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ABSTRACT

Multiple Instance Learning (MIL) methods are typically supervised. However, a
bag-to-bag metric is needed in many applications, including clustering, statistical
tests, and dimension reduction. Such a metric should differentiate between bags,
regardless of the sparsity or overlap between the instances of the bags. We pro-
pose SUMIT (Self sUpervised MIL dIsTance) as an instance-embedding-based
distance that maximizes the distinction between bags. SUMIT is optimized using
five criteria: self-similarity within a bag, quality of instance reconstruction, ro-
bustness to sampling depth, conservation of triangle inequality, and separation of
instances to clusters. We show using current standard MIL datasets and a novel
wiki-based set of wiki topics that the within bag-similarity loss is the most impor-
tant for a bag-to-bag metric that best separates bags of similar classes. SUMIT
bridges the gap between instance-level and bag-level approaches, by keeping the
embedding of all instances but ensuring their proximity within a bag.

1 INTRODUCTION

Multiple Instance Learning (MIL) is weakly supervised learning where the training instances are
not stand-alone examples, but instead are arranged in sets, called bags(2). Labels are provided for
the entire bag and not for the individual samples, further denoted as instances. To exemplify MIL,
consider chapters in a book. The sentences can be considered as the individual instance, and the
chapter is a bag. In the training set, we know that chapters belong to a category. The goal of
MIL classification is to detect whether a chapter in the book belongs to a category. While a large
number of algorithms were developed for MIL classification, there is no inherent method to define
distances between bags. Note that many methods were proposed to define distances on sets (e.g.
the energy distance(20), Wasserstein Distance(21) Hausdorff distance(27), etc). However, these
distances do not consider the distribution of instances in each bag. We propose to combine self-
supervised learning and metric learning to produce such a metric between bags. Using the book
chapters example above- when considering the chapters as the bags, one would expect the distances
between chapters in the same book to be smaller than the distance between chapters from other
books. Also, the distances between chapters from books of the same genre or subject should be
smaller than the distances between chapters from other genres or subjects.

MIL classification methods can be grouped into three categories: instance-space (IS), bag-space
(BS), and embedded-space (ES) methods(30). The categorization is based on how information from
the bag is extracted. The Instance-Space (IS) paradigm is based on local, instance-level information,
ignoring the characteristics of the whole bag. This is based on the assumption that the information
lies in the instances. The Bag-Space (BS) paradigm is based on global, bag-level information, and
each bag is treated as an entity. The Embedded-Space (ES) paradigm, like the BS paradigm, is
based on global, bag-information. In contrast with the BS paradigm, which uses a non-vectorial
representation of the bag, in the ES paradigm, each bag is mapped to a single feature vector.

We here propose a combination of the instance and bag level, by computing a distance on an embed-
ding of each instance, requiring that the distance between instances of the same bag to be closer than
instances between bags. We do not assume any label on the bag. As such, the metric presented here
is an instance-level self-supervised distance at the bag level. This approach combines the advantages
of instance and bag-level approaches.
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We deviate from the mainly supervised approach used in MIL. A well-defined metric in the MIL set-
ting has multiple benefits, including, distance-based machine learning (e.g. KNN(11)), the definition
of density in the bag space using kernel density estimation - KDE(7), clustering using distance-based
clustering (e.g. community detection(16) or dBscan (8), dimension reduction using distance con-
serving projection (e.g. MDS (15),UMAP (17), t-SNE(25) and the resulting visualization when
projected to two or three dimensions, and distance based statistical tests(3).

2 RELATED WORK

While no method was explicitly developed for a self-supervised MIL metric definition, some su-
pervised and unsupervised methods provide a distance metric between bags. In general, one can
produce a distance from all ES and BS representation methods.

1. ES (Embedding Space) methods in MIL explicitly map entire bags into continu-
ously embeddings(13; 29). Instance embeddings can be combined using pooling(10) or
attention(26) to compute bag-level metrics. The Euclidean (or any other) distance between
the embedding of the bags is a metric.

2. BS (Bag Similarity) (27; 9; 33; 6; 23; 32; 12; 28) methods indirectly derive distances
between bags by first computing distances or similarities between instances within bags,
often using kernel functions or distance metrics like the Hausdorff distance.

3. IS (Instance Space) methods consider instances individually and aggregate their predic-
tions or features to infer bag-level decisions. There are no bag-to-bag good Instance-based
metrics. In the last decade, there has been much less interest in instance-based methods,
since those suffer from the aggregation problem - how to combine the instances to repre-
sent a bag. Each combination method has limitations. Using the mean can lead to instances
canceling one another, and using each instance creates different size representations for
each bag (note that the same problem may emerge in ES).

Other methods applied existing distances to specific problems (Appendix A). The main works that
explicitly produced distances are:

1. Citation-KNN(27) proposed a modified Hausdorff Distance-based MIL approach. The
Hausdorff distance is utilized to provide a metric function between subsets of a metric
space. Specifically, two bags X ,Y are in distance d if every instance of bag X is within
distance d of at least one of the instances in bag Y :
dHausdorff (Xi, Xj) = max(h(Xi, Xj), h(Xj , Xi));h(Xi, Xj) = max

xi∈Xi

min
xj∈Xj

||xi − xj ||

(1)
2. Kernel Methods(9) define a kernel function as the sum of instance kernels:

dKernel(Xi, Xj) = K(Xi, Xj) :=
∑

k(xi, xj)
xi∈Xi,xj∈Xj

(2)

3. Graph Kernel(33) transforms the bags into undirected graphs implicitly or explicitly, and
applies standard distance metrics of graphs such as edit-distance(22) and inexact matching
distance(4):

dGraph(Xi, Xj) = D(GXi , GXj ) (3)
,where GXi is the graph produced from Xi.

4. MInd(6) represents each bag by a vector of its dissimilarities to other bags (e.g. Hausdorff
distance) in the training set and treats these dissimilarities as a feature representation:
dMInd(Xi, Xj) = d (FMInd(Xi), FMInd(Xj)) , FMInd(Xi) = [d (Bi, B1) , . . . , d (Bi, BM )]

(4)
where the bag Bi is compared to each of Bj , 1 <= j <= M the M bags of a training set.

5. Contrastive Multiple Instance Learning(23): Method initially trains a tile-wise encoder
using SimCLR(5), from which subsets of tile-wise (instances) embeddings are extracted
and fused via an attention-based multiple-instance learning framework to yield slide-level
(bag) representations. The resulting set of intra-slide-level and inter-slide-level embeddings
are attracted and repelled via contrastive loss, respectively.
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6. Multi-instance clustering with applications to multi-instance prediction(32): Each bag is
represented by a k-dimensional feature vector, where the value of the i-th feature is the
distance between the bag and the medoid (the center). The medoid is set in the minimum
distance medoid = argmin

Xi∈G

∑
Xj∈G d(Xi, Xj) to all bags in group G, where d is the

distance to the medoid) of the i-th group. The distance between bags can be Min, Max, or
Hausdorff of the instances.

3 NOVELTY

All current metrics use either a projection of the entire bag and as such lose most of the informa-
tion on the bag, or use the original representation of each instance combined with some predefined
distance between sets. This suffers from a high overlap between bags.

Here we propose a novel approach - use an energy distance via the embedding of each instance.
The embedding of each instance is learned to ensure that the distance between instances of different
bags is larger than the distance of instances in a bag. In addition, we optimize the embedding of each
instance to ensure that the distance between bags adheres to the requirements of a distance metric
(e.g. the triangle inequality.

Specifically, we do not optimize the distances between bags. Instead, we optimize the embedding of
each instance to minimize five different losses:

1. Reconstruction Loss. We minimize the discrepancy between the original and the recon-
structed features following an encoder-decoder model.

2. Contrastive Loss We minimize the distance between instances of the same bag compared
to distances from different bags.

3. Invariance Loss. We ensure the distance is not sensitive to the number of instances sam-
pled in each bag.

4. Clustering. We optimize the division of the encoding into distinct clusters.
5. Triangle Loss. We maximize the gap between the undirect distance from one instance to

another through a third instance and the direct distance between said instances (adherence
to the triangular inequality theorem).

To the best of our knowledge, this is the first time the embedding of each instance is optimized to
produce an optimal distance between bags.

4 METHODS

4.1 DATA

We used two types of datasets1: benchmark MIL datasets(18)(1)(24) and a self-curated dataset from
Wikipedia pages (Appendix B for the list of topics). The wiki data is available in the github.

In the benchmark datasets, the MUSK1 and MUSK2 datasets represent molecules identified as
musks or non-musks by human experts. The features of each instance represent the shape of the
molecules, and the different instances are the different conformations of the molecules. The Fox,
Tiger, and Elephant datasets are subsets of the Corel image retrieval dataset, separated into images
presenting (or not) the associated animal. Each image is a bag, and the instances are created by
dividing the image into segments, where each segment’s features represent the segment’s color, tex-
ture, and shape. If any image segment includes the animal, the bag is labeled positive. The Wiki
dataset introduced here is a novel dataset developed for the current analysis. The bags are Wikipedia
pages of cities in different countries, such that each country is a label of the city. The instances are
the Bag Of Words (BOW) of each section on the page.

4.2 MODEL AND EXPERIMENTAL SETUP

We used an encoder-decoder model, which was trained using the losses below. Let x ∈ Rdinput

represent the input data, where dinput is the input instances dimension. We used an encoder-
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Data Sets
Name No. Features No. Instances No. Bags Data Type
MUSK1 166 476 92 Tabular
MUSK2 166 6598 102 Tabular
FOX 230 1320 200 Tabular
TIGER 230 1220 200 Tabular
ELEPHANT 230 1391 200 Tabular
Wikipedia 1205 19568 1504 Text Sequences

Table 1: Data sets statistics- the number of different features (the instance dimension), the total
number of instances (samples), and bags, and the type of data.

decoder model with layers: [dinput, 128, 64, 32, 64, 128, dinput], applying ReLU activations and Batch
Normalization(14) between each layer. The encoding is x̃i. The output of the decoder is x̂i.

The latent layer is normalized using Layer Normalization (LP). For the Wikipedia dataset, the
encoder-decoder has layers: [dinput, 16, 10, 16, dinput]. The model was trained using 5-fold cross-
validation with an 80-20 train-test split, over 2,000 epochs, using the Adadelta optimizer(31).

4.3 LOSS FUNCTIONS

We tested five loss functions1 aimed at optimizing the reconstruction, but also ensuring a high
distance between bags.

Figure 1: The five losses schema. The scheme shows the bags (rightmost large stack) that are made
of the instances (rectangles inside squares). The instances are projected through the model to a
latent space (middle stack) and then projected back to the original dimension (left-most stack). The
different losses are derived from different layers of the model. Reconstruction from the difference
between the original and reconstructed bags, Distinction from the latent space (through clustering,
as illustrated in the three centroids on the middle-top axis), and then Contrastive, Invariance from
the latent space at the bag level, and Triangle at the instance level.

• Reconstruction Loss The norm of the distance between the decoder output and the original
input for each instance:

LReconstruction = ∥xi − x̂i∥2 (5)

4
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• Contrastive Loss. Minimization of the distance between pairs of instances originating
from the same bag and maximizing the distance between pairs from different bags.

LContrastive = −log
exp(

sim(x̃i,x̃j)
τ )∑2N

k=1 exp(
sim(x̃i,x̃k)

τ )
, where x̃i, x̃j ∈ Xα and x̃k /∈ Xα (6)

• Invariance Loss. The invariance loss ensures the distance is not sensitive to the sample
depth, defined as the number of instances sampled from each bag.

LInvariance = −log
exp(

sim(Agg(X̃i),Agg(X̃j))
τ )∑2N

k=1 exp(
sim(Agg(X̃i),Agg(X̃k)

τ )
,

where Agg(X̃i), Agg(X̃j) are an aggreggation of the the same bag Xα in

different depths and Agg(X̃k) of other bag Xβ .

(7)

• Clustering Loss. The clustering loss is tailored to maximize the clustering of the encoded
instances, akin to the objectives pursued in the K-Means algorithm. Specifically, it aims to
minimize the within-cluster variances, measured as squared Euclidean distances:

LClustering =
SSE∑

i

∑
j ∥xi − xj∥

=

K∑
i=1

∑
xj∈Ci

∥ci − xj∥2∑
i

∑
j ∥xi − xj∥

(8)

The clustering is done using the method proposed by Xai beyond classification(19) where
the data is encoded and then clustered, where the clustering is optimized every other epoch.

• Triangle Loss. The triangle loss is designed to optimize the adherence to the triangular
inequality principle. The distances between points forming the vertices of a triangle are
represented by the Euclidean distances between the corresponding instance projections. It
is computed as the percentage of deviation from the triangular inequality across all possible
triples of data points. It is defined as follows:

LTriangular = p(d(xi, xj) > d(xi, xk) + d(xk, xj)) (9)

This loss tries to spread the points in wide angles.

4.4 ENERGY DISTANCE

We use the energy distance(20) for the bag-to-bag distance. Each bag is represented as a set of its
instances projection in Rn. For two bags X . Y , it is:

D(X,Y ) = 2E[∥X − Y ∥]− E[∥X −X ′∥]− E[∥Y − Y ′∥]. (10)

4.4.1 KERNEL DENSITY ESTIMATION

To ensure that the projection maximizes the similarity of instances within the same bag, we use
a kernel-density estimate (KDE) (Eq. 11). KDE is a non-parametric method used to estimate the
probability density function of a random variable in a metric space. As seen in the schematic figure
2, it smooths the data points using a kernel function, providing a non-parametric continuous estimate
of the underlying distribution. Here we use a class-dependent KDE. For each instance of class A, we
compute the density of instances of either class A (self) or class B (other), using a Gaussian kernel
with a radius h.

f̂(X) =
1

nh

n∑
i=1

K

(
d(X.Xi

h

)
;K(d) =

1√
2π

exp

(
−d2

2

)
(11)

h was defined as 2 ∗ σ(X) - the standard deviation of all the distances between the bags. We define
the quality of the embedding using the ratio of the self to other densities:

S =
AverageXKDE(Self,X)

AverageXKDE(Other,X)
(12)
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5 RESULTS

We propose here to learn an embedding of the instances, and then apply an energy distance to the
bags. The embedding is learned using an encoder-decoder architecture with five different losses:

1. Reconstruction: error between the original input features and the reconstructed features
produced by a mode

2. Contrastive: minimize distance for pairs from the same bag, maximize distance for pairs
from different bags.

3. Invariance: maintains consistent distances between the same pair of bags across different
sampling depths.

4. Clustering: Minimizes the bag’s distance to assigned clusters, aiming at creating a more
dense representation.

5. Triangle: optimizes adherence to the triangular inequality by minimizing deviations in
Euclidean distances between points forming a triangle.

To evaluate the quality of the distance, we compared the density of bags from class A or B around
bags from class A (as estimated by a KDE). A good projection should maximize the ratio of the self
(density of A around A) to other (density of B around A) densities.

To illustrate that, we generated toy data of bags from two labels, where the instances of bags with
one label are far from the instances of bags with the second label. Following the method above, the
bag-to-bag distance was calculated using energy distance, and the bag projections were visualized
using multi-dimensional scaling (MDS). (Fig. 2 A). The higher KDE for bags from the same label
(A, A) vs bags of different labels (A, B) captures the separation of the bags as seen in (Fig. 2 b). We
propose the same approach to estimate the quality of the distance on real-world datasets.

5.1 LIMITATION OF INSTANCE-BASED DISTANCES

When we applied the same approach to real-world datasets (using pre-defined projections of the
instances), a poor separation was noticed between bags of similar labels and those of different labels,
as can be observed by the low densities, as well as similar density distributions between the self and
other densities (Fig. 2 d). One can see that for example the MDS projection based on the bag
distance (computed similarly to the toy model) of the Elephant dataset (Fig. 2 d), reveals a lack
of visual distinctiveness among labels, with the red and blue points overlapping. This observation
is further supported by the low ratio between the KDE values for the distances based on instances
across all datasets (Fig. 2 b).

5.2 AN AUTOENCODER THAT LEARNS THE INSTANCE DISTRIBUTION DOES NOT IMPROVE
THE BAG DISTANCE METRIC.

If indeed instances are closer within a bag than between bags, an embedding of the instances learned
via an auto-encoder (AE) could in theory ensure a more uniform distribution of the instances within
bags, and as such improve the within-to-between bag density. We trained an AE using only a re-
construction loss (i.e. only ensuring that the AE reproduces the input). However, in general, the
AE only decreases the within-to-between class density (Fig 3C). The reconstruction loss decreases
to very low values, suggesting a good reconstruction of the instance values. However, using the
encoded latent representation to compute the bag-based distance does not improve the within-to-
between class density ratio.

5.3 THE WITHIN-TO-BETWEEN BAG DENSITY RATIO CAN BE IMPROVED USING OTHER
LOSSES

Reconstructing the original instance space does not improve the within-to-between class density
ratio. We thus tested alternative losses. Those include Contrastive, Invariance, and Triangle losses.
When training with one of the losses at a time, each of the four losses converges rapidly (See musk
data results in Fig. 3 a. The results are similar for other datasets). The ratio between the density of
each of the labels improves and grows over time for the contrastive and invariance losses, but not

6
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Figure 2: (a) KDE schematic showing smoothing of data points. (c) MDS visualization for toy data
and raw Elephant data (d). Axes represent MDS dimensions. Blue and red denote labels 0 and 1.
Label 0 of toy data in range [0, 2] and label 1 in range [10,15]. Toy data shows clear label separation,
while instance-based distance on Elephant lacks distinct separation. This correlates with the high
KDE values for Toy data and low for Elephant as seen (b) in bar plot for KDE of both labels.

for the reconstruction or triangle loss (See Fig. 3b for Musk - results are similar for other datasets).
Indeed, following convergence, both Invariance and contrastive losses increase the within to between
class densities, in contrast with the reconstruction and triangle that reduce the ratio (See average for
training and validation in Fig. 3c, and distribution over 5 folds in Fig. 3d).

5.4 MULTI-CLASS CLASSIFICATION USING NOVEL WIKIPEDIA DATASET

To test that the conclusions above can be extended to multiple classes, we developed a new MIL
dataset composed of the BOW of Wikipedia cities descriptions from different countries (See Fig. 4
d for the number of cities per country). The class of each bag was its country. We computed the
density of the bag own country bags vs other countries at the end of training. (Fig. 4b for average
relative improvement per country in within to between class density in the validation set, and 4c.
for the distribution). Again, the contrastive and invariance losses induce the best improvement
consistently over all cities. the other losses have practically no effect.

5.5 INCLUSION OF CLUSTERING LOSS AND COMBINATION OF LOSSES

A simple solution to increase the self-density is to produce a projection that would better cluster.
We added a clustering loss that mimics a k-means clustering (see methods). For each loss, (recon-
struction, contrastive, invariance, and triangle) we trained the model with the loss fixed to 1 and

7
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Figure 3: The four losses decay when training with a single loss at a time for the musk data (a),
each color accounting for a single loss, with the darker colored line for the training loss and the
lighter for validation loss. An example of the KDE decay with the Musk data when training with
a single loss at a time (b), with the different colors for indicating the losses, where the light and
dark trend lines exhibit the two different labels. The beginning-to-end ratio of KDE improvement
(KDEend − KDEbeginning)/KDEend for each dataset for each loss (c), with the different
colors indicating the losses, and the light and dark bars representing the two labels. Summarizing
of the KDE improvement for each loss on all datasets (d), with the two shades of gray denoting
training and validation.

Figure 4: The beginning-to-end KDE improves (KDEend−KDEbeginning)/KDEend for each
of the four losses (a). Each color accounts for a single loss. Distribution of the KDE improvement
percentage for each loss for each label across all folds (b), with the four colors corresponding to the
four losses. The labels in the exhibited fold are almost balanced (c), causing one label to improve
more than others.

clustering loss with weights 0, 0.01, 0.1, 1, 10. The clustering loss slightly improves the within-to-
between class density (Fig 5a for wiki data and b for all other datasets). However, the difference

8
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is non-significant (ANOVA on all methods and clustering loss weight). Note that the clustering is
unstable, leading to large fluctuations in the loss and KDE. However, the clustering loss may be
important for the representation, since a more dense cluster of bags aids with a clear distinction
between the bags.

Given the importance of the contrastive and invariance loss and the failure of the reconstruction loss,
we tested whether combining the losses can actually improve the within-to-between class density.
Adding a reconstruction term to the loss consistently decreases the ratio. In contrast, the ratio of the
contrastive to invariance loss is inconsequential, and both losses seem to be equivalent (Fig. 5c and
d).

Figure 5: Clustering loss does not improve nor deteriorate. The models trained with clustering loss
weighted with every other loss, for every weight of clustering loss while fixing the other loss weight
to 1 for Wikipedia (a) and all other datasets (b). The darker shade is for label 1, and the lighter is
for label 0. The percentage of improvement (KDEend−KDEbegining)/KDEend of the KDE
before vs after training exhibits no distinct impact.Balancing between contrastive loss and other
important losses reconstruction (c) and invariance (d) depends on the dataset.

5.6 CLASSIFICATION USING LEARNED METRIC

Finally, we tested whether the self-supervised loss also improved the classification accuracy. We
used a simple KNN setup, where we defined the distance between each pair of bags using the learned
embedding and the energy distance between bags. We then computed the classification accuracy.
Following the self-supervised training. The test bags are classified using the majority vote of the 9
nearest neighbors for all datasets. We then computed the accuracy and increase in accuracy (vs the
original instances values) of the KNN classification, either as a binary (average of each class vs all
others), or multiclass (Fig. 6). As was the case for all other measures and datasets, in all cases, the
contrastive and invariance loss improve the accuracy, while the triangle and reconstruction reduce
the accuracy. The clustering loss has a limited effect.

9
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Figure 6: KNN classification accuracy. (a) for Wikipedia dataset for the binary label, with clustering
loss and without. (b) KNN classification accuracy on the multi-label Wikipedia setup. c KNN
classification accuracy improvement compared to KNN accuracy on original data

6 DISCUSSION

While MIL problems were extensively studied in supervised contexts, there are very limited solu-
tions for distances between bags. We have here presented SUMIT a self-supervised approach to
embed each instance to optimize the distance between bags. We used five types of distances: A
reconstruction distance focused on reproducing the instance values as precisely as possible, a tri-
angle distance that maintains the geometry of the projection, a clustering distance that ensures that
the projection induces distinct clusters, and two bag-level self-supervised distances that minimize
the distance within each bag. The first is a contrastive loss that compares the distance between and
within bags, and the second distance ensures that the distance between bags is not sensitive to the
number of instances sampled from each bag. Following the projection, we used an energy distance
on the instances to define a bag distance.

We tested this distance definition by measuring the density of bags of different labels around bags
of the same labels in standard datasets as well as a novel wiki-based dataset scrapped for the current
task from the wiki pages of different cities. We have shown that while the instance-based distances
(Triangles and reconstruction) do not increase, and sometimes decrease the density of bags of a
given label around bags of the same label, the self-supervised distances increase this density. Thus,
for the sake of an optimal distance, maintaining the bag information is more important than the
precision of the instance reconstruction from the projection.

Adding the clustering distance to the bag level losses further improves the density of same-level
bags, probably by ensuring more dense and separated projections.

SUMIT bridges the gap between bag-embedding methods where the entire bag is projected into a
single vector in Rn, and instance-based methods, where the focus is on the instances. Moreover, the
combination of the clustering loss increases the typical self-density, but also the contrast between
bags of different labels.

To the best of our knowledge, SUMIT is the first effort explicitly targeted at developing an instance-
based distance between bags that is optimized at the bag level. Many choices in this analysis are
arbitrary and can be changed. Those include among others the model used for the projection (cur-
rently a two-three-layer fully connected neural network), and the precise definition of the loss for
each of the components (e.g. changing different types of self-supervised loss). However, from our
experience, the precise details of either the encoder or the decoder, or the precise shape of the loss
do not affect the qualitative results presented here.
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A RELATED WORK AND APPLIED WORK

Paper Method Distance
Citation-KNN Hausdorff Distance Hausdorff Distance
Multi-Instance Learning by Treating Instances As Non-
I.I.D. Samples

MI-Graph Graph Distance

Multiple Instance Learning with Bag Dissimilarities -
MIND

Bag represented by vector
of its dissimilarities to other
bags which is the feature
vector

Dissimilarity, not
Distance

Contrastive Multiple Instance Learning: An Unsuper-
vised Framework for Learning Slide-Level Representa-
tions of Whole Slide Histopathology Images without La-
bels

SIMCLR for instances, fuz-
ing together with attention

Can be derived from
encoding

Multi-instance clustering with applications to multi-
instance prediction

Bag representations as a
vector of distances to i
medoids.

Hausdorff distance

Unsupervised Multiple-Instance Learning for Functional
Profiling of Genomic Data

agglomerative or partition
clustering and MIL’s cita-
tionkNN

Measurement based
of maximum pairs of
instances with mini-
mum MI

Unsupervised Multiple-Instance Learning For Instance
Search

Finding Instance That
Matches Bag Label

NA

Applied Work
Deep learning of feature representation with multiple in-
stance learning for medical image analysis

Extracting features then
classifying with them

NA

Dual attention multiple instances learning with an unsu-
pervised complementary loss for COVID-19 screening

Contrastive loss is applied
at the instance level to en-
code the similarity of fea-
tures from the same pa-
tient against representative
pooled patient features.

NA

B WIKIPEDIA TOPICS

The Wikipedia dataset consists of 10 country-specific labels. For each country, we extracted pages
for its cities, treating each city as a bag and the sections of its page as instances. The sections are
represented as a bag of words, with sentences cleaned of stop words and other irrelevant words.

Country Number Of City Pages
GB 5340
Australia 814
Ukraine 413
France 1149
Greece 347
Spain 481
Italy 754
Germany 987
Brazil 170

Table 2: Country Values Table

C NOTATIONS

We will use the following notations throughout the appendix:
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1. A bag α of m instances will be marked Xα = x1, x2, ..., xm, where each xi is an instance
of the bag.

2. Each instance j is represented by a feature vector xj in a d-dimensional feature space (i.e.,
xj ∈ Rd).

3. An encoding of an instance will be marked as x̃i ∈ Re in an e-dimensional encoding space,
and for a bag Xi with n instances the encoding will be marked X̃i ∈ ReXn.

4. A decoding of an instance will be marked as x̂i ∈ Rd in the original d-dimension feature
space, and for a bag Xi with n instances the decoding will be marked X̂i ∈ RdXn.
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