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ABSTRACT

Bayesian optimization (BO) is a sample-efficient optimization technique for
black-box optimization, and using transfer learning to leverage historical informa-
tion from related tasks can greatly improve its performance. Multi-task Gaussian
processes are commonly used to transfer knowledge from source tasks to target
tasks, but these models often make strong assumptions about the relationships be-
tween tasks and thus suffer from negative transfer and degraded predictive perfor-
mance when these assumptions are violated. In this paper, we present Multi-Task
Prior-Data Fitted Networks (MTPFNs), a flexible surrogate model that emulates
Bayesian inference over user-specified priors over the relationship between tasks.
We also propose a novel data-generation procedure specifically designed for the
Bayesian optimization transfer setting which enables MTPFNs to be robust to
negative transfer and efficiently leverage relevant information. Across a variety of
synthetic and real-world benchmarks including hyperparameter optimization, we
demonstrate that MTPFNs successfully transfer knowledge in challenging scenar-
ios where existing multi-task Gaussian processes struggle, outperforming existing
robust transfer learning methods for Bayesian optimization.

1 INTRODUCTION

Black-box optimization is widely used in scientific settings and industrial applications to optimize
the outputs of resource-intensive processes, especially in scenarios where there is no known analyt-
ical form and gradient information is not available. For example, a practitioner may wish to tune
the hyperparameters of a machine learning model (Snoek et al., 2012), an engineer may seek to
find an optimal design for a new automobile (Liao et al., 2008), and a chemist may aim to design a
reaction by choosing the concentrations and experiment conditions (Shields et al., 2021). For these
costly design problems, Bayesian optimization (BO) is a popular sample-efficient method that aims
to find the global optimum with a minimal number of function evaluations by fitting a probabilistic
surrogate model to the observed data and selecting the next evaluation points based on an acquisition
function that balances exploration with exploitation.

Because many applications of Bayesian optimization are costly and thus limited to a small number
of observations, it can be especially valuable to incorporate information from related tasks. For ex-
ample, when tuning the hyperparameters for a machine learning model, the performance of previous
model evaluations with slightly varied training data or model architectures may offer useful insights.
Multi-task Gaussian processes (MTGP) surrogate models are a widely used approach for transfer-
ring information from related tasks: by jointly modeling data from the target task with the data from
auxiliary sources, the model can leverage the correlations between tasks to improve predictions for
the target task. However, this joint modeling introduces a trade-off between data efficiency and ro-
bustness. The approaches that fit a single MTGP to all of the data (Bonilla et al., 2007) may make
strong assumptions about how different tasks are correlated and experience negative transfer, where
the inclusion of unrelated tasks degrades performance. Meanwhile, other approaches that fit sepa-
rate Gaussian Processes (GPs) per task and ensemble their predictions (Tighineanu et al., 2024) are
more robust to negative transfer but cannot jointly capture cross-task information. As a result, it is
difficult to design surrogate models that simultaneously enable efficient and flexible transfer while
remaining robust to spurious task relationships in the classical GP framework.
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Prior-data Fitted Networks (PFNs) (Müller et al., 2021) offer an attractive alternative to Gaussian
Processes because they are capable of approximating the posterior for any prior over functions that
can be sampled from. This enables them to mimic the behavior of Gaussian processes, while also
allowing Bayesian inference over complex bespoke priors. However, PFNs have only been applied
in single-task settings, where all observations are assumed to come from one underlying function.

In this work, we propose Multi-Task Prior-data Fitted Networks (MTPFNs), a surrogate model ex-
plicitly designed for robust transfer learning for Bayesian optimization. We propose a novel data
generation procedure that mixes data from both related and unrelated tasks, enabling our MTPFN to
generalize better in classical transfer learning tasks while being more robust to negative transfer from
irrelevant auxiliary sources. This prior would not be easily specified in a GP. Our MTPFN utilizes
a novel hierarchical attention architecture that effectively captures intra-task and inter-task relation-
ships and facilitates transfer. We demonstrate the efficacy of MTPFNs for Bayesian optimization
across a diverse set of synthetic problems and real-world hyperparameter optimization benchmarks,
which highlights that MTPFN avoids negative transfer and is more sample-efficient than existing
robust transfer learning methods for BO.

2 BACKGROUND AND RELATED WORK

2.1 BAYESIAN OPTIMIZATION

Bayesian optimization (Garnett, 2023) is a sample-efficient approach for optimizing a black-box
function f over a compact domain X ⊂ RD. Often the observations are corrupted by additive
noise y = f(x) + ϵ(x), where ϵ(x) a noise process. At iteration t, BO fits a probabilistic model
parameterized by θ, typically a Gaussian process (Rasmussen, 2004), to the collected data Dt =
{(xi, yi)}ti=1, and yields a posterior distribution p(f | Dt, θ). An acquisition function a(x; θ) then
uses this posterior to balance exploration and exploitation by quantifying the utility of evaluating
a new point. The next evaluation point is selected by maximizing the acquisition function xt+1 =
argmaxx a(x; θ). The new observation (xt+1, yt+1) is added to the dataset, and the process repeats,
iteratively guiding the search toward the global optimum x∗ = argmaxx∈X f(x). The quality of
the surrogate model is key to the success of BO, and improvements in the model typically lead to
improvements in performance (Hvarfner et al., 2024).

In the transfer learning setting, we aim to find the global optimum of a target task x∗ =
argmaxx∈X f0(x) while having access to evaluations from auxiliary tasks {fk}Kk=1. Each observa-
tion consists of an additional task index k, and the dataset is Dt = {(xi, yi, ki)}nt

i=1. The acquisition
function a(x; θ) is then used to select the next point for the target task. In order for transfer learning
to improve BO performance, the surrogate model must be able to infer the relationship between the
tasks and use this information effectively.

2.2 MULTI-TASK GP SURROGATE MODELS

One approach for transferring knowledge from auxiliary tasks in BO is to jointly model the target
and auxiliary data using a Multi-Task (MTGP) (Bonilla et al., 2007; Swersky et al., 2013; Yogatama
& Mann, 2014; Poloczek et al., 2017; Joy et al., 2019). The intrinsic coregionalization model (ICM)
(Goovaerts, 1997; Swersky et al., 2013) is a widely used MTGP that decomposes the kernel into two
components k((x, t), (x′, t′)) = kinputs(x, x

′) ·ktasks(t, t
′), where kinputs is a kernel that represents the

covariance between inputs and ktasks captures the covariance between tasks. This model efficiently
transfers information by assuming that the tasks share a similar latent structure, but this strong
assumption can lead to negative transfer when the tasks have distinct properties. There are MTGPs
with weaker assumptions, such as the linear model of coregionalization (Goovaerts, 1997), but these
flexible models come with higher computational complexity and may lead to overfitting. Moreover,
MTGPs which jointly model all tasks scale cubically with the number of data points, making them
infeasible for transfer learning with many observations across source tasks.

Other approaches focus on scalability: some methods fit separate GPs to each auxiliary task and
ensemble their predictions to inform the target prediction (Golovin et al., 2017; Feurer et al., 2018;
Wistuba et al., 2018; Dai et al., 2022), but the transfer is less efficient than in an ICM-based MTGP
since they do not leverage the same coregionalization assumptions about the similarity between
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(a) Four-task problem setting

Target Task Source Task (Related) MTPFN (Ours) TabPFNv2 TabPFNv2 (Target-Only)

Source Task (Related) Source Task (Unrelated) ICM ScaML GP (Target-Only)

(b) Model predictions on the target task

Figure 1: MTPFNs effectively transfer information from related tasks while remaining robust
to unrelated tasks. Compared to joint models such as ICM, ScaML, and TabPFNv2 with a categor-
ical task variable, our MTPFN demonstrates improved robustness to the unrelated source task (red).
The MTPFN is also able to borrow strength from the related source tasks (green) and outperforms
models which only consider the target task. We plot the mean and 95% confidence intervals.

functions. Other methods use data from source tasks to improve the prior distribution over the GP
hyperparameters for target-task (Wang et al., 2024; Fan et al., 2022), but this transfer is also less
efficient than an ICM-based MTGP because the transfer only occurs through the hyperparameters,
and not by correlating observations. Tighineanu et al. (2024) propose a scalable joint modeling
approach (ScaML) between the target task and auxiliary tasks. While this improves over per-task
GPs by modeling the target and auxiliary data together, it does not capture correlations among
auxiliary tasks, leaving a substantial portion of the multi-task structure unexploited. In contrast, our
method jointly models all tasks and their interactions in a scalable and robust manner.

2.3 NEURAL NETWORK META-LEARNING

There has been a growing interest in using neural-network based approaches for Bayesian opti-
mization. Single-task methods like OptFormer (Chen et al., 2022) use transformers trained on past
optimization trajectories to propose promising query points, while NAPs (Maraval et al., 2023) are
trained to predict acquisition function values from large offline datasets. These models can effi-
ciently guide optimization, but generally require substantial domain-specific data during training.

This meta-learning approach has also been extended to multiple tasks: Multi-Task Neural Processes
(Kim et al., 2022) require supervised pre-training on large multi-task datasets to learn specific rela-
tionships (e.g., weather patterns across cities), limiting them to their training domain. In contrast,
MTPFNs perform transfer learning through in-context learning, allowing a single model to dynam-
ically adapt to any configuration of task relationships. Our approach does not have any dependence
on the availability of pre-training data, and so our method is particularly suited for Bayesian opti-
mization scenarios where rapid adaptation to new problem contexts given limited data is essential.

2.4 IN-CONTEXT LEARNING

Transformer neural processes (TNPs) (Nguyen & Grover, 2022) and prior-data fitted networks
(PFNs) (Müller et al., 2021) are transformers trained to approximate the posterior predictive dis-
tribution for a prior specified over a hypothesis space H. A PFN, denoted by fθ, inputs a dataset D
and test point xtest and outputs a distribution over the target variable p(ytest|xtest,D). To train fθ to
approximate the posterior predictive distribution, we repeatedly sample datasets by first sampling a
hypothesis h ∼ p(h) which defines a datasets’ input-output relationship, and then sampling a dataset
D ∼ p(D|h). The PFN parameters θ are optimized by minimizing the negative log-likelihood on
held-out test examples across datasets, expressed as LNLL = ED∼p(D|h)[− log fθ(ytest|xtest,Dtrain)].
While TNPs and PFNs have successfully applied to Bayesian optimization in the single-task setting
(Müller et al., 2023; Nguyen et al., 2024), there has been no prior work which explores the use of
in-context transfer of related tasks to accelerate optimization.
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Figure 2: MTPFNs use hierarchical attention and jointly model data across information sources.

Because transfer learning increases the number of in-context data points, the underlying architecture
needs to support significantly longer context windows compared to the single-task setting. Various
approaches have been proposed to extend the attention mechanisms in transformers to longer con-
texts, such as sparse attention (Beltagy et al., 2020; Zaheer et al., 2020), hierarchical attention (Wu
et al., 2021; Chalkidis et al., 2022), and others (Katharopoulos et al., 2020; Kitaev et al., 2020). See
Zhuang et al. (2023) for a survey of efficient methods.

3 METHOD

In this section, we present the Multi-Task Prior-Data Fitted Network (MTPFN), a scalable model
that uses in-context learning to transfer relevant knowledge from auxiliary tasks.

3.1 DATA GENERATION PROCESS

PFNs are trained to approximate the posterior of a data generation process (DGP), and the design of
this prior significantly influences predictive performance. While various DGPs have been proposed
in previous works (e.g. Adriaensen et al., 2023; Hollmann et al., 2025; Müller et al., 2023), the
transfer learning setting poses unique challenges: there are complex relationships between tasks
where information may transfer through shared latent structures, and real-world scenarios frequently
contain unrelated tasks that should be ignored. To address these challenges, we propose a transfer
learning DGP that learns complex relationships while mitigating corruption from irrelevant tasks.

Our approach combines two key insights: when tasks are truly related, strong transfer can be
achieved by sharing statistical properties like lengthscales across tasks; however, since we cannot
know a priori which auxiliary tasks will be helpful for modeling the target task, the model must
explicitly decide if tasks are relevant. Our DGP models task relationships through a shared covari-
ance structure when tasks are related and introduces a probability p ∈ [0, 1] that a auxiliary task
is unrelated and should instead be modeled independently. In Figure 1, we show that ICM-based
MTGPs and existing PFN priors perform poorly in the setting where there is an unrelated task. In
contrast, our MTPFN is robust to the irrelevant task and accurately mirrors the true behavior, demon-
strating the benefit of our robust prior data generating procedure. We present the full algorithm in
Algorithm 1, with additional discussion and ablations for alternative DGPs in Section A.
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3.2 TASK REPRESENTATION

To facilitate transfer in the MTPFN, it is important to consider how the task itself should be encoded.
This encoding can influence how the model integrates information from the various sources and
impact its ability to distinguish between helpful and irrelevant tasks. In this section, we explore
different task encoding strategies and propose a novel hierarchical attention mechanism that has
many benefits over standard encoding methods.

Categorical Feature For a data point (xi, yi), its associated task can be represented as a categor-
ical feature ti ∈ {1, 2, . . . , T}, where T is the number of distinct tasks. We can represent ti using a
one-hot encoding 1ti ∈ {0, 1}T , and the final input is formed by concatenating the original feature
vector with the one-hot encoding x′

i = [xi;1ti ]. Although simple, this approach does not provide
the model with information related to the task itself. Furthermore, the maximum number of tasks
must be specified at train-time, and the model is also unable to generalize to a larger number of tasks
at test-time since the categorical feature has a fixed number of dimensions.

Task Embedding Rather than directly using the one-hot encoding of the task, we can use a task
encoder to map the task ti from a one-hot representation to a continuous embedding vector eti ∈ Rd,
where d is the embedding dimension of the model. This embedding is jointly learned with the model
parameters, allowing the task representation to adapt to task-specific characteristics. The original
input (xi, yi) is first transformed into a feature zi = ϕ(xi, yi), and then this feature is combined
with the task embedding z′i = zi + eti . This approach integrates the task information directly
into the feature space; however, the representation for the task is still learned independently of the
information within each task, and the model remains unable to generalize to more tasks at test-time.

3.2.1 HIERARCHICAL ATTENTION MECHANISM

To address these limitations, we propose a novel scalable attention mechanism for PFNs that effec-
tively leverages the natural hierarchical structure target and source datasets, as shown in Figure 2.
Our approach applies hierarchical attention (Wu et al., 2021) to the transfer learning setting and uses
specialized transformer blocks to separately model intra-task and inter-task relationships.

For intra-task encoding, we introduce a learnable “[Task]” token to each task that summarizes task-
specific properties. The intra-task transformer blocks are responsible for learning the relationships
of the data points within each task. By performing attention over these points, the intra-task block
updates the embeddings for each data point and also updates the “[Task]” token with a summary
embedding for the task, requiring O(D2) total compute per task. Then, the inter-task encoders, re-
sponsible for learning the relationship between tasks, attend to these summary “[Task]” embeddings,
with O(T 2) complexity. This hierarchical design reduces the overall attention complexity from the
naive global setting of O(D2T 2) to O(D2T +T 2), enabling significantly longer contexts while still
allowing for every data point to influence others. We interleave the intra-task and inter-task blocks
in our architecture, although Chalkidis et al. (2022) show that other topologies may also be effective.

Our hierarchical attention directly addresses many of the limitations of other task encoders. First,
our attention mechanism naturally handles inputs of varying lengths, allowing the model to general-
ize to any number of tasks. This flexibility ensures that even if the model encounters more tasks at
test time than it did during pre-training, it can still meaningfully integrate new task representations.
Furthermore, our approach enables the model to dynamically learn task representations which de-
pend on the data from the task, and its representation of each task evolves through the many layers
of attention. This enables tasks with similar patterns to develop similar representations, allowing the
model to better capture the potentially complex relationships between tasks.

4 ADVANTAGES OF MTPFNS

MTPFNs are a compelling surrogate model for transfer learning settings: their flexibility enables
them to effectively adapt to diverse, potentially irrelevant source tasks, and they are capable of effi-
ciently scaling to larger datasets than MTGPs. In contrast, although multi-task GPs are commonly
used for multi-task regression, these models often contain strong assumptions that when violated can
lead to negative transfer. Furthermore, they often trade off efficiency with expressiveness: methods
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Figure 3: MTPFNs are robust to negative transfer from unrelated tasks. We evaluate BO across
four multi-task settings, where the target task is related to {0, ..., 3} out of 3 auxiliary tasks. We
compare the performance of MTPFNs with different p, where p represents the probability that an
auxiliary task was drawn independently from the target task during training. As we increase the
number of unrelated tasks during evaluation, the MTPFNs which were exposed to unrelated tasks
during training (p > 0) outperform the ICM model, which suffers from negative transfer. We plot
the mean and standard error of the mean over 5 trials.

which jointly model all tasks capture cross-task interactions, but are computationally expensive,
while scalable methods may ignore important inter-task interactions. In this section, we provide
explicit demonstrations of the strengths of MTPFNs for transfer learning.

4.1 MTPFNS ARE ROBUST TO NEGATIVE TRANSFER

For GPs, the lengthscales are important hyperparameters that control how sensitive the covariance
is to changes in the inputs. When modeling multiple tasks, it is often assumed that these tasks
all share the same lengthscales (implied by the ICM model). However, this behavior may not be
true in practice, and GPs with the ICM kernel may fail to accurately model the problem and suffer
from negative transfer, where the inclusion of information from one task hurts the performance on
another. In contrast, the flexibility of MTPFNs allow us to train them in a way that explicitly reduces
the impacts of negative transfer, as explained in Section 3.1.

In Figure 3, we evaluate the performance of MTPFNs trained with varying proportions of unrelated
tasks. In this evaluation setting, there are three auxiliary tasks, where one, two, or three auxiliary
tasks are unrelated to the target task. When only one of the auxiliary tasks is unrelated, we find
that all of the transfer learning methods perform similarly. However, as we increase the number of
unrelated auxiliary tasks to two, we find that the MTPFNs trained on data with a higher proportion
of corrupted tasks outperform the ICM-based MTGP, which is more sensitive to negative transfer.
When we increase the number of unrelated auxiliary tasks to three out of three, we find that the
MTPFN trained with p = 0.2 is comparable to the single-task GP, which is the underlying DGP for
this problem.

4.2 MTPFNS EFFICIENTLY MODEL INTER-TASK RELATIONSHIPS

Many existing Gaussian process surrogate models trade off modeling inter-task relationships with
efficiency. To demonstrate the capabilities of MTPFNs, we design a synthetic regression problem
with multiple source tasks to highlight the importance of joint modeling. In this setting, all of the
data points across all source tasks are drawn from the same function, and this function is highly
correlated with the target task. However, there are regions of the input domain where the relevant
source tasks do not have any overlap with the target task. Therefore, the model will only be able to
make accurate predictions if it is able to leverage the relationship between source tasks.

In Figure 4 (Left), we visualize the predictive distributions of the MTPFN, ICM-based MTGP, and
ScaML. We see it is necessary to jointly model the target task along with all of the source tasks,
as done by MTPFNs and ICM, in order to accurately predict the behavior of the target task across
the entire domain. In contrast, ensemble methods such as ScaML, which do not model the joint
interactions between auxiliary tasks, are unable to capture the relevant information to make accurate
predictions and therefore have less efficient transfer.
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Figure 4: MTPFNs jointly model the data from the target and all auxiliary tasks and perform
fully Bayesian inference. (Left): MTPFNs perform similarly to other joint models like ICM and
outperform ensemble-based models like ScaML. (Right): MTPFNs have comparable performance
to fully Bayesian methods like ICM with MCMC (NUTS) sampling.

Although powerful, traditional joint modeling methods like ICM-based MTGPs are unable to scale
to a large number of tasks and data points. In Figure 9, we benchmark the runtimes of multi-task
models as we increase the number of tasks and the number of data points per task, and we find that
this problem quickly becomes unmanageable for ICM-based MTGPs. In contrast, MTPFNs are able
to scale to large amounts of data while jointly modeling all interactions.

4.3 MTPFNS QUICKLY PERFORM FULLY BAYESIAN INFERENCE

Müller et al. (2021) demonstrate that transformers that are trained to minimize the negative log-
likelihood over held-out data from a data-generating process naturally perform Bayesian inference
by implicitly learning the posterior predictive distribution. Specifically, the final model outputs a
posterior predictive distribution that marginalizes over all of the possible samples from the prior that
are consistent with the observed data.

MTPFNs also perform fully Bayesian inference as demonstrated in Figure 4 (Right), where we use
an ICM to generate 5 different transfer learning datasets with 3 input dimensions, each with 2 sam-
ples from the target task and 20 samples from each of the 3 auxiliary tasks. The auxiliary tasks have
varying amounts of correlations with the target task. We then perform 10 runs of Bayesian inference
for each transfer learning dataset and summarize the results. We find that MTPFNs perform compa-
rably to the MTGP that uses fully Bayesian inference, which we fit using MCMC sampling through
NUTS. Fully Bayesian inference is particularly helpful in the setting where there are very few ob-
servations per task and thus there should be high uncertainty over the true inter-task covariance.
The ICM model with MAP estimation does not account for this uncertainty and under-performs
in this setting. A key advantage of the MTPFN compared to the fully Bayesian MTGP is that the
MTPFN is able to make predictions using one forward pass of the model, while NUTS sampling
takes significantly longer. See Section B for more detailed timings.

4.4 MTPFNS CAN LEVERAGE DOMAIN DATA

When making predictions with PFNs, there are various methods to incorporate domain data to im-
prove the performance. One approach is fine-tuning, where the parameters of a base model are
updated to adapt to the specific characteristics of the target domain. This method enables the PFN to
specialize to the particular domain; however, fine-tuning is computationally expensive and requires
updating the model weights. Furthermore, this method is sensitive to training hyperparameters such
as the amount of data and learning rate, and it is also possible to overfit and hurt generalization. Al-
ternatively, these additional sources of data can be provided in an in-context manner to an MTPFN.
In this setting, the models are exposed to general transfer learning dataset during training, allowing
the model to learn patterns across tasks. During inference, the model uses in-context learning to
make predictions and utilizes the auxiliary information without the need for parameter updates.

We demonstrate the benefits of in-context learning compared to fine-tuning on the HPOBench
dataset (Eggensperger et al., 2021) for Logistic Regression (LR), which contains 25 tasks with 4
held out for evaluation. We compare three approaches: (1) the “Original Single-Task”, a general-
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Figure 5: MTPFNs, which use domain data through in-context learning, match the perfor-
mance of Fine-Tuned PFNs on in-domain data while generalizing better to other domains.
(Left): MTPFNs have comparable NLLs to Fine-Tuned PFNs on in-domain data (LR) and outper-
form Fine-Tuned PFNs on other domains (SVM and GP Draws). (Right): As we fine-tune on more
in-domain data, the NLL for Fine-Tuned PFNs significantly worsens for other domains.

purpose single-task model trained on Gaussian process draws with an RBF kernel; (2) the “Fine-
Tuned Single-Task”, the same base model after fine-tuning on data from the 25 LR training tasks;
and (3) “MTPFNs”, our method that uses only the 4 hold-out tasks in-context during inference,
without any fine-tuning on the 25 training tasks. We evaluate all models by measuring negative log
likelihood on the LR evaluation set as well as on other domains (SVM hyperparameter optimization
and GP draws) to assess generalization.

The results clearly demonstrate the benefits of MTPFNs over fine-tuned approaches. While fine-
tuning does improve performance on the target LR domain, it comes at a severe cost to generaliza-
tion: as we fine-tune on more LR samples, the performance on SVM and GP domains deteriorates
significantly due to overfitting. In contrast, MTPFNs, which use in-context learning, achieve compa-
rable performance on the target domain while maintaining strong generalization across all evaluated
datasets. This approach is also computationally efficient, requiring no parameter updates.

5 OPTIMIZATION BENCHMARKS

We demonstrate the effectiveness of MTPFNs across various transfer learning tasks for machine
learning hyper-optimization. We show that the models are able to effectively utilize domain data
while remaining robust to negative transfer in the context of Bayesian optimization.

For our empirical results, we use a transformer backbone with 24 attention layers, where twelve
intra-task attention layers are interwoven between eleven inter-task layers. Each attention layer has
4 attention heads with a hidden size of 512. The model is trained on approximately 50 million
synthetically generated datasets as described in Section 3.1, with a batch size of 16 and AdamW
with a learning rate of 1e-4 and cosine annealing.

We compare our method, MTPFN, to several baselines: (1) ICM (Goovaerts, 1997), a joint method
which trains a MTGP on the combined target and source data; (2) ScaML (Tighineanu et al., 2024),
an target-aware ensemble method that fits individual GPs to each source task; and (3) a single-task
GP which only uses the target task and ignores the source tasks. Our Bayesian optimization results
were implemented using BoTorch (Balandat et al., 2020) and GPyTorch (Gardner et al., 2018), and
we provide access to our code in the supplementary material.

5.1 BENCHMARKS

We compare the effectiveness of the methods on a set of hyperparameter optimization problems
for machine learning model through HPOBench (Eggensperger et al., 2021), a collection of tabular
benchmarks with hyperparameters and their corresponding loss for models in various settings, as
well as the popular FC-Net benchmarks from Eggensperger et al. (2021).

Following Tighineanu et al. (2024), we consider the hyperparameter optimization for five types of
models: support vector machines (SVM), logistic regression (LR), XGBoost (XGB), neural net-
works (NN), and random forest (RF). The source and target tasks correspond to the validation loss
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Figure 6: MTPFNs are competitive across many hyperparameter optimization benchmarks.
Each plot shows the normalized regret for Bayesian optimization loop that was initialized with 3
auxiliary tasks, 20 observations from auxiliary task, and 5 observations from the target task. (Top):
HPOBench benchmarks (Bottom): Tabular FC-Net benchmarks.

when the machine learning model is trained and evaluated on different datasets. For each setting,
we randomly sample one task to be the target function, and we sample 3 source tasks from the
remaining. We randomly sample 5 points from the target task and 20 points from each of the
sourcetasks to use as the initialization for Bayesian inference. We measure the normalized regret
(f∗ − fbest)/(f

∗ − f0) where f∗ is the optimal value, fbest is the best value so far, and f0 is the
initial value. We run 100 replicates, each with a different combination of target task and source task
initializations, and we plot the mean and one standard error.

We share the results of our benchmark in the top panel of Figure 6, and MTPFNs are competitive
across all of the model types. Specifically, we find that in instances where the sourcetasks contain
helpful information (ScaML and the ICM-based MTGP outperform the GP), the MTPFNs are also
able to effectively utilize this information. Furthermore, in cases like XGB where there is nega-
tive transfer for the ICM-based MTGP model, we find that MTPFNs are more robust and perform
similarly to the standard single-task GP.

We also consider tabular HPO fully connected neural network (FC-Net) benchmarks from
HPOBench with different training sets for the FC-Net: Slice Localization, Protein Structure, Naval
Propulsion, and Parkinson’s Telemonitoring. For each benchmark problem, the goal is to minimize
validation loss on the corresponding dataset (target task), using historical data of how the FC-Net
performed on the other datasets (source tasks). For instance, the results for Slice Localization use
Protein Structure, Naval Propulsion, and Parkinson’s Telemonitoring as source data sources. We
initialize our Bayesian optimization problem with a random sample of 5 points from the target task
and 20 points from each source task. We report the average normalized regret over 20 trials in the
bottom panel of Figure 6. MTPFN is the top performer on these problems. This is particularly
pronounced when the evaluation budgets are small, which is our setting of interest.

6 DISCUSSION

In this work, we present MTPFNs, a scalable and robust surrogate model for Bayesian optimization.
By jointly modeling multiple information sources through in-context learning, MTPFNs are able to
effectively use historical data and transfer knowledge across tasks. We also introduce a novel data-
generation process which enables the model to be more robust to negative transfer, and our empirical
results demonstrate that our method is competitive across a diverse set of benchmarks. Our results
highlight the effectiveness of leveraging domain data through in-context learning. MTPFNs are
able to successfully capture the complex relationships between the information sources and thus can
leverage auxiliary information without expensive model-fitting or fine-tuning procedures.
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A DATA GENERATION PROCESSES FOR PFNS

MTPFNs are flexible and have the capacity to incorporate various data generation processes during
training. In this section, we explore the impacts of various data generation processes for MTPFNs,
each designed to capture distinct inductive biases which improve model performance across different
types of tasks.

A.1 ROBUST ISOTROPIC FULL-RANK ICM

Algorithm 1 Data Generation Using a Robust Isotropic Full-Rank ICM

Require: Sequence length n, number of tasks T , unrelated task probability p
▷ Input Sampling and Task Assignment

1: Sample inputs {xi}ni=1 ∼ Uniform([0, 1]d)
2: Sample task proportions π ∼ Dirichlet(α)
3: for i = 1 to n do
4: Sample task ID ti ∼ Categorical(π)
5: end for

▷ Isotropic ICM Covariance Structure
6: Sample task covariance matrix KT ∼ LKJ(η = 1)
7: Sample input lengthscale ℓ ∼ Gamma(3, 6)
8: Define input covariance KX on {xi}ni=1 as RBF kernel with lengthscale ℓ
9: Compute full ICM kernel K = KT ⊗KX

10: Sample y ∼ N (0,K)
▷ Sampling Unrelated Tasks

11: for each source task j do
12: With probability p:
13: Sample new lengthscale ℓj ∼ Gamma(3, 6)

14: Define RBF kernel K(j)
X on {xi : ti = j} using ℓj

15: Resample y(j) ∼ N (0,K
(j)
X )

16: end for

In the main text, we train PFNs with the data generation process described in Algorithm 1: we
sample datapoints across tasks from a full-rank isotropic ICM model. This approach assumes that
all the input dimensions share identical lengthscales; this assumption imposes a strong prior on the
relationship between tasks, and enables effective information transfer across related tasks when the
assumption is met. This data generation process enables us to learn information across related tasks,
since the full-rank isotropic model makes strong assumptions.

