
Edit-Aware Generative Molecular Graph Autocompletion for Scaffold Input

Sheng Hu,1 Ichigaku Takigawa, 2 Chuan Xiao 3

1 Hokkaido University
2 Hokkaido University & RIKEN AIP

3 Osaka University & Nagoya University
hu.sheng@icredd.hokudai.ac.jp, takigawa@icredd.hokudai.ac.jp, chuanx@ist.osaka-u.ac.jp

Abstract

We present a novel molecular graph generation method by auto-
completing a privileged scaffold which represents a core graph
substructure step-by-step. We propose a generative GNN model
thus providing the ability to generate unseen molecular graphs
outside the given training set. An edit-aware graph autocomple-
tion paradigm that follows the “substructure-by-substructure”
process is designed to complete the scaffold queries in multiple
substructure adopt operations and allow meaningful edit oper-
ation to show the user’s intention. Such operations enable the
involvement of user decisions when interacting with a generative
user-centered AI system, which differentiates our work from
existing single-run generation paradigms. We also propose a scaf-
fold trie for fast training pair augmentation or changing training
models in real-time. Moreover, we design a top-k ranking func-
tion which considers the preferences on popularity and diversity
for different applications, such as query compositions for graph
database and drug discovery respectively. Such techniques en-
able human experts to synergistically interact with the generative
models grounded on large data.

Introduction
The ultimate goal of modern drug discovery is to find the target
molecules with desired chemical properties, while the potential
chemical space of drug-like compounds is 1023 − 1060. Until
recent years, such chemical space exploration was traditionally
conducted by expert chemists and pharmacologists, along with
huge time and monetary cost being devoted.

Visual graph query composition can assist modern drug dis-
covery, which did not attract much attention compared with the
success in the graph database community (Bhowmick, Choi,
and Li 2017; Bhowmick, Choi, and Dyreson 2016; Huang et al.
2019; Wang et al. 2020a; Han et al. 2010; Yi et al. 2017; Yi
et al. 2020). Instead of exploratory searching given a subgraph
query in graph databases and showing matched graphs (Yi et al.
2017; Yi et al. 2020), we prefer to use generative models to
grow novel molecules on the given subgraph. In the applica-
tions of drug discovery, such a subgraph query is usually called
a scaffold (i.e., privileged or bioactive scaffold), and performs
as a core structure in the molecule to preserve the preferable
bioactivity properties. The generated novel molecular graphs
are supergraphs of the scaffold thus being guaranteed to con-
tain the scaffold to reveal the chemical properties. Fixing the

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

scaffold usually dramatically reduces the search space of the
desired drug thus saving experts’ time and cost.

Due to surprising success of deep neural network (DNN)
models these days, two categories of representations used in
DNN-based models emerge in the drug discovery domain.
(1) simplified molecular input line entry system (SMILES)
strings representation. Several early works (Dai et al. 2018;
Segler et al. 2018; Gómez-Bombarelli et al. 2018; Olivecrona
et al. 2017; Arús-Pous et al. 2020) proposed to learn the
SMILES grammar using RNN architectures and then generate
corresponding SMILES strings from the trained models. These
methods have limitations to learning the unrelated grammar and
thus have low chemical validity from generated SMILES. A
recent trend is (2) undirected labeled graph representation (Xia
et al. 2020). It is more natural to learn the original graph
structure by using graph neural networks (GNNs). This repre-
sentation can easily achieve higher chemical validity. In this
work, we adopt the graph-based representation along with
GNN models as our generative models. GNN models are em-
ployed during the visual graph query composition process to
generate completed candidates. A motivating example is shown
in Figure 1.1

Example 1 In Figure 1, a user wants to design a new molecule
with a scaffold shown in user’s query. This user first adopts a
suggested candidate to complete the polygon and then erases
a vertex to show the label on this vertex is different with his
original intention. Then the system sends the input to the learned
GNN and returns two candidates rank1 and rank2, with detailed
molecule properties (e.g., MW, logP and QED). The user can
interact with rank1 and rank2, such as adopt rank1 as a new
query or even erase a part. The new query will be taken as input
and sent into the GNNs for further generations. This process
repeats until a proper molecular graph is found.

Related Work
Scaffold-based Molecular Graph Generation. The idea of
growing molecules on scaffolds using DNN models did not
receive too much attention except the ScaffoldVAE model (Lim
et al. 2020) and DeepScaffold (Li et al. 2019). ScaffoldVAE

1While we only show an example for the scenario of drug discovery,
our autocompletion system can be simply applied to traditional graph
query suggestions for graph databases.

user’s query

① Edit-aware graph autocompletion ② Graph partition method to generate training set

adopt erase

rank1: rank2:

G1:

G2:

G3:

(G1, G2)

(G1, G3)

(G2, G3)

training pair:

MW: …

logP: …

QED: …

MW: …

logP: …

QED: …

Figure 1: An Example of GNN-based Graph Autocompletion

focused on growing side chains from Bemis-Murcko scaf-
folds (Bemis and Murcko 1996), which is a special kind of
scaffold that only preserves ring systems. DeepScaffold is sim-
ilar with ScaffoldVAE but includes all subscaffolds in their
dataset to provide the ability of growing a full molecule from a
much smaller subscaffold. However, both above methods gen-
erate the final molecule in a single step without allowing users
to edit on the intermediate graph to show their real intentions.
This prevents the users, especially for expert chemists, from uti-
lizing their reliable chemical intuitions and experience during
the molecule design process. The generated molecules reported
in both (Lim et al. 2020) and (Li et al. 2019) also proved
to be far from practical molecules used in real experimental
chemistry.

In this work, we built a system GNNGAC (GNN-based
Graph Autocompletion), to allow users to edit the intermediate
graph candidates during the molecule design process in multi-
ple steps, utilizing the edit operation to predict the user’s real
intention to improve effectiveness. We design an interactive
substructure-by-substructure adopt process to verify this idea.
This process guarantees the involvement of user decisions to
interact with a generative user-centered AI system, which dif-
ferentiates our work from previous studies that generate graphs
in a single run (Lim et al. 2020; Li et al. 2019). Compared with
generating a bunch of cluttered results, involving user deci-
sions can exploit human’s capability, i.e., domain-knowledge
or experiences, to generate much more insightful candidates.
Also, to make the utmost of graph training data set for efficient
training, we design scaffold-trie for data augmentation
as well as to efficiently train the GNN from the computer
memory. A pairwise Tanimoto similarity-based top-k rank-
ing algorithm is also proposed to enhance the practicability.
We will demonstrate our system using a real-world molecular
dataset containing nearly one million graphs. Users can draw
various scaffold queries in our prepared Web-based canvas and
check the suggestion quality by themselves.

Edit-Aware Graph Autocompletion
Scaffold input. Scaffolds are generally those subgraphs car-
rying important characteristics of molecules. The basis scaf-
folds of a molecule are usually the set of all unique ring
systems in the molecule, while a ring system is defined as
single/multiple rings sharing an internal bond. The graph rep-
resenting a molecule itself is called a full molecular graph.
Scaffolds can be extracted by utilizing general graph mining

algorithms (Jin, Barzilay, and Jaakkola 2018), but as for molec-
ular applications, we use HierS (Wilkens, Janes, and Su 2005)
to obtain the scaffolds to keep in line with (Li et al. 2019).

Definition 1 (Scaffold input) Given a well-trained genera-
tive modelM and a scaffold input q, the candidate graphs
generated byM is a setMq = { g | q ⊆ g }, where q ⊆ g
means q is a subgraph of g.

Definition 1 guarantees that the generated graphs {g | g ∈
Mq} are supergraphs of q.

Autoregressive GNNs. We adopt the GNN model used in (Li
et al. 2019) and (Li, Zhang, and Liu 2018) for generating our
graph candidates. The entire model architecture is shown in
Figure 2. Compared with variational autoencoders (VAEs) or
generative adversarial networks (GANs), autoregressive GNNs
have unique ability to model edge dependencies, which guar-
antees the nodes are generated in a sequential way. We adopt
a sequence-like graph knowledge representation used in (Li,
Zhang, and Liu 2018) which builds a full molecular graph in
a sequential fashion (⟨g0, t0⟩, ⟨g1, t1⟩, · · · , ⟨gN , tN ⟩), where
gn is a specific graph state (q equals g0 here) and tn is an action
that transforms gn → gn+1. Such a sequential molecular gen-
erative process is essentially a Markov decision processing thus
being modeled as either Markovian or recurrent using a global
recurrent neural network (RNN). In another word, the GNNs
are used to decide whether to generate a new atom or bond
along with its atom/bond type. In (Li, Zhang, and Liu 2018),
three types of actions ti are allowed to build a full molecule:
(1) add an atom and connect it with an existing atom v (with
a probability pAv), (2) connect an existing atom v to the new
atom (with a probability pCv), and (3) terminate the generating
process (with a probability p∗). According to Figure 2, the
MLP layer outputs a tensor with a size |V | × (|A|+ 1)× |B|,
where V is the atom node set that v ∈ V , A is the atom type
set, and B is the bond type set. This tensor is further split
into [pA,pC] = [tensorA|V |×|A|×|B|, tensor

C
|V |×1×|B|]. On

the other side, the MLP* layer outputs a scalar value p∗ to
represent the probability of termination. Eventually, after a
softmax computation, {pA,pC , p∗} decides which action ti
should be taken when gn+1 ← ti(gn).

User operations. When a user operates on a visual graph
composition interface, there are some fundamental operations
he/she can make. For example, edge addition is the most
fundamental one. However, in autocompletion scenarios, the

most efficient step is adopting a suitable graph suggestion
to complete the current query which can accelerate the query
composition dramatically (Yi et al. 2020). Also, we consider
that it is natural to allow the user to slightly modify the provided
suggestion which produces the need of erasing and replacing
a part of the graph. Without losing the possibility of extending
in the future, we only consider three types of composition
operation OP = {adopt,erase, replace}. Particularly, we
call erase and replace as edit to allow users to perform
specific operations on modifying the intermediate resulting
graphs. The edit that user has performed is usually implicit
indicators of his/her real intention. By adapting our edit-aware
paradigm, the GNN model is able to take advantage of users’
ideas, especially for those chemical experts who possess drug
design experience. As replace can be taken as a special case
of erase (e.g., replace an atom v with u can be considered as
erase v first and add u from suggestions), for simplicity, we
mainly focus on erase here. We also consider adopt as the
context of erase to show more users’ intentions. To be aware
of the sequence composed by adopt and erase, we design
different training methods.

Adopt training. The operation adopt means the user accepts
a provided graph suggestion q′ and incrementally adds a sub-
structure ∆q to current query q. To make sure q′ has a strong
correlation with the current query q, we need to create the
training pair (q, q′) and insert it into the training set. In another
word, a simplest case is scaffold → q and molecule → q′.
Nevertheless, when a relatively larger molecule requires mul-
tiple steps to compose which results in a long composition
sequence, more fine-grained training pair enumerations are ex-
pected, i.e., q and ∆q becomes much smaller and the recursive
case q′′ = q′ +∆q must be considered.

Data augmentation. Instead of only using (scaffold → q,
molecule → q′) pairs for training, we need to conduct data
augmentation to enumerate subgraphs to handle cases such as
q′′ = q +∆q + · · ·+∆q′ For graph structures, such enumer-
ations are impossible because of the combination explosion of
subgraphs. Therefore, we decide to only preserve subgraphs
with chemical significance (i.e., ring or chain systems). We
choose to store each basis scaffold q and their incremental
graphs q′′ = q +∆q + · · ·+∆q′ in a trie structure according
to the super-subgraph relationship in memory and assembly
them as training pairs on-the-fly. The advantages of building
the scaffold-trie is multifold: (1) the trie is memory-
resident thus avoiding the I/O overhead which will deteriorate
the training time-cost. (2) the granularity of increment size
∆q can be controlled flexibly without rebuilding additional
indices. (3) a single scaffold-trie can generate training
pairs for different GNN models’ training requirements begin-

S
o
ft

m
ax

C
o
n
v
 (

3
2
)

B
N

-R
eL

U
-C

o
n
v
 (

6
4
)

D
en

se
G

C
N

D
en

se
G

C
N

 (
2
5
6
)

… A
v
g
P

o
o
li

n
g

M
L

P
*
 (

1
)

M
L

P×20

E
m

b
ed

d
in

g
 (

1
6
)

p*

pA

pC

Figure 2: Model Architecture

Figure 3: Graph Similarity Join Results with GED = 1

adopt erase
Consider erasing operation

GED = 1

Figure 4: Erase training
ning with different q for different problem settings such as
macromolecules. We set a uniform threshold δ = |∆q| as a
granularity constraint of incremental subgraphs that grows
from previous intermediate graph q. The value δ can be fixed
to a number or can be a variable as a ratio such as 1/2 size of
the full molecular graph. To efficiently utilize the training set,
we set δ = 1 by default, i.e., we put the pair (q, q′′) into the
training set when |∆q| = |q′′| − |q| ≥ 1.

Moreover, generating the training set only requires for a
single full traversal of the scaffold-trie thus leading to
a time complexity of O(|T |) where |T | represents the number
of nodes in the trie. The training pair set is then taken as input
fed into the GNN model for training purpose.

Erase training. We need to predict which erase edit is tend-
ing to happen and generate the corresponding training pairs.
To achieve that, we generate training pairs that allow some
slight mismatching to happen in the matched common frag-
ment between basis scaffolds. The degree of similarity is
measured using Graph Edit Distance (GED). We conduct a
graph similarity join (Zhao et al. 2013) in the scaffold set to
find the scaffolds having a GED lower than τ (default set to
1). By supposing the mismatched part is erased by users, the
training is performed by inputting the training pair of (qe, q),
where qe and q represents the one-node-erased graph (Figure 4
upper) and the original graph (Figure 4 down) respectively.

Figure 3 shows examples of the resulting pairs after a graph
similarity join with GED=1.

Top-k Diversifying and Ranking Results
Diversification
After running the inference process of our GNN for multiple
times, we can obtain our results set R. When |R| is a large
number, displaying all the graphs in R will only mess up the
interface with similar results. In this section, we propose a
method to only choose top-k diversified graphs out of R to
form the final result set R′ thus |R′| = k < |R|.

We take advantage of the metric proposed in (Wilkens, Janes,
and Su 2005), which is called average pairwise Tanimoto
(APT). Here, Tanimoto means Tanimoto coefficient which is

computed using molecular fingerprint to describe how similar
two molecular graphs are. By adopting APT, we sum up the
computed Tanimoto coefficients between each pair of graphs
appearing in R, and divide the sum by total number of pairs as
shown in Equation 1.

APT (R) =
1

|R|(|R| − 1)

|R|∑
i ̸=j

bi&j

bi + bj − bi&j
(1)

where |R| represents the size of result set R, bi(bj) is the
number of bits set to 1 in result i’s(j’s) fingerprint, bi&j means
the number of bits set to 1 in the the intersection of i and j’s
fingerprints.
Top-k Ranking
Along with diversification, we also need to rank the results
according to the substructure popularity to assist the users in
easily adding the most possible subgraphs. Here, we adapt a
statistic sel∆(q′) used in (Yi et al. 2020) which represents the
number of supergraphs of the increments (∆q′) in the database
(training set) D. This can ensure that novel molecular graphs
generated will not have low ranks (which are not contained
in the database). Differently, we further extend the ∆q′ as
∆q′ ∪ q∆, where q∆ represents the smallest subgraph in q
which connects ∆q′ to avoid meaningless increments. Note
that sel∆(q′) can be efficiently computed offline using graph
indexing techniques proposed in (Yi et al. 2017).

The final ranking function (util) can be written as below:

util(R′) =
w

k

∑
q′∈R′

sel∆(q′) + (1− w)APT (R′) (2)

where a weight parameter w ∈ [0, 1] is added to balance the
popularity and diversity scores.

The value of w also has influences on different applica-
tions. For example, for traditional graph query suggestions on
database search, a larger w is expected to add more frequent
subgraph fragments to formulate the query quickly. On the
contrary, drug discovery requires a smaller w to improve the
diversity for generating novel molecules.

Finding the most optimal set R′ out of R means util(R′)
should be larger than any other alternative set R′′ with the same
set size. This process proved to be a NP-hard problem, which
is a reduction from the maximum independent set problem
shown in (Yi et al. 2017). Similar with (Yi et al. 2017), we
use a greedy algorithm (Algorithm 1) to obtain the optimal
solution. When |R′| = k, the time complexity of finding the
APT(R′) is O(k × |R| × STanimoto), where |R| represents the
unique graphs generated and STanimoto means the Tanimoto
similarity computation.

Experiments
The experiments were carried out on a Linux server with an
Intel Xeon Silver 4214 2.20GHz Processor and 192GB RAM,
running Ubuntu 18.04.5. The training details can be found in
Appendix. Both adopt training and erase training are finished
in 16 hours. Other training statistics are shown in Table 1. # of
q and # of q′ represents the number of unique graphs used in
⟨q, q′⟩ pairs where q ⊆ q′. In erase training model, we used
87,106 similar pairs of graphs having GED τ = 1. For the

Algorithm 1: Top-k (R)
1 R′ ← ∅ ; /* final set R’ */
2 foreach ⟨i, j⟩ ∈ R do
3 Compute STanimoto(i, j);

4 Choose the largest STanimoto(i, j) and R′ ← R′ ∪ i ∪ j;
5 for n = 1 · · · k − 2 do
6 Find an i′ to make the util(R′ ∪ i′) the largest;
7 R′ ← R′ ∪ i′;

8 return R′;

Table 1: Training Statistics

Training set Training time # of q # of q′

Adopt 16 hours 303,706 1,271,948
Erase 16 hours 87,106

top-k ranking, we set the weight w = 0.4 as it performs the
best on the query sets.

Training set. ChEMBL2 is a public dataset con-
taining both structural and bioactivity information for
molecules. We only kept molecules that containing elements
{H,C,N,O, F, P, S, Cl, Br, I} and eliminated those whose
Quantitative Estimate of Drug-likeness (QED) are lower than
0.5. After that, we totally collected 923,786 unique molecules.
The whole ChEMBL dataset is used as the training data in the
GNN training process.
Query set. For the purpose of simulating the drug discovery
process, we employed a different dataset PubChem (Han et al.
2010) as the target query set to avoid the graph distribution
bias. The purpose of the simulation is to generate each target
query from the scaffold input. We used three query sets from
(Yi et al. 2017) by extracting subsets from PubChem, each of
which contains 100 query graphs, with the query size ranging
from 8 to 16 (Q8, Q12, Q16) to keep in line with (Yi et al.
2017). The query size stands for the number of edges here. We
replace those graphs having appeared in the training data to
ensure each query is unseen in the training set. All experimental
results are computed by averaging the sum on each query set,
respectively.
Suggestion quality evaluations
Simulation experiment setup.

To generate each query molecular graph, we started with a
random basic scaffold graph. In each step, we sent the inter-
mediate graph as the input into GNNGAC. Next, the largest
useful graph suggestion was selected. In the case that some
suggestions had a GED equivalent to 1 with the query graph,
we used the trained erase model to simulate the erase opera-
tions. In the case that no suggestion was useful, a random edge
towards the query molecular graph will be added to current
graph. The completion will be a success if the query molecular
graph is reconstructed by the generated graphs. Particularly,
when a generated graph is a super graph of the query molecular
graph, it is also taken as a success because such as a case is es-
pecially meaningful in drug discovery settings. The number of
generations in each inference process is set to 1,000 according

2https://www.ebi.ac.uk/chembl/

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 8 9 10 11 12 13 14 15 16

in
c
re

m
e

n
ta

l
n

o
d

e
s
 +

 e
d

g
e

s

Query set

Adopt1
Baseline

Granularity

Figure 5: Granularity of Increments

Table 2: Success Rate

Method baseline GNNGAC
success rate 63% 100%

to the practical response time experimental results (details in
Appendix) to meet the interactive time requirement.

To evaluate the efficiency and effectiveness thoroughly, we
adopt the same evaluation metrics used in existing studies (Li
et al. 2019; Yi et al. 2017). We evaluate: (1) Granularity and
success rate. Granularity, which represents the incremental
subgraph size on average, measures how much a graph sugges-
tion can extend the current scaffold. The incremental subgraph
size is computed by summing the number of incremental nodes
and edges. Small granularity leaves more choices for the users
to choose and edit on. Large granularity causes more radical
suggestions and might fail to return any useful result. We use
success rate to show the proportion of queries where at least
one useful suggestion is provided. (2) |∆E| and TPM. |∆E|
represents the average number of useful edges provided by
the adopted suggestions until the generation ends. TPM (total
profit metric) is a metric taken from (Xie et al. 2015), which
calculates a ratio of saved mouse clicks to all the clicks input
manually. (3) Chemical validity and uniqueness. We check if
a molecular graph is chemically valid using the Chem.Sanitize
API in RDKit. Then the validity and uniqueness are computed
by the ratio of number of valid (unique) molecules to the total
number of generations, respectively.

As we found that our GNNGAC finished the correct sugges-
tions on most queries within two steps of adopt, we only show
the results of the first and second adopt operations as Adopt1
and Adopt2.

Autocompletion granularity and success rate.
We compare with the baseline method (Li et al. 2019) which

produces a full molecular graph all-at-once in a single run. To
avoid the large molecular graphs generated which dominate
the average number, we only sum the sizes of the smallest
10% incremental graphs. The result in Figure 5 shows that
the GNNGAC method can indeed generate fine suggestions
compared with the baseline method thanks to the fine-grained
data augmentation from the scaffold-trie. The incremental sub-
graph size is reduced by nearly 20%. Smaller increments mean
less risk to cause a suggestion failure. This is reflected by the
success rate in Table 2, where GNNGAC has a 37% lead. This
is because the all-at-once strategy usually generates larger
molecules which might save a lot of clicks if it finds the answer
but is also easier to fail if missing the answer. Also, GNNGAC
allows erase operation thus helping those mismatched sugges-
tions with GED=1 revive as useful suggestions which improve

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 8 9 10 11 12 13 14 15 16

R
a
ti
o

Query set

Adopt1
Adopt2

Baseline

Validity

(a) Validity

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 8 9 10 11 12 13 14 15 16

R
a
ti
o

Query set

Adopt1
Adopt2

Baseline

Uniqueness

(b) Uniqueness

Figure 6: Validity and Uniqueness

Table 3: Autocompletion Effectiveness

|q| |∆E|-AutoG |∆E|-ours TPM-AutoG TPM-ours
8 3.3 18.0 45% 73%

12 5.1 16.1 44% 61%
16 6.7 18.1 42% 72%

the success rate by much.

|∆E| and TPM.
For such metrics, we compare with AutoG (Yi et al. 2017)

which is the state-of-the-art approach of graph query auto-
completion for graph databases (details in Appendix). We do
not compare with (Li et al. 2019) because it is meaningless
under different success rates. Note that |∆E| might be greater
than the size of |q| because when a generated molecular graph
contains the query graph, it will be a successful completion.
Generating a super graph of the query graph is especially
meaningful in drug discovery settings. The results in Figure 3
show that our GNNGAC method can provide much more use-
ful edges than AutoG, which is mainly because traditional
database indexing techniques can only generate very small
graph fragments and glue them on the current scaffold in a
enumerated way. Our GNNGAC also has a large lead on TPM
over AutoG, showing that our method can save more clicks for
the users.

Autocompletion validity and uniqueness.
RDKit tools are utilized to check validity and uniqueness of

generated molecules. We compare with the baseline method (Li
et al. 2019) which produces a full molecular graph all-at-
once in a single run. The result in Figure 6(a) shows that the
GNNGAC method sacrifices some validity performance on
Adopt2 because the input scaffolds are from Adopt1 which
might contain very rare results. The edit operations from users
may also break the validity after Adopt1. Overall, GNNGAC
does not deteriorate too much (< 15%) compared with the all-
at-once approach after interacting with the users’ editing. The
decreases on uniqueness are due to the small granularity which
causes more small intermediate graphs. As we are not going
to find the correct molecules in a single run, such decreases
(< 10%) are acceptable.

Acknowledgment

This work is partly supported by JSPS KAKENHI Grant Num-
ber JP21K17745, JP21K12041, JP20H00323, JP20H00605,
JP20H05962, JP17H06099, JP18H04093, JP19K11979 and
JST CREST Grant Number JPMJCR18K.

References
Arús-Pous, J.; Patronov, A.; Bjerrum, E. J.; Tyrchan, C.; Rey-
mond, J.-L.; Chen, H.; and Engkvist, O. 2020. SMILES-based
deep generative scaffold decorator for de-novo drug design.
Journal of Cheminformatics, 12(1): 1–18.
Bemis, G. W.; and Murcko, M. A. 1996. The properties of
known drugs. 1. Molecular frameworks. Journal of medicinal
chemistry, 39(15): 2887–2893.
Bhowmick, S. S.; Choi, B.; and Dyreson, C. 2016. Data-Driven
Visual Graph Query Interface Construction and Maintenance:
Challenges and Opportunities. PVLDB, 9(12): 984–992.
Bhowmick, S. S.; Choi, B.; and Li, C. 2017. Graph Querying
Meets HCI: State of the Art and Future Directions. In ACM
SIGMOD 2017, 1731–1736. New York, NY, USA. ISBN
9781450341974.
Dai, H.; Tian, Y.; Dai, B.; Skiena, S.; and Song, L. 2018.
Syntax-directed variational autoencoder for structured data.
ICLR 2018.
Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-
Lobato, J. M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-
Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; and Aspuru-Guzik,
A. 2018. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central science,
4(2): 268–276.
Han, W.; Lee, J.; Pham, M.; and Yu, J. X. 2010. iGraph: A
Framework for Comparisons of Disk-Based Graph Indexing
Techniques. Proc. VLDB Endow., 3(1): 449–459.
Huang, K.; Chua, H.; Bhowmick, S. S.; Choi, B.; and Zhou, S.
2019. CATAPULT: Data-driven Selection of Canned Patterns
for Efficient Visual Graph Query Formulation. In Boncz, P. A.;
Manegold, S.; Ailamaki, A.; Deshpande, A.; and Kraska, T.,
eds., ACM SIGMOD 2019, 900–917.
Jin, W.; Barzilay, R.; and Jaakkola, T. 2018. Junction tree
variational autoencoder for molecular graph generation. ICML
2018.
Li, Y.; Hu, J.; Wang, Y.; Zhou, J.; Zhang, L.; and Liu, Z. 2019.
DeepScaffold: a comprehensive tool for Scaffold-based de
novo drug discovery using deep learning. Journal of Chemical
Information and Modeling, 60(1): 77–91.
Li, Y.; Vinyals, O.; Dyer, C.; Pascanu, R.; and Battaglia, P. W.
2018. Learning Deep Generative Models of Graphs. CoRR,
abs/1803.03324.
Li, Y.; Zhang, L.; and Liu, Z. 2018. Multi-objective de novo
drug design with conditional graph generative model. Journal
of cheminformatics, 10(1): 33.
Lim, J.; Hwang, S.-Y.; Moon, S.; Kim, S.; and Kim, W. Y.
2020. Scaffold-based molecular design with a graph generative
model. Chemical Science, 11(4): 1153–1164.
Olivecrona, M.; Blaschke, T.; Engkvist, O.; and Chen, H. 2017.
Molecular de-novo design through deep reinforcement learning.
Journal of cheminformatics, 9(1): 48.
Segler, M. H.; Kogej, T.; Tyrchan, C.; and Waller, M. P. 2018.
Generating focused molecule libraries for drug discovery with
recurrent neural networks. ACS central science, 4(1): 120–131.

Wang, C.; Xie, M.; Bhowmick, S. S.; Choi, B.; Xiao, X.; and
Zhou, S. 2020a. FERRARI: an efficient framework for visual
exploratory subgraph search in graph databases. The VLDBJ,
1–26.
Wang, S.; Guo, W.; Gao, H.; and Long, B. 2020b. Efficient
Neural Query Auto Completion. In ACM CIKM 2020, 2797–
2804.
Wilkens, S. J.; Janes, J.; and Su, A. I. 2005. HierS: hierarchical
scaffold clustering using topological chemical graphs. Journal
of medicinal chemistry, 48(9): 3182–3193.
Xia, X.; Hu, J.; Wang, Y.; Zhang, L.; and Liu, Z. 2020. Graph-
based generative models for de Novo drug design. Drug
Discovery Today: Technologies.
Xie, X.; Fan, Z.; Choi, B.; Yi, P.; Bhowmick, S. S.; and Zhou,
S. 2015. PIGEON: Progress indicator for subgraph queries.
In Gehrke, J.; Lehner, W.; Shim, K.; Cha, S. K.; and Lohman,
G. M., eds., 31st IEEE International Conference on Data En-
gineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015,
1492–1495. IEEE Computer Society.
Yi, P.; Choi, B.; Bhowmick, S. S.; and Xu, J. 2017. AutoG: a
visual query autocompletion framework for graph databases.
The VLDBJ, 26(3): 347–372.
Yi, P.; Choi, B.; Zhang, Z.; Bhowmick, S. S.; and Xu, J.
2020. GFocus: User Focus-based Graph Query Autocom-
pletion. IEEE TKDE, 1–1.
Zhao, X.; Xiao, C.; Lin, X.; Wang, W.; and Ishikawa, Y. 2013.
Efficient processing of graph similarity queries with edit dis-
tance constraints. The VLDB Journal, 22(6): 727–752.

 0

 50

 100

 150

 200

 250

 100 1000 10000 100000

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

of Generated Graphs

Adopt1
Adopt2

Inference Time

(a) Inference time

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 100 1000 10000 100000

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

of Generated Graphs

Adopt1
Adopt2

Top-k ranking Time

(b) Ranking time

Figure 7: Time-cost of Adopt1 and Adopt2

Appendix

Training details. The training is performed on two Nvidia
Quadro RTX 8000 GPUs. The GNN training algorithms
were implemented in PyTorch while scaffold-trie is
a memory-resident index implemented in C++. We adopt the
default parameters used in the autoregressive model (Li et al.
2019) with a 20-layer DenseNet, setting growth rate and bot-
tleneck layer output size as 24 and 96, respectively. The model
is optimized with a log-likelihood loss function used in (Li,
Zhang, and Liu 2018) and (Li et al. 2018). Hyperparameter
khyper and α that represents # of samples generated from
importance sampling and the degree of uncertainty in route
sampling are set to 5 and 0.5, respectively.

System response time. We report the time-cost of the infer-
ence phase on average of the whole query set of Q8 as shown
in Figure 7(a). An approximate linear growth w.r.t. the # of
generated graphs is witnessed for both Adopt1 and Adopt2
models. Erase is not plotted because of negligible time-cost
(< 1s) compared with adopt. Consider the practical scenario,
choosing to generate 1,000 graphs for a adopt operation seems
ideal as it results in 3.6s and 3.8s for Adopt1 and Adopt2,
respectively. Time-cost of top-k ranking is reported in Fig-
ure 7(b). Similar with inference time, we observed a nearly
linear growth on the ranking time when # of generated graphs
is varied. When # of generated graphs equals 1,000, the time is
nearly 1s thus being practical in real-world scenario. We set #
of generated graphs to 1,000 in other experiments.

Graph Query Autocompletion for Graph Databases. The
problem of graph query autocompletion (GQAC) origi-
nates from the domain of query formulation on graph
databases (Bhowmick, Choi, and Dyreson 2016; Bhowmick,
Choi, and Li 2017; Wang et al. 2020b). The aim of GQAC
system is to provide graph query suggestions given a partially-
composed graph search query on a visual interface (GUI),
especially for the search in a large graph database. Yi et al. (Yi
et al. 2017) proposed the first GQAC system, AutoG, to index
frequent graph features and how they combine together using
a network index. After that, they improved the ranking method
of AutoG and proposed GFocus (Yi et al. 2020), which can
utilize focus patterns from users to improve the effectiveness.
However, the graph suggestions provided are combinations
of frequent graph fragments appearing in the graph databases,
thus lacking the ability to generate novel graphs outside the
databases.

MW: 173.17

logP: 1.61

QED: 0.477

MW: …

logP: …

QED: …

MW: …

logP: …

QED: …

MW: …

logP: …

QED: …

MW: …

logP: …

QED: …

MW: …

logP: …

QED: …

Figure 8: A Screenshot

System Architecture
Front end. The front end is a Web-based graphical interface
for drawing queries and navigating through graph candidates.
The editor is a canvas where users can input the scaffold
queries using various canned patterns or drawing edge-by-edge.
Particularly, erase operation is listened to trigger the stroke
predictions after erasing. The user can click on the candidate
to adopt the completion and add it to the working canvas.
Back End. Four modules are included in the back end. (1) GNN
module, (2) Graph generation module, (3) Top-k ranking mod-
ule, and (4) Query logging module.

Demonstrations
A hands-on demo. To verify the idea of multi-step graph gener-
ations, we prepared a demonstration system. We set up the sys-
tem as shown in Figure 8. In Figure 8, button Autocomplete

means adopt1 operation and Autocomplete 2nd will trigger

adopt2 operation. After checking the checkbox With Erase ,
the erase toolkit will trigger erase operation. In this demo,
we aim to show that GNNGAC gives graph suggestions (right
panels in Figure 8) in an interactive way. The users can take
the reference of the chemical properties (MW, logP, QED) for
judgement in drug discovery.

