacks, two major solutions have been studied: (1) Efficient methods to find
adversarial examples Su et al. (2019); Laidlaw & Feizi (2019); Athalye et al. (2018); Liu et al. (2016);
Xie et al. (2017); Akhtar & Mian (2018), (2) Adversarial training to make deep neural networks more
robust against adversarial attacks Madry et al. (2018); Tsipras et al. (2019); Gilmer et al. (2019); Ilyas
et al. (2019); Papernot et al. (2016b).

The adversarial perturbations may be applied to the input or to the network’s hidden layers Goodfellow
et al. (2014); Szegedy et al. (2014) and it has been show that this strategy is effective at improving
a network’s robustness Goodfellow et al. (2014). Several theories have been developed to explain
the phenomenon of adversarial examples Raghunathan et al. (2018); Xiao et al. (2019); Cohen et al.
(2019); Shamir et al. (2019); Fawzi et al. (2016); Carlini & Wagner (2017); Weng et al. (2018); Ma
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et al. (2018). Previously Ilyas et al. (2019) investigated adversarial robustness from a theoretical
perspective. The authors address “useful, non-robust features”: useful because they help a network
improve its accuracy, and non-robust because they are imperceptible to humans and thus not intended
to be used for classification. Normally, a model considers robust features to be about as important as
non-robust ones, yet adversarial examples encourage it to rely on only non-robust features. Ilyas et al.
(2019) introduces a framework to explain the phenomenon of adversarial vulnerability . A feature
f is considered a “ρ-useful feature” if it is correlated with the true label in the dataset. Similarly,
“γ-robustly useful features” are ρ-useful for a set of adversarial perturbations. While Ilyas et al. (2019)
constitutes a fundamental advance in the theoretical understanding of adversarial examples, and opens
the way to a thorough theoretical characterization of the relation between network architecture and
robustness to adversarial perturbations, little attention has been paid to how robustness throughout
the network is guaranteed and whether adversarial training must be applied to the entire network.

In this paper, we develop a new theoretical framework that monitors the robustness across the layers
in a DNN and explains that if the early layers are adversarially trained and are sufficiently connected
with the rest of the network, then adversarial robustness of the latter layers is obtained, here by
connectivity we mean the early layers are highly dependent to the latter layers. All of these findings
raise a fundamental question: How can we make a whole model robust to adversarial inputs by
making part of the model robust? In addition, the vulnerability of models trained using standard
methods to adversarial perturbations makes it clear that the paradigm of adversarially robust learning
is different from the classic learning setting. In particular, we already know that robustness comes
at the cost of computationally expensive training methods (more training time) Zhang et al. (2019),
as well as the potential need for more training data and memory capacity Schmidt et al. (2018).
Hence, one notable challenge in adversarially robust learning is computational complexity while
maintaining desired performance. To this end, by exploiting the possibility that subnetworks can
be robust to adversarial attacks, we propose a novel approach that aims to theoretically analyze
adversarial robustness guarantees in a network by adversarially training only a subset of layers. This
work will also pioneer the new concept of “semirobustness” which indicates adversarial robustness
of a part of the network. This includes a new perspective of adversarial perturbations and a novel
theoretical framework that explains theories for the following claim:

If a subnetwork is robust and highly dependent to the rest of the network and passes sufficient
connectivity toward the last layer, then the remaining layers are also guaranteed to be robust.

Contributions To summarize, our contributions in this paper are: (1) We introduce a novel concept
of semirobustness in subnetworks. We show that a subnetwork is semirobust if and only if all layers
within the subnetwork are semirobust. (2) For the first time we provide a theoretical framework and
prove that under some assumptions if the first part of the network is semirobust then the second part
of the network’s robustness is guaranteed. (3) Experimentally, we demonstrate that given sufficient
mutual dependency between subnetworks, our method displays the same adversarial robustness of a
network as compared to regular adversarial training.