To improve our model’s robustness to negative transfer, we also incorporate an additional hyperpa-
rameter p ∈ [0, 1] which dictates the relatedness of the tasks during training. Specifically, p is the
probability that any given source task is drawn independently from the target task, and thus may have
completely different behaviors and lengthscales. Our data generation procedure enables the model
to see a diverse group of datasets which consist of a mix of related and unrelated source tasks.

This p hyperparameter plays a crucial part in the robustness of the model against negative transfer:
because the model is able to see many examples of unrelated tasks during training, it becomes more
robust to seeing unrelated tasks during inference time and is less likely to be negatively impacted
from irrelevant information.

We first introduce inter-task relationships by sampling from an ICM MTGP, where the ICM’s as-
sumption of a shared lengthscale across tasks enables strong transfer when the tasks are related.
Specifically, we sample an inter-task covariance matrix from an LKJ prior with a concentration of
1.0, which provides us with a diverse set of relationships between tasks, and we sample the shared
RBF kernel lengthscale from a Gamma (3, 6) prior following the default lengthscale prior in BoTorch
v1.11 (Balandat et al., 2020). To prevent negative transfer, our DGP explicitly encodes the belief
that each source task may be irrelevant to the target task by introducing a probability p ∈ [0, 1] that
the task is instead modeled independently using a separate RBF GP with its own lengthscale. In the
following sections, we present results under a simple and transparent DGP, but different priors and
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Figure 7: As we increase p (the probability that each source task is unrelated to the target task
during data generation), the model becomes more robust to negative transfer and achieves better
performance on real-world benchmarks. We visualize the model’s predictive performance on the
HPOBench dataset, where we sample 5 data points from the target task and 20 data points each from
three source tasks. We plot the average MSE and NLL on holdout data from the target task across
25 trials.

more sophisticated DGPs can easily be accommodated within the PFN framework. See Appendix
A for additional discussions.

In Figure 7, we study the impact of p on the model’s ability to accurately predict the empirical data
from HPOBench. Specifically, for each model type (SVM, LR, XGB, NN, and RF), we randomly
sample one task to be the target task, and we sample 3 auxiliary tasks from the metadata. The target
task is randomly initialized with 5 samples, and we also sample 20 points for each of the auxiliary
tasks. We measure the mean squared error (MSE) and the negative log-likelihood (NLL) of each
surrogate model on heldout examples from the target task, and we repeat this procedure 25 times
and plot the average MSE and NLL for each trial.

We find that increasing p, which increases the diversity of the data that the model sees during train-
ing, leads to improved model performance on real-world benchmarks. We see that the MTPFN
trained with p = 0.2 consistently outperforms other MTPFNs trained with lower values of p, and
this MTPFN also outperforms baselines such as the standard ICM model, which assumes that all
tasks share the same lengthscale.

A.2 FULL-RANK ICM WITH AUTOMATIC RELEVANCE DETERMINATION

We can also relax the assumption that all of the input dimensions share the same lengthscale, and
instead sample datapoints from an ICM model with Automatic Relevance Determination (ARD),
where we assume that each input dimensions has an independent lengthscale. This enables the
PFNs to have more flexibility and fit more complex problems; however, this weaker assumption
may reduce the model’s ability to effective transfer information compared to the isotropic settings.
We describe this data generation process in Algorithm 2 and highlight the differences from the
isotropic data generation in green.

In Figure 8, we compare the performance of the MTPFN trained with isotropic lengthscales (ISO)
to the performance of the MTPFNs trained with the ARD lengthscales. This experiment follows
an identical setup to Figure 7, where we sample 5 points from a target task and 20 points each
from 3 source tasks, and evaluate the MTPFNs on held-out data from the target task. We plot the
experiments across 25 trials.

We find that the improved flexibility of the ARD lengthscale generally enables the model to have
better performance on the testing data, with the ARD outperforming ISO across many datasets.
However, in some settings such as SVM, we find that the model performance of the isotropic ICM
and the ARD ICM are comparable. This similar performance may be because the assumption of the
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Algorithm 2 Data Generation Using a Robust ARD Full-Rank ICM

Require: Sequence length n, number of tasks T , unrelated task probability p
▷ Input Sampling and Task Assignment

1: Sample inputs {xi}ni=1 ∼ Uniform([0, 1]d)
2: Sample task proportions π ∼ Dirichlet(α)
3: for i = 1 to n do
4: Sample task ID ti ∼ Categorical(π)
5: end for

▷ ARD ICM Covariance Structure
6: Sample task covariance matrix KT ∼ LKJ(η = 1)
7: Sample independent input lengthscales: ℓ = (ℓ1, . . . , ℓd) ∼ Gamma(3, 6)d

