

000 SPARSE BUT CRITICAL: A TOKEN-LEVEL ANALYSIS 001 OF DISTRIBUTIONAL SHIFTS IN RLVR FINE-TUNING 002 OF LLMs 003

004
005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011

ABSTRACT

012 Reinforcement learning with verifiable rewards (RLVR) has significantly im-
013 proved reasoning in large language models (LLMs), yet the token-level mech-
014 anisms through which they reshape model behavior remain unclear. We present
015 a systematic empirical study of RLVR’s distributional effects across three com-
016 plementary axes: (1) token-level distributional shifts, (2) functional validation via
017 cross-sampling interventions, and (3) exploratory investigations of advantage sig-
018 nal modulation based on token divergence. We find that RL fine-tuning induces
019 sparse, targeted changes, with only a small fraction of tokens exhibiting signifi-
020 cant distributional divergence, and we further analyze the nature of these shifts.
021 These divergent distributions are not uniformly predicted by entropy, indicating
022 that RLVR can modify both initially high and low entropy distributions under
023 different settings. Cross-sampling experiments reveal that inserting just a small
024 fraction of RL-sampled tokens into base model generations recovers most RL per-
025 formance gains, while injecting a small portion of base-sampled tokens into RL
026 generations collapses performance to base levels, functionally isolating the critical
027 role of divergent tokens. Finally, we explore divergence-weighted variants of the
028 advantage signal, finding that they can amplify improvements in baselines. Our
029 work sheds light on the distributional changes induced by RLVR and provides
030 a granular, token-level lens for understanding and improving RL fine-tuning in
031 LLMs.

1 INTRODUCTION

032 Recent advances in reinforcement learning with verifiable rewards (RLVR) (Lambert et al., 2024) for
033 reasoning in large language models (LLMs), such as Group Relative Policy Optimization (GRPO)
034 (Shao et al., 2024), have enabled models to achieve strong performance on challenging reasoning
035 and math benchmarks. Despite their empirical success, the mechanisms through which RL modifies
036 model behavior remain unclear.

037 Many evaluations focus on aggregate metrics such as accuracy, rewards, and response lengths. While
038 valuable, these metrics provide only a coarse view of model improvement and offer limited insight
039 into the fine-grained changes induced by RL fine-tuning. In particular, it remains unclear: *How*
040 *does RL reshape the token-level output distributions of the base model?* A growing line of work
041 has begun to examine RL-finetuning of LLMs from the perspective of token entropy (Wang et al.,
042 2025; Cheng et al., 2025; Cui et al., 2025), highlighting the role of high-entropy tokens. However,
043 a more granular understanding of how RLVR redistributes probability mass across tokens, and what
044 structure these shifts exhibit, remains unclear.

045 In this paper, we investigate the fine-grained dynamics of **distributional change** induced by RLVR
046 on the token-level. Our contributions are organized into three interconnected themes:

- 047 • **Token-Level Distribution Analysis:** We quantify how RL fine-tuning reshapes token dis-
048 tributions, showing that changes are sparse and targeted, with only a small fraction of
049 tokens exhibit significant divergence. We characterize these shifts using JS divergence,
050 entropy, and positional trends, and compare DAPO and GRPO, revealing differences in
051 exploration behavior and refinement strategies across training dynamics.

- **Functional Interventions:** Through forward and reverse cross-sampling experiments, we demonstrate that high-divergence tokens are functionally critical: injecting RL choices at these positions progressively recovers most of the performance gains, while reverting them in RL generations collapses performance.
- **Divergence-Weighted Advantage:** Motivated by our findings, we experiment with an intervention to the RL objective that modulates advantages by per-token KL divergence.

Together, these results reveal that RL improves model behavior not through widespread changes, but via sparse, structured, and high-leverage interventions, providing insights that deepen our understanding of RLVR and potentially inform more effective algorithm design.

2 RELATED WORK

RLVR for Reasoning in LLMs. Reinforcement learning with verifiable rewards (RLVR) has become a central paradigm for enhancing reasoning in large language models, with many works extending the method or deepening its understanding (Chen et al., 2025; Wen et al., 2025; Yue et al., 2025; Liu et al., 2025; Shao et al., 2025). Recent studies further suggest that RL fine-tuning often acts as a *scalpel* rather than a hammer—amplifying existing capabilities through localized changes, in contrast to the broader changes induced by supervised finetuning (Rajani et al., 2025; Chu et al., 2025; Shenfeld et al., 2025). Our work focuses on analyzing token-level distributional shifts and their properties.