2 SUBNETWORK ROBUSTNESS

Notations We assume that a given DNN has a total of n layers where, F (n) is a function mapping
the input space X to a set of classes Y , i.e. F (n) : X 7→ Y ; f (l) is the l-th layer of F (n);
F (i,j) := f (j) ◦ . . . ◦ f (i) is a subnetwork which is a group of consecutive layers f (i), . . . , f (j);
F (j) := F (1,j) = f (j) ◦ . . . ◦ f (1) is the first part of the network up to layer j. Denote σ(l) the
activation function in layer l and π(y) the prior probability of class label y ∈ Y . Let f (l) be the
l-th layer of F (n), as f (l)(xl−1) = σ(l)(w(l)xl−1 + b(l)), where σ(l) is the activation function. In
this section, we define the notion of a Semirobust Subnetwork. We discuss semirobustness more in
Section 2.1.

Definition 1 (Semirobust Subnetwork) Suppose input X and label y are samples from joint distri-
bution D. For a given distribution D, a subnetwork F (j) is called γj-semirobust if there exists a
mapping function Gj : Lj 7→ Y such that

E(X,y)∼D
[
inf
δ∈Sx

y ·Gj ◦ F (j)(X+ δ)
]
≥ γj , (1)
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for an appropriately defined set of perturbations Sx. In (1), Gj is a non-unique function mapping
layer f (j) to class set Y , and γj is a constant denoting the correlation between y and F (j).

Note that Gj is necessary if the dimensionality of F (j) does not match that of y, but if F (j) = F (n),
the semirobust definition becomes standard γ-robustness as defined in Ilyas et al. (2019). To define
semirobustness for a single layer f (j), in (1) we simply replace f (j) in F (j) and Kj−1 ◦ (X + δ)
in X + δ, where Kj−1 is mapping function Kj−1 : X 7→ Lj−1. In this paper to avoid confusion,
we use X+ δ for layer semirobustness as input as well. Throughout this paper, we assume that the
network F (n) is a useful network i.e. for a given distribution D, the correlation between F (n) and
true label y, E(X,y)∼D

[
y · F (n)(X)

]
is highest in expectation in optimal performance. Intuitively, a

highly useful network F (n) minimizes the classification loss E(X,y)∼D
[
L(X, y)

]
that is

−E(X,y)∼D

[
y ·

(
b+

∑
F (n)∈F(n)

wF (n)F (n)(X)
)]
, (2)

where wF (n) is the weight vector and F (n) is the set of n-th layer networks. Definition 1 raises valid
questions regarding the relationship between a subnetwork and its associated layers’ robustness. We
show this relationship under the following thoerem.

Theorem 1 The subnetwork F (j) is γj-semirobust if and only if every layer of F (j), i.e.
f (j), f (j−1), . . . , f (1), is also semirobust with bound parameters γj , . . . , γ1 respectively.

Theorem 1 is a key point used to support our main claims on the relationship between layer-wise
and subnetwork robustness, and its proof is provided as supplementary materials (SM). Next, we
show that under a strong dependency assumption between layers the robustness of subnetworks are
guaranteed.

2.1 SEMIROBUSTNESS GUARANTEES

In this section, we provide theoretical analysis to explain how dependency between layers of subnet-
works promotes semirobustness and eliminates the entire-network adversarial training requirement.

Non-linear Probabilistic Dependency (Mutual Information): Among various probabilistic depen-
dency measures, in this paper, we adopt an information-theoretic measure called mutual information
(MI): a measure of the reduction in uncertainty about one random variable by knowing about another.
Formally, it is defined as follows: Let X and Z be Euclidean spaces, and let PXZ be a probability
measure in the space X ×Z . Here, PX and PZ define the marginal probability measures. The mutual
information (MI), denoted by I(X;Z), is defined as,

I(X;Y ) = E
PXPZ

[
g

(
dPXZ

dPXPZ

)]
, (3)

where dPXZ

dPXPZ
is the Radon-Nikodym derivative, g : (0,∞) 7→ R is a convex function, and g(1) = 0.

