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Abstract

Understanding how a model will perform when deployed in unseen environments1

is essential to preventing harm when algorithms inform decision-making. Two2

important drivers of model performance degradation are (i) covariate shift where3

the target covariate distribution differs from the source and (ii) selective labels4

where the observability of outcomes is influenced by the model itself. We study5

pre-deployment model evaluation under the joint presence of covariate shift and6

selective labeling. In particular, we present a double machine learning estimation7

procedure for the risk of an arbitrary black-box prediction model for a given loss8

function. We show identification of this estimand under standard assumptions,9

and derive a bias-corrected estimator based on the influence function of the target10

risk. We demonstrate our proposed estimator through controlled synthetic data and11

semi-synthetic eICU data experiments, which show that our estimator tracks the12

true target risk more accurately than combining standard plug-in approaches.13

1 Introduction14

Prediction algorithms that perform well within the training environment can degrade when deployed15

in new or changing environments. This degradation in performance is particularly consequential16

when the algorithms inform decisions that carry high-stakes and directly affect individual welfare17

or when the decisions induce changes in the environment. Moreover, the question of understanding18

performance degradation when deploying a model in environments that look different than the19

training data is inherently one of fairness: if left unaddressed, such models may disproportionately20

underperform for demographic groups that are underrepresented in the training data.21

These concerns are well-supported empirically. As prediction algorithms are increasingly deployed to22

aid decision-making, evidence has mounted that performance can degrade significantly in new settings.23

For example, medical diagnosis algorithms have been shown to exhibit reduced performance for24

demographic groups that are underrepresented in the training data [42, 41, 14, 24, 30, 44]. Similarly,25

natural language processing tasks such as clinical text identification and hate speech detection often26

underperform on underrepresented subgroups and linguistic varieties [47, 31, 40, 29].27

A prominent cause of degraded performance is distribution shift [34] where the training and deploy-28

ment populations differ. One such class of distribution shift is known as covariate shift [43] where29

the distribution of input features changes while the causal relationship between features and the30

output remains constant. In particular, if the performance of the model varies across certain feature31

subgroups, covariate shift degrades model performance when the deployment population has a higher32

concentration of those features that are harder to predict. Even a model that performs well on average33

on the test set can have unpredictable real-world performance as a result of covariate shift [21].34

A second pertinent source of performance degradation is when outcome labels are not observed35

uniformly at random across the population. In many settings, the observability of outcome labels36
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is determined by interventions that are themselves determined by the model’s prediction. This37

phenomenon, referred to as the selective labels problem [23], impacts both learning and evaluation38

because of the selection bias that it imposes on the training data. It is difficult to estimate how the39

model would perform under counterfactual outcomes when the corresponding outcome labels are40

systematically missing.41

These two challenges, covariate shift and selective labels, often coexist in practice when algorithms42

are used to aid in high-stakes decision-making. A salient motivating example is the use of Clinical43

Decision-making Instruments (CDIs) which are predictive models used in healthcare settings to44

assist with treatment assignment. CDIs use patient features including demographics, symptoms, and45

test results, to aid in diagnosis and treatment. CDIs trained on data from large, urban hospitals are46

deployed in rural communities where patient populations and medical practices look vastly different.47

Moreover, outcome labels are observable only for those patients for which the CDI indicated need for48

further testing or observation.49

In this work, we address the task of pre-deployment model evaluation under covariate shift and50

selective labels. Our contributions are51

1. We propose a target risk functional as an estimand to assess model performance in settings52

suffering from selective labels and covariate shift.53

2. We demonstrate how to identify the target risk in terms of observable quantities in the data54

under a set of standard assumptions, and we characterize the influence function of our target55

estimand.56

3. We construct a double machine learning estimator that requires access to only selectively57

labeled data from the source environment and unlabeled covariate data from the target58

environment. Our approach applies to arbitrary black-box prediction functions and general59

loss functions.60

4. We empirically validate our method using synthetic experiments, and we illustrate our61

method in a real-world intensive care hospital setting.62

1.1 Background and Related Work63

Dataset and Covariate Shift: Here, we focus on covariate shift [43], where the marginal distri-64

bution of input features P (X) changes between the training and deployment environments while65

the conditional distribution of the label given features P (X|Y ) remains unchanged1. Classic ap-66

proaches to mitigating covariate shift rely on importance-weighted estimators [43, 46, 19], though67

such methods can suffer high variance. This challenge motivates the use of doubly robust methods68

for covariate shift correction [36, 15]. Beyond methods for correcting covariate shift, a growing body69

of works addresses the problem of evaluating models under covariate shift [7, 4, 2]. A related line of70

work examines whether a given shift is harmful in the first place, as not all shifts necessarily degrade71

performance [35, 32, 26].72

Selective Labels and Sample Selection Bias: The selective labels problem arises when a model’s73

predictions determine whether outcomes are observed. In such settings, outcome labels are available74

only for a biased sample of the overall population, which undermines learning and evaluation. In credit75

scoring mechanisms, an analogous challenge known as rejection inference is commonly addressed by76

training and evaluating models on only the labeled subset of samples [3, 1]; This approach has raised77

fairness and bias concerns [12, 13].78

Another class of methods estimates the outcome for unlabeled samples [8, 5]. Alternatively, others79

leverage heterogeneity across decision-makers to correct the model and its evaluation [20, 6]. Other80

approaches include data augmentation procedures to acquire outcomes for subpopulations that are81

underrepresented in labeled samples [9] or directly incorporating consideration for downstream82

decision-making while training and evaluating models [11].83

Double Machine Learning Double machine learning, also known as doubly robust estimation,84

is an estimation approach for settings with incomplete data that has become popular due to the85

desirable properties of the resulting estimators. In parametric settings, doubly robust estimators86

1See, e.g., [34, 25, 28] for surveys on distribution shift more broadly.
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remain consistent if either the propensity score or outcome model are correctly specified [38, 37, 22].87

Such estimators enjoy fast rates of convergence in nonparametric settings [16] and have been used88

for estimation in settings closely related to selective labels and dataset shift, e.g., policy learning [10],89

covariate shift [7, 4, 2], and the challenge of data missing not at random [27, 45].90

2 Problem Setting91

We consider the problem of evaluating a fixed prediction model under the joint presence of covariate92

shift and selective labeling. Suppose that we observe n independent and identically distributed (i.i.d)93

draws94

Z := (X,R,RD,RY ). (1)
Each sample Z comprises a covariate vector X ∈ X ⊂ Rd, a domain indicator R ∈ {0, 1}, a binary95

treatmentD ∈ {0, 1}, and a scalar outcome Y ∈ R. The labelR = 1 designates units from the source96

population governed by law PS while the label R = 0 designates units from the target population97

governed by PT ; A binary treatment D ∈ {0, 1} records an intervention of interest, and Y is the98

associated outcome.99

We adopt the potential outcomes framework [39] wherein each individual is associated with counter-100

factual outcomes Y (1) and Y (0) corresponding to the outcomes under treatment and no treatment,101

respectively. The observed outcome Y is determined by the treatment assignment:102

Y = D · Y (1) + (1−D) · Y (0). (2)

Due to selective labeling, Y is only observed for units for which R = 1 and D = 1. In other words,103

we observe labeled outcomes only for treated individuals originating from the source distribution.104

Let PS(X) := P(X|R = 1) and PT (X) := P(X|R = 0) denote the source and target covariate105

distributions, respectively, with corresponding probability density functions pS(x) and pT (x). We106

denote by ES and ET the expectation taken with respect to laws PS and PT , respectively.107

Our objective is to assess the accuracy of a fixed prediction model f : X → R, which has been108

trained to estimate the treated potential outcome Y (1). Specifically, we aim to evaluate the model109

under the target covariate distribution PT . For a given loss function ℓ : R× R → R≥0 (e.g., squared110

loss), the estimand of interest is the target risk:111

ψ := ET [ℓ (f(X), Y (1))] . (3)

3 Identification and Estimation of the Target Risk112

To describe the identification and estimation of ψ, it is convenient to introduce additional notation.113

We use L := ℓ(f(X), Y ) as shorthand notation for the loss under f . Also define the following114

nuisance functions:115

π(X) := P(D = 1, R = 1|X), ρ := P(R = 0), g(X) := P(R = 0|X), (4)

and116

µ(X) = E [L|X,R = 1, D = 1] , (5)
the conditional mean loss among treated source units. Estimation of ψ is complicated by the fact117

that Y (1) is unobserved in the target domain (R = 0) and because, in the source domain, it is only118

observed for treated individuals (D = 1, R = 1). To ensure identifiability, we impose standard119

assumptions from causal inference and transfer learning:120

Assumption 1 (No unobserved confounding). Y (d) ⊥⊥ D|X ∀ d ∈ {0, 1}.121

Assumption 2 (Covariate Shift). P(Y (d)|X,R = 1) = P(Y (d)|X,R = 0) ∀d ∈ {0, 1}.122

Assumption 3 (Positivity). There exists ε > 0 such that P(D = 1, R = 1|X) > ε almost surely.123

Assumption 4 (Bounded density ratio). There exists C <∞ such that dPT

dPS
(x) ≤ C ∀x ∈ X .124

Assumptions 1-4 enable identification of the target risk (3) from observable data. Intuitively, these125

conditions require that (i) there are no unmeasured confounders, (ii) the relationship between covari-126

ates and outcomes is invariant across the source and target domains, (iii) every covariate profile admits127

a positive probability of treatment, and (iv) the source and target distributions’ supports overlap128

sufficiently.129
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Proposition 5 (Identification of the Target Risk). Under Assumptions 1-4 and with nuisance functions130

π, ρ, g, and µ as defined in (4) and (5), the target risk ψ is identifiable from the observed data as131

ψ = ET [µ(X)] = ES

[
pT (X)

pS(X)
· D ·R
π(X)

L

]
.

This result is the foundation of our proposed estimation procedure. The first equality provides a132

convenient expression of the estimand that enables our derivation of an influence function and the133

double machine learning estimator that it motivates. The second equality gives an alternative expres-134

sion for our estimand that shows it can be identified from the source distribution by a reweighting135

procedure that resembles inverse propensity weighting (IPW) methods with an additional density136

ratio correction. A proof of this result is provided in Appendix A.1.137

3.1 Estimation of the Target Risk138

Next, we use the identification established in Proposition 5 to develop estimators for ψ based on the139

functional’s influence function. Let P denote the nonparametric model defined by Assumptions 1-4.140

Proposition 6 (Target Risk Influence Function). For every P ∈ P , the map ψ : P → R admits the141

expansion142

ψ(P)− ψ(P) =
∫
φ(z;P) d(P− P)(z) +R2(P,P), (6)

with influence function143

φ(Z;P) =
RD

π(X)

g(X)

ρ
(L− µ(X)) +

1−R

ρ
(µ(X)− ψ(P)). (7)

The remainder R2(P,P) comprises terms that are second order in the estimation errors of (µ, π, g)144

and first order in the estimation error of ρ.145

Proposition 6 establishes the influence function representation and remainder term expansion of the146

estimand ψ. The result follows from semiparametric efficiency theory, and is proved in detail in147

Appendix A.2.1. We outline the main steps of the proof here.148

First, we identify a valid candidate influence function using established results on the influence149

functions of conditional expectations and densities (see, e.g, [18]). Next, we evaluate the efficiency150

of the candidate influence function by establishing an expansion of ψ with respect to an arbitrarily151

perturbed distribution in P .152

3.2 Our double machine learning estimator of target risk153

Motivated by the influence function derived in Proposition 6, we next construct a double machine154

learning estimator for the target risk ψ. Double machine learning, also known as one-step estimators155

or doubly-robust estimators, is a popular method for constructing estimators in settings with missing156

data such as causal inference [17]. To avoid overfitting due to nuisance parameter estimation, we157

employ standard sample-splitting techniques that retain the independence of nuisance parameter158

estimates by partitioning the data into independent folds. See Appendix B.1 for a detailed description159

of this procedure.160

Formally, the estimator motivated by (7) is given by:161

ψ̂ =
1

n

1

ρ̂

n∑
i=1

[
RiDi

π̂i
ĝ(Xi) (Li − µ̂(Xi)) + (1−Ri)µ̂(Xi)

]
. (8)

where π̂, ĝ and µ̂ denote cross-fitted nuisance estimators, and ρ̂ is the empirical estimator of ρ.162

The estimator (8) enjoys the double robustness property: In a parametric setting, it is consistent if163

either (i) the conditional mean µ(X) is correctly specified or (ii) the propensity score π(X) and the164

density ratio g(X) are correctly specified. If we are using non-parametric methods to estimate the165

nuisance functions, the estimator is
√
n-consistent and asymptotically normal under sample-splitting166

and n1/4 convergence in the nuisance function estimation error.2167

2This contrasts to standard methods like the plug-in or inverse probability weighting approach that would
require

√
n convergence in the nuisance function estimation error.
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4 Experiments168

4.1 Synthetic Experiments169

Synthetic Data Generation: We evaluate and compare our proposed estimators via a synthetic170

experiment through a procedure that simulates the combined setting of covariate shift and selective171

labeling. We generate nS source samples X(S)
i ∼ N (µS ,ΣS) and nT target samples X(T )

i ∼172

N (µT ,ΣT ). By varying µS ̸= µT and/or ΣS ̸= ΣT , we simulate covariate shift between source and173

target distributions.174

Treatment and Outcome Models: For each source sample X(S)
i , we compute treatment proba-175

bilities via a logistic regression model π(Xi) = σ(α⊤Xi), where σ(·) is the sigmoid function and176

α = c · 1d for a constant c unless otherwise noted. We then sample treatment indicators Di ∼177

Bernoulli(π(Xi)), simulating a selection policy that depends on covariates. Then, we generate po-178

tential outcomes for the treated units in the source distribution Y (1)i ∼ Bernoulli(sigmoid(β⊤Xi))179

where β ∈ Rd is taken to be C · 1d for an appropriate scaling factor C unless otherwise noted. To180

introduce noise, we randomly flip the binary outcomes with probability γ ∈ (0, 1), taking γ = 0.1181

unless otherwise noted. Then we simulate selective labeling by setting Yi = NA for all units with182

Di = 0, meaning outcomes are only observed for treated units.183

Model Training: We randomly split the observed subset of the source data (i.e., units withDi = 1)184

into 80% training and 20% test subsets. We train a logistic model on the training subset to predict185

the outcome Y (1) from covariates X . This model f is used to estimate E[Y (1)|X]. We evaluate the186

mean squared error (MSE) of predictions on the held-out source test set.187

Nuisance Parameter Estimation: To account for covariate shift, we fit a domain classifier (logistic188

regression) to distinguish between source and target samples, assigning the label R = 1 to the source189

and R = 0 to the target:190

ŵ(x) =
1− P̂(R = 1|X = x)

max{P̂(R = 1), ε}
where ε is a small positive constant to avoid division by zero. This yields an estimate of the191

density ratio w(x) = pT (x)
pS(x) . Next, we fit a logistic regression model to estimate the propensity192

score: π̂(x) = P̂(D = 1|X = x,R = 1) using logistic regression trained on the source samples193

which we evaluate on both the source and target data. Next, we compute the squared error losses194

Li = (f(Xi)− Yi)
2 for the subset of samples from the source distribution that are treated and have195

observable outcomes Yi. Using these observed (Li, Xi) pairs, we train a random forest regressor196

µ̂(x) to estimate the expected loss E[L|X = x].197

Compute Naïve (Plug-in) Estimator: The plug-in estimator computes the average predicted198

squared loss on the observed treated source data, reweighting by the estimated density ratio ŵ(x) and199

the inverse propensity weights 1/π̂(x) to account for both the covariate shift and selective labels. We200

compute: ψ̂plugin = 1
nRD

∑nRD

i=1
Ri·Di·ŵ(Xi)·Li

π̂(Xi)
where nRD =

∑nP

i=1Ri ·Di, the number of labeled201

samples in the source distribution.202

Compute DML Estimator: We also compute the DML estimator for the target risk: ψ̂DML =203

1
n

∑n
i=1

(
Ri·Di·ŵ(Xi)

π̂(Xi)
(Li − µ̂(Xi)) +

1−Ri

P̂ (R=0)
µ̂(Xi)

)
where Ri is the domain indicator, Di is the204

treatment indicator, and P̂ (R = 0) denotes an empirical estimate of drawing from the target205

distribution.206

Estimate True Risk in Target with MC: To estimate the ground truth target risk, we simulate an207

oracle dataset of noracle samples from the target distribution. For each sample X(T )
i ∼ N (µT ,ΣT ),208

we generate a potential outcome using the same outcome model and again flip outcomes randomly209

with probability γ to introduce noise. The ground truth risk estimate is then computed as the mean210

5



squared error: ψoracle =
1

noracle

∑noracle
i=1 (f(Xi)− Yi(1))

2
. This serves as a benchmark against which211

we evaluate our estimators ψ̂DML and ψ̂plugin.212
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Figure 1: Results of synthetic experiment comparing DML and plug-in estimators for risk with the
true risk under increasing covariate shift magnitude, increasing sample size, and increasing noise
in the outcome model. (a) We increase the magnitude of |µS − µT | along the direction of the true
outcome model coefficients and report the average estimated risk over 30 trials for the plug-in and
DML estimators, with error bars denoting standard deviations. (b) We increase the sample size
n = nT = nS and report the estimated risk averaged over 30 trials with error bars denoting standard
deviations. (c) We increase the level of random outcome noise γ (i.e., the probability of flipping the
binary outcome of our outcome model) and evaluate the average estimated risk over 30 trials with
error bars denoting standard deviations.

Synthetic Experiment Results In Figure 1a, we see that the DML estimator consistently tracks the213

true target risk more accurately across all covariate shift magnitudes where the shift is with respect to214

the mean of the Gaussian covariate distributions, while the plug-in estimator becomes increasingly215

biased as the shift grows. In Figure 1b, we see that the both the DML and plug-in estimators improve216

as sample size increases, while the DML estimator aligns closely with the true risk while the plug-in217

estimator appears biased. In Figure 1c, we see that both estimators capture the risk trend as outcome218

noise increases while the DML estimator once again tracks the target risk more accurately.219

4.2 Semi-Synthetic Experiments220

It is well-known that dataset shifts “in the wild” are often more complicated and difficult to address221

than shifts simulated in controlled, synthetic experiments [21]. This motivates experimentation that222

incorporates real covariates and identifies natural covariate shifts rather than simulating such shifts as223

our first set of experiments did. To accomplish this task, we access data from the eICU Collaborative224

Research Database [33] which includes intensive care unit (ICU) data from multiple treatment centers225

across the United States. We leverage the fact that the data include multiple treatment sites to simulate226

the setting where a model is trained on a population that differs in demographic makeup from the227

population on which it is to be deployed. By nature of the selective labels problem, we must still228

rely on the treatment and outcome models previously described in the fully synthetic experiment229

procedure since the data include only treated and labeled patients.230

eICU Data: The eICU Collaborative Research Database [33] includes de-identified individual-231

level electronic health records from over 200,000 admissions to ICUs across multiple hospitals in232

the United States. Here, we focus on admission-level patient demographic and health data. We233

extract gender, ethnicity and age data, vitals including admission height, weight, and body mass234

index, clinical unit type (e.g., medical, surgical), and hospital ID. We one-hot-encode all categorical235

variables and impute missing values in continuous features with the median. All continuous features236

are standardized with Z-score normalization for computational tractability.237

Constructing Covariate Shift: To simulate distribution shift that captures real-world complexity,238

we use patient data from a selected training hospital to construct the training environment and use239

all patient data from the remaining hospitals to construct the target environment. In particular, we240

select training hospitals that look systematically different from the general population in age and241

race/ethnicity. Figures Figure 2 and 3 compare the age and ethnicity covariate distributions of the242

identified source and target hospitals, respectively.243
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Figure 2: Comparison of age across hospitals in the eICU data. (a) Hospital 443 tends to have younger
patients than other hospitals; (b) Hospital 199 has a typical age distribution; and (c) Hospital 283
tends to have older patients.
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Figure 3: Comparison of ethnicity covariates across hospitals. (a) Hospital 443 tends to have more
African American patients and fewer caucasian patients than other hospitals; (b) Hospital 199 tends
to have more caucasian patients; (c) Hospital 283 tends to have a larger portion of patients with
ethnicity unknown or labeled as “other”.

Semi-Synthetic Experiment Procedure: Using actual patient covariates, we simulate models and
outcomes by the same procedure as the purely synthetic experiments. We take nT to be the number
of units in the training hospital. Then, we randomly select nT samples from the remaining hospitals
to represent the unlabeled samples from the target setting. In other words, we take nS = nT . The
rest of the samples are used to construct the oracle estimate of risk. Treatment is assigned using a
draw from a Bernoulli distribution with probabilities determined by the patient features:

π(X) = σ(X⊤α)

where α in this case takes a small constant c. The outcome is similarly generated via Bernoulli244

draws with probability determined by X⊤β where β ∈ Rd is taken to be a randomly sampled and245

normalized vector of coefficients for each iteration. Once again, we simulate outcome noise by246

flipping a proportion γ of the generated outcomes. The model fitting and estimator construction247

remains unchanged from the synthetic experiments. To estimate the true risk of deploying the model248

on the target population, we construct a Monte Carlo estimate of the risk using the remaining unused249

samples.250

Semi-Synthetic Experiment Results: We use three different hospitals as the training center251

where each varies notably from the rest of the hospitals in its distribution of age, ethnicity, or both,252

as depicted in Figure 2 and Figure 3. We conduct experiments of the estimators under increasing253

noise in the outcome model as well as increasing propensity strength (increasing norm of α) and254

increasing effect size (increasing norm of β). In Figure 4, we see that the DML estimator once255

again tracks the true risk more closely. Interestingly, here we observe behavior where the plug-in256

estimator both overestimates and underestimates the true risk. While underestimation of the true257

risk is particularly consequential in the medical contexts, overestimation is also relevant when data258

acquisition and model training are costly. In Figure 5, we see that increasing the propensity strength259

has little systematic effect on either estimator, though the DML estimator once again aligns with the260

7



true risk more closely. Finally, in Figure 6, we see that increasing the effect size decreases the risk261

estimate of both estimators as well as the true risk, where the DML estimator appears to increasingly262

diverge from the true risk estimate under increasing effect size in Figure 6a.263
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Figure 4: Comparison of DML and plug-in estimators with true risk across increasing noise levels in
the outcome model γ ∈ (0.05, 0.5) across three different training hospital configurations. The error
bars represent standard deviation over 5 iterations. Our DML method more closely tracks the true
risk than the plug-in estimator.
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Figure 5: Comparison of DML and plug-in estimators with true risk across increasing norm in the
propensity parameter α and across three different training hospital configurations. The error bars
represent standard deviations over 5 iterations. Our DML method more closely tracks the true risk
than the plug-in estimator.
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Figure 6: Comparison of DML and plug-in estimators with true risk across increasing norm in effect
size parameter β and across three different training hospital configurations. The error bars represent
standard deviations over 5 iterations. Our DML method more closely tracks the true risk than the
plug-in estimator.

5 Conclusion264

We studied the problem of pre-deployment model evaluation under the joint presence of covariate265

shift and selective labels. We formalized the target risk as an estimand that captures a model’s266

expected performance in the deployment environment, and established conditions under which it267

is identifiable from observable data. We derived an influence function representation of the target268

8



risk and used it to construct a doubly robust, double machine learning estimator. Our estimator uses269

selectively labeled source data and unlabeled data from the target distribution.270

Through synthetic and semi-synthetic experiments, we showed that our estimator more accurately271

tracks the true target risk in comparison with standard plug-in procedures. These results highlight the272

importance of developing tools that can account for multiple coexisting data challenges. In particular,273

the combination of covariate shift and selective labels, each of which has been studied extensively in274

isolation, poses distinct difficulties and is likely to arise in high-stakes domains such as healthcare.275

Our work also points to several directions for future work. Relaxing the assumption of no unmeasured276

confounding and constructing similar estimators for other types of dataset shift would provide277

insight into other important domains where prediction algorithms inform decisions. In addition,278

many of the environments where our framework is relevant are also those in which it is natural to279

desire fairness-aware evaluation. Adapting our approach to explicitly consider fairness, e.g., by280

evaluating performance gaps across subgroups, would further strengthen the reliability of algorithmic281

decision-making.282
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A Proofs398

A.1 Proof of Proposition 5399

Define L(d) := ℓ(f(X), Y (d)) for d ∈ {0, 1}. We begin by showing the first equality. By law of400

total expectation,401

ψ = ET

[
L(1)

]
= ET

[
E
[
L(1)|R = 0, X

]]
. (9)
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By Assumption 2,402

ET

[
E
[
L(1)|R = 0, X

]]
= ET

[
E
[
L(1)|R = 1, X

]]
. (10)

By Assumption 1,403

ET

[
E
[
L(1)|R = 1, X

]]
= ET

[
E
[
L(1)|R = 1, D = 1, X

]]
(11)

By (2),404

ET

[
E
[
L(1)|R = 1, D = 1, X

]]
= ET [E [L|R = 1, D = 1, X]] (12)

and the first equality follows by the definition of µ and by combining (9)-(12).405

To show the second equality, we start with ψ = ET [µ(X)]. We begin by expressing this quantity as406

an integral over the covariate space and applying Assumption 4:407

ψ =

∫
x∈X

µ(x)pT (x)dx =

∫
x∈X

µ(x)
pT (x)

pS(x)
pS(x)dx = ES

[
pT (X)

pS(X)
µ(X)

]
. (13)

By law of total expectation and by definition of R,408

ES

[
pT (X)

pS(X)
µ(X)

]
= ES

[
pT (X)

pS(X)
· E[L | X,R = 1, D = 1]

]
= ES

[
pT (X)

pS(X)
ES [L | X,D = 1]

]
.

(14)
Observe that, by another application of law of total expectation,409

ES [L|X,D = 1] =
ES [DL|X]

P(D = 1|X,R = 1)
. (15)

Combining (13)-(15) yields410

ψ = ES

[
pT (X)

pS(X)

ES [DL|X]

P(D = 1|X,R = 1)

]
.

An application of the Tower Property and the definition of conditional probability yields the claim. ■411

A.2 Candidate Influence Function Derivation412

The following lemma recalls well-known results characterizing the influence functions of conditional413

expectation and density functions. See, e.g., [17].414

Lemma 7 (Auxiliary Influence Functions). For the conditional loss function µ(x), its influence415

function IF {µ(X)} is given by:416

IF {µ(x)} =
D ·R · 1{X = x}

P(X = x,R = 1, D = 1)
(L− µ(x)) . (16)

Similarly, for the target covariate density pT (x), its influence function is given by:417

IF {pT (x)} =
1−R

P(R = 0)
(1{X = x} − pT (x)) . (17)

Lemma 8 (Target Risk Influence Function). Define418

φ(Z;P) =
RD

π(X)

g(X)

P(R = 0)
(L− µ(X)) +

1−R

P(R = 0)
(µ(X)− ψ(P)). (18)

Then EP [φ(Z;P)] = 0 and, for every one-dimensional parametric sub-model Pε = (1− ε) · P+ εP419

with score function sε,420

∂

∂ε
ψ(Pε)

∣∣
ε=0

= EP [φ(Z;P)sε(Z)] .

That is, φ(·;P) is a influence function for ψ.421
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A.2.1 Proof of Proposition 6422

Following the semiparametric calculus of [17], we treat X as a discrete set, apply Gateaux differenti-423

ation separately to each of µ(·) and pT (·), and invoke the product rule for influence functions:424

IF {ψ} =
∑
x∈X

IF {µ(x)} pT (x) +
∑
x∈X

µ(x)IF {pT (x)} .

Applying the building block influence functions (16) and (17) given in Lemma 7 together with Bayes’425

Rule, we obtain:426

IF {ψ} =
R ·D
π(X)

g(x)

P(R = 0)
(L− µ(X)) +

(1−R)

P(R = 0)
(µ(X)− ψ) .■

A.3 von Mises Expansion427

Lemma 9 (von Mises expansion). For any two candidate laws P and P ∈ P , the mapping ψ : P → R428

admits the expansion429

ψ(P)− ψ(P) =
∫
φ(z;P) d(P− P)(z) +R2(P,P) (19)

where φ is as defined in (18) and the remainder term R2(P,P) is given by430

R2(P,P) =
∫
g

ρ
µP−

∫
g

ρ
µP+

∫
g

ρ

π

π
(µ− µ)P+

ρ

ρ

∫
g

ρ
µP−

∫
ρ

ρ

g

ρ
µP

where we have supressed the arguments of functions in each term for brevity.431

Proof of Lemma 9. For any two candidate laws P and P on Z = (X,R,RD,RY ), the von Mises432

expansion of the estimand ψ around P is given by:433

ψ(P)− ψ(P) =
∫
φ(z;P) d(P− P)(z) +R(P,P) (20)

where φ(z;P) is a candidate influence function of ψ under P and R(P,P) is the remainder term434

which we will show is second-order. Since φ(z;P) is centered under P, (20) can be rearranged to435

express the remainder term as:436

R(P,P) = ψ(P)− ψ(P) +
∫
φ(z;P) dP(z). (21)

To evaluate the remainder, we express the influence function in terms of the nuisance terms µ(X),437

π(X), and g(X) defined with respect to P together with their counterparts µ(X), π(X) and g(X)438

defined with respect to P.439

We make use of the following two identities which hold for any measurable functions h(X,Y ) and440

h(X), respectively:441

EP[RD · h(X,Y )] = EP[π(X) · h(X,Y )],

EP [(1−R) · h(X)] = P(R = 0) · EP [h(X)|R = 0] .

Applying these identities to our remainder term allows us to express the integral term as follows:442 ∫
φ(z;P) dP (z) = EP

[
g(X)

P(R = 0)

π(X)

π(X)
(µ(X)− µ(X))

]
+
P(R = 0)

P(R = 0)

(∫
µ(X)dP(X|R = 0)− ψ(P)

)
.

(22)
By substituting the preceding integral term (22) into our expression for the remainder (21), we reach443

the expression:444

R2(P,P) =
∫
g

ρ
µP−

∫
g

ρ
µP+

∫
g

ρ

π

π
(µ− µ)P+

ρ

ρ

∫
g

ρ
µP−

∫
ρ

ρ

g

ρ
µP

where we have suppressed the arguments from each nuisance function for compactness (i.e., we write445

µ for µ(X)). A series of algebraic manipulations yield the equivalent expression:446

R2(P,P) =
∫

(ρ− ρ)
g

ρ2
µP+

∫
(ρ− ρ)

g

ρρ
µP+

∫
g

ρ

(π − π)

π
(µ−µ)P+

∫
(g − g)

ρ
(µ−µ)P.

447
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B Estimation Details448

B.1 Sample splitting nuisance function estimation449

Given n i.i.d. samples Zn := {Zi = (Xi, Ri, Di, Yi)}ni=1 where each Zi is as in (1), we randomly450

partition the index set {1, . . . , n} into K ≥ 2 disjoint folds I1, . . . , IK such that for each fold k,451

|Ik| ≈ n/K. For each index i ∈ [n], let k(i) denote the the fold containing the i-th observation. Then,452

for each fold k, construct an empirical estimate of each nuisance function using only samples outside453

of the k-th fold; Let µ̂(−k), π̂(−k), and ĝ(−k) denote such held-out estimates of the functions µ, π,454

and g, respectively. Notice that, by construction, each of µ̂(−k), π̂(−k), and ĝ(−k) are independent of455

samples Zi ∈ Ik. Then, for each i ∈ [n], set456

µ̂i = µ̂−k(i)(Xi), π̂i = π̂−k(i)(Xi), ĝi = ĝ−k(i)(Xi),

that is, evaluate the plug-in estimate on the held-out sample. To estimate ρ, we simply take the full457

sample mean:458

ρ̂ =
1

n

n∑
i=1

(1−Ri) .
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