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ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has significantly im-
proved reasoning in large language models (LLMs), yet the token-level mecha-
nisms through which they reshape model behavior remain unclear. We present
a systematic empirical study of RLVR’s distributional effects across three com-
plementary axes: (1) token-level distributional shifts, (2) functional validation via
cross-sampling interventions, and (3) exploratory investigations of advantage sig-
nal modulation based on token divergence. We find that RL fine-tuning induces
sparse, targeted changes, with only a small fraction of tokens exhibiting signifi-
cant distributional divergence, and we further analyze the nature of these shifts.
These divergent distributions are not uniformly predicted by entropy, indicating
that RLVR can modify both initially high and low entropy distributions under
different settings. Cross-sampling experiments reveal that inserting just a small
fraction of RL-sampled tokens into base model generations recovers most RL per-
formance gains, while injecting a small portion of base-sampled tokens into RL
generations collapses performance to base levels, functionally isolating the critical
role of divergent tokens. Finally, we explore divergence-weighted variants of the
advantage signal, finding that they can amplify improvements in baselines. Our
work sheds light on the distributional changes induced by RLVR and provides
a granular, token-level lens for understanding and improving RL fine-tuning in
LLMs.

1 INTRODUCTION

Recent advances in reinforcement learning with verifiable rewards (RLVR) (Lambert et al.,[2024)) for
reasoning in large language models (LLMs), such as Group Relative Policy Optimization (GRPO)
(Shao et al.l |2024), have enabled models to achieve strong performance on challenging reasoning
and math benchmarks. Despite their empirical success, the mechanisms through which RL modifies
model behavior remain unclear.

Many evaluations focus on aggregate metrics such as accuracy, rewards, and response lengths. While
valuable, these metrics provide only a coarse view of model improvement and offer limited insight
into the fine-grained changes induced by RL fine-tuning. In particular, it remains unclear: How
does RL reshape the token-level output distributions of the base model? A growing line of work
has begun to examine RL-finetuning of LLMs from the perspective of token entropy (Wang et al.,
2025; [Cheng et al.| [2025; [Cui et al.| [2025)), highlighting the role of high-entropy tokens. However,
a more granular understanding of how RLVR redistributes probability mass across tokens, and what
structure these shifts exhibit, remains unclear.

In this paper, we investigate the fine-grained dynamics of distributional change induced by RLVR
on the token-level. Our contributions are organized into three interconnected themes:

* Token-Level Distribution Analysis: We quantify how RL fine-tuning reshapes token dis-
tributions, showing that changes are sparse and targeted, with only a small fraction of
tokens exhibit significant divergence. We characterize these shifts using JS divergence,
entropy, and positional trends, and compare DAPO and GRPO, revealing differences in
exploration behavior and refinement strategies across training dynamics.



Under review as a conference paper at ICLR 2026

* Functional Interventions: Through forward and reverse cross-sampling experiments, we
demonstrate that high-divergence tokens are functionally critical: injecting RL choices at
these positions progressively recovers most of the performance gains, while reverting them
in RL generations collapses performance.

* Divergence-Weighted Advantage: Motivated by our findings, we experiment with an
intervention to the RL objective that modulates advantages by per-token KL divergence.

Together, these results reveal that RL improves model behavior not through widespread changes,
but via sparse, structured, and high-leverage interventions, providing insights that deepen our under-
standing of RLVR and potentially inform more effective algorithm design.

2 RELATED WORK

RLVR for Reasoning in LLMs. Reinforcement learning with verifiable rewards (RLVR) has be-
come a central paradigm for enhancing reasoning in large language models, with many works ex-
tending the method or deepening its understanding (Chen et al.| [2025; [Wen et al.| 2025} |Yue et al.,
2025; |L1u et al.|, 2025; |Shao et al., 2025). Recent studies further suggest that RL fine-tuning often
acts as a scalpel rather than a hammer—amplifying existing capabilities through localized changes,
in contrast to the broader changes induced by supervised finetuning (Rajani et al., 2025} |Chu et al.,
2025; Shenfeld et al.| [2025). Our work focuses on analyzing token-level distributional shifts and
their properties.

Token-Level and Entropy Analyses. A growing body of work investigates RLVR at the token
level. [Wang et al.| (2025)) find that high-entropy minority tokens account for much of RL’s gains,
while (Cheng et al.| (2025) associate them with exploratory reasoning steps and propose entropy-
augmented rewards. Cui et al.| (2025)) warn of entropy collapse and introduce token-level clipping
and KL penalty to stabilize training. Other studies (Vassoyan et al 2025} [Lin et al., |2025) point to
the importance of critical tokens that disproportionately shape final responses. |[Karan & Du] (2025))
explore how base models can exhibit stronger reasoning capabilities through sampling strategies.
Our analysis aligns with these perspectives, showing that distributional shifts are highly targeted,
though not fully predictable from entropy alone. Finally, [Huan et al.| (2025) adopt a general token-
level KL view, whereas we provide a more fine-grained quantification of these distribution shifts on
the token-level.

Advantage Modulation. Several recent methods adjust the advantage signal to better focus up-
dates on impactful tokens. |Cheng et al.| (2025) introduce entropy-based bonuses, while |Cui et al.
(2025) apply token-level gradient clipping to prevent overdominance. |Yang et al.|(2025) downweight
low-probability tokens, isolating their influence, and Deng et al|(2025) reweight advantages based
on perplexity and positional information. Wang et al.| (2025) implicitly reweight updates by empha-
sizing forking tokens. Building on this line of work, we explore divergence-weighted advantages,
explicitly scaling advantage weights by the magnitude of distributional change.

3 TOKEN DISTRIBUTION ANALYSIS BETWEEN BASE AND RLL MODELS

We begin by analyzing the distributional shifts introduced by RLVR. To characterize token-level
differences between the base model and the RL-finetuned model, we compare their next-token dis-
tributions under the same sequence contexts. Specifically, we take sequences generated by the RL
policy and evaluate both models’ conditional distributions at each position. This treats the RL
output as a target trajectory, allowing us to measure how the base model would need to adapt to
emulate it. Formally, for each token position ¢, let mpse(- | <¢) and 7re(- | <¢) denote the re-
spective distributions. A natural choice of discrepancy is the Kullback—Leibler (KL) divergence
Dxr, (pase (- | ©<t) || mrL(- | <)), or its reverse. However, due to practical limitations, such as
memory constraints that prevent full distribution retrieval, there is the potential for the distributions
to lack absolute continuity with respect to the other, in which case the KL divergence would be
undefined. In addition, JS divergence is bounded, providing a normalized measurement that avoids
the unboundedness of KL divergence that may skew our results.
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We therefore adopt the Jensen—Shannon divergence (JSD), which is symmetric and bounded. For
each token ¢, it is defined by

ISt = LDkt (Moase (- | w<t) || My) + 2Dk (mre (- | 2<t) || M),

where M; = %(’R’base(~ | x<t) + mrL(: | a:<t)). JSD is bounded in [0, log 2], enabling consistent
comparison across positions and sequences.

In this section, we primarily use Qwen2.5-32B (Qwen et al.l 2025) as the base model, and con-
sider RLVR variants trained with DAPO (Yu et al) [2025) and GRPO, the latter paired with the
corresponding SimpleRL model (Zeng et al., [2025). For evaluation on the AIME24 and AIME25
datasets, we sample 32 responses per problem. We also analyze additional models (Qwen2.5-Math-
7B (Yang et al., 2024), Mistral-Small-24B (MistralAll |2025)) and datasets (AIME 2025, GPQA
(Rein et al.,[2023), fine-tuning data), as well as comparisons with supervised fine-tuning approaches

(see Appendix and Appendix [A.4).

3.1 DISTRIBUTION SHIFTS ARE HIGHLY TARGETED AND SPARSE

A natural starting point is to ask: how widely are distributional shifts spread across the output
tokens? To answer this, we examine the token-level Jensen—Shannon (JS) divergence between base
and RL-trained models. Figure [1| shows histograms (log-scaled) and percentile curves for DAPO
and SimpleRL.
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Figure 1: JS divergence distributions for Qwen2.5 32B DAPO and SimpleRL on AIME 2024.

The distributions reveal that RL refinement is highly sparse. Under DAPO, over 83% of tokens show
near-zero divergence, and this proportion rises to more than 98% under SimpleRL. The sharp peaks
at zero and the steep ascent of the percentile curves indicate that only a small fraction of tokens are
meaningfully altered. Comparing the two approaches, DAPO exhibits a heavier-tailed divergence
distribution and a more gradual percentile curve, likely reflecting its clip-higher mechanism that
encourages broader exploration. SimpleRL, by contrast, imposes stricter policy constraints and
explicit KL regularization, leading to more concentrated updates. While differences in training
data may also contribute, both methods ultimately achieve their gains through sparse and targeted
modifications.
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3.2 POSITIONAL CONCENTRATION

Beyond sparsity, we next ask: where within a response, on average, do distributional shifts tend to
occur? Figure [2] plots the mean JS divergence by relative token position, with standard deviation,
for DAPO and SimpleRL.

0121 0.006
g 0.10 g
] & 0.004
© 0.08 - o
[ [ -
2 2 \
A 0.06 O 0.002 A = i m
o E1N TTTTTITIT
o 0.04 A
g @ o0.000 [T
9 0.02 g
z 2

0.00 -0.002 -

0 20 40 60 80 100 0 20 40 60 80 100
Relative Sequence Position (%) Relative Sequence Position (%)
(a) DAPO (b) SimpleRL

Figure 2: Mean JS divergence by normalized token position, with standard deviation. Both methods
concentrate updates at the start and, to a lesser degree, at the end of responses.

Both methods show a clear positional structure: divergences are consistently high at the start of
responses, decline in the middle, and modestly increase again toward the end. The early spikes likely
reflect adjustments in initial planning and high-stakes decision points, while the end-of-sequence
divergence corresponds to formatting and answer-boxing tokens. However, individual sequences
still exhibit high divergences throughout the sequence, as indicated by the standard deviation bars.
Overall, RL refinements are consistently concentrated at the boundaries of reasoning, but occur
across the sequence for individual responses.

3.3 DIVERGENCE-ENTROPY RELATIONSHIP

Next, we examine the relationship between divergence and predictive token-level entropy H; =
— >, m(i|r<¢)log m(i|x<¢)., defined for each token ¢ in the sequence x. While previous work
suggests that RL may primarily adjust high-entropy (uncertain) predictions, leaving low-entropy
(confident) predictions unchanged (Wang et al., 2025)), we investigate this relationship by compar-
ing the entropy distributions of base and RL models across token distributions with high and low
divergence. Token distributions are grouped into low- and high-divergence bins (< 0.1 vs. > 0.1
JS), and we compare the entropy distributions of both base and RL models within each bin (Figures[3]

and [T3).
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Figure 3: Entropy distributions across divergence bins for DAPO. Low-divergence tokens are gener-
ally low-entropy, while high-divergence tokens span both high- and low-entropy regions, indicating
that DAPO can modify even confident predictions.

The results confirm that low-divergence tokens are almost always low-entropy. High-divergence to-
kens, however, span a broad entropy spectrum. DAPO modifies both high- and low-entropy predic-
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tions, indicating willingness to override even confident base outputs. By contrast, SimpleRL focuses
changes in higher-entropy regions (though still with some lower-entropy distributions), following a
more conservative approach that avoids modifying confident predictions.

3.4 SEMANTIC IDENTITY OF DIVERGENT TOKENS

We next examine which types of token distributions tend to exhibit high versus low distributional
divergence. Figure [] visualizes representative examples using word clouds, with high-divergence
tokens including common words, reasoning/problem-solving related terms, as well as equation frag-
ments. On the other hand, low-divergence tokens are mainly numerals, operators, and equation
components.
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Figure 4: Word clouds of high and low divergence tokens under DAPO.

However, Figure[I8]shows the full JS divergence distributions of frequently high and low divergence
tokens, demonstrating that many tokens are not inherently divergent, and their behavior is context-
dependent. For instance, the word “the” is among the highest frequency high divergence tokens,
yet its full distribution of divergence values is mostly in the low regime. This suggests that token
identity alone is insufficient to characterize divergence, and that a contextual perspective is essential.

4 CROSS-SAMPLING: FUNCTIONAL IMPORTANCE OF DIVERGENT
DISTRIBUTIONS

In the previous section, we showed that, conditioned on RL-generated sequences, only a small frac-
tion of token distributions exhibit substantial shifts between the base and RL models. This obser-
vation motivates a fundamental question: are these sparse divergent token distributions directly re-
sponsible for the performance improvements of RLVR? Specifically, can we recover the RL model’s
gains by generating primarily with 7p,s While introducing only a small number of tokens sampled
from mrr,? On the other hand, does the RL model’s performance degrade when a small number of
its tokens are replaced with tokens sampled from 7y, ?

To investigate this, we conduct controlled cross-sampling experiments that selectively swap token
choices between the base model 7,5 and the RL-trained model 7ry,. We employ two complemen-
tary interventions: (1) injecting RL tokens into base generations (forward cross-sampling), and (2)
replacing RL tokens with base tokens (reverse cross-sampling). The general procedure for this is
provided in Algorithm ]

4.1 EXPERIMENTAL SETUP

Forward Cross-Sampling. We investigate whether augmenting base model generations with
small amounts of RL-sampled tokens can recover RL-level performance. Specifically, we gener-
ate sequences under s but sequentially replace tokens at positions where the divergence between
Thase and 7Ry, exceeds a fixed threshold. At each such position, a token is sampled from 7y instead,
and we measure the resulting accuracy after completing the response with 7yqge.

Reverse Cross-Sampling. To assess the robustness of the RL model, we invert the intervention:
sequences are generated under gy, but at high-divergence positions, tokens are sampled from Tyse.
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This enables us to quantify the performance degradation when small amounts of RL tokens are
replaced with base tokens in RL generations.

4.2 RESULTS AND FINDINGS

Forward Cross-Sampling: A small proportion of RL-sampled tokens in base generations
steadily increases performance to RL-levels. Figure [5a presents results for Qwen2.5-32B fine-
tuned using SimpleRL on AIME24. Injecting fewer than 4% of RL-sampled tokens suffices to
recover RL-level performance. Performance improves progressively with additional interventions,
indicating that on average, each RL token systematically contributes to improved reasoning perfor-
mance.

Reverse Cross-Sampling: A small amount of base-sampled tokens in RL generations progres-
sively collapses performance to base-levels. As shown in Figure [5b} substituting even a small
fraction of base tokens into RL generations rapidly collapses accuracy. Reverting as little as 5%
of high-divergence tokens reduces performance to near base levels. The degradation is consistent,
demonstrating that RL’s gains depend critically on preserving its edits at these positions. Although
substituted base tokens remain semantically valid (Figure 1), they progressively derail the reason-
ing trajectory.
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Figure 5: Cross-sampling results (Qwen2.5 32B SimpleRL on AIME24): injecting RL tokens into
base generations progressively recovers RL accuracy, while reverting RL tokens with base tokens
causes near-monotonic degradation toward base performance.

Table 1: Summary of cross-sampled tokens required to achieve approximate RL (forward) or Base
(reverse) performance levels for Qwen2.5-32B on AIME24 and AIME25. Effective token counts
exclude identity swaps during cross-sampling. Percentages are computed at the sequence level.

Dataset Method Eff. % % Eff.# # | Start| End
Tok. Tok. Tok. Tok.| Acc.| Acc.

SimpleRL 3.86% 7.58% 38 75 | 8.23| >25
SimpleRL Rev. 5% 83% 29 51 | 25.52| < 8.3
DAPO 7.8% 11.9% 280 410| 8.23 | > 44
DAPO Rev. 10.1% 14.9% 173 258 | 44.8| < 8.5

SimpleRL 1.53% 2.97% 13 26 53 | > 14
SimpleRL Rev. 4.73% 7.87% 31 53 | 12.71| <4
DAPO 6.47% 9.18% 230 326| 4.8 | >33
DAPO Rev. 9.89% 14.19% 181 261 | 32 | <4.5

AIME24

AIME25

Forward and reverse cross-sampling yield a consistent conclusion: the improvements from RL fine-
tuning are concentrated in a sparse set of high-divergence tokens. The functional leverage of these
positions demonstrates that RL refinement operates in a highly targeted manner, with performance
gains critically dependent on preserving edits at these specific locations. Additional cross-sampling
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results, including detailed analyses and results for other model configurations, are provided in Ap-

pendix

5 FINE-GRAINED DYNAMICS OF DISTRIBUTION SHIFTS

Having established the overall distributional changes, including their sparsity, positional concen-
tration, and relationship to entropy, we now analyze how token-level distributions change at high-
divergence positions. While our previous analyses quantified the extent and spread of these changes,
as well as their relationships with entropy regimes, they did not reveal the detailed mechanics of
how probability mass is redistributed within these critical positions. This finer-grained perspective
reveals the mechanisms of RL-induced refinements, including overlap in candidate sets, rank shifts,
and systematic probability adjustments.

5.1 ToP-k OVERLAP AND RANK REORDERING

We study how RLVR modifies token predictions by analyzing overlap in top-k candidates and
changes in their relative ranking. The central questions first consider (1) Do base and RL mod-
els consider similar candidate sets? (2) How much does their ordering shift?

Figure [6] reports the fraction of shared tokens between the top-k lists of the two models, restricted
to positions with high JS divergence. Despite distributional shifts, overlap remains high for k£ > 2.
SimpleRL exceeds 80% average overlap (often > 0.85), indicating that updates mostly reshuffle
probabilities within a common set. DAPO shows slightly lower but still substantial overlap. Both
methods exhibit a sharp jump from £ = 1 to k = 2, suggesting that while the top-1 token often
changes, the replacement was typically already among the base model’s top-3.
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Figure 6: Top-k token overlap between base and RL models at divergent positions (with JS; >
0.1). Computed as the size of the intersection divided by k. High overlap for £ > 2 shows that
distributional shifts occur mostly within shared candidate sets.

Re-ranking dynamics are shown in Figure[I7] which locates the RL model’s top-3 tokens in the base
distribution (at high-divergence positions). About 30% of RL top-1 tokens were already ranked first
in the base model; over 80% (DAPO) and 90% (SimpleRL) were in the base top-3. RL top-2 tokens
generally fell within the base top-3—4, with SimpleRL showing stronger alignment.

Overall, RL refinement acts primarily as a re-ranking process, elevating plausible alternatives al-
ready in the base shortlist. The main difference is selectivity: SimpleRL restricts updates to a
narrow consensus of high-priority candidates, while DAPO permits broader rank shifts, consistent
with its exploratory behavior.

5.2 Low PROBABILITY BEHAVIOR: DOES RL INVENT OR SELECT?

We next ask whether RL encourages tokens that were highly unlikely under the base model. Con-
cretely, for each divergent token distribution, we examine the top-1 token chosen by the RL-trained
model and record its probability under the base distribution. We then measure the proportion of these
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tokens that fall below a given base-probability threshold. Results show that under DAPO, roughly
5% of divergent top-1 tokens have base probability < 0.01 (Figure [I6), whereas under GRPO, this
fraction is nearly zero (Figure [I9). Thus, even in DAPO, which is designed to encourage broader
exploration, RL still rarely promotes tokens that were very unlikely under the base policy.

5.3 EVOLUTION ACROSS TRAINING

We analyze intermediate checkpoints of Qwen2.5-Math-7B (Yang et al., |2024) when trained with
DAPO, conditioning all distributions on the final model’s outputs. This alignment enables tracking
of distributional changes over time for a fixed sequence of tokens. Figure[7]shows how JS divergence
and divergent token sets evolve during training. JS divergence increases monotonically, with higher
percentiles (95th, 99th) rising faster than lower ones (e.g., 80th), indicating that shifts are sparse and
intensify over time. A small subset of tokens undergoes progressively stronger refinement, while
most remain stable. On the other hand, the Jaccard index between each checkpoint’s set of divergent
tokens and the final set rises steadily, then jumps sharply near the end (Figure [/b).
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Figure 7: Distributional shifts grow increasingly focused and stable. Most tokens remain unchanged;
updates concentrate in a sparse set late in training.

6 EXPLORATORY INVESTIGATION: DIVERGENCE-WEIGHTED ADVANTAGES

Our earlier analyses reveal that RL refinements are sparse and targeted, with only a small subset of
tokens exhibiting meaningful distributional change. Moreover, cross-sampling experiments demon-
strate that these high-divergence tokens are functionally critical, with performance gains hinging
on precisely these positions. This raises a natural question: if only a small fraction of tokens
drive improvements, can training be more effectively guided by modulating token-level learning
signals according to these divergences? Intuitively, if certain tokens undergo substantial distribu-
tional shifts and are functionally important, explicitly weighting their advantages during training
might amplify learning efficiency or stability. To investigate this possibility, we conduct a prelimi-
nary exploration of divergence-weighted advantages as a diagnostic intervention, where token-level
advantages are reweighted by distributional divergence. We explore two different approaches: high-
KL boost, which concentrates updates towards token distributions that are already changing substan-
tially, and low-KL boost, which focuses updates on distributions that have changed less, potentially
encouraging updates in previously stable regions.

6.1 GRPO-BASED METHODS

GRPO in brief. GRPO (Shao et al.,[2024) samples G responses {0;}$_; from a policy 74, (- | )
for a prompt g with ground-truth answer a, assigns sequence-level rewards {R;} |, and computes
a group-normalized advantage for each sample. GRPO then applies a PPO-style (Schulman et al.,
2017) clipped surrogate objective at the foken level, typically with an explicit KL penalty to a refer-
ence model.
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DAPO. DAPO (Yu et al.,2025) modifies GRPO with an asymmetric clip-higher mechanism, dy-
namic sampling of correct/incorrect completions, token-level averaging, and removal of the explicit
KL penalty term. Its objective is

Ioaro(0) = E(g u)p, {0116, ~may, (1a)
G o

1 Z Z min (riyt(ﬁ) fli,t, clip(rw(@), 1— 60w, 1+ ehigh) Ai7t)

G
Zi:l |og| i=1 t=1

st. 0 < [{o;|is_equivalent(a,0;)}| < G,

(1)

with .

7904t | 4,04, <) i R; — mean({Rj}j:1>
’ 1,6t —

o (Oi,t | q, 0i7<t) Std({Rj}]G:l)

rit(0) = 2

6.2 EXPLORATORY INTERVENTIONS: DIVERGENCE-WEIGHTED ADVANTAGE

Standard RLVR objectives treat all tokens within a sequence uniformly in terms of their advantages.
Motivated by our observation that distributional shifts are sparse and concentrated, we investigate
whether modulating token-level advantages according to divergence magnitude can help improve or
control aspects of training. We explore modifications where advantages are rescaled depending on
the per-token divergences.

General formulation. We define a divergence-weighted advantage:
At = Wt * At, (3)

where A, denotes the standard group-normalized advantage and wy is a per-token weight based on
divergence. To ensure that the introduced divergence weight influences only the weighting and not
the gradient computation, divergence values are detached from the computation graph.

Choice of divergence. We employ KL divergence with respect to the old policy as our primary
divergence measure:

KLY = Dir (o, (- | 2<t) || (- [ 2<2)) )

where 7y, denotes the policy from the previous update iteration, as in PPO/GRPO. This old-policy
KL quantifies the magnitude of recent policy updates at each token position, serving as a proxy for
the extent of local distributional change. For computational efficiency and compatibility with ex-
isting training frameworks such as verl (Sheng et al.,|2024), we estimate these quantities using KL
estimators computed over sampled tokens only, which may not capture the full distributional struc-
ture. Alternative divergences signals, including reference-based KL, are discussed in Appendix [A.6

Weighting schemes. We adopt a simple sigmoid weighting scheme (to ensure bounded weights),
which transforms divergence into weights through:

wi =1+ s(o(a-KL;) —05), o(z)= 1. 5)

The parameter o controls the direction and magnitude of emphasis: o > 0 amplifies high-divergence
tokens, whereas o < 0 emphasizes low-divergence ones. The sigmoid function provides a smooth,
bounded nonlinear transformation that enables selective focus on either high- or low-divergence
regions depending on the sign of . This formulation allows us to investigate whether concentrating
the learning signal on regions that have already changed or those that remain unchanged yields more
effective training dynamics. Alternative weighting schemes, including linear relative weighting, are
dicussed in Appendix [A.6]

Evaluation. We evaluate divergence-weighted advantages using the DAPO training recipe and
data on Qwen2.5-Math-7B. Results are presented in Table |2} In the main text, we focus on con-
figurations employing KL divergence with respect to 7g,,, and the sigmoid weighting scheme. Ad-
ditional possible configurations are discussed in Appendix [A.6] Detailed training hyperparameters
and implementation details are documented in Appendix
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Table 2: Accuracy (%) under divergence-weighted configurations on Qwen2.5-Math-7B. Results
shown for KL divergence with 7y, and sigmoid weighting scheme across AIME24, AIME25, and
AMC datasets. The results displayed are the avg@32 scores (or the pass@1 scores computed using
32 samples). Results are each averaged over 3 runs.

Configuration AIME24 AIME25 AMC Opverall Avg

Baseline DAPO 33.61 18.75 75.08 4248 £1.35
Low-KL boost 35.90 19.90 78.97 4492 +£0.05
High-KL boost 36.74 20.00 78.40 45.05£0.79

These results demonstrate that weighting token-level updates by divergence can amplify perfor-
mance gains, providing empirical support for the hypothesis that targeted tokens disproportionately
drive improvements. Both low-KL and high-KL boost configurations yield improvements over the
baseline, suggesting that different divergence weighting strategies can be effective. However, the op-
timal choice between these approaches, and indeed whether divergence weighting provides benefits
at all, may depend on the specific models and training methods used. Effective divergence weighting
across training configurations may require model-specific paradigms or adaptive scheduling mecha-
nisms to stabilize learning dynamics. We present this approach as a complementary diagnostic tool
that may inform future refinements of token-level training strategies.

7 CONCLUSION

Our study reveals that reinforcement learning with verifiable rewards (RLVR) reshapes LLMs in a
manner that is sparse, targeted, and structured rather than uniformly diffused across tokens. By
analyzing token-level distributional shifts, we show that only a small subset of tokens undergo
meaningful divergence, and that these divergences carry disproportionate functional importance:
cross-sampling interventions confirm that performance gains hinge on precisely these positions. To
complement these analyses, we explored divergence-weighted advantage, a simple modification that
scales token-level advantages by per-token divergence. These results suggest that weighting strate-
gies can influence learning dynamics, though stabilizing performance may require model-specific
choices or schedulers.

Together, these findings advance a token-level understanding of RL fine-tuning. They highlight that
the essence of RLVR’s success lies not in widespread distributional changes, but in selective refine-
ments aligned with varying entropy levels. Beyond clarifying the mechanics of existing methods, our
work offers a perspective for designing future RL objectives that explicitly incorporate distributional
structure, opening avenues for more effective, interpretable, and controllable LLM post-training.
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A APPENDIX

A.1 WEIGHT-LEVEL ANALYSIS OF CHANGES

Orthogonal to the analysis done in the main text, we also investigate the degree of modifications
induced by RLVR at the parameter level. More specifically, we employ the relative gap ratio (Wu
et al.,[2025)), denoted as o, to quantify the magnitude of weight divergence pre- and post-fine-tuning.
This ratio is formulated as:

o= Z |Woriginal - I/Vluned‘
Z |Woriginal| + E |VVluned‘
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where Wogiginal and Wiyneq represent the model parameters before and after fine-tuning, respectively.
A lower o value signifies greater similarity between the parameter sets, indicating a smaller overall
modification from the fine-tuning process.

In our experiment, we utilized the Qwen2.5-32B and Qwen2.5-Math-7B models as foundations.
Each model was independently fine-tuned via two distinct methodologies: RL and Supervised Fine-
Tuning (SFT). To ensure a controlled and equitable comparison, the training regimen for both meth-
ods was standardized, employing an identical dataset size and the same number of training steps.
Subsequently, the o was computed between each original model and its corresponding tuned coun-
terparts. The results are presented in the following table.

Table 3: Relative gap ratio (o) after RL and SFT fine-tuning.

Model Qwen2.5-32B Qwen2.5-Math-7B
o after RL 0.00143 0.00136
o after SFT 0.00347 0.00944

The results presented in the table demonstrate a consistent trend across both models: the o val-
ues corresponding to RL fine-tuning are substantially lower than those from SFT. This quantitative
analysis at the parameter level suggests that the cumulative weight modifications induced by RL
are significantly less extensive than those resulting from SFT. This finding provides empirical sup-
port for the hypothesis that RL achieves performance gains through sparse and targeted parameter
adjustments, contrasting with the more distributed updates characteristic of SFT.

A.2 RLVR vS. SUPERVISED FINE-TUNING: CONTRASTING DISTRIBUTIONAL PATTERNS

A natural question is whether the sparse, targeted distributional shifts we observe are specific to
RLVR, or if they also characterize other fine-tuning approaches. To address this, we compare RLVR-
trained models with models refined through supervised fine-tuning (SFT). We analyze Qwen2.5-32B
trained with SFT alongside Qwen2.5-32B DAPO.

Figure [§] shows JS divergence distributions for both approaches. SFT produces a noticeably larger
high-divergence set, whereas RLVR concentrates almost all token distributions below very small JS
values. This directly reflects RLVR’s extreme selectivity and the broader edits introduced by SFT.
The top-k overlap analysis (Figure[IT)) highlights that SFT consistently achieves lower overlap with
the base model, indicating more aggressive re-ranking, while RLVR largely stays within the base
model’s existing candidate set. The rank reordering analysis (Figure [I2) further shows that SFT
promotes many more tokens far outside the base model’s top-3, whereas RLVR mainly promotes
candidates that were already high-ranked.

Taken together, the metrics highlight that SFT diverges from RLVR along several axes. The SFT
model exhibits higher median and tail JS divergence as well as a larger mass of high-divergence
tokens (Figure [8), and attains lower top-k overlap with the base model (Figure [LT)) alongside larger
rank shifts (Figure[I2). Moreover, SFT’s divergent tokens concentrate on low-entropy regions and
more frequently elevate low base-probability choices (Figures[I3]and[9), whereas RLVR keeps most
divergent tokens within higher-entropy, already plausible candidates. These differences reinforce
that RLVR acts as a targeted editor, while SFT drives broader, less selective reshaping of the distri-
bution.

These findings align with recent work suggesting that RL fine-tuning acts as a scalpel rather than a
hammer, making sparse, targeted changes compared to the broader modifications induced by super-
vised fine-tuning (Rajani et al.| 2025} |Chu et al.| [2025)). The key difference lies in the token-level
distributional changes: RLVR modifies far fewer token positions (as measured by JS divergence),
and at those positions, the changes are more likely to be re-ranking within the base model’s top can-
didates rather than introducing entirely new token probabilities. In contrast, SFT-based distillation
exhibits more widespread token-level distributional shifts across a larger fraction of positions, as it
learns to mimic provided outputs by adjusting token probabilities more broadly across the vocabu-
lary space.
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Figure 8: JS divergence distributions comparing supervised fine-tuning (distillation) and RLVR on
AIME 2024. RLVR exhibits even sparser distributional shifts than SFT-based distillation, suggesting
more targeted refinement.
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comparing distilled and RLVR-trained models on AIME 2024.
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Figure 12: Distribution of base-model ranks for refined models’ top-3 tokens at high-divergence
positions (JS > 0.1) comparing distilled and RLVR-trained models on AIME 2024.
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relationship between entropy and divergence for SFT-based distillation.
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Figure 14: JS divergence distributions for Qwen2.5-32B-distill on AIME 2025. Consistent patterns
with AIME 2024 demonstrate robustness across datasets.

A.3 EXPERIMENTAL DETAILS

Code will be released publicly upon acceptance.

A.3.1 TOKEN ANALYSIS

We run model inference using v11lm (Kwon et al} |2023). On AIME, we apply nucleus sampling
(Holtzman et al.,|2020) with topp = 0.7 and temperature = 1. For divergence calculations on AIME,
we use the top-p truncated distribution to reflect the effective sampling distribution, to provide a
more accurate estimate for our cross-sampling experiments. We also look at the distribution of JS
divergence values of the distribution without truncation to ensure the results are not affected much
by the truncation. For experiments on the fine-training data, we use topp = 1 to reflect the training
sampling distribution.

For token-level distributional analysis, we evaluate multiple model configurations across different
datasets. On Qwen2.5-32B, we analyze distributional shifts on AIME 2024 and AIME 2025 for
DAPO, SimpleRL, and SFT (we train the SFT model as outlined in Section [A.3.3). On Mistral-
Small-24B, we perform token analysis on AIME 2024 and AIME 2025 using SimpleRL. For
Qwen2.5-Math-7B (trained as outlined in Section[A.3.3)), we analyze distributional shifts on AIME
2024, AIME 2025, and post-training data using both DAPO with the default clip-higher setting and
with clip-higher=0.2. We also

A.3.2 CROSS-SAMPLING

For cross-sampling experiments, we use the same inference setup as token analysis. Cross-sampling
experiments selectively swap tokens between base and RL models at positions where JS divergence
exceeds a threshold, allowing us to measure the functional importance of divergent token distribu-
tions.

We perform forward and reverse cross-sampling experiments on the following model-dataset combi-
nations. For forward cross-sampling, we inject RL-sampled tokens into base generations at positions
where JS divergence exceeds the specified threshold. For reverse cross-sampling, we replace RL to-
kens with base tokens at high-divergence positions on the RL generations. The divergence thresholds
used for each configuration are as follows:

* Qwen2.5-32B + SimpleRL:

— AIME 2024: Forward threshold JS > 0.03, Reverse threshold JS > 0.05
— AIME 2025: Forward threshold JS > 0.05, Reverse threshold JS > 0.05

¢ Qwen2.5-32B + DAPO:

— AIME 2024: Forward threshold JS > 0.08, Reverse threshold JS > 0.06
— AIME 2025: Forward threshold JS > 0.1, Reverse threshold JS > 0.08

e Mistral-Small-24B + SimpleRL:
— AIME 2024: Forward threshold JS > 0.002, Reverse threshold JS > 0.02
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A.3.3 ADDITIONAL TRAINING DETAILS

We implement RLVR training experiments using ver1 (Sheng et al.,|2024) with the standard DAPO
recipe (Yu et al.} 2025).

Qwen2.5-Math-7B DAPO Training. We follow the public DAPO recipe, namely with clip ratios
€low = 0.2 and epign = 0.28. However, for token analysis, we also train a variant with epgn = 0.2
for comparison. We optimize with learning rate 1 x 107, a 10-step warmup using AdamW, and no
explicit reference-KL penalty. Each RLVR step processes 512 prompts with 16 sampled responses
per prompt; these are split into mini-batches of 32 prompts, yielding 16 gradient updates per RLVR
step. Maximum generation length and the overlong-penalty threshold are set to 8k and 4k tokens.

Supervised Fine-Tuning (SFT) Training. For the SFT model based on on Qwen2.5 32B, we
sampled 42k instances from the AM-DeepSeek-R1-Distilled-1.4M dataset. The model un-
derwent full parameter fine-tuning for 5 epochs, employing DeepSpeed ZeRO-3 optimization.

For the divergence-weighted advantage experiments on Qwen2.5-Math-7B, under the high-KL
setting we use s = 0.3 and set « to increase linearly from O to 50 starting at step 100. In the low-KL
setting, we use s = 0.3 and set « to increase linearly from 0 to 50, which we linearly increase
beginning at step 150.

For Qwen2.5-7B, in the high-KL relative setting we set &« = 4. In the configuration with an addi-
tional scheduler, we initialize o = 2 and linearly increase it to 3 from step 80 onward.
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A.4 ADDITIONAL TOKEN DISTRIBUTION ANALYSES

This section provides supplementary and extended token distribution analyses. We first present
supplementary figures for the main models (Qwen2.5-32B with DAPO and SimpleRL on AIME
2024), then extend the analysis to additional models and datasets to demonstrate the generalizability
of our findings.

A.4.1 SUPPLEMENTARY FIGURES FOR MAIN MODELS

We provide additional figures for Qwen2.5-32B with DAPO and SimpleRL that complement the
analyses in the main text.
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(a) Low JS bin (< 0.1). (b) High JS bin (> 0.1).

Figure 15: Entropy distributions across divergence bins for SimpleRL. Low-divergence tokens are
mostly low-entropy, while high-divergence tokens are concentrated in higher-entropy regions, re-
flecting a more conservative update strategy.
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Figure 16: Analysis of tail behavior under DAPO for divergent token distributions (JS > 0.1). (a)
shows the fraction of divergent tokens whose RL top-1 choice had base probability below a given
threshold. (b) shows the distribution of RL probabilities for the subset with base probability < 0.01.

To supplement the positional analysis in the main text, we also examine localized averages of JS
divergence near the start of the generation and near the final answer span.

Results on GPQA-Diamond. We extend our analysis to GPQA-Diamond to demonstrate the gen-
eralizability of our findings across different reasoning benchmarks. Figure 23] shows JS divergence
percentile curves and positional concentration for Qwen2.5-32B with DAPO on GPQA-Diamond,
revealing consistent sparsity patterns. Figure 24] shows entropy distributions across divergence bins.
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Figure 19: Percentage of divergent tokens whose RL top-1 choice had base probability below a
given threshold.
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Figure 20: Probability differences and ratios for top-3 tokens under DAPO and SimpleRL among
divergent distributions (JS > 0.1).
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Figure 21: Local averages of JS divergence as a function of distance from key regions (prompt
beginning and answer) for Qwen2.5-32B models on AIME 2024. Divergence peaks occur in the
same early and late windows highlighted by the positional analysis.
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Figure 22: Per-sequence scatter plots relating entropy to JS divergence for Qwen2.5-32B DAPO
and SimpleRL on AIME 2024. DAPO exhibits a broader entropy spread among divergent tokens,
whereas SimpleRL concentrates divergence in higher-entropy regions.
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Figure 23: JS divergence analysis for Qwen2.5-32B with DAPO on GPQA-Diamond. The sparsity
patterns and positional concentration are consistent with findings on AIME datasets.

0.0
0.0

T T

3.0 3.5

T T

T T T
0.5 1.0 15 2.0 25

Base Model Entropy

(a) Low JS bin (< 0.1).

[1 Base Entropy

0.06 1 [ RL Entropy

0.05 A u
s
£ 0.04
o
& 0.03
a

0.02 A

0.01 4

0.00 ~— T T
0.5 1.0

15 20 25 30 35

Entropy Value

(b) High JS bin (> 0.1).

Figure 24: Entropy distributions across divergence bins for Qwen2.5-32B with DAPO on GPQA-
Diamond. Patterns are consistent with those observed on AIME datasets.

21



Under review as a conference paper at ICLR 2026

Effect of Top-p Sampling on JS Divergence. To verify that our findings are robust to different
top-p sampling settings, we compare JS divergence distributions across different sampling configu-
rations. The default setting uses top-p = 0.7 for sampling. We also evaluate configurations where
sampling is performed with top-p = 0.8 and top-p = 0.9. Figure 23] shows that the sparsity patterns
remain consistent across different sampling top-p values, confirming that our results are not sensitive
to the specific sampling top-p value used.
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(a) Sampling top-p = 0.8 (b) Sampling top-p = 0.9

Figure 25: JS divergence percentile curves for Qwen2.5-32B with DAPO on AIME 2024 under
different top-p sampling settings. The sparsity patterns remain consistent across different sampling
top-p values, indicating robustness to the specific sampling configuration.

JS Divergence on AIME 2025. Figure 26 shows JS divergence percentile curves for Qwen2.5-
32B with DAPO and SimpleRL on AIME 2025, demonstrating consistent sparsity patterns across
datasets.
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Figure 26: JS divergence distributions for Qwen2.5-32B with DAPO and SimpleRL on AIME 2025.
The sparsity patterns are consistent with those observed on AIME 2024, confirming the robustness
of our findings across datasets.

Effect of Top-p Truncation on JS Divergence. To verify that our use of top-p truncated distri-
butions (with topp = 0.7) does not significantly impact our findings, we compare JS divergence
distributions computed using the estimated full distribution (top-p = 1) with those using truncated
distributions. Figure [27] shows that the patterns remain consistent: distributional shifts are highly
sparse regardless of truncation, with the vast majority of tokens showing near-zero divergence.

A.4.2 COMPARISON OF DAPO VARIANTS: CLIP-HIGHER SETTINGS

DAPO’s clip-higher mechanism controls the degree of exploration during training. We compare two
Qwen?2.5-Math-7B models trained with DAPO: one with the default clip-higher setting (0.28) and
another with a more restrictive setting (0.2). Figure [28]shows their JS divergence distributions on
AIME 2024 and AIME 2025, revealing how the clip-higher parameter affects distributional shifts
across datasets.

Figure [29) compares positional concentration patterns on AIME 2024 and AIME 2025, while Fig-
ure [30]and Figure 31| examine top-k overlap and rank reordering, respectively. Figure [32] shows the
percentage of divergent tokens whose RL top-1 choice had base probability below a given thresh-
old for both DAPO variants across different datasets. Figure [33]shows entropy distributions across
divergence bins for both DAPO variants.
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Figure 27: JS divergence distributions computed using top-p = 1 for Qwen2.5-32B with DAPO
and SimpleRL on AIME 2025. The sparsity patterns are consistent with those observed using top-p
truncated distributions, confirming that truncation does not significantly impact our findings.
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Figure 28: JS divergence distributions for Qwen2.5-Math-7B trained with DAPO under different
clip-higher settings on AIME 2024 and AIME 2025. The more restrictive clip-higher=0.2 setting
leads to sparser distributional shifts compared to the default 0.28 setting across both datasets, with
a smaller proportion of tokens exhibiting nonnegligible divergence. However, on its divergent token
set, the JS values are higher as indicated by the higher upper percentiles.
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Figure 29: Mean JS divergence by normalized token position for DAPO variants with different clip-
higher settings on AIME 2024 and AIME 2025.
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Figure 30: Top-k token overlap between base and RL models at divergent positions (JS; > 0.1) for

DAPO variants on AIME 2024 and AIME 2025.

Fine-tuning Data Results. We also analyze distributional shifts on the fine-tuning data to examine
how models behave on data they were fine-tuned on. Figure [34] shows JS divergence distributions,

while Figures[35] 36| show additional analyses.
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Figure 31: Distribution of base-model ranks for RL’s top-3 tokens at high-divergence positions
(JS > 0.1) for DAPO variants on AIME 2024 and AIME 2025.
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Figure 32: Percentage of divergent tokens whose RL top-1 choice had base probability below a given
threshold for Qwen2.5-Math-7B with DAPO variants. Top row: DAPO (clip-higher=0.28); bottom
row: DAPO (clip-higher=0.2). Consistent with findings in the main text, RL rarely promotes tokens
with very low base probability, even under more exploratory settings like DAPO. We further observe
a distinction between the two clip-high settings, with the more restrictive setting (0.2) promoting
fewer tokens with very low base probability.
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Figure 33: Entropy distributions across divergence bins for Qwen2.5-Math-7B with DAPO variants
on AIME 2025. Top row: DAPO (clip-higher=0.28); bottom row: DAPO (clip-higher=0.2). Patterns
are consistent with those observed in the main text, confirming the relationship between entropy and
divergence across different clip-higher settings.
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Figure 34: JS divergence distributions for DAPO variants on fine-tuning data. Distributional shifts

on training data may differ from those on evaluation sets.
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Figure 35: Mean JS divergence by normalized token position for DAPO variants on post-training
data.

Average Overlap Rate

07
0.6
0.5
04 —— 5> 001
—e— /S >0.05
e J5>01
03 J5>0.15
2 4 6 8 10

Top-k

(a) DAPO (clip-higher=0.28)

Average Overlap Rate

o
@
&

o
@
S

o
o
@

e
3
S

4
o
&

4
@
S

o
o
a

—— J5>0.01
—— J5>0.05
—— JS>01

Js>0.15

2 4 6 8 10
Top-k

(b) DAPO (clip-higher=0.2)

Figure 36: Top-k token overlap between base and RL models at divergent positions (JS; > 0.1) for
DAPO variants on training data.
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A.4.3 MISTRAL-SMALL-24B WITH SIMPLERL

We analyze Mistral-Small-24B with SimpleRL on AIME 2024 and AIME 2025 to demonstrate the
generalizability of our findings across different model architectures. Figure|37|shows JS divergence
percentile curves, revealing consistent sparsity patterns. Figure [38] shows positional concentration,
Figure [39] shows entropy distributions across divergence bins, and Figure [A0] shows tail behavior
analysis.
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Figure 37: JS divergence distributions for Mistral-Small-24B with SimpleRL on AIME 2024 and
AIME 2025. Sparse distributional shifts are consistent with findings in the main text across both
datasets.
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Figure 38: Mean JS divergence by normalized token position for Mistral-Small-24B with SimpleRL
on AIME 2024 and AIME 2025. Consistent with findings for other models, divergences are concen-
trated at the start and end of responses.
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Figure 39: Entropy distributions across divergence bins using full vocabulary for Mistral-Small-
24B with SimpleRL on AIME 2024. Patterns are consistent with those observed in the main text,
confirming the relationship between entropy and divergence across different model architectures.
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Figure 40: Percentage of divergent tokens whose RL top-1 choice had base probability below a
given threshold for Mistral-Small-24B with SimpleRL on AIME 2024 and AIME 2025.

A.5 ADDITIONAL CROSS-SAMPLING RESULTS

This section provides supplementary cross-sampling results and the algorithm used for cross-
sampling experiments. Algorithm [I] describes the general procedure for cross-sampling, which
generates sequences with one model, and selectively swaps tokens with another model at positions
where divergence exceeds a threshold.

Algorithm 1 Cross-Sampling for a single prompt

Require: Prompt prefix x .1, primary policy Tprimary, alternate policy my;, threshold 7, max steps T’
Ensure: Generated sequence x1.¢, swap count k

1: k<0

2: Initialize prefix x 1

3: fort=1...T do

4: Compute d; = D (Tprimary (- | Z<t) || Tan(- | £<))
5: if d; > 7 then

6: Sample x; ~ (- | T<)

7: k+—k+1

8: else

9: Sample z; ~ Tprimary (- | Z<¢)

10: end if

11: Append z; to prefix 441
12: if x; = EOS then

13: break
14: end if
15: end for

16: return generated tokens x1.; and swap count k
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Figure 41: Cross-sampling token pair histograms.
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Figure 42: Cross-sampling results (DAPO on AIME24): injecting RL tokens into base genera-
tions progressively recovers RL accuracy, while reverting RL tokens with base tokens causes near-
monotonic degradation toward base performance.
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Figure 43: Comparison of random baseline and DAPO cross-sampling on AIME24: average number
of tokens (including identity swaps) replaced versus accuracy. The random baseline shows minimal
performance improvement, demonstrating that targeted RL token selection is critical for perfor-
mance gains.
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Figure 44: Cross-sampling results (SimpleRL on AIME25): injecting RL tokens into base gen-
erations progressively recovers RL accuracy, while reverting RL tokens with base tokens causes
near-monotonic degradation toward base performance. Interestingly, in the base with RL resam-
pling case, the performance actually meaningfully exceeds the RL model’s performance.
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Figure 45: Cross-sampling results (DAPO on AIME25): injecting RL tokens into base genera-
tions progressively recovers RL accuracy, while reverting RL tokens with base tokens causes near-
monotonic degradation toward base performance.
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Figure 46: Cross-sampling results (Mistral-Small-24B + SimpleRL on AIME 2024): injecting RL
tokens into base generations progressively recovers RL accuracy, while reverting RL tokens with
base tokens causes near-monotonic degradation toward base performance.
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A.6 ADDITIONAL DIVERGENCE-WEIGHTED ADVANTAGE DISCUSSION/RESULTS

This section presents supplementary results for divergence-weighted advantages, including alterna-
tive configurations and evaluations on Qwen2.5-7B. The main text focuses on Qwen2.5-Math-7B
with KL divergence computed with respect to my_, and sigmoid weighting. Here we discuss alterna-
tive schemes, along with additional results.

old

A.6.1 ALTERNATIVE DIVERGENCE CHOICES

Beyond the old-policy KL divergence presented in the main text, one could also use the reference-
based KL divergence:

KLY = Dir (o, (- | 2<e) || met(- | 2<0)) (6)
where ¢ denotes the base reference model. The reference-based KL quantifies the alignment
between the current policy and the original base model, measuring the cumulative divergence from
the initial model at each token position. This contrasts with the old-policy KL, which captures only
the magnitude of recent policy updates within a single training iteration. In our experiments we
mainly just use the old-policy KL as this does not require additional pass through the base model.

A.6.2 ALTERNATIVE WEIGHTING SCHEMES

In addition to the sigmoid weighting scheme presented in the main text, we examine linear relative
weighting:

T
wy =14 a(KLy — pk),  pkL = %ZKLp (7
=1

The linear relative scheme scales weights linearly with the deviation from the mean KL divergence
across the sequence, offering a simpler alternative to the sigmoid transformation. As in the sigmoid
case, a > 0 amplifies high-divergence tokens, while o < 0 emphasizes low-divergence ones.

A.6.3 RESULTS ON ADDITIONAL CONFIGURATIONS

Table ] summarizes the performance of these alternative configurations, including evaluations using
linear relative weighting on Qwen2.5-7B.

Table 4: Accuracy (%) under additional divergence-weighted configurations on Qwen2.5-7B. Re-
sults shown across AIME24, AIME25, and AMC datasets. The results displayed are the avg@32
scores.

Configuration AIME24 AIME25 AMC Overall Avg
Baseline DAPO 16.77 8.12 70.78 31.89
High-KL Lin. Rel. (sched.) 19.58 12.40 71.12 34.37
High-KL Lin. Rel. 20.00 12.29 73.31 35.20

Table 5: Accuracy (%) for 80/20 clip entropy configuration on Qwen2.5-Math-7B. Results shown
across AIME24, AIME25, and AMC datasets. The results displayed are the avg@32 scores.

Configuration AIME24 AIME25 AMC Overall Avg
80720 clip entropy 35.26 17.03 72.68 41.66
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A7 LLM USAGE

LLMs were used to assist with minor polishing of the writing.
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