Note that when dPXY

dPXPY
→ 1, then I → 0. Using (3), the MI measure between two layers f (i) and

f (j) with joint distribution Pij and marginal distributions Pi, Pj respectively is given as

I(f (i); f (j)) = E
PiPj

[
g

(
dPij

dPiPj

)]
. (4)

The concept of MI is integral to the most important theory in our theoretical framework through the
assumptions below.
Assumptions: Let Ga : La 7→ Y be a function mapping layer f (a) to a label y ∈ Y , and let
Gj : Lj 7→ Y be a function mapping layer f (j) to a label y ∈ Y . Let gδ = f (a)(X + δ) and
hδ,j = f (j)(X+ δ) for δ ∈ Sx (perturbation set). Note that gδ = hδ,a.
A1: The class-conditional MI between hδ,j−1 and hδ,j is at least hyperparameter ρj ≥ 0, i.e.∑

y

π(y)I (hδ,j−1;hδ,j |y) ≥ ρj (5)
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A2: There exists a constant Uj ≥ 0 such that for all δ ∈ S:

Ep(hδ,j−1,hδ,j ,y)

[
p(hδ,j−1, hδ,j |y)

p(hδ,j−1|y)p(hδ,j |y)

]
≤ Uj , and

Ep(hδ,j−1,hδ,j ,y) [y · (Gj ◦ hδ,j −Gj−1 ◦ hδ,j−1)] ≥ 1 + Uj ,

where p(hδ,j−1, hδ,j , y) is the joint probability of random triple (hδ,j−1, hδ,j , y).

Theorem 2 Let fa be a γa-semirobust subnetwork equivalent to F (a), and let fb be the subnetwork
F (a+1,n) and for j = a+ 1, . . . , n, assumptions A1 and A2 holds true. Then fb is γb-semirobust.

In Theorem 2, γb ≤ γa +
∑b

j=a+1 ρj . Note that the constant Uj does not depend on γa, γb, and ρj .
This theorem is an extension of the following lemma, and the proofs of both are found in the SM.

Lemma 1 Let F (n−1) be a γn−1-semirobust subnetwork. Let gδ = f (n−1)(X + δ) and hδ =
f (n)(X + δ) for δ ∈ Sx. Let Gn−1 : Ln−1 7→ Y be a function mapping layer g to the network’s
output y ∈ Y . Under the following assumptions f (n) is γn-semirobust:

• B1: The MI between f (n−1) and f (n) is at least hyperparameter ρ ≥ 0, i.e.∑
y

π(y)I (gδ;hδ|y) ≥ ρ.

• B2: There exists a constant U ≥ 0 such that for all δ ∈ S:

Ep(gδ,hδ,y)

[
p(gδ, hδ|y)

p(gδ|y)p(hδ|y)

]
≤ U, and Ep(gδ,hδ,y) [y · (hδ −Gn−1 ◦ gδ)] ≥ 1 + U.

Note that in Lemma 1, γn ≤ γn−1 + ρ, and assumptions B1 and B2 are particular cases of A1 and
A2, when a = n− 1.
Intuition: Let IF(.) determine the information flow passing through layers in the network F (n).
Intuitions from the IF literature would advocate that in a feed-forward network if the learning
information is preserved up to a given layer, one can utilize knowledge of this information flow in the
next consecutive layer’s learning process due to principle F (i,j) = f (j) ◦ F (i,j−1), and consequently
IF (i,j) ≈ IF (j) ◦ IF (i,j−1). This is desirable as in practice training the subnetwork requires less
computation and memory usage. This explains that under the assumption of the strong connection
between j-th and j − 1-th layers, the information automatically passes throughout the later layers,
and subnetwork training returns sufficient solutions for task decision-making. To better characterize
the measure of information flow, we employ a non-linear and probabilistic dependency measure that
determines the mutual relationship between layers and how much one layer tells us about the other
one. An important takeaway from Theorem 2 (and Lemma 1) is that a strong non-linear mutual
connectivity between subnetworks guarantees that securing only the robustness of the first subnetwork
ensures information flow throughout the entire network.

Linear Connectivity: To provably show that our theoretical study in Theorem 2 is satisfied for
the linear connectivity assumption between subnetworks, we provide a theory that investigates the
scenario when the layers in the second half of the network are a linear combination of the layers in
the first subnetwork.

Theorem 3 Let fa be a γa-semirobust subnetwork equivalent to F (a), and let fb be the subnetwork

F (a+1,n). If for j = a+ 1, . . . , n, f (j) =
j−1∑
i=1

λT
ij .f

(i), where λij is a map Li 7→ Lj and a matrix of

dimensionality Li × Lj , then fb is γb-semirobust where γb = γa
(
(n− 1− a)(n− a)

/
2
)
.

This theorem shows that when the connectivity between layers in fa and fb is linear, we achieve the
semirobustness property for the subnetwork fb. Importantly, note that linear combination multipliers
determine the Pearson correlation between layers given the constant variance of the layers. This is
because if f (j) = λijf

(i), then Corr(f (j), f (i)) = λijvar(f
(i)). Theorem 3 is an extension of the

lemma 2. Detailed proof and accompanying experiments are provided in the SM.
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Lemma 2 Let the last layer f (n) be a linear combination of f (n−1), . . . , f (1), expressed as f (n) =
n−1∑
i=1

λT
i · f (i), where λi is a map Li 7→ Ln and a matrix of dimensionality Li × Ln. If F (n−1) is

γ-semirobust, then f (n) is γn-semirobust where γn =
n−1∑
i=1

γi.

Question: At this point, a valid argument could be how the performance of a network differs under
optimal full-network robustness, (f∗

a , f
∗
b ) and subnetwork robustness (f∗

a , f̃b). Does the difference
between performance have any relationship with the weight difference of subnetworks f∗

b and f̃b?
This question is investigated in the next section by analyzing the difference between loss function of
the networks (f∗

a , f
∗
b ) and (f∗

a , f̃b).

2.2 FURTHER THEORETICAL INSIGHTS

Let ω∗ be the convergent parameters after training has been finished for the network F ∗(n) :=
(f∗

a , f
∗
b ), that is adversarially robust against a given attack. Let ω̃∗ be the convergent parameters for

network (f∗
a , f̃b), that is adversarially semirobust against the attack. This means that only the first

half of the network is robust against attacks. Let ω∗
b , ω̃b, and ω∗

a be weights of networks f∗
b , f̃b, and

f∗
a , respectively. Recall the loss function (2), and remove offset b without loss of generality.

Define ℓ(ω) := −
∑
F∈F

wF · F (n)(X), (6)

therefore the loss function in (2) becomes E(X,Y )∼D{L(F (n)(X), Y )} = E(X,Y )∼D {Y · ℓ(ω)} and
ω∗ := argminωE(X,Y )∼D {Y · (ℓ(ω))} , where ℓ is defined in (6).

Definition 2 (Performance Difference) Suppose input X and task Y have joint distribution D. Let
F̃ (n) := (f∗

a , f̃b) ∈ F be the network with n layers when the subnetwork f∗
a is semirobust. The

performance difference between robust F ∗(n) := (f∗
a , f

∗
b ) and semirobust F̃ (n) is defined as

d(F ∗(n), F̃ (n)) := E(X,Y )∼D

{
L(F ∗(n)(X), Y )− L(F̃ (n)(X), Y )

}
. (7)

Let δ(ω∗|ω̃∗) := ℓ(ω∗)− ℓt(ω̃
∗). The performance difference (7) is the average of δ:

d(F ∗(n), F̃ (n)) = E(X,Y )∼D [Y · δ(ω∗|ω̃∗)] = E(X,Y )∼D

[
Y ·

(
ℓ(ω∗)− ℓ(ω̃∗)

)]
. (8)

Using Taylor approximation of ℓ around ω∗:

ℓ(ω̃∗) ≈ ℓ(ω∗) + (ω̃∗ − ω∗)T∇ℓ(ω∗) +
1

2
(ω̃∗ − ω∗)T∇2ℓ(ω∗)(ω̃∗ − ω∗), (9)

where ∇ℓ(ω∗) and ∇2ℓ(ω∗) are gradient and Hessian for loss ℓ at ω∗. Since ω∗ is the convergent
points of (f∗

a , f
∗
b ), then ∇ℓ(ω∗) = 0, this implies

ℓ(ω̃∗)− ℓ(ω∗) ≈ 1

2
(ω̃∗ − ω∗)T∇2ℓ(ω∗)(ω̃∗ − ω∗) ≤ 1

2
λmax∥ω̃∗ − ω∗∥2, (10)

where λmax is the maximum eigenvalue of ∇2ℓ(ω∗). In (10) we can write ∥ω̃∗−ω∗∥2 = ∥ω̃b−ω∗
b∥2

holds because ω̃∗ = (ω∗
a, ω̃b) and ω∗ = (ω∗

a, ω
∗
b ). Note that here the weight matrices ω∗ and ω̃∗ are

reshaped. Using the loss function E(X,Y )∼D {Y · ℓ(ω)}, we have

E(X,Y )∼D

{
Y ·

(
ℓ(ω̃∗)− ℓ(ω∗)

)}
≤ 1

2
E(X,Y )∼D

{
Y ·

(
λmax∥ω̃b − ω∗

b∥2
)}

. (11)

This explains that the performance difference (8) between networks F ∗(n) and F̃ (n) is upper bounded
by the L2 norm of weight difference of f∗

b and f̃b i.e. ω̃b − ω∗
b .

Alternatively, using Cauchy–Schwarz inequality, we have

E(X,Y )∼D

{
Y ·

(
ℓ(ω̃∗)− ℓ(ω∗)

)}
≤ E(X,Y )∼D

{
Y ∥f (n)(x; ω̃∗)− f (n)(x;ω∗)∥2

}
, (12)
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where f (n) is the last layer of the network. Recall (8) from Lee et al. (2021). As ω̃∗ and ω∗ are the
weights of network on (f∗

a , f
∗
b ) and (f∗

a , f̃b), we have

∥f (n)(x; ω̃∗)− f (n)(x;ω∗)∥2 ≤ ∥ω̃∗
b − ω∗

b∥F ∥σ (fa(x, ω
∗
a)) ∥2. (13)

next, we assume the activation function σ is Lipschitz continous i.e. for any u and v there exist
constant Cσ s.t. |σ(u) − σ(v)| ≤ Cσ|u − v|. Next, assume the activation function is satisfied in
σ(0) = 0. Further by assuming that ∥x∥2 is bounded by Cx and by using peeling procedure, we get:

∥f (n)(x; ω̃∗)− f (n)(x;ω∗)∥2 ≤ Cx,σ∥ω̃∗
b − ω∗

b∥F
∏
j∈a

∥ω∗(j)∥F , (14)

here ω∗(j) is the weight matrix of layer j-th in f∗
a and Cx,σ = CxCσ. Combining (15) and (14) we

provide the upper bound:

E(X,Y )∼D

{
Y ·

(
ℓ(ω̃∗)− ℓ(ω∗)

)}
≤ E(X,Y )∼D

{
Y ·

(
Cx,σ(ω

∗
a)∥ω̃∗

b − ω∗
b∥F

)}
, (15)

where Cx,σ(ω
∗
a) = Cx,σ

∏
j∈a ∥ω∗(j)∥F . This alternative approach validates the result shown in

(11) and aligns with the conclusion that the performance difference between robust and semirobust
networks is highly related to their weight differences. In this section we proved two bounds for
performance difference defined in (8).

3 EXPERIMENTS AND ANALYSES

To confirm our theoretical findings and experimentally validate Theorems 1-3, we test our method at
multiple layer depths, and across multiple common image classification networks trained on CIFAR-
10 Krizhevsky et al. (2009), CIFAR-100 Krizhevsky et al. (2009), and Imagenette Howard, Deng
et al. (2009) datasets.

3.1 EXPERIMENTAL SETUP

To guide the empirical investigation of our theoretical findings, we consider attack models, MI
estimator, and adversarial training settings as follows.

Attack Models: The most common threat model used when generating adversarial examples is the
additive threat model. Let X = (X1, . . . , Xd), where each Xi ∈ X is a feature of X. In an additive
threat model, we assume adversarial example Xδ = (X1 + δ1, . . . , Xd + δd), i.e., Xδ = X ⊕ δ,
Xδ = X + δ where δ = (δ1, . . . , δd). Under this attack model, perceptual similarity is usually
enforced by a bound on the norm of δ, ∥δ∥ ≤ ϵ. Note that a small ϵ is usually necessary because
otherwise, the noise on the input could be visible.

We use some of the most common additive attack models: the Fast Gradient Sign Method (FGSM)
Goodfellow et al. (2014); Szegedy et al. (2014), iterative FGSM (I-FGSM) Kurakin et al. (2017),
Progressive Gradient Descent (PGD) Madry et al. (2018), Carlini & Wagner (CW) Carlini & Wagner
(2017), and AutoAttack Croce & Hein (2020). We use ϵ = 8

255 , 16
255 , and 32

255 . For iterative attacks
we use an ϵ step of 1

255 and a number of iterations equal to min(4 + ϵ, 1.25 ∗ ϵ) for 10, 20, and 36
iterations for the respective ϵ values, as suggested by Kurakin et al. (2018). Attacks use an L∞-norm
with the exception of C&W, which uses L2-norm. Additional details can be found in the SM.

MI Estimation: We use a reduced-complexity MI estimator called the ensemble dependency graph
estimator (EDGE) Noshad et al. (2019). The estimator combines randomized locality-sensitive
hashing (LSH), dependency graphs, and ensemble bias-reduction methods. We chose EDGE because
it has been shown that it achieves optimal computational complexity O(n), where n is the sample
size. It is thus significantly faster than its plug-in competitors Kraskov et al. (2004); Moon et al.
(2017); Noshad et al. (2017). In addition to fast execution, EDGE has an optimal parametric MSE
rate of O(1/n) under a specific condition.

Adversarial Training: Adversarial training is an approach to making models more robust to
adversarial attacks by producing adversarial examples and inserting them into the training data. Given
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adversarial examples in the original input, we focus on the min-max formulation of adversarial
training that uses standard training on a classifier by minimizing a loss function that decreases with
the correlation between the weighted combination of the features and the label Goodfellow et al.
(2015); Madry et al. (2018), minθ (x,y)∼D

[
maxδ Lθ(x+ δ, y)

]
.

3.2 LEARNING HYPERPARAMETER ρ

A key point in the claim of Theorem 2 is to determine the hyperparameter ρa+1 that bound the
dependency between last layer in subnetwork fa := F (a) and first layer in subnetwork fb := F (a+1,n)

and hyperparameters ρa+2, . . . , ρn that bound dependencies between consecutive layers in fb. Within
the experimental results we denote these values as ρn, . . . , ρa+1, where ρn corresponds to the last pair
of layers in fb. We have devised a novel adversarial training algorithm to determine these ρ-values
that learns hyperparameters and supports that subnetwork robustness guarantees network robustness.

Algorithm 1 Learning Hyperparameter ρ

Do regular and adversarial training of F (n) as
(fa, fb) and (f∗

a , f
∗
b ) respectively

Store test accuracy of adversarial training
(f∗

a , f
∗
b ) as Acc∗

Set k to be as small as possible
Initialize ρa+1, . . . , ρn = ∞, . . . ,∞
for t = 1, . . . , T do

Load fb; freeze f∗
a

for e = 1, . . . , E do
Do one epoch of adversarial training of
fb to get f̃b
Store test accuracy of (f∗

a , f̃b) as Accet
if Acc∗ −Accet ≤ k then

Break out of epoch loop and store
Accet

end
end
for j = a+ 1, . . . , n do

Compute Ij,t as given in (5) for all con-
secutive layers in (f∗

a , f̃b), then store Ij,t
end

end
Ãcc= largest Accet
ρj = smallest Ij,t for j = a+ 1, . . . , n

Report ρa+1, . . . , ρn and Ãcc

This procedure labeled Algorithm 1, assumes
that the mutual dependency between the two
parts of a network F (n) is based on their MI mea-
sure. To retrieve baseline results, this method
first performs standard (“regular”) training of
the whole network with the original dataset, and
then the same training is done with adversarial
examples of that set. The network’s two halves
are denoted fa and fb if regularly trained, or
f∗
a and f∗

b if adversarially trained. In the next
stage, the algorithm runs T trials, each of which
does adversarial training on fb for E epochs
while f∗

a is frozen. The second part of F (n)

after being trained for an epoch is labeled f̃b.
Ideally, the current training accuracy of the net-
work Accet should approach Acc∗ within a small
value of k, at which point the training in the
current trial ends. Next, the class conditional
MI, Ij,t :=

∑
y π(y)I(f

(j−1); f (j)|y), between
each pair of consecutive layers from f (a) to
f (n), is calculated. As the trials progress the
largest testing accuracy achieved (Ãcc) is up-
dated, along with the corresponding trials’ Ij,t
values (ρa+1 to ρn). After adversarial training
ends, these results are reported for the trial which
achieves the highest adversarial testing accuracy
Ãcc. We provide the hyperparameter settings for
Algorithm 1 in the SM.

3.3 PIECE-WISE ADVERSARIAL ROBUSTNESS GUARANTEED

The experimental results support our claims in Theorem 2.The tests span AlexNet, VGG16, and
ResNet50 architectures on CIFAR-10, CIFAR-100, and Imagenette datasets. As the network always
undergoes the same procedure for standard training, the regular test accuracies are the same for all fb
sizes. If Theorem 2 is correct, then despite f∗

a being frozen when training fb, the network should still
be robust to adversarial examples due to the mutual dependencies within it. We see in Table 1 that
the fb network training frequently approaches within 1− 2% of Acc∗ across varying combinations
of networks and datasets. For this experiment the number of trainable (e.g. convolutional or linear)
layers in fb varies by network with values of 4, 12, and 16, to ensure that fb comprises a large portion
of the respective networks. For this table all data was attacked with AutoAttack using ϵ = 8

255 .
We report the adversarial test accuracies of the fully robust model (Acc∗), the semirobust network
(f∗

a , fb) denoted (Accsr), and the the network (f∗
a , f̃b) denoted Ãcc.
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Table 1: Subnetwork training with AutoAttack on varying setups

Model Dataset fb layers Acc∗ Accsr Ãcc Diff. ρn ρn−3 ρn−7 ρn−11 ρn−15

AlexNet CIFAR10 4 64.7 19.7 64.5 -0.2 1.92 5.16 - - -
CIFAR100 4 33.6 16.9 32.3 -1.3 2.79 3.55 - - -
Imagenette 4 75.3 67.3 74.0 -1.2 2.17 6.24 - - -

VGG16 CIFAR10 12 79.0 63.9 76.6 -2.5 3.22 5.27 6.83 7.60 -
CIFAR100 12 54.2 38.5 51.8 -2.4 3.05 3.59 4.11 4.28 -
Imagenette 12 91.0 26.1 86.0 -5.1 2.35 6.82 7.07 7.11 -

ResNet50 CIFAR10 16 75.8 46.7 74.7 -1.1 3.22 5.93 6.69 6.70 6.48
CIFAR100 16 56.7 25.8 55.9 -0.8 3.26 3.92 4.14 3.91 3.95
Imagenette 16 89.2 9.5 82.3 -6.9 3.05 6.17 6.61 6.58 0.00

Figure 1: Connectivity values of layers in f̃b on multiple datasets at large relative sizes of fb

Guarantees for Multiple Layers Robustness: We report the behavior of ρ across various sizes of fb,
models, and datasets in Figs.1 and 2. Both experiments were run on data perturbed with AutoAttack
using ϵ = 8

255 . Starting from the output layer f(n), each prior layer of f(n−x) (where x is the x-axis
value) tends to show higher ρ values, leveling off at a certain depth. An exception for this tends
to occur when training fb fails to converge, sometimes resulting in ρ values close to 0 in the early
layers of fb. This can be seen in Fig. 1 for ResNet50 on Imagenette. The accompanying data table in
the SM reflects that this particular run of ResNet50 failed to achieve an Ãcc similar to Acc∗. Such
occurrences support the idea that a sufficient ρa+1 is required to achieve subnetwork robustness of fb.

Effects of Dataset, Network, and Attack Type on ρ: In order to investigate the effects of dataset,
network type, and attack type on the observed ρ values, we ran a series of experiments for Algorithm 1
with certain hyperparameters held constant which are found in the SM along with additional analysis.
We observe that attack type and network depth lack readily apparent trends with the values of ρ for
each layer. We do observe a clear trend where the range of values of ρ obtained across the layers of
f̃b is smallest for CIFAR-100 and largest for Imagenette.

Experimental Analysis We observe in our experiments that changes in the dataset impact the values
of ρ. CIFAR-100 consistently reported the lowest values of ρ for a given layer while Imagenette
reported the highest, reflecting the network’s accuracy on these datasets. A likely reason for this
is that for a task which the network has accurately learned, it displays high MI between each layer
to facilitate this high performance. Similarly, we show that for deeper layers in the network within
f̃b, ρ tends to take higher values. This may indicate that deeper networks provide a better flow of
information which enables fa+1 to readily learn to utilize the features in fa. Our results indicate that
when subnetwork training fails to reproduce Acc∗, ρa+1 is often ≈ 0, indicating that the network isn’t
properly learning to pass information from the subnetwork f∗

a . We report no clear trends between ρ
and any of the attack types or magnitudes used here. This, coupled with the frequent matching of
performance when compared to Acc∗, indicates that our method is largely orthogonal to each attack
type, resulting in comparable performance while leveraging the robustness of the first subnetwork.

8
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4 RELATED WORK

Figure 2: Connectivity values of ResNet50 on
CIFAR-10 perturbed by AutoAttack

An important paper that studies adversarial ro-
bustness from a theoretical perspective is by
Ilyas et al. (2019), who claim that adversarial
examples are “features” rather than bugs. The
authors state that a network’s being vulnera-
ble to adversarial attacks “is a direct result of
[its] sensitivity to well-generalizing features in
the data”. Specifically, deep neural networks
are learning what they call “useful, non-robust
features”: useful because they help a network
improve its accuracy, and non-robust because
they are imperceptible to humans and thus not
intended to be used for classification. Conse-
quently, a model considers robust features to be
about as important as non-robust ones, yet ad-
versarial examples encourage it to rely on only
non-robust features. Ilyas et al. (2019) introduces a framework to explain the phenomenon of adver-
sarial vulnerability. Rather than focusing on which features the model is learning, our method’s focus
is on proving a probabilistic close-form solution to determine the minimal subnetwork which needs
to be adversarially trained in order to confer full-network adversarial robustness.

More recently some attention has been given to the adversarially robust subnetworks through methods
following the concept from Frankle & Carbin (2018) including Peng et al. (2022) and Fu et al. (2021).
Although these works are also interested in robust subnetworks, the focus is often more empirical, or
focuses on the robustness of the subnetwork itself, rather than what we do which is to investigate
how other subnetworks can benefit from that semirobustness. Applying the theory outlined here to
such methods could provide an interesting avenue for Continual Learning, where robust subnetworks
are sequentially identified and built up over a series of tasks by incorporating the theory behind
semirobustness.

5 CONCLUSION

Discussion We have introduced here the notion of semirobustness, when a part of a network is adver-
sarially robust. The investigation of this characteristic has interesting applications both theoretically
and empirically. We prove that if a subnetwork is semirobust and its layers have a high dependency
with later layers the second subnetwork is robust. This has been proven under non-linear dependency
(MI) and linear connectivity between layers in two subnetworks. As our method makes no assump-
tions on how the subnetwork is adversarially trained, it is expected to serve as an orthogonal approach
to existing adversarial training methods. This is supported by our experimental observations that
attack type had little impact on the trends seen for ρ. We additionally show through our experiments
that given a semirobust network where fewer than half of the layers are adversarially robust (as with
VGG16 when fb contains the last 12 trainable layers), training the remaining non-robust portion for a
small number of epochs can nearly reproduce the robustness of a network which is fully-robust for
the same attack. Beyond the potential for subnetwork training to be used alongside other adversarial
training methods, the theory outlined here may help provide tools for other methods which rely
on training the full network to theoretically challenge this constraint by finding ways to leverage
semirobustness within their network.

Looking ahead One open question here is that how we can determine the complexity of the semiro-
bust subnetwork performance in terms of convergence rate. The answer to this question involves
investigating a bound on performance difference as a function of dependency between layers (ρ).
In addition, although the trend observed between ρ and dataset is consistent and clear, it’s less
apparent the reason. The narrower range of ρ values in CIFAR-100 is most likely due either to the
larger number of classes (100 vs 10) or the lower resulting predictive accuracy (which is at least
in part due to the larger number of classes). Imagenette on the other hand has the same number of
classes as CIFAR-10, but significantly larger images (224x224 vs 32x32), and fewer samples. Further
investigation of this relationship remains an interesting future avenue of investigation.
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