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ABSTRACT

Transferability is the property of adversarial examples to be misclassified by other
models than the surrogate model for which they were crafted. Previous research
has shown that early stopping the training of the surrogate model substantially in-
creases transferability. A common hypothesis to explain this is that deep neural
networks (DNNs) first learn robust features, which are more generic, thus a bet-
ter surrogate. Then, at later epochs, DNNs learn non-robust features, which are
more brittle, hence worst surrogate. We demonstrate that the reasons why early
stopping improves transferability lie in the side effects it has on the learning dy-
namics of the model. We first show that early stopping benefits the transferability
of non-robust features. Then, we establish links between transferability and the
exploration of the loss landscape in the parameter space, on which early stopping
has an inherent effect. More precisely, we observe that transferability peaks when
the learning rate decays, which is also the time at which the sharpness of the loss
significantly drops. This leads us to evaluate the training of surrogate models
with seven minimizers that minimize both loss value and loss sharpness. One of
such optimizers, SAM always improves over early stopping (by up to 28.8 per-
centage points). We also uncover that the strong regularization induced by SAM
with large flat neighborhoods is tightly linked to transferability. Finally, the best
sharpness-aware minimizers are competitive with other training techniques, and
complementary to other types of transferability techniques.

1 INTRODUCTION

State-of-the-art Deep Neural Networks (DNNs) are vulnerable to imperceptible worst-case inputs
perturbations, so-called adversarial examples (Biggio et al., 2013; Szegedy et al., 2013). These
perturbations are not simple flukes of specific representations because some are simultaneously ad-
versarial against several independently trained models with distinct architectures (Goodfellow et al.,
2014). This observation leads to the discovery of the transferability of adversarial examples, i.e.,
an adversarial example against a model is likely to be adversarial against another model. This phe-
nomenon is not well understood but has practical implications. Indeed, practitioners cannot rely
on security by obscurity. Attackers can apply white-box attacks to their surrogate model to fool an
unknown target model. These types of attack are called transfer-based back-box attacks. They do
not require any query access to the model to craft adversarial examples. Crafting highly transferable
adversarial examples for distinct architectures is still an open problem (Naseer et al., 2022) and an
active area of research (Benz et al., 2021; Dong et al., 2018; Gubri et al., 2022a;b; Li et al., 2018;
Lin et al., 2019; Springer et al., 2021; Wu et al., 2020; Xie et al., 2019; Zhao et al., 2022). Under-
standing the underlining characteristics that drive transferability provides insights into how DNNs
learn generic representations.

Despite strong interest in transferability, little attention has been paid to how to train better surrogate
models. The most commonly used method is arguably early stopping (Benz et al., 2021; Zhang
et al., 2021; Nitin, 2021) – which is originally a practice to improve natural generalization and avoid
overfitting. The commonly accepted hypothesis to explain why early stopping improves transfer-
ability is that an early stopped DNN is composed of more robust features, whereas the fully trained
counterpart has more brittle non-robust features (Benz et al., 2021; Zhang et al., 2021; Nitin, 2021).
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Figure 1: Illustration of the relation between the training dynamics of the surrogate model, sharp-
ness, and transferability. Before the learning rate decays, training tends to “cross the valley” with
plateauing transferability. A few iterations after the decay of the learning rate, early stopped SGD
achieves its best transferability (gray). In the following epochs, SGD falls progressively into deep,
sharp holes in the parameter space with poor transferability (red). l-SAM (blue) avoids these holes
by minimizing the maximum loss around an unusually large neighborhood (thick blue arrow).

In this paper, we invalidate this hypothesis empirically and uncover other explanations behind the
effectiveness of early stopping, and more generally on how to achieve better surrogate training. We
observe in Section 3 that early stopping also improves transferability from and to models composed
of non-robust features. We formulate an alternative hypothesis that the success of early stopping
is closely related to the dynamics of the exploration of the loss surface. Section 4 establishes that
transferability peaks a few iterations of SGD after the decay of the learning rate while the loss sharp-
ness in the weight space drops. Later, the transferability slowly decreases and the sharpness slowly
increases. Based on these observed correlations, we show in Section 5 that flat-minima optimizers
significantly increase the transferability of a surrogate model by minimizing its sharpness. In par-
ticular, we reveal that the stronger regularization induced by Sharpness-Aware Minimizer (SAM)
with unusually large neighborhood (l-SAM), improves transferability specifically, since l-SAM and
SGD have a similar natural generalization. We conclude that this strong regularization alters the
exploration of the loss landscape by avoiding deep, sharp holes where the learned representation is
too specific. Finally, in Section 6 we evaluate l-SAM and two variants competitively against other
training procedures and complementarily to other categories of transferability techniques.

Figure 1 illustrates the insights and grounded principles to improve transferability that our contribu-
tion brings:

• The learning rate decay allows the exploration of the loss landscape to go down the valley.
After a few iterations, SGD reaches its best transferability (“early stopped SGD”, gray star).
The sharpness is temporarily contained.

• As training with SGD continues, sharpness increases and transferability decreases. The
fully trained model (red star) is a suboptimal surrogate. SGD falls into deep, sharp holes
where the representation is too specific.

• SAM explicitly minimizes sharpness and avoids undesirable holes. Transferability is max-
imum after a full training (blue star) when SAM is applied over a large neighborhood
(l-SAM, thick blue arrow).

2 RELATED WORK

Transferability techniques. The transferability of adversarial examples is a prolific research topic
(Benz et al., 2021; Dong et al., 2018; Gubri et al., 2022a;b; Li et al., 2018; Lin et al., 2019; Springer
et al., 2021; Wu et al., 2020; Xie et al., 2019; Zhao et al., 2022). Zhao et al. (2022) recently categorize
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transferability techniques and recommend evaluating techniques by comparing them against each
other within each category. Section 5 follows this recommendation. Gradient-based transferability
techniques can be decomposed into model augmentation, data augmentation, attack optimizers, and
feature-based attacks. In Section 5, we show that our method improves the following techniques
when combined. Model augmentation adds randomness to the weights or the architecture to avoid
specific adversarial examples: GN (Li et al., 2018) uses dropout or skip erosion, SGM (Wu et al.,
2020) favors gradients from skip connections during the backward pass, LGV (Gubri et al., 2022b)
collects models along the SGD trajectory during a few additional epochs with a high learning rate.
Data augmentation techniques transform the inputs during the attack: DI (Xie et al., 2019) randomly
resizes the input, SI (Lin et al., 2019) rescales the input, and VT (Wang & He, 2021) smooths the
gradients locally. Attack optimizers smooth updates during gradient ascent with momentum (MI,
Dong et al. (2018)) or Nesterov accelerated gradient (NI, Lin et al. (2019)).

Training surrogate models. Despite the important amount of work on transferability, the way
to train an effective single surrogate base model has received little attention in the literature (Zhao
et al., 2022). Benz et al. (2021); Nitin (2021); Zhang et al. (2021) point that early stopping SGD
improves transferability. Springer et al. (2021) propose SAT, slight adversarial training that uses
tiny perturbations to filter out some non-robust features. Section 5 evaluates SAT. Our approach
sheds new light on the relation between flatness and transferability. Springer et al. (2021) implicitly
flatten the surrogate model, since adversarial trained models are flatter than their naturally trained
counterparts (Stutz et al., 2021). We observe a similar implicit link with early stopping in Section 4.
Gubri et al. (2022b) propose the surrogate-target misalignment hypothesis to explain why flat min-
ima in the weight space are better surrogate models. We show that LGV, their model augmentation
technique, is complementary to ours.

Early stopping for transferability. Several works (Benz et al., 2021; Zhang et al., 2021; Nitin,
2021) point out that fully trained surrogate models are not optimal for transferability. To explain this
observation, they propose a hypothesis based on the perspective of robust and non-robust features
(RFs/NRFs) from Ilyas et al. (2019). Ilyas et al. (2019) disentangles features that are highly pre-
dictive and robust to adversarial perturbations (RFs), and features that are also highly predictive but
non-robust to adversarial perturbations (NRFs). According to Benz et al. (2021); Nitin (2021), the
training of DNNs mainly learns RFs first and then learns NRFs. NRFs are transferable (Ilyas et al.,
2019), but also brittle. RFs in a tiny input neighborhood, called slightly RFs, improve transferability
(Zhang et al., 2021; Springer et al., 2021): the input neighborhood is sufficiently small for an attack
to find adversarial examples in a larger radius, and slightly RFs are less brittle than NRFs. Mod-
els at earlier epochs would be composed of more slightly RFs, thus being better surrogate models.
Section 3 provides some observations that tend to refute this hypothesis. Instead, Sections 4 and 5
suggest that the success of early stopping is correlated with the training dynamics and sharpness.

Sharpness and natural generalization Several training techniques increase natural generaliza-
tion and reduce loss sharpness in the weight space. SWA (Izmailov et al., 2018) averages the weights
at the last epochs to find a flatter solution. SAM (Foret et al., 2020) minimizes the maximum loss
around a neighborhood by performing a gradient ascent step followed by a gradient descent step. At
the cost of one additional forward-backward pass per iteration, SAM avoids deep, sharp holes on the
surface of the loss landscape (Kaddour et al., 2022). Several variants exist that improve natural gen-
eralization (Kwon et al., 2021; Zhuang et al., 2022) or efficiency (Liu et al., 2022; Du et al., 2021).
Nevertheless, the relationship between sharpness and natural generalization is subject to scientific
controversy (Andriushchenko et al., 2023; Wen et al., 2023). In Sections 5 and 6, we explore the use
of SWA, SAM and six variants to train better surrogate models.

3 ANOTHER LOOK AT THE NON-ROBUST FEATURES HYPOTHESIS ABOUT
EARLY STOPPING

In this section, we point the flaws of the robust and non-robust features (RFs/NRFs) hypothesis
Benz et al. (2021); Zhang et al. (2021); Nitin (2021) to explain the success of early stopping for
transferability. According to this hypothesis, earlier representations are more transferable than their
fully trained counterparts, because they contain more slightly RFs than NRFs. Slightly RFs are
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Figure 2: Early stopping improves the transfer-
ability from surrogate models trained on both ro-
bust and non-robust datasets. Average success
rate evaluated over ten target models trained on
the original CIFAR-10 dataset, from a ResNet-
50 surrogate model trained for a number of
epochs (x-axis) on the datasets DR (blue) and
DNR (green) of Ilyas et al. (2019) modified from
CIFAR-10 (red). We craft all adversarial exam-
ples from the same subset of the original CIFAR-
10 test set. Average (line) and confidence inter-
val of ± two standard deviations (colored area)
of three training runs. Appendix C contains the
details per target.
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Figure 3: Early stopping improves the trans-
ferability to target models trained on both ro-
bust and non-robust datasets. Success rate from
a ResNet-50 trained for a number of epochs
(x-axis) on the original CIFAR-10 dataset, to
ResNet-50 targets trained on the robust dataset
DR (red), and the three non-robust datasets DNR
(green), Drand (blue) and Ddet (purple) of Ilyas
et al. (2019) modified from CIFAR-10. The per-
turbation norm ε is 16/255 for the DR target,
2/255 for the DNR target and 1/255 for the
Drand and Ddet targets to adapt to the vulnerabil-
ity of target models (the order of lines cannot be
compared). Average (line) and confidence inter-
val of ± two standard deviations (colored area)
of three training runs. Best seen in colors.

features that are robust to tiny worst-case perturbations, and NRFs are features that are not. See
Section 2 for more details.

Early stopping indeed increases transferability. First, we check that a fully trained surrogate
model is not optimal for transferability. We train two ResNet-50 surrogate models on CIFAR-10
and ImageNet using standard settings. Appendix B reports the success rates on CIFAR-10 and
ImageNet of the BIM attack applied at every epoch and evaluated on 10 fully trained target models
per dataset. For both datasets and diverse targeted architectures, the optimal epoch for transferability
occurs around one or two thirds of training1. Indeed, early stopping increases transferability.

Early stopping improves transferability from both surrogates trained on robust and non-
robust features. We show that early stopping works similarly well on surrogate models trained
on robust and non-robust datasets. We retrieve the robust and non-robust datasets from Ilyas et al.
(2019), that are altered from CIFAR-10 to mostly contain RFs and, respectively, NRFs. We train
two ResNet-50 models on both datasets with SGD (hyperparameters reported in Appendices B and
C). Figure 2 shows the transferability across training epochs, averaged over the ten regularly trained
targets. The success rates of both robust and non-robust surrogate models evolve similarly (scaled by
factor) to the model trained on the original dataset: transferability peaks around the epochs 50 and
100 and decreases during the following epochs. This observation is valid for all ten targets (details
in Appendix C). According to the RFs/NRFs hypothesis, we expected “X-shaped” transferability
curves: increasing transferability from NRFs and strictly decreasing transferability from RFs (after
initial convergence). The RFs/NRFs hypothesis does not describe why early learned NRFs are better
for transferability than fully learned NRFs.

1Transferability decreases along epochs, except for the two vision transformers targets on ImageNet where
the transferability is stable at the end of training.
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Early stopping improves transferability to both targets trained on robust and non-robust fea-
tures. We observe that an early stopped surrogate model trained on the original dataset is best to
target both targets composed of RFs and NRFs. Here, we keep the original CIFAR-10 dataset to
train the surrogate model. We target four ResNet-50 models trained on the robust and non-robust
datasets of Ilyas et al. (2019)2. Figure 3 shows that the same epoch of standard training is optimal
for attacking all four models, i.e., composed of either RFs or NRFs. The RFs/NRFs hypothesis fails
to explain why early stopping is best to target NRFs.

Overall, we provide new evidence that early stopping for transferability acts similarly on robust
and non-robust features. We do not observe an inherent trade-off between RFs and NRFs. Since
the higher the transferability, the more similar the representations are, we conclude that the early
trained representations are more similar to both RFs and NRFs than their fully trained counterparts.
Therefore, the hypothesis that early stopping favors RFs over NRFs does not hold. We conjecture
that a phenomenon orthogonal to RFs/NRFs explains why fully trained surrogates are not optimal.

4 STOPPING EARLIER: TRANSFERABILITY AND TRAINING DYNAMICS

This section explores the relationship between the training dynamics of the surrogate model and its
transferability. In particular, we observe that following the learning rate step decays, transferability
peaks when sharpness drops.

Transferability peaks when the LR decays. We point out the key role of the LR decay in the
success of early stopping for transferability. The optimal number of surrogate training epochs for
transferability occurs a couple of epochs after the decay of the LR. We train a ResNet-50 surrogate
model for 150 epochs on CIFAR-10, using the standard LR schedule of Engstrom et al. (2019)
which divides the LR by 10 at epochs 50 and 100. For the ten targets considered individually, the
highest transferability is between epochs 51 and 55 (Appendix B). Figure 4 shows that transferability
suddenly peaks after both LR decays (red line). We train on ImageNet a ResNet-50 surrogate model
for 90 epochs with LR decay at epochs 30 and 60. The highest transferability per target occurs
either after the first decay (epochs 31 or 35) or after the second one (epochs 62 or 67), except for
both vision transformer targets, where transferability plateaus at a low success rate after the second
decay. Overall, the success of early stopping appears to be related to the exploration of the loss
landscape, which is governed by the learning rate.

Consistency of the peak of transferability across training. The peak of transferability described
above can be consistently observed at any point of training (after initial convergence). Here, we
modify the standard double decay LR schedule to perform a single decay at a specified epoch. The
learning rate is constant (0.1) until the specified epoch, where it is ten times lower for the rest of the
training. We evaluate the transferability of five surrogates with a decay at, respectively, epoch 25,
50, 75, 100 and 125. In Figure 4, we observe a similar transferability peak for all these surrogates,
except for the decay at epoch 25 where the decay occurs before the end of the initial convergence
(details per target in Appendix D). The consistency of the peak of transferability across training
epochs is valid for all individual targets. We add as baseline the constant learning rate (at 0.1).
Without LR decay, transferability plateaus after initial convergence. Therefore, we conclude that the
step decay of the LR enables early stopping to improve transferability.

Sharpness drops when the LR decays. When the LR decays, the sharpness in the parameter
space drops. We compute two sharpness metrics at every epoch using the PyHessian library (Yao
et al., 2019) on a random subset of a thousand examples from the CIFAR-10 train dataset. The
largest eigenvalue of the Hessian measures the sharpness of the sharpest direction in the weight space
(worst-case sharpness), and the trace of the Hessian measures the total sharpness of all directions
in weight space (average sharpness). Figure 5 reproduces the largest Hessian eigenvalue (red) and
the Hessian trace (blue) per the training epoch of our standard CIFAR-10 surrogate. We observe
that both types of sharpness decrease abruptly and significantly immediately after both LR decays
at epochs 50 and 100. Simultaneously, transferability peaks (orange).

2In this experiment, we include two additional non-robust datasets Drand and Ddet from Ilyas et al. (2019).
By construction, their only useful features for classification are NRFs. We did not include them in the previous
experiment because training on them is too unstable.
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Figure 4: Transferability peaks when the learn-
ing rate decays at any epochs. Average suc-
cess rate evaluated over ten target models from
a ResNet-50 surrogate model trained for a num-
ber of epochs (x-axis) on CIFAR-10. The learn-
ing rate is divided by 10 once during training at
the epoch corresponding to the color. Red is our
standard schedule, with two decays at epochs 50
and 100. Pink is the baseline of constant learn-
ing rate. Best seen in colors.
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Figure 5: Sharpness drops when the learning rate
decays. Largest eigenvalue of the Hessian (red)
and trace of the Hessian (blue) for all training
epochs (x-axis) on CIFAR-10. Average success
rate on ten targets (orange, right axis). Average
(line) and confidence interval of ± two standard
deviations (colored area) of three training runs.
Vertical bars indicate the learning rate step de-
cays. Best seen in colors.

We conclude that the effect of early stopping on transferability is tightly related to the dynamics of
the exploration of the loss surface, governed by the learning rate. Overall, Figure 1 illustrates our
observations:

1. Before the LR decays, the training bounces back and forth crossing the valley from above
(top gray arrows). See Appendix D for an extended discussion on the matter.

2. After the LR decays, training goes down the valley. Soon after, SGD has its best transfer-
ability (“early stopped SGD” gray star). Sharpness is reduced.

3. When learning continues, the training loss decreases and sharpness slowly increases. SGD
finds a “deep hole” of the loss landscape, corresponding to specific representations that
have poor transferability (“fully trained SGD” red star).

5 GOING FURTHER: FLATNESS AT THE RESCUE OF SGD

Since transferability peaks to its higher value when sharpness drops, in this section, we explore
how to improve transferability by minimizing the sharpness of the surrogate model. First, we show
that seven training techniques that minimize both the loss value and the loss sharpness can train
better surrogate models. Second, we uncover that SAM (and five variants) with unusually large flat
neighborhoods induces a stronger regularization that specifically increases transferability.

Minimizing sharpness improves transferability. The training techniques known to decrease the
sharpness of the models train better surrogate representations. We evaluate the transferability of
seven training techniques belonging to two families, SWA and SAM (see Section 2). SWA (Iz-
mailov et al., 2018) decreases sharpness implicitly by averaging the weights collected by SGD. Our
SWA surrogate is the average of the weights obtained by our standard SGD surrogate at the end of
the last 25% epochs3. Figure 6 shows that SWA (yellow) improves the success rate compared to
fully trained SGD (red) on both datasets. On ImageNet, SWA beats the early stopped SGD surro-
gate, but not on CIFAR-10. Indeed, SWA helps to find flatter solutions than those found by SGD,
but SWA is confined to the same basin of attraction (Kaddour et al., 2022). To remediate to this

3We also update the batch-normalization statistics of the SWA model with one forward pass over the training
data on CIFAR-10 (10% on ImageNet).
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Figure 6: SAM variants and SWA improve transferability over SGD, and SAM with large neigh-
borhoods over the original SAM. Average success rate evaluated over ten target models from a
ResNet-18 surrogate model trained for a number of epochs (x-axis) on ImageNet (left), and from a
ResNet-50 on CIFAR-10 (right). SAM and its variants are trained with both the original size of flat
neighborhood (dotted, ρ = 0.05 except ρ = 0.5 for adaptive variants) and the larger size that we
tuned for transferability (plain). Red is our standard SGD surrogate. Best seen in colors.

issue, we also train several surrogate models with SAM (Foret et al., 2020) and its variants, i.e.,
GSAM (Zhuang et al., 2022), ASAM (Kwon et al., 2021), AGSAM (GSAM+ASAM), WASAM
(SAM+SWA, Kaddour et al. (2022)), and LookSAM (Liu et al., 2022). SAM explicitly minimizes
sharpness during training by solving a min-max optimization problem. At each iteration step, SAM
first maximizes the loss in a neighborhood to compute a second gradient that is used to minimize
the loss (see Appendix E for an illustration). We train one model per SAM variant using the original
SAM hyperparameter (ρ = 0.05). Figure 6 shows that SAM and its variants (dotted lines) train sur-
rogate models that have a significantly higher transferability than fully trained SGD, early stopped
SGD and SWA, on both datasets. On ImageNet, the success rate of SAM averages over the ten tar-
gets at 18.7%, compared to 13.3% for full training with SGD, 14.5% for SGD at its best (epoch 66)
and 15.2% for SWA, and respectively 77.3%, 56.6%, 67.7% (epoch 54) and 60.5% on CIFAR-10.
SAM finds different basins of attractions than SGD (Foret et al., 2020; Kaddour et al., 2022). There-
fore, some basins of attraction are better surrogate than others, and explicitly minimizing sharpness
reaches better ones.

Strong regularization from large flat neighborhoods significantly improves transferability.
We uncover that the size of the flat neighborhood of SAM and its variants induces a regulariza-
tion that is tightly linked to transferability. We observe that SAM and its variants with uncommonly
large flat neighborhoods train significantly and consistently better surrogate models. SAM seeks
neighborhoods with uniformly low loss of size controlled by its ρ hyperparameter. We tune it on
CIFAR-10 on distinct validation sets of natural examples, target, and surrogate models (details in
Appendix E). For all SAM variants, the optimal ρ for transferability is always larger than the original
ρ, and unusually large compared to the range of values used for natural accuracy. Indeed, we find
ρ of 0.3 optimal for SAM, and Foret et al. (2020) originally uses ρ of 0.05. Kaddour et al. (2022)
and Zhuang et al. (2022) tune ρ with a maximum of, respectively, 0.2 and 0.3. Figure 6 reports
the transferability of SAM and its variants with both the original ρ (dotted) and with the larger ρ
found optimal on CIFAR-10 (plain). All SAM variants train a better surrogate model with large ρ
values4. In the following, we denote l-SAM for SAM with large ρ (0.3), and similarly l-AGSAM
and l-LookSAM (respectively, 45 and 0.3). Kaddour et al. (2022) show that changing ρ ends up in

4LookSAM shows a slower learning behavior over the epoch, compared to other SAM variants. LookSAM
is a more efficient variant that computes the additional SAM gradient only once each five optimizer iteration.
Therefore, this behavior is expected.

5l-AGSAM uses ρ value of 4, since as suggested by Kwon et al. (2021) adaptive variants should use ρ 10
times larger. We found our observations consistent with this recommandation.
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Table 1: Success rate and computational cost of surrogate training techniques on ImageNet and
CIFAR-10. The success rate is averaged on ten targets from a ResNet-50 surrogate with a maximum
perturbation L∞ norm ε of 4/255 (other norms in Appendix). The computational overhead is com-
puted from the number of forward-backward passes compared to SGD. Bold is best. In %.

Success Rate Computation Cost

Surrogate ImageNet CIFAR-10 ImageNet CIFAR-10

Fully Trained SGD 17.81 56.06 × 1 × 1
Early Stopped SGD 19.97 70.16 × 0.77 × 0.36
SAT (Springer et al., 2021) 49.74 62.45 × 4 × 8
SWA 20.83 60.26 × 1.00 × 1.00
l-SAM (ours) 48.75 85.50 × 2 × 2
l-AGSAM (ours) 53.14 85.72 × 2 × 2
l-LookSAM (ours) 33.17 77.49 × 1.23 × 1.22

different basins of attraction. Therefore, the stronger regularization induced by l-SAM avoids large
sharp holes on top of the loss surface, and significantly improves transferability.

The benefits of the strong regularization from large flat neighborhoods are specific to trans-
ferability. The stronger regularization of SAM with a large value of ρ is specifically related to
transferability. First, this strength of regularization may degrade natural accuracy. On ImageNet
with ResNet-18, the top-1 accuracy of SAM with large ρ is equal to 67.89%, less than SAM with
the original ρ (70.29%) and even less than fully trained SGD (69.84%). This observation extends to
ResNet-50 and to the other variants of SAM on ImageNet (see Appendix E). Therefore, the improve-
ment in generalization of adversarial examples cannot be explained by an improvement in natural
generalization (better fit to the data). Second, unlike SAM, a stronger regularization of weight decay
decreases transferability, showing a specific relation between transferability and SAM. We train mul-
tiple surrogate models using SGD with different values of weight decay. The optimal weight decay
value for the ResNet-50 surrogate is the same value used to train the target model (see Appendix F
for details). Therefore, not all regularization schemes help to train a better surrogate model.

Overall, we show that the sharpness of the surrogate model is tightly related to transferability:

• Minimizing implicitly or explicitly the loss sharpness trains better surrogate models.
• The strong regularization induced by SAM with large ρ avoids deep sharp minima in favor

of unusually large flat neighborhoods that contain more generic representations.
• The stronger SAM regularization is tailored for transferability: it can reduce natural accu-

racy, and other strong regularization schemes, such as weight decay, do not aid in transfer-
ability.

6 PUTTING IT ALL TOGETHER: IMPROVING TRANSFERABILITY
TECHNIQUES WITH SHARPNESS MINIMIZATION

In this section, we show that explicitly minimizing sharpness is a competitive technique for training
surrogate models and complements well other transferability techniques. To benchmark our princi-
ple against related work, we adhere to the best practices suggested by Zhao et al. (2022). Specifically,
we evaluate the benefits of minimizing sharpness on large neighborhoods against other surrogate
training techniques (same category), and also assess their complementarity with techniques from
different categories. All our code and models are available on GitHub6.

Minimizing sharpness improves over competitive techniques. l-SAM and l-AGSAM are com-
petitive alternatives to existing surrogate training techniques, and l-LookSAM offers good trans-
ferability for a small computational overhead. For a fair comparison, we choose the epoch of the

6URL redacted for double-blind review.
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Table 2: Success rate of other categories of transferability techniques applied on the standard SGD
base surrogate and on our l-SAM base surrogate. The success rate is averaged on our ten ImageNet
targets from ResNet-50 models with a maximum perturbation L∞ norm ε. Bold is best. In %.

ε = 2/255 ε = 4/255 ε = 8/255

Attack SGD l-SAM SGD l-SAM SGD l-SAM

Model Augmentation Techniques
GN (Li et al., 2018) 12.9 28.8 27.8 52.8 46.5 71.0
SGM (Wu et al., 2020) 11.7 24.3 29.3 51.5 55.6 76.2
LGV (Gubri et al., 2022b) 24.8 25.2 53.5 54.7 72.1 73.7

Data Augmentation Techniques
DI (Xie et al., 2019) 22.1 42.0 47.0 72.5 69.4 86.9
SI (Lin et al., 2019) 10.8 28.8 26.9 56.7 49.9 77.2
VT (Wang & He, 2021) 10.5 31.9 24.9 59.4 43.0 78.5

Attack Optimizers
MI (Dong et al., 2018) 12.3 32.0 26.8 59.6 46.3 78.3
NI (Lin et al., 2019) 8.3 20.6 22.3 46.5 43.9 70.5

early stopped SGD surrogate by evaluating a validation transferability at every training epoch7. We
retrieve the SAT (Slight Adversarial Training) ImageNet pretrained model used by Springer et al.
(2021), and we train SAT on CIFAR-10 using their adversarial training hyperparameters. Table 1
reports the average success rate of the aforementioned techniques, alongside their computational
overhead. This overhead is quantified as the ratio of forward-backward passes needed to train the
surrogate model to those required for training with SGD. On both datasets, l-AGSAM is the best
surrogate. l-AGSAM beats the transferability of SAT, while dividing the training cost by two on
ImageNet and four on CIFAR-10. Nevertheless, l-AGSAM doubles the computational number of
forward-backward passes compared to SGD. By computing the additional SAM gradient only once
per five iterations, l-LookSAM is a viable alternative to contain the computational overhead to 1.23,
while having higher transferability than SGD. Overall, sharpness-aware minimizers with large flat
neighborhoods offer a good trade-off between transferability and computation.

Minimizing sharpness trains better base models for complementary techniques. l-SAM is a
good base model to combine with existing model augmentation, data augmentation, and attack op-
timization transferability techniques. These categories aim complementary objectives: model and
data augmentations reduce the tendency of the attack to overfit the base model by adding randomness
to gradients. Attack optimizers intend to smooth the gradient updates. Table 2 reports the success
rate of eight transferability techniques combined with our l-SAM base model on ImageNet. For
all adversarial perturbation norms ε, l-SAM provides a base model that improves every eight tech-
niques, compared to the standard fully trained SGD surrogate, from 0.4 to 35.5 percentage points.

7 CONCLUSION

Overall, our insights into the behavior of SGD through the lens of transferability drive us to a suc-
cessful approach to train better surrogate models with limited computational overhead. Our obser-
vations lead us to reject the hypothesis that early stopping benefits transferability due to an inherent
trade-off between robust and non-robust features. Instead, we explain the success of early stopping
in relation to the dynamics of the exploration of the loss landscape. After the learning rate decays,
SGD drives down the valley and progressively falls into deep, sharp holes. These fully trained rep-
resentations are too specific to generate highly transferable adversarial examples. We remediate this
issue by explicitly minimizing sharpness in unusually large neighborhoods. Avoiding those large
sharp holes proves to be useful in improving transferability on its own and in complement with
existing transferability techniques.

7To ensure no data leakage that could violate our no-query threat model, we craft one thousand adversarial
examples from images of a validation set and evaluate them against a distinct set of target models.
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APPENDIX

These supplementary materials contain the following sections:

• Appendix A details the experimental settings,

• Appendix B reports the transferability and the natural accuracy by epochs of surrogate
trained with SGD on CIFAR-10 and ImageNet,

• Appendix C reports additional results of Section 3 “Another Look at the Non-Robust Fea-
tures Hypothesis about Early Stopping”,

• Appendix D reports additional results of Section 4 “Stopping Earlier: Transferability and
Training Dynamics”,

• Appendix E reports additional results of Section 5 “Going Further: Flatness At The Rescue
of SGD”,

• Appendix F reports the results about transferability with respect to the weight decay of the
surrogate,

• Appendix G reports additional results of Section 6 “Putting It All Together: Improving
Transferability Techniques With Sharpness Minimization”.

A EXPERIMENTAL SETTINGS

This section describes the experimental settings used in this article. The experimental setup is stan-
dard for transfer-based attacks.

• Our source code used to train and evaluate models is publicly available on GitHub at this
URL: redacted for double-blind review.

• Our trained models on both CIFAR-10 and ImageNet are publicly distributed through Hug-
gingFace at this URL: redacted for double-blind review.

Target models. All our target models on CIFAR-10 are fully trained for 150 epochs with SGD
using the hyperparameters reported in Table 3. For a fair comparison, the baseline surrogate
is trained with SGD using the same hyperparameters as the targets. On CIFAR-10, we target
the following ten architectures: ResNet-50 (the surrogate with the same architecture is an inde-
pendently trained model), ResNet-18, ResNet-101, DenseNet-161, DenseNet-201, WideResNet-
28-10, VGG13, VGG19, Inception v3 and ConvMixer. On ImageNet, the target models are the
pretrained models distributed by PyTorch. The ten target architectures on ImageNet are the fol-
lowing: ResNet-50, ResNet-152, ResNeXt-50 32X4D, WideResNet-50-2, DenseNet-201, VGG19,
GoogLeNet (Inception v1), Inception v3, ViT B 16 and Swin S. Additionally, we train a “valida-
tion” set of architectures on CIFAR-10 to select hyperparameters independently of reported results.
This set is composed of: ResNet-50 (another independently trained model), ResNet-34, ResNet-152,
DenseNet-121, DenseNet-169, WideResNet-16-8, VGG11, VGG16, GoogLeNet (Inception v1) and
MLPMixer. This validation set of target models on ImageNet is composed of the following ar-
chitectures: ResNet-50 (another independently trained model), ResNet-101, ResNeXt-101 64X4D,
WideResNet101-2, VGG16, DenseNet121, ViT B 32 and Swin B.

Surrogate models trained with SGD. We train the surrogate models on CIFAR-10 and ImageNet
using SGD with the standard hyperparameters of the robustness library (Engstrom et al., 2019)
(Table 3). Due to computational limitations on ImageNet, we limit the number of epochs to 90,
reusing the same hyperparameters as Ashukha et al. (2020).

Surrogate models trained with SAM and its variants. We train surrogate models with SAM
using the same hyperparameters as the models trained with SGD for both datasets. We integrate the
SAM optimizer into the robustness library Engstrom et al. (2019). The unique hyperparameter of
SAM is ρ, which is set to 0.05 as the original paper for both datasets for the original SAM surrogate.
The l-SAM surrogate is trained with SAM with ρ equal to 0.4. The ρ values used to train the variants
of SAM are reported in Table 3. We use official or popular implementations of ASAM, GSAM,
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AGSAM and LookSAM, following the original paper. LookSAM is an efficient variant of SAM
that computes the additional gradient of SAM only once per five training iterations. As reported
by Liu et al. (2022), LookSAM is unstable at the beginning of training. Liu et al. (2022) solve this
issue using a learning rate with warmup. Since we wanted to use the same learning rate schedule
for all training techniques, we added another type of warmup. LookSAM computes the additional
SAM gradient at all training iterations during the first three epochs. Our LookSAM is equivalent
to SAM before the fourth epoch. This simple solution is enough for LookSAM to converge. This
computational overhead is taken into account in the computational cost reported in Table 1.

Surrogate models of competitive techniques (Section 6). To compare with competitive training
techniques on ImageNet, we retrieve the original models of SAT Springer et al. (2021), an adversar-
ially trained model with a small maximum L2 norm perturbation ε of 0.1 and with the PGD attack
applied with 3 steps and a step size equal to 2ε/3. On CIFAR-10, we reuse the best hyperparameters
of Springer et al. (2021) to adversarially train the SAT surrogate model with a maximum L2 norm
ε of 0.025 and PGD with 7 steps and a step size of 0.3ε. For a fair comparison, we choose the best
checkpoint of the early stopped SGD surrogate by evaluating the transferability of every training
epoch. For each epoch, we craft 1,000 adversarial examples from a distinct validation set of orig-
inal examples and compute their success rate over a distinct set of validation target architectures.
On CIFAR-10, the selected epoch is 54, and 66 on ImageNet. All the other hyperparameters not
mentioned in this paragraph are the same as those used to train the surrogates with SGD.

Attack. Unless specified otherwise, we use the BIM (Basic Iterative Method, equivalently called
I-FGSM) Kurakin et al. (2017) which is the standard attack for transferability Benz et al. (2021);
Dong et al. (2018); Gubri et al. (2022a;b); Li et al. (2018); Lin et al. (2019); Springer et al. (2021);
Wu et al. (2020); Xie et al. (2019); Zhao et al. (2022). By default, the maximum L∞ perturbation
norm ε is set to 4/255. We use the BIM hyperparameters tuned by Gubri et al. (2022a;b) on a distinct
set of validation target models: BIM performs 50 iterations with a step size equal to ε/10. Unless
specified otherwise, we craft adversarial examples from a subset of 1,000 natural test examples that
are correctly predicted by all target models. We repeat the experiments on CIFAR-10 three times,
each run with a different random seed, an independently sampled subset of original examples, and
an independently trained surrogate model. For every CIFAR-10 experiment, we train three times
each surrogate model to estimate correctly the randomness of an attacker training a surrogate model
to perform an attack. The success rate is the misclassification rate of these adversarial examples
evaluated on one target model. We report the average success rate across the three random seeds,
along with a confidence interval of plus/minus two times the empirical standard deviation.

Threat model. We study the threat model of untargeted adversarial examples: the adversary’s
goal is misclassification. We consider the standard adversary capability for transfer-based black-box
attacks, where the adversary does not have query access to the target model. Query-based attacks
are another distinct family of attacks.

Implementation. The source code for each experiment is available on GitHub. Our models are
distributed through HuggingFace. We use the torchattacks library (Kim, 2020) to craft adversarial
examples with the BIM attacks and four transferability techniques, namely LGV, DI, SI, VT, MI and
NI. We reuse the original implementations of GN and SGM to “patch” the surrogate architecture,
and use the TorchAttacks implementation of BIM on top. The software versions are the following:
Python 3.10.8, PyTorch 1.12.1, Torchvision 0.13.1, and TorchAttacks 3.3.0.

Infrastructure. For all experiments, we use Tesla V100-DGXS-32GB GPUs on a server with
256GB of RAM, CUDA 11.4, and the Ubuntu operating system.
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Table 3: Hyperparameters used to train surrogate models.

Training Hyperparameter Dataset Value

All

Number of epochs CIFAR-10 150

ImageNet 90

Initial learning rate All 0.1

Learning rate decay CIFAR-10 Step-wise /10 each 50 epochs

ImageNet Step-wise /10 each 30 epochs

Momentum All 0.9

Batch-size CIFAR-10 128

ImageNet 256

Weight decay CIFAR-10 0.0005

ImageNet 0.0001

SAM ρ All 0.05 for SAM, 0.4 for l-SAM

GSAM ρ All 0.05 for GSAM, 0.2 for l-GSAM
α All 0.15

LookSAM
ρ All 0.05 for LookSAM, 0.3 for l-LookSAM
k All 5
SAM Warmup All 3 epochs

ASAM ρ All 0.5 for ASAM, 3 for l-ASAM

AGSAM ρ All 0.5 for AGSAM, 4 for l-AGSAM
α All 0.15
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B TRANSFERABILITY AND NATURAL ACCURACY BY EPOCHS

Early stopping clearly benefits transferability for all ten targets on CIFAR-10 and all ten targets
on ImageNet (except for the two Vision Transformers, where the transferability plateaus). We re-
produce below the success rates for all target models from the ResNet-50 surrogate model on both
CIFAR-10 (Figure 7) and ImageNet (Figure 9) datasets. We also report the evolution of the natural
accuracy for both CIFAR-10 (Figure 8) and ImageNet (Figure 10).
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Figure 7: Early stopping improves transferability consistently across target models on CIFAR-10.
Success rate evaluated on ten target models (color) from a ResNet-50 surrogate model trained for a
number of epochs (x-axis) on the CIFAR-10 dataset. We report the average over three random seeds
(line) and the confidence interval of two standard deviations (colored area). Vertical bars indicate the
step decays of the learning rate. Triangles indicate the epochs corresponding to the highest success
rate per target.
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Figure 8: The natural accuracy increases at the end of training, whereas transferability decreases.
Natural test accuracy of the ResNet-50 surrogate model trained for a number of epochs (x-axis) on
the CIFAR-10 dataset. Evaluated on the test subset used to craft adversarial examples in Figure 7.
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Figure 9: Early stopping improves transferability to various target models on ImageNet, except to
vision transformers (ViT-B-16 and Swin-S) against which the success rate plateaus at the end of
training. Success rate evaluated on ten target models (colour) from a ResNet-50 surrogate model
trained for a number of epochs (x-axis) on the ImageNet dataset. Vertical bars indicate the step
decays of the learning rate. Triangles indicate the epochs corresponding to the highest success rate
per target.
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Figure 10: Natural test accuracy of the ResNet-50 surrogate model trained for a number of epochs
(x-axis) on the ImageNet dataset. Evaluated on the test subset used to craft adversarial examples in
Figure 9.
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C ANOTHER LOOK AT THE NON-ROBUST FEATURES HYPOTHESIS ABOUT
EARLY STOPPING

This section contains detailed results of Section 3. Figure 11 reports the transferability per target
of the experiment that shows the success of early stopping for surrogates trained on both robust and
non-robust datasets. For this experiment, we divided by two the initial learning rate (0.05) when
training on DNR due to instabilities during training when trained with a learning rate of 0.1.
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Figure 11: Early stopping improves transferability of surrogate models trained on both robust and
non-robust datasets. Success rate evaluated over ten target models (title subfigure) from a ResNet-50
surrogate model trained for a number of epochs (x-axis) on the datasets DR (blue) and DNR (green)
of Ilyas et al. (2019) modified from CIFAR-10 (red).
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D TRANSFERABILITY AND TRAINING DYNAMICS

This section contains additional results of Section 4 on the relationship between the training dynam-
ics of the surrogate model and its transferability.

D.1 CONSISTENCY OF THE PEAK OF TRANSFERABILITY

Figure 12 contains the transferability per target of the surrogate models trained with a single learning
rate decay at a varying epoch. The consistency of the peak of transferability across training epochs
is valid for all ten targets.
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Figure 12: Step learning rate decay benefits transferability at any epochs after initial convergence.
Success rate evaluated over nine target models (title subfigure) from a ResNet-50 surrogate model
trained for a number of epochs (x-axis) on the CIFAR-10. The LR is divided by 10 a single time
during training at an epoch indicated by the colour. Scale not shared between subfigures.

D.2 CROSSING THE VALLEY BEFORE EXPLORING THE VALLEY

Before the learning rate decays, the exploration tends to behave more like “crossing the valley”
than after decay, when it is more likely to “crawl down to the valley”, as described in Schneider
et al. (2021). Figure 1 illustrates this phenomenon. Schneider et al. (2021) proposes the α-quantity,
a metric computed at the level of SGD iterations to disentangle whether the iteration understeps
or overshoots the minimum along the current step direction. Based on a noise-informed quadratic
fit, α ≈ 0 indicates an appropriate LR that minimizes the loss in the direction of the gradient at
this iteration (“going down to the valley”). α > 0 indicates that the current LR overshoots this
minimum (“crossing the valley”). We compute the α-quantity every four SGD iterations during the
best five epochs for transferability on CIFAR-10 (“after LR decay”, epochs 50–54) and during the
five preceding epochs (“before LR decay”, epochs 45–49). The one-sided Welch Two Sample t-test
has a p-value inferior to 2.2e−16. We reject the null hypothesis in favor of the alternative hypothesis
that the true difference of α-quantity in means between the group “before LR decay” and the group
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Figure 13: The LR decay corresponds to a transition from a “crossing the valley” phase to a “crawl-
ing down to the valley” phase. Density plot of the α-quantity values computed each four SGD
iterations during the best five epochs for transferability on CIFAR-10 (epochs 50–54, “After” group,
blue) and the five preceding epochs (epochs 45–49, “Before” group, red).

“after LR decay” is strictly greater than 0. We also perform a one-sided Welch Two Sample t-test on
the 5 epochs before and after the second LR decay (epochs 95–99 vs. epochs 100-105). Its p-value
is equal to 0.004387. Using the Bonferroni correction, we compare the p-values of both individual
tests with a significance threshold of 0.5%. We reject the null hypothesis for both LR decays with
a significance level of 1%. Figure 13 is the density plot of the α-quantities for both groups. Our
results suggest that before the LR decay, training is slow due to a “crossing the valley” pattern. The
best early stopped surrogate occurs a few training epochs after the LR decay when the SGD starts
exploring the bottom of the valley.
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E TRANSFERABILITY FROM SAM AND ITS VARIANTS

This section presents the following elements:

1. An illustrative schema of SAM (Figure 14),
2. The success rate with respect to the ρ hyperparameter of SAM and its variants, used to tune

this hyperparameter for transferability (Section E.1),
3. The natural accuracy of the surrogates trained by SAM and its variants (Section E.2).

wt

wt + 1

wSAM
t + 1

wadv

L(wt)

|| L(wt)||2 L(wt)

L(wadv)

Figure 14: Illustrative schema of a training iteration with SAM. Illustration from Foret et al. (2020).

E.1 THE SIZE OF FLAT NEIGHBORHOODS: THE CHOICE OF THE ρ HYPERPARAMETER

A stronger regularization induced by SAM with large flat neighborhoods trains a better surrogate
model. The size of flat neighborhoods is controlled by the unique hyperparameter of SAM, noted ρ.
Figure 15 reports the validation success rate used to find the best large ρ for each SAM variants. The
selected ρ values are reported for each SAM variant in Table 3. This success rate is computed on
a separate set of target models, surrogate models, and a set of examples. This experimental setting
is carefully designed to avoid data leakage by optimizing the hyperparameter against specific target
models. Otherwise, this could result in model selection, similar to query-based attacks, which are
not allowed by our threat model of transfer-based black-box attacks.

LookSAM is an efficient alternative that computes only the additional ascending gradient of SAM
once per five training iterations. We faced some convergence issues when applying it with our
learning rate schedule (the original authors used a schedule with warmup). To solve this issue,
we add some warmup: LookSAM computes both gradients for the first three epochs of training,
exactly as SAM. From the fourth epoch, the training resumes to the efficient LookSAM variant. The
computational cost reported in Table 1 takes into account this overhead. We also train two additional
variants, ASAM, an adaptive variant of SAM, and AGSAM, an adaptive variant of GSAM. We
follow the original paper Kwon et al. (2021) to select the hyperparameter ρ: the authors recommend
multiplying ρ by 10 when switching to an adaptive variant.

Figure 16 reports the test success rate on the same surrogate models, but computed on our test set
of target models and using natural examples from the test set. Sections 5 and 6 report results from
three other independently trained surrogate models. The transferability improvement of LookSAM
with large ρ is tiny compared to LookSAM with the original ρ. LookSAM is an efficient variant of
SAM that skips 4/5 of the additional ascending gradients of SAM. Our hypothesis is that training
with large ρ requires a more refined update strategy.
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Figure 15: All SAM variants trains better surrogate models with a larger ρ than the original one,
used for natural accuracy. Validation success rate on ten validation target models (subfigure title)
from a ResNet-50 surrogate model trained using SAM or SAM variants (colors) with various ρ
hyperparameters (x-axis) on the CIFAR-10 dataset. Adversarial examples are crafted from a disjoint
subset of one thousand original examples from the train set. The left most ρ value is the original
one: 0.5 for adaptive variants (ASAM, AGSAM), 0.05 for others. Average (line) and ± one standard
deviation (colored area) of three training runs.
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Figure 16: All SAM variants trains better surrogate models with a larger ρ than the original one,
used for natural accuracy. Test success rate on ten test target models (subfigure title) from a ResNet-
50 surrogate model trained using SAM or SAM variants (colors) with various ρ hyperparameters
(x-axis) on the CIFAR-10 dataset. Adversarial examples are crafted from a disjoint subset of one
thousand original examples from the test set. The left most ρ value is the original one: 0.5 for
adaptive variants (ASAM, AGSAM), 0.05 for others. Average (line) and ± one standard deviation
(colored area) of three training runs. The surrogate models used here are the same as in Figure
15. Nevertheless, Sections 5 and 6 report results from three other independently trained surrogate
models.
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E.2 NATURAL ACCURACY OF SAM AND ITS VARIANTS

Tables 4 and 5 report the natural test accuracies of the surrogate models studied in Sections 5 and
6. As commented in Section 5, the strong regularization induced by SAM with large flat neighbor-
hoods (high ρ) can degrade natural generalization. In particular, on ImageNet, our ResNet-18 and
ResNet-50 surrogates trained with l-SAM have a worst natural accuracy compared to SAM and even
fully trained SGD. On CIFAR-10, l-SAM has an inferior natural accuracy than SAM, and a similar
one to SGD. Therefore, the improvement in transferability from l-SAM, i.e., the generalization of
adversarial examples from this strong regularization, cannot be explained by an improvement in
natural generalization, i.e, a better fit to the data.

Table 4: Accuracy computed on the test set of the surrogates trained by SAM and its variants on
ImageNet. In %.

Arch Training Size neighborhood Accuracy

ResNet-18 SGD (baseline) None (SGD) 69.8
ResNet-18 SAM Large 67.9
ResNet-18 SAM Original 70.3
ResNet-18 GSAM Large 68.8
ResNet-18 GSAM Original 70.3
ResNet-18 ASAM Large 68.9
ResNet-18 ASAM Original 70.2
ResNet-18 AGSAM Large 67.8
ResNet-18 AGSAM Original 70.1
ResNet-50 SGD (baseline) None (SGD) 75.7
ResNet-50 SAM Large 74.5

Table 5: Accuracy computed on the test set of the surrogates trained by SAM and its variants on
CIFAR-10. In %.

Arch Training Size neighborhood Accuracy

ResNet-50 SGD (baseline) None (SGD) 94.5 ±0.4
ResNet-50 SAM Large 94.6 ±0.4
ResNet-50 SAM Original 95.3 ±0.3
ResNet-50 GSAM Large 94.7 ±0.5
ResNet-50 GSAM Original 95.4 ±0.5
ResNet-50 ASAM Large 95.6 ±0.5
ResNet-50 ASAM Original 95.1 ±0.4
ResNet-50 AGSAM Large 95.9 ±0.3
ResNet-50 AGSAM Original 95.3 ±0.6
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F TRANSFERABILITY AND WEIGHT DECAY

We show that in the case of weight decay, a stronger regularization of the surrogate model does not
improve transferability. Unlike weight decay, the stronger regularization of SAM is tightly linked to
transferability.

We train on CIFAR-10 one surrogate model for various values of the weight decay regularization
(5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5 and 5e-6) and for various capacities of the ResNet architecture
(ResNet-18, ResNet-50, ResNet-101). Figure 17 presents the transferability of these surrogates. For
the ResNet-50 and ResNet-101 surrogates, the best average success rate simply corresponds to the
weight decay used to train the target models. Interestingly, a lighter weight decay regularization
trains better ResNet-18 surrogate models. We hypothesize that a ligher regularization allows this
smaller architecture to better mimic the complexities of the larger architectures used as targets.
Overall, a stronger weight decay regularization does not train better surrogate models, contrary to
the SAM regularization.
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Figure 17: Stronger weight decay regularization does not improve transferability. Success rate from
ResNet surrogates (subfigure title) trained with a weight decay (x-axis) evaluated on targets (colors)
trained with weight decay indicated by the yellow vertical bar on the CIFAR-10 dataset.
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G EVALUATION OF L-SAM: IMPROVING TRANSFERABILITY TECHNIQUES
WITH SHARPNESS MINIMIZATION

This section extends the evaluation of SAM with large flat neighborhoods of Section 6, performed
with ε equal to 4/255, to two other perturbation L∞ norms (2/255 and 8/255) for the competitive
techniques, and reports the success rate per target for the complementary techniques.

Evaluation against competitive techniques. Tables 6 and 8 evaluate competitive techniques of
l-SAM on CIFAR-10 with, respectively, maximum perturbations L∞ norm ε of 2/255 and 8/255.
The same conclusions made with perturbations of size 4/255 hold for these two norms: l-SAM
clearly improves transferability. l-SAM beats other competitive techniques for the ten targets and
both norms. Tables 9, 10, and 11 show, respectively, that l-SAM beats the other techniques in 6 out
of 10 targets for ε equal to 2/255, and in 5 out of 10 targets for ε equal to 8/255.

Evaluation with complementary techniques. Tables 12, 13, and 14 report in detail per target the
evaluation of complementary transferability techniques on ImageNet. l-SAM increases the trans-
ferability of every eight techniques against every ten targets when combined, except for LGV on
4 targets using ε equals 2/255, and LGV on 3 targets with ε equals 4/255 or 8/255. Since LGV
collects models with SGD and a high learning rate, a conflict might occur when LGV continues
training with SGD from a checkpoint trained with SAM. Future work may explore the adaptation of
the LGV model collection to SAM.

Table 6: Success rate on CIFAR-10 of competitive techniques to train a single surrogate model.
Adversarial examples evaluated on nine targets with a maximum perturbation L∞ norm ε of 2/255.
Bold is best. In %.

Target

Surrogate RN18 RN50 RN101 DN161 DN201 VGG13 VGG19 IncV3 WRN28

Fully Trained SGD 24.2 44.7 35.6 33.3 31.4 9.6 9.2 22.6 30.8
Early Stopped SGD 28.6 46.1 38.6 36.3 34.6 12.7 13.0 27.1 34.9
SAT 19.7 27.3 25.4 20.1 20.3 13.4 13.5 17.6 20.5
l-SAM (ours) 45.4 67.1 60.6 58.9 55.8 20.5 19.8 45.0 54.1

Table 7: Success rate on CIFAR-10 of competitive techniques to train a single surrogate model.
Adversarial examples evaluated on nine targets with a maximum perturbation L∞ norm ε of 4/255.
Bold is best. In %.

Target

Surrogate RN18 RN50 RN101 DN161 DN201 VGG13 VGG19 IncV3 WRN28

Fully Trained SGD 57.9 81.2 70.6 70.8 66.1 27.8 26.3 49.4 66.5
Early Stopped SGD 73.3 87.8 82.1 81.4 78.3 45.5 44.3 66.8 79.5
SAT 66.3 76.2 73.6 66.9 66.1 49.8 48.5 57.9 67.8
l-SAM (ours) 89.7 97.3 95.5 95.7 94.0 63.6 60.6 87.3 93.0
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Table 8: Success rate on CIFAR-10 of competitive techniques to train a single surrogate model.
Adversarial examples evaluated on nine targets with a maximum perturbation L∞ norm ε of 8/255.
Bold is best. In %.

Target

Surrogate RN18 RN50 RN101 DN161 DN201 VGG13 VGG19 IncV3 WRN28

Fully Trained SGD 88.3 97.4 92.4 93.9 91.4 64.2 60.5 79.3 91.9
Early Stopped SGD 97.8 99.6 98.8 98.9 98.4 89.1 87.5 95.6 98.8
SAT 97.0 98.7 98.0 97.1 96.4 90.2 89.2 93.2 97.1
l-SAM (ours) 99.7 100.0 100.0 100.0 99.9 96.6 95.6 99.6 99.9

Table 9: Success rate on ImageNet of competitive techniques to train a single surrogate model.
Adversarial examples evaluated on ten targets with a maximum perturbation L∞ norm ε of 2/255.
Bold is best. In %.

Target

Surrogate RN50 RN152 RNX50 WRN50 VGG19 DN201 IncV1 IncV3 ViT B SwinS

Fully Trained SGD 18.7 9.4 10.0 9.3 7.6 5.8 4.8 5.2 1.1 1.4
Early Stopped SGD 23.8 10.7 10.6 10.6 8.7 6.8 5.6 6.1 1.1 1.5
LGV-SWA 49.3 24.8 25.0 21.7 18.5 16.8 11.6 7.9 1.4 1.5
SAT 30.0 19.2 24.4 20.6 18.4 20.2 20.0 16.6 4.9 4.4
l-SAM (ours) 53.3 34.3 37.5 38.3 30.7 25.0 16.6 10.8 1.7 3.8

Table 10: Success rate on ImageNet of competitive techniques to train a single surrogate model.
Adversarial examples evaluated on ten targets with a maximum perturbation L∞ norm ε of 4/255.
Bold is best. In %.

Target

Surrogate RN50 RN152 RNX50 WRN50 VGG19 DN201 IncV1 IncV3 ViT B SwinS

Fully Trained SGD 44.5 25.2 24.8 27.1 16.2 16.4 9.8 8.0 1.8 3.3
Early Stopped SGD 51.5 27.4 27.7 28.0 18.4 18.7 10.8 10.4 2.2 2.7
LGV-SWA 82.5 56.8 58.5 54.0 40.9 42.4 28.3 15.1 3.1 5.7
SAT 76.3 62.5 66.8 63.4 48.1 59.0 47.9 40.8 17.4 16.8
l-SAM (ours) 85.7 70.3 73.3 73.2 58.2 55.6 37.9 20.5 4.0 8.2

Table 11: Success rate on ImageNet of competitive techniques to train a single surrogate model.
Adversarial examples evaluated on ten targets with a maximum perturbation L∞ norm ε of 8/255.
Bold is best. In %.

Target

Surrogate RN50 RN152 RNX50 WRN50 VGG19 DN201 IncV1 IncV3 ViT B SwinS

Fully Trained SGD 77.5 52.9 51.1 55.0 33.4 36.9 21.1 15.2 3.7 6.7
Early Stopped SGD 82.0 56.8 54.6 59.2 35.9 41.1 24.8 18.3 3.6 5.9
LGV-SWA 96.9 87.7 87.1 84.9 65.4 72.8 56.8 31.2 7.0 12.3
SAT 95.4 92.6 93.0 92.8 79.0 90.1 79.1 66.3 38.5 39.1
l-SAM (ours) 97.6 92.8 93.8 95.3 83.2 85.5 71.2 42.3 9.1 19.0
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Table 12: Success rate on ImageNet of three complementary categories of transferability techniques
evaluated on ten targets with a maximum perturbation L∞ norm ε of 2/255. Underlined is worse
when combined with l-SAM. In %.

Target

Attack RN50 RN152 RNX50 WRN50 VGG19 DN201 IncV1 IncV3 ViT B SwinS

Model Augmentation Techniques
GN 34.6 17.9 17.4 18.0 12.7 10.4 8.1 6.3 1.3 2.0
GN + l-SAM 59.7 42.2 42.8 45.4 35.4 29.1 18.3 11.0 1.8 2.4
SGM 26.9 14.9 15.2 15.8 15.5 9.7 7.4 6.6 1.6 3.6
SGM + l-SAM 46.3 32.0 33.8 35.5 33.4 21.8 20.3 11.9 2.7 5.6
LGV 59.8 33.0 32.9 28.4 31.1 24.2 21.3 12.5 2.4 2.6
LGV + l-SAM 50.7 31.3 32.9 31.4 33.5 27.9 25.0 14.3 2.1 2.5

Data Augmentation Techniques
DI 46.1 27.2 30.9 30.3 22.4 24.8 17.8 15.0 2.5 4.1
DI + l-SAM 66.6 49.5 57.1 52.3 54.1 49.3 47.5 31.8 4.4 6.9
SI 26.2 14.2 14.3 13.3 10.4 11.3 8.4 7.3 0.9 1.4
SI + l-SAM 56.5 37.9 42.9 41.2 33.0 31.4 25.0 14.7 2.1 2.9
VT 26.5 14.4 14.1 13.6 10.8 10.1 6.1 6.3 1.3 2.2
VT + l-SAM 61.5 43.0 47.0 47.4 39.4 35.9 24.3 13.3 2.1 4.9

Attack Optimizers
MI 29.8 15.9 16.4 16.2 12.6 11.5 7.7 8.0 1.9 2.7
MI + l-SAM 58.2 41.5 45.4 44.6 39.8 35.8 28.9 17.4 2.8 5.4
NI 21.1 11.0 10.9 11.2 8.4 6.9 5.0 5.2 1.3 1.7
NI + l-SAM 44.1 28.5 30.7 32.0 25.9 19.6 11.9 9.1 1.3 2.4

Table 13: Success rate on ImageNet of three complementary categories of transferability techniques
evaluated on ten targets with a maximum perturbation L∞ norm ε of 4/255. Underlined is worse
when combined with l-SAM. In %.

Target

Attack RN50 RN152 RNX50 WRN50 VGG19 DN201 IncV1 IncV3 ViT B SwinS

Model Augmentation Techniques
GN 68.0 43.1 41.3 44.1 24.8 27.2 14.3 9.9 1.9 3.8
GN + l-SAM 89.6 76.6 79.4 79.9 65.7 60.3 42.2 22.4 3.8 7.8
SGM 62.8 40.6 41.5 43.5 31.9 28.0 19.3 13.2 4.1 7.9
SGM + l-SAM 83.2 68.7 71.5 73.0 67.0 56.2 48.9 26.6 6.2 13.6
LGV 93.3 78.1 75.3 73.1 64.4 61.6 49.3 28.8 5.0 6.5
LGV + l-SAM 88.7 74.3 75.7 75.7 70.3 61.9 56.8 31.5 4.5 7.3

Data Augmentation Techniques
DI 83.1 60.5 68.1 67.3 45.4 57.9 41.4 30.7 5.7 9.9
DI + l-SAM 95.0 89.7 90.7 91.6 85.3 87.8 87.5 64.2 14.2 19.0
SI 60.0 37.9 37.3 40.0 23.9 30.0 19.6 13.5 2.6 3.8
SI + l-SAM 89.2 76.6 80.1 79.1 65.2 69.8 58.0 35.8 5.0 8.5
VT 58.6 35.0 35.2 38.5 23.9 24.7 14.9 11.0 2.3 4.9
VT + l-SAM 92.0 81.2 82.4 82.9 72.3 72.3 56.7 33.6 7.0 13.5

Attack Optimizers
MI 56.8 37.4 37.5 38.9 27.0 29.3 18.4 14.6 3.5 4.8
MI + l-SAM 89.4 79.3 80.4 80.8 71.5 71.1 60.1 39.3 8.5 15.2
NI 53.7 33.1 32.9 35.1 20.5 20.8 12.2 9.4 1.8 3.9
NI + l-SAM 83.9 67.3 69.8 71.4 56.1 52.5 35.6 17.6 3.8 7.0
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Table 14: Success rate on ImageNet of three complementary categories of transferability techniques
evaluated on ten targets with a maximum perturbation L∞ norm ε of 8/255. Underlined is worse
when combined with l-SAM. In %.

Target

Attack RN50 RN152 RNX50 WRN50 VGG19 DN201 IncV1 IncV3 ViT B SwinS

Model Augmentation Techniques
GN 92.0 73.3 69.7 74.5 45.8 50.4 29.8 19.2 3.2 7.1
GN + l-SAM 98.2 96.5 96.5 97.4 87.3 88.3 74.4 42.9 9.0 19.4
SGM 91.2 78.4 76.2 79.2 65.1 59.7 48.2 29.1 8.9 19.6
SGM + l-SAM 97.3 95.1 96.4 96.5 91.5 88.7 84.8 59.8 18.9 32.8
LGV 99.6 97.4 95.9 95.7 87.7 91.7 79.9 47.9 8.9 16.4
LGV + l-SAM 99.0 96.5 96.2 96.7 90.7 91.0 85.7 53.8 9.5 17.7

Data Augmentation Techniques
DI 96.1 90.7 91.8 91.4 74.1 88.1 72.4 55.0 14.2 20.4
DI + l-SAM 99.8 99.6 99.5 99.7 98.6 99.3 98.4 90.4 34.7 48.7
SI 90.4 70.0 69.9 71.9 47.8 60.2 42.6 29.3 6.5 10.3
SI + l-SAM 98.9 97.3 97.3 98.0 89.9 94.8 90.1 67.2 15.0 23.6
VT 79.6 62.8 61.1 63.5 41.9 48.4 32.2 23.3 6.3 10.5
VT + l-SAM 98.0 96.7 96.1 97.3 92.9 93.1 87.1 64.2 20.0 39.2

Attack Optimizers
MI 83.3 60.9 63.3 64.3 48.7 53.8 39.2 30.4 7.4 11.7
MI + l-SAM 98.5 96.3 96.7 97.1 91.9 92.7 88.1 68.6 21.3 31.5
NI 86.2 65.3 65.1 70.3 43.6 47.1 28.7 19.6 4.7 8.3
NI + l-SAM 97.9 94.0 95.0 96.0 87.3 86.2 74.2 42.6 10.7 21.0
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