Token-Level and Entropy Analyses. A growing body of work investigates RLVR at the token level. Wang et al. (2025) find that high-entropy minority tokens account for much of RL’s gains, while Cheng et al. (2025) associate them with exploratory reasoning steps and propose entropy-augmented rewards. Cui et al. (2025) warn of entropy collapse and introduce token-level clipping and KL penalty to stabilize training. Other studies (Vassoyan et al., 2025; Lin et al., 2025) point to the importance of critical tokens that disproportionately shape final responses. Karan & Du (2025) explore how base models can exhibit stronger reasoning capabilities through sampling strategies. Our analysis aligns with these perspectives, showing that distributional shifts are highly targeted, though not fully predictable from entropy alone. Finally, Huan et al. (2025) adopt a general token-level KL view, whereas we provide a more fine-grained quantification of these distribution shifts on the token-level.

Advantage Modulation. Several recent methods adjust the advantage signal to better focus updates on impactful tokens. Cheng et al. (2025) introduce entropy-based bonuses, while Cui et al. (2025) apply token-level gradient clipping to prevent overdominance. Yang et al. (2025) downweight low-probability tokens, isolating their influence, and Deng et al. (2025) reweight advantages based on perplexity and positional information. Wang et al. (2025) implicitly reweight updates by emphasizing forking tokens. Building on this line of work, we explore divergence-weighted advantages, explicitly scaling advantage weights by the magnitude of distributional change.

3 TOKEN DISTRIBUTION ANALYSIS BETWEEN BASE AND RL MODELS

We begin by analyzing the distributional shifts introduced by RLVR. To characterize token-level differences between the base model and the RL-finetuned model, we compare their next-token distributions under the same sequence contexts. Specifically, we take sequences generated by the RL policy and evaluate both models’ conditional distributions at each position. This treats the RL output as a target trajectory, allowing us to measure how the base model would need to adapt to emulate it. Formally, for each token position t , let $\pi_{\text{base}}(\cdot | x_{<t})$ and $\pi_{\text{RL}}(\cdot | x_{<t})$ denote the respective distributions. A natural choice of discrepancy is the Kullback–Leibler (KL) divergence $\bar{D}_{\text{KL}}(\pi_{\text{base}}(\cdot | x_{<t}) \parallel \pi_{\text{RL}}(\cdot | x_{<t}))$, or its reverse. However, due to practical limitations, such as memory constraints that prevent full distribution retrieval, there is the potential for the distributions to lack absolute continuity with respect to the other, in which case the KL divergence would be undefined. In addition, JS divergence is bounded, providing a normalized measurement that avoids the unboundedness of KL divergence that may skew our results.

108 We therefore adopt the Jensen–Shannon divergence (JSD), which is symmetric and bounded. For
 109 each token t , it is defined by
 110

$$111 \quad JS_t = \frac{1}{2} D_{KL}(\pi_{\text{base}}(\cdot | x_{<t}) \| M_t) + \frac{1}{2} D_{KL}(\pi_{\text{RL}}(\cdot | x_{<t}) \| M_t),$$

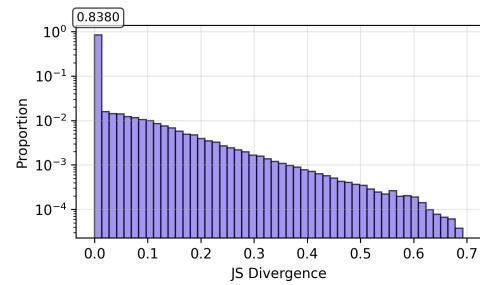
112 where $M_t = \frac{1}{2}(\pi_{\text{base}}(\cdot | x_{<t}) + \pi_{\text{RL}}(\cdot | x_{<t}))$. JSD is bounded in $[0, \log 2]$, enabling consistent
 113 comparison across positions and sequences.
 114

115 In this section, we primarily use Qwen2.5-32B (Qwen et al., 2025) as the base model, and consider
 116 RLVR variants trained with DAPO (Yu et al., 2025) and GRPO, the latter paired with the
 117 corresponding SimpleRL model (Zeng et al., 2025). For evaluation on the AIME24 and AIME25
 118 datasets, we sample 32 responses per problem. We also analyze additional models (Qwen2.5-Math-
 119 7B (Yang et al., 2024), Mistral-Small-24B (MistralAI, 2025)) and datasets (AIME 2025, GPQA
 120 (Rein et al., 2023), fine-tuning data), as well as comparisons with supervised fine-tuning approaches
 121 (see Appendix A.2 and Appendix A.4).

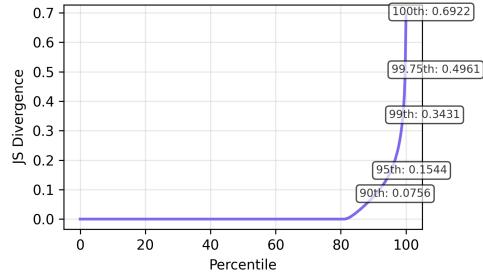
122

123 3.1 DISTRIBUTION SHIFTS ARE HIGHLY TARGETED AND SPARSE

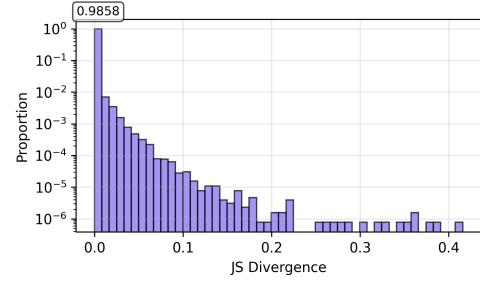
124 A natural starting point is to ask: *how widely are distributional shifts spread across the output*
 125 *tokens?* To answer this, we examine the token-level Jensen–Shannon (JS) divergence between base
 126 and RL-trained models. Figure 1 shows histograms (log-scaled) and percentile curves for DAPO
 127 and SimpleRL.
 128



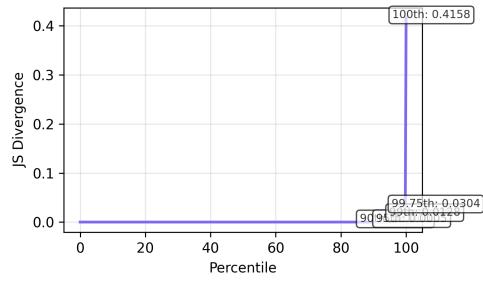
(a) DAPO: Histogram (log y-axis)



(b) DAPO: Percentile curve



(c) SimpleRL: Histogram (log y-axis)



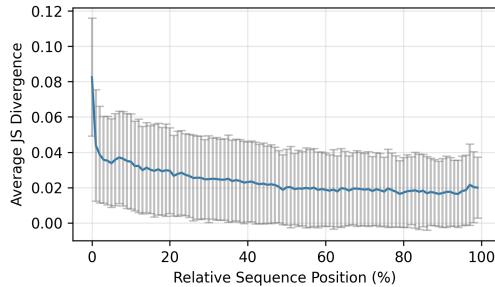
(d) SimpleRL: Percentile curve

152 Figure 1: JS divergence distributions for Qwen2.5 32B DAPO and SimpleRL on AIME 2024.
 153

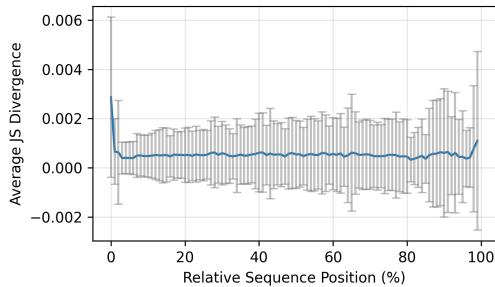
154 The distributions reveal that RL refinement is highly sparse. Under DAPO, over 83% of tokens show
 155 near-zero divergence, and this proportion rises to more than 98% under SimpleRL. The sharp peaks
 156 at zero and the steep ascent of the percentile curves indicate that only a small fraction of tokens are
 157 meaningfully altered. Comparing the two approaches, DAPO exhibits a heavier-tailed divergence
 158 distribution and a more gradual percentile curve, likely reflecting its clip-higher mechanism that
 159 encourages broader exploration. SimpleRL, by contrast, imposes stricter policy constraints and
 160 explicit KL regularization, leading to more concentrated updates. While differences in training
 161 data may also contribute, both methods ultimately achieve their gains through sparse and targeted
 162 modifications.

162 3.2 POSITIONAL CONCENTRATION
163164 Beyond sparsity, we next ask: *where within a response, on average, do distributional shifts tend to*
165 *occur?* Figure 2 plots the mean JS divergence by relative token position, with standard deviation,
166 for DAPO and SimpleRL.

167



(a) DAPO



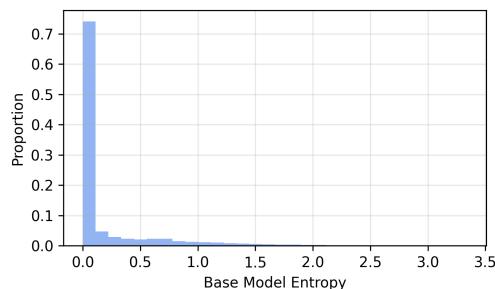
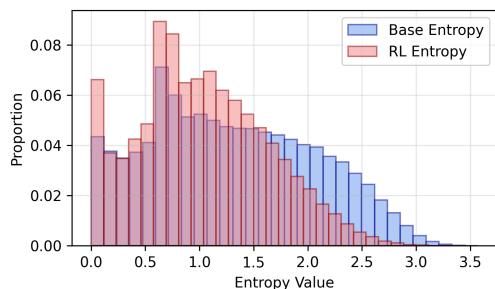
(b) SimