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Abstract

Understanding how a model will perform when deployed in unseen environments
is essential to preventing harm when algorithms inform decision-making. Two
important drivers of model performance degradation are (i) covariate shift where
the target covariate distribution differs from the source and (ii) selective labels
where the observability of outcomes is influenced by the model itself. We study
pre-deployment model evaluation under the joint presence of covariate shift and
selective labeling. In particular, we present a double machine learning estimation
procedure for the risk of an arbitrary black-box prediction model for a given loss
function. We show identification of this estimand under standard assumptions,
and derive a bias-corrected estimator based on the influence function of the target
risk. We demonstrate our proposed estimator through controlled synthetic data and
semi-synthetic eICU data experiments, which show that our estimator tracks the
true target risk more accurately than combining standard plug-in approaches.

1 Introduction

Prediction algorithms that perform well within the training environment can degrade when deployed
in new or changing environments. This degradation in performance is particularly consequential
when the algorithms inform decisions that carry high-stakes and directly affect individual welfare
or when the decisions induce changes in the environment. Moreover, the question of understanding
performance degradation when deploying a model in environments that look different than the
training data is inherently one of fairness: if left unaddressed, such models may disproportionately
underperform for demographic groups that are underrepresented in the training data.

These concerns are well-supported empirically. As prediction algorithms are increasingly deployed to
aid decision-making, evidence has mounted that performance can degrade significantly in new settings.
For example, medical diagnosis algorithms have been shown to exhibit reduced performance for
demographic groups that are underrepresented in the training data [42| 141} 14} 24} |30} 44]. Similarly,
natural language processing tasks such as clinical text identification and hate speech detection often
underperform on underrepresented subgroups and linguistic varieties [47, 31} 140, 29].

A prominent cause of degraded performance is distribution shift [34] where the training and deploy-
ment populations differ. One such class of distribution shift is known as covariate shift [43] where
the distribution of input features changes while the causal relationship between features and the
output remains constant. In particular, if the performance of the model varies across certain feature
subgroups, covariate shift degrades model performance when the deployment population has a higher
concentration of those features that are harder to predict. Even a model that performs well on average
on the test set can have unpredictable real-world performance as a result of covariate shift [21]].

A second pertinent source of performance degradation is when outcome labels are not observed
uniformly at random across the population. In many settings, the observability of outcome labels

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



37
38
39
40
41

42
43
44
45
46
47
48
49

50
51

52
53

54
55
56

57
58
59
60

61
62

63

64
65
66
67
68
69
70
71
72

73
74
75
76
77
78

79
80
81
82
83

84
85
86

is determined by interventions that are themselves determined by the model’s prediction. This
phenomenon, referred to as the selective labels problem (23], impacts both learning and evaluation
because of the selection bias that it imposes on the training data. It is difficult to estimate how the
model would perform under counterfactual outcomes when the corresponding outcome labels are
systematically missing.

These two challenges, covariate shift and selective labels, often coexist in practice when algorithms
are used to aid in high-stakes decision-making. A salient motivating example is the use of Clinical
Decision-making Instruments (CDIs) which are predictive models used in healthcare settings to
assist with treatment assignment. CDIs use patient features including demographics, symptoms, and
test results, to aid in diagnosis and treatment. CDIs trained on data from large, urban hospitals are
deployed in rural communities where patient populations and medical practices look vastly different.
Moreover, outcome labels are observable only for those patients for which the CDI indicated need for
further testing or observation.

In this work, we address the task of pre-deployment model evaluation under covariate shift and
selective labels. Our contributions are

1. We propose a target risk functional as an estimand to assess model performance in settings
suffering from selective labels and covariate shift.

2. We demonstrate how to identify the target risk in terms of observable quantities in the data
under a set of standard assumptions, and we characterize the influence function of our target
estimand.

3. We construct a double machine learning estimator that requires access to only selectively
labeled data from the source environment and unlabeled covariate data from the target
environment. Our approach applies to arbitrary black-box prediction functions and general
loss functions.

4. We empirically validate our method using synthetic experiments, and we illustrate our
method in a real-world intensive care hospital setting.

1.1 Background and Related Work

Dataset and Covariate Shift: Here, we focus on covariate shift [43], where the marginal distri-
bution of input features P(X) changes between the training and deployment environments while
the conditional distribution of the label given features P(X|Y") remains unchange(ﬂ Classic ap-
proaches to mitigating covariate shift rely on importance-weighted estimators [43} 46, [19], though
such methods can suffer high variance. This challenge motivates the use of doubly robust methods
for covariate shift correction [36} [15]. Beyond methods for correcting covariate shift, a growing body
of works addresses the problem of evaluating models under covariate shift [7} 4} 2]]. A related line of
work examines whether a given shift is harmful in the first place, as not all shifts necessarily degrade
performance [35} 32} 26].

Selective Labels and Sample Selection Bias: The selective labels problem arises when a model’s
predictions determine whether outcomes are observed. In such settings, outcome labels are available
only for a biased sample of the overall population, which undermines learning and evaluation. In credit
scoring mechanisms, an analogous challenge known as rejection inference is commonly addressed by
training and evaluating models on only the labeled subset of samples [3\ [1]; This approach has raised
fairness and bias concerns [[12}|13].

Another class of methods estimates the outcome for unlabeled samples [I8,15]. Alternatively, others
leverage heterogeneity across decision-makers to correct the model and its evaluation 20, 6]. Other
approaches include data augmentation procedures to acquire outcomes for subpopulations that are
underrepresented in labeled samples [9] or directly incorporating consideration for downstream
decision-making while training and evaluating models [11]].

Double Machine Learning Double machine learning, also known as doubly robust estimation,
is an estimation approach for settings with incomplete data that has become popular due to the
desirable properties of the resulting estimators. In parametric settings, doubly robust estimators

ISee, e.g., [34L 251 128] for surveys on distribution shift more broadly.
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remain consistent if either the propensity score or outcome model are correctly specified [38} 137, 22].
Such estimators enjoy fast rates of convergence in nonparametric settings [[16] and have been used
for estimation in settings closely related to selective labels and dataset shift, e.g., policy learning [10],
covariate shift [[7, |4} 2], and the challenge of data missing not at random [27} 45]].

2 Problem Setting

We consider the problem of evaluating a fixed prediction model under the joint presence of covariate
shift and selective labeling. Suppose that we observe n independent and identically distributed (i.i.d)
draws

Z =(X,R,RD,RY). 1)
Each sample Z comprises a covariate vector X € X C R¢, a domain indicator R € {0, 1}, a binary
treatment D € {0, 1}, and a scalar outcome Y € R. The label R = 1 designates units from the source
population governed by law Pg while the label R = 0 designates units from the farget population
governed by Pr; A binary treatment D € {0, 1} records an intervention of interest, and Y is the
associated outcome.

We adopt the potential outcomes framework [39] wherein each individual is associated with counter-
factual outcomes Y (1) and Y (0) corresponding to the outcomes under treatment and no treatment,
respectively. The observed outcome Y is determined by the treatment assignment:

Y=D -Y(1)+(1—-D) -Y(0). 2)
Due to selective labeling, Y is only observed for units for which R = 1 and D = 1. In other words,
we observe labeled outcomes only for treated individuals originating from the source distribution.
Let Pg(X) :== P(X|R = 1) and Pr(X) := P(X|R = 0) denote the source and target covariate
distributions, respectively, with corresponding probability density functions pg(x) and pr(z). We
denote by Eg and E the expectation taken with respect to laws Pg and Pr, respectively.

Our objective is to assess the accuracy of a fixed prediction model f : X — R, which has been
trained to estimate the treated potential outcome Y (1). Specifically, we aim to evaluate the model
under the target covariate distribution Pr. For a given loss function £ : R x R — R>¢ (e.g., squared
loss), the estimand of interest is the target risk:

b= Er [£(F(X), Y (1))]. 3)

3 Identification and Estimation of the Target Risk

To describe the identification and estimation of 1), it is convenient to introduce additional notation.
We use L = ¢(f(X),Y) as shorthand notation for the loss under f. Also define the following
nuisance functions:

7(X) =B(D=1,R=1X), p=BR=0), g(X):=B(R=0X), 4
and

uw(X)=E[LIX,R=1,D=1], )
the conditional mean loss among treated source units. Estimation of 1 is complicated by the fact

that Y'(1) is unobserved in the target domain (R = 0) and because, in the source domain, it is only
observed for treated individuals (D = 1, R = 1). To ensure identifiability, we impose standard
assumptions from causal inference and transfer learning:

Assumption 1 (No unobserved confounding). Y (d) 1L D|X Vd € {0,1}.

Assumption 2 (Covariate Shift). P(Y(d)|X,R=1) =P(Y(d)|X,R=0) Vd < {0,1}.
Assumption 3 (Positivity). There exists € > 0 such that P(D = 1, R = 1|X) > ¢ almost surely.
Assumption 4 (Bounded density ratio). There exists C' < oo such that %(m) <C VredX.

Assumptions [I}f4] enable identification of the target risk (3) from observable data. Intuitively, these
conditions require that (i) there are no unmeasured confounders, (ii) the relationship between covari-
ates and outcomes is invariant across the source and target domains, (iii) every covariate profile admits
a positive probability of treatment, and (iv) the source and target distributions’ supports overlap
sufficiently.
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Proposition 5 (Identification of the Target Risk). Under Assumptions[Ifd|and with nuisance functions
7, p, g, and  as defined in @) and @), the target risk 1 is identifiable from the observed data as

- - pT(X) DR

This result is the foundation of our proposed estimation procedure. The first equality provides a
convenient expression of the estimand that enables our derivation of an influence function and the
double machine learning estimator that it motivates. The second equality gives an alternative expres-
sion for our estimand that shows it can be identified from the source distribution by a reweighting
procedure that resembles inverse propensity weighting (IPW) methods with an additional density
ratio correction. A proof of this result is provided in Appendix

3.1 Estimation of the Target Risk

Next, we use the identification established in Proposition[5]to develop estimators for ¢ based on the
functional’s influence function. Let P denote the nonparametric model defined by Assumptions [T}f4]

Proposition 6 (Target Risk Influence Function). For every P € P, the map ) : P — R admits the
expansion

v(B) - 9(®) = [ @B dF - P)) + RalP ), ©
with influence function
v RD g(X) 1-R
p(Z;P) = 7T(X)T(L*M(X)HT(M(X)*iﬁ(ﬁ”))- ©)

The remainder Ry(P,P) comprises terms that are second order in the estimation errors of (u, T, g)
and first order in the estimation error of p.

Proposition [6]establishes the influence function representation and remainder term expansion of the
estimand /. The result follows from semiparametric efficiency theory, and is proved in detail in
Appendix [A.2.T] We outline the main steps of the proof here.

First, we identify a valid candidate influence function using established results on the influence
functions of conditional expectations and densities (see, e.g, [18]). Next, we evaluate the efficiency
of the candidate influence function by establishing an expansion of i) with respect to an arbitrarily
perturbed distribution in P.

3.2 Our double machine learning estimator of target risk

Motivated by the influence function derived in Proposition[6} we next construct a double machine
learning estimator for the target risk 1. Double machine learning, also known as one-step estimators
or doubly-robust estimators, is a popular method for constructing estimators in settings with missing
data such as causal inference [[17]. To avoid overfitting due to nuisance parameter estimation, we
employ standard sample-splitting techniques that retain the independence of nuisance parameter
estimates by partitioning the data into independent folds. See Appendix [B.T|for a detailed description
of this procedure.

Formally, the estimator motivated by (7)) is given by:

~ 11 [RD; . ~ -~
Y= E?Z [ =—9(Xi) (Li — u(X3)) + (1 = Ron(Xa) | - ®)
i=1 '

where 7, g and /i denote cross-fitted nuisance estimators, and p is the empirical estimator of p.

The estimator (8) enjoys the double robustness property: In a parametric setting, it is consistent if
either (i) the conditional mean (X)) is correctly specified or (ii) the propensity score 7(X) and the
density ratio g(X) are correctly specified. If we are using non-parametric methods to estimate the
nuisance functions, the estimator is y/n-consistent and asymptotically normal under sample-splitting
and n'/* convergence in the nuisance function estimation error

’This contrasts to standard methods like the plug-in or inverse probability weighting approach that would
require y/n convergence in the nuisance function estimation error.
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4 Experiments

4.1 Synthetic Experiments

Synthetic Data Generation: = We evaluate and compare our proposed estimators via a synthetic
experiment through a procedure that simulates the combined setting of covariate shift and selective

labeling. We generate ng source samples Xi(s) ~ N(us,Xs) and np target samples XZ»(T) ~
N (ur,27). By varying ug # pr and/or Xg # Y, we simulate covariate shift between source and
target distributions.

Treatment and Outcome Models:  For each source sample X Z-(S), we compute treatment proba-
bilities via a logistic regression model 7(X;) = o(a " X;), where o(-) is the sigmoid function and
a = c - 14 for a constant ¢ unless otherwise noted. We then sample treatment indicators D; ~
Bernoulli(7(X;)), simulating a selection policy that depends on covariates. Then, we generate po-
tential outcomes for the treated units in the source distribution Y (1); ~ Bernoulli(sigmoid (3" X;))
where 3 € R? is taken to be C - 14 for an appropriate scaling factor C' unless otherwise noted. To
introduce noise, we randomly flip the binary outcomes with probability v € (0, 1), taking v = 0.1
unless otherwise noted. Then we simulate selective labeling by setting Y; = NA for all units with
D; = 0, meaning outcomes are only observed for treated units.

Model Training:  We randomly split the observed subset of the source data (i.e., units with D; = 1)
into 80% training and 20% test subsets. We train a logistic model on the training subset to predict
the outcome Y (1) from covariates X . This model f is used to estimate E[Y (1)|X]. We evaluate the
mean squared error (MSE) of predictions on the held-out source test set.

Nuisance Parameter Estimation:  To account for covariate shift, we fit a domain classifier (logistic
regression) to distinguish between source and target samples, assigning the label R = 1 to the source
and R = 0 to the target:

~

_1-P(R=1|X =x)
max{P(R = 1),¢}
where ¢ is a small positive constant to avoid division by zero. This yields an estimate of the

density ratio w(x) = i’) zg; Next, we fit a logistic regression model to estimate the propensity

score: T(x) = ]IAD(D = 1|/X = z, R = 1) using logistic regression trained on the source samples
which we evaluate on both the source and target data. Next, we compute the squared error losses
L; = (f(X;) — Y;)? for the subset of samples from the source distribution that are treated and have
observable outcomes Y;. Using these observed (L;, X;) pairs, we train a random forest regressor
() to estimate the expected loss E[L| X = z].

@(x)

Compute Naive (Plug-in) Estimator:  The plug-in estimator computes the average predicted
squared loss on the observed treated source data, reweighting by the estimated density ratio @ () and
the inverse propensity weights 1/7(x) to account for both the covariate shift and selective labels. We

compute: Yplygin = % e % where ngp = Y_.5, R; - D;, the number of labeled

samples in the source distribution.

Compute DML Estimator: We also compute the DML estimator for the target risk: @ZDML =

Ly, (%}?g*’()(h — (X)) + ﬁl(;:b)ﬁ(Xi)) where R; is the domain indicator, D; is the

treatment indicator, and ]3(R = 0) denotes an empirical estimate of drawing from the target
distribution.

Estimate True Risk in Target with MC: To estimate the ground truth target risk, we simulate an

oracle dataset of no,cle Samples from the target distribution. For each sample X fT) ~ N(ur,Xr),
we generate a potential outcome using the same outcome model and again flip outcomes randomly
with probability ~y to introduce noise. The ground truth risk estimate is then computed as the mean
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squared error: Yoracle = 5-— Sorese (F(XG) — Yi(l))2 . This serves as a benchmark against which

we evaluate our estimators ¢pyr. and YPppugin.
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Figure 1: Results of synthetic experiment comparing DML and plug-in estimators for risk with the
true risk under increasing covariate shift magnitude, increasing sample size, and increasing noise
in the outcome model. (a) We increase the magnitude of |ug — pr| along the direction of the true
outcome model coefficients and report the average estimated risk over 30 trials for the plug-in and
DML estimators, with error bars denoting standard deviations. (b) We increase the sample size
n = np = ng and report the estimated risk averaged over 30 trials with error bars denoting standard
deviations. (c) We increase the level of random outcome noise 7y (i.e., the probability of flipping the
binary outcome of our outcome model) and evaluate the average estimated risk over 30 trials with
error bars denoting standard deviations.

Synthetic Experiment Results In Figure[Ia] we see that the DML estimator consistently tracks the
true target risk more accurately across all covariate shift magnitudes where the shift is with respect to
the mean of the Gaussian covariate distributions, while the plug-in estimator becomes increasingly
biased as the shift grows. In Figure[Ib] we see that the both the DML and plug-in estimators improve
as sample size increases, while the DML estimator aligns closely with the true risk while the plug-in
estimator appears biased. In Figure|lc| we see that both estimators capture the risk trend as outcome
noise increases while the DML estimator once again tracks the target risk more accurately.

4.2 Semi-Synthetic Experiments

It is well-known that dataset shifts “in the wild” are often more complicated and difficult to address
than shifts simulated in controlled, synthetic experiments [21]]. This motivates experimentation that
incorporates real covariates and identifies natural covariate shifts rather than simulating such shifts as
our first set of experiments did. To accomplish this task, we access data from the eI[CU Collaborative
Research Database [33]] which includes intensive care unit (ICU) data from multiple treatment centers
across the United States. We leverage the fact that the data include multiple treatment sites to simulate
the setting where a model is trained on a population that differs in demographic makeup from the
population on which it is to be deployed. By nature of the selective labels problem, we must still
rely on the treatment and outcome models previously described in the fully synthetic experiment
procedure since the data include only treated and labeled patients.

eIlCU Data: The eICU Collaborative Research Database [33]] includes de-identified individual-
level electronic health records from over 200,000 admissions to ICUs across multiple hospitals in
the United States. Here, we focus on admission-level patient demographic and health data. We
extract gender, ethnicity and age data, vitals including admission height, weight, and body mass
index, clinical unit type (e.g., medical, surgical), and hospital ID. We one-hot-encode all categorical
variables and impute missing values in continuous features with the median. All continuous features
are standardized with Z-score normalization for computational tractability.

Constructing Covariate Shift:  To simulate distribution shift that captures real-world complexity,
we use patient data from a selected training hospital to construct the training environment and use
all patient data from the remaining hospitals to construct the target environment. In particular, we
select training hospitals that look systematically different from the general population in age and
race/ethnicity. Figures Figure 2] and 3| compare the age and ethnicity covariate distributions of the
identified source and target hospitals, respectively.
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Figure 2: Comparison of age across hospitals in the eICU data. (a) Hospital 443 tends to have younger
patients than other hospitals; (b) Hospital 199 has a typical age distribution; and (c) Hospital 283
tends to have older patients.
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Figure 3: Comparison of ethnicity covariates across hospitals. (a) Hospital 443 tends to have more
African American patients and fewer caucasian patients than other hospitals; (b) Hospital 199 tends
to have more caucasian patients; (c) Hospital 283 tends to have a larger portion of patients with
ethnicity unknown or labeled as “other”.

Semi-Synthetic Experiment Procedure:  Using actual patient covariates, we simulate models and
outcomes by the same procedure as the purely synthetic experiments. We take n to be the number
of units in the training hospital. Then, we randomly select ny samples from the remaining hospitals
to represent the unlabeled samples from the target setting. In other words, we take ng = np. The
rest of the samples are used to construct the oracle estimate of risk. Treatment is assigned using a
draw from a Bernoulli distribution with probabilities determined by the patient features:

m(X)=0(X"a)

where « in this case takes a small constant c. The outcome is similarly generated via Bernoulli
draws with probability determined by X " 3 where 3 € R? is taken to be a randomly sampled and
normalized vector of coefficients for each iteration. Once again, we simulate outcome noise by
flipping a proportion «y of the generated outcomes. The model fitting and estimator construction
remains unchanged from the synthetic experiments. To estimate the true risk of deploying the model
on the target population, we construct a Monte Carlo estimate of the risk using the remaining unused
samples.

Semi-Synthetic Experiment Results:  We use three different hospitals as the training center
where each varies notably from the rest of the hospitals in its distribution of age, ethnicity, or both,
as depicted in Figure 2] and Figure [3] We conduct experiments of the estimators under increasing
noise in the outcome model as well as increasing propensity strength (increasing norm of «) and
increasing effect size (increasing norm of ). In Figure [ we see that the DML estimator once
again tracks the true risk more closely. Interestingly, here we observe behavior where the plug-in
estimator both overestimates and underestimates the true risk. While underestimation of the true
risk is particularly consequential in the medical contexts, overestimation is also relevant when data
acquisition and model training are costly. In Figure[5] we see that increasing the propensity strength
has little systematic effect on either estimator, though the DML estimator once again aligns with the
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true risk more closely. Finally, in Figure[6] we see that increasing the effect size decreases the risk
estimate of both estimators as well as the true risk, where the DML estimator appears to increasingly
diverge from the true risk estimate under increasing effect size in Figure [6a]
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Figure 4: Comparison of DML and plug-in estimators with true risk across increasing noise levels in
the outcome model v € (0.05, 0.5) across three different training hospital configurations. The error
bars represent standard deviation over 5 iterations. Our DML method more closely tracks the true
risk than the plug-in estimator.
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Figure 5: Comparison of DML and plug-in estimators with true risk across increasing norm in the
propensity parameter « and across three different training hospital configurations. The error bars
represent standard deviations over 5 iterations. Our DML method more closely tracks the true risk
than the plug-in estimator.
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Figure 6: Comparison of DML and plug-in estimators with true risk across increasing norm in effect
size parameter 3 and across three different training hospital configurations. The error bars represent
standard deviations over 5 iterations. Our DML method more closely tracks the true risk than the
plug-in estimator.

5 Conclusion

We studied the problem of pre-deployment model evaluation under the joint presence of covariate
shift and selective labels. We formalized the target risk as an estimand that captures a model’s
expected performance in the deployment environment, and established conditions under which it
is identifiable from observable data. We derived an influence function representation of the target
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risk and used it to construct a doubly robust, double machine learning estimator. Our estimator uses
selectively labeled source data and unlabeled data from the target distribution.

Through synthetic and semi-synthetic experiments, we showed that our estimator more accurately
tracks the true target risk in comparison with standard plug-in procedures. These results highlight the
importance of developing tools that can account for multiple coexisting data challenges. In particular,
the combination of covariate shift and selective labels, each of which has been studied extensively in
isolation, poses distinct difficulties and is likely to arise in high-stakes domains such as healthcare.

Our work also points to several directions for future work. Relaxing the assumption of no unmeasured
confounding and constructing similar estimators for other types of dataset shift would provide
insight into other important domains where prediction algorithms inform decisions. In addition,
many of the environments where our framework is relevant are also those in which it is natural to
desire fairness-aware evaluation. Adapting our approach to explicitly consider fairness, e.g., by
evaluating performance gaps across subgroups, would further strengthen the reliability of algorithmic
decision-making.
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A Proofs

A.1 Proof of Proposition

Define L9 := ((f(X),Y(d)) for d € {0,1}. We begin by showing the first equality. By law of
total expectation,

¥ =Er [LD] =Er [E[LO|R=0,X]]. ©)
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By Assumption[2]

Ep [E [L<1>|R=0,XH —Ep {]E {L(l)\R: LXH. (10)
By Assumption|[I]
Er [E [L(1)|R - 1,X” —E; {IE {L(1)|R -1,D= 1,XH (11)
By @),
Ep [E [L(1)|R —1,D= 1,XH —Er[E[L|IR=1,D =1,X]] (12)

and the first equality follows by the definition of x and by combining (9)-(T2).
To show the second equality, we start with ¢ = Er [11(X)]. We begin by expressing this quantity as
an integral over the covariate space and applying Assumption [4}

pr(X)
ps(X)

_ _ pr(z) N
¢—L;Xmmpﬂm¢u—Legumpﬂ@pa¢Mx—Es[

By law of total expectation and by definition of R,

s {pT(X)u(X)} - Eg {pT(X) ‘E[L|X,R=1,D = 1]} — Eg {pT(X)ES[L | X,D = 1}] .

W] ay

ps(X) ps(X) ps(X)
(14)
Observe that, by another application of law of total expectation,
Es [DL|X
Es[L|X,D=1] = s [DLIX] (15)

P(D=1]X,R=1)
Combining (T3)-(13) yields

oo [PrX)_ Es[DLIX]

ps(X)P(D=1X,R=1)]"

An application of the Tower Property and the definition of conditional probability yields the claim. ll

A.2 Candidate Influence Function Derivation
The following lemma recalls well-known results characterizing the influence functions of conditional
expectation and density functions. See, e.g., [17].
Lemma 7 (Auxiliary Influence Functions). For the conditional loss function u(x), its influence
Sunction TF { (X))} is given by:
D-R-1{X =z}
IF =
el = o r=1.0=-1

(L — p(x)). (16)

Similarly, for the target covariate density pr(x), its influence function is given by:

1-R
IF {pr(z)} = P(R=0) (H{X =z} —pr()). (I7)
Lemma 8 (Target Risk Influence Function). Define
RD X 1-R
p(2:P) = 22 I (1 ux) + R ux) - (), (18)

7(X)P(R = 0) P(R = 0)

Then Ep [¢(Z;P)] = 0 and, for every one-dimensional parametric sub-model P, = (1 —¢) - P + ¢P
with score function s.,

L 0By = B [o(2:P)s(2)].

That is, o(+;P) is a influence function for 1.

12
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A.2.1 Proof of Proposition [6]

Following the semiparametric calculus of [[17], we treat X" as a discrete set, apply Gateaux differenti-
ation separately to each of u(-) and pr(-), and invoke the product rule for influence functions:

IF {3} = Y IF {pu(2)} pr(z) + Y p(@)IF {pr(z)}.

reEX zeX

Applying the building block influence functions (16]) and given in Lemma [7]together with Bayes’
Rule, we obtain:

IF {4} = 1K)

P(R = 0)

(L — (X)) +

N (u(X) ~ ) m

A.3 von Mises Expansion

Lemma 9 (von Mises expansion). For any two candidate laws P and P € ‘P, the mapping 1) : P — R
admits the expansion

v - 0B = [ PP AP P)) + Ra(P,P (19)
where ¢ is as defined in (I8)) and the remainder term Ry (P, P) is given by

»(P, P) /w /;AM/WN— P+ £ /m@ /%%ﬁ*

where we have supressed the arguments of functions in each term for brevity.

Proof of Lemmal9] For any two candidate laws [P and Pon Z = (X, R, RD, RY), the von Mises
expansion of the estimand v around P is given by:

$(B) — $(P) = / (=) d(F — P)(2) + R(P,P) 20)

where ¢(2;P) is a candidate influence function of ¢ under I’ and R(P, P) is the remainder term
which we will show is second-order. Since ¢(z; P) is centered under P, (20) can be rearranged to
express the remainder term as:

R(P,P) = ¥(F) - (P) + / (= F) dP(2). @1

To evaluate the remainder, we express the influence function in terms of the nuisance terms p(X),
m(X), and g(X) defined with respect to I together with their counterparts 7(X ), 7(X) and g(X)
defined with respect to PP.

We make use of the following two identities which hold for any measurable functions 2 (X, Y") and
h(X), respectively:
E¢[RD - h(X,Y)] = Eplr(X) - h(X,Y)),
Ep [(1— R)- h(X)] = B(R = 0) - Ep [h(X)|R = 0]..
Applying these identities to our remainder term allows us to express the integral term as follows:

apie) g, [T TX) ) BR=0) ([ o
[ etzPrare) =k [P( T ) i)+ 2 ( [rarir =0 - u(®).
(22)

P(R =0)
By substituting the preceding integral term into our expression for the remainder (21)), we reach
the expression:

= g_— qgm
re®) = [ S [ S [ S5t S | S [ S5

where we have suppressed the arguments from each nuisance function for compactness (i.e., we write
u for 1(X)). A series of algebraic manipulations yield the equivalent expression:

R2<P,P)=/(p—p)pgzuﬁ”+/(p—p) ﬁiuP+/i@(u—u)P+/(g;m(ﬂ—u)P
O
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B Estimation Details

B.1 Sample splitting nuisance function estimation

Given n i.i.d. samples %, .= {Z; = (X, R;, D;, ;) }_, where each Z; is as in (I)), we randomly
partition the index set {1,...,n} into K > 2 disjoint folds Z1, ..., Zx such that for each fold &,
|Zi| = n/K. For each index i € [n], let k(¢) denote the the fold containing the i-th observation. Then,
for each fold &, construct an empirical estimate of each nuisance function using only samples outside
of the k-th fold; Let 2(—*), 7#(=*)_ and §(~*) denote such held-out estimates of the functions j, 7,
and g, respectively. Notice that, by construction, each of i{~*), 7(=%) and §(~*) are independent of
samples Z; € Zj. Then, for each i € [n], set

[[i = ﬁik(Z)(Xl)v 7?1 = %7]9@) (Xl)a g\z = gik(l)(Xl)a

that is, evaluate the plug-in estimate on the held-out sample. To estimate p, we simply take the full

sample mean:
1 n
p=— 1-R;).
p= ; ( )
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