8: Define input covariance KX on {xi}ni=1 as an RBF kernel with ARD lengthscales ℓ
9: Compute full ICM kernel K = KT ⊗KX

10: Sample y ∼ N (0,K)
▷ Sampling Unrelated Tasks

11: for each source task j do
12: With probability p:
13: Sample new lengthscale ℓj ∼ Gamma(3, 6)

14: Define RBF kernel K(j)
X on {xi : ti = j} using ℓj

15: Resample y(j) ∼ N (0,K
(j)
X )

16: end for
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Figure 8: MTPFNs trained with the ARD data generation process tend to outperform MTPFNs
trained with the isotropic process (ISO) and achieve lower MSE and NLLs on HPOBench problems.

shared lengthscale across input dimension is satisfied in this setting, so the additional flexibility of
the ARD is unnecessary.
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B EMPIRICAL RESULTS AND DETAILS

B.1 SETUP DETAILS

For our empirical results, we use a transformer backbone with 23 attention layers, where twelve
intra-task attention layers are interwoven between eleven inter-task layers. Each attention layer has
4 attention heads with a hidden size of 512. The model is trained on approximately 50 million
synthetically generated datasets as described in Section 3.1, with a batch size of 16 and AdamW
with a learning rate of 1e-4 and cosine annealing.

We compare our method, MTPFN, to several baselines: (1) ICM (Goovaerts, 1997), a joint method
which trains a multi-task GP on the combined target and auxiliary data; (2) ScaML (Tighineanu
et al., 2024), an ensemble method that fits individual GPs to each auxiliary task; and (3) a single-
task GP which only uses the target task and ignores the auxiliary tasks. Our Bayesian optimization
results were implemented using BoTorch (Balandat et al., 2020) and GPyTorch (Gardner et al.,
2018), and we provide access to our code in the supplementary.

B.2 EFFICIENT MODELING OF INTER-TASK RELATIONSHIPS

MTPFNs are able to do Bayesian inference with a single forward pass. Furthermore, our proposed
hierarchical attention mechanism enables the MTPFN to scale in O(TD2 + T 2), where D is the
number of data points per task and T is the number of tasks. We compare the runtime of MTPFNs
to joint-modeling methods such as ICM and ensemble-based methods such as ScaML in Figure 9.
We see that MTPFNs are able to perform inference on an order of magnitude more data points and
tasks compared to traditional GP methods.
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Figure 9: MTPFNs are significantly faster than alternative GP-based methods.

B.3 FULLY BAYESIAN INFERENCE

When trained on a data-generation process that draws samples from a multi-task GP with an ICM
kernel, we see in Figure 10 that the MTPFN and the MTGP (ICM kernel with MAP estimation)
have comparable behavior across varying levels of correlations. Furthermore, in low-data settings
demonstrated by Figure 11, we find that the MTPFN outperforms the MTGP because it considers
the uncertainty over the task covariance matrix. This demonstrates that fully Bayesian inference
may be preferable to MAP estimation.
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Figure 10: ICM PFNs are comparable to MTGPs across varying levels of correlations between tasks.
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Figure 11: In low-data settings, ICM PFNs, which approximate fully Bayesian inference, outper-
form MTGPs with MAP estimation. ICM PFNs are comparable to MTGPs across varying levels of
correlations between tasks.

B.4 LEVERAGE DOMAIN DATA

Original Single-Task PFN Details The data generation process for the single-task PFN randomly
samples inputs x from the unit cube, and then samples the corresponding outputs y by drawing a
sample from a GP with an RBF kernel with a lengthscale sampled from Gamma(3, 6). For this
experiment, we use a fixed feature size of 2. We train an 8-layer standard transformer (not hierarchi-
cal attention) with an embedding size of 256 on this data generation process for 4 million sampled
datasets, with a batch size of 16, and AdamW with a learning rate of 1e-4 and cosine annealing.

Fine-Tuned Single-Task PFN Details To fine-tune on the LR dataset, we develop a subsampling
data-generation procedure: On the 20 training tasks, we subsample within one task to get 50 x, y.
We uniformly select some number of them to be used as ICL training, and the remaining to be used
as the test. We fine-tune the base model described above with a batch size of 16, and AdamW with
a learning rate of 1e-4 and cosine annealing.

B.5 REAL-WORLD OPTIMIZATION PROBLEMS

We consider the hyperparameter optimization for five types of models: support vector machines
(SVM), logistic regression (LR), XGBoost (XGB), neural networks (NN), and random forest (RF).
For each setting, we randomly sample one task to be the target function, and we sample 3 auxiliary
tasks from the meta-data. We randomly sample 5 points from the target task and 20 points from each
of the auxiliary tasks to use as the initialization for Bayesian inference. We measure the normalized
regret (f∗−fbest)/(f

∗−f0) where f∗ is the optimal value, fbest is the best value so far, and f0 is the
initial value. We run 100 replicates, each with a different combination of target task and auxiliary
task initializations, and we plot the mean and one standard error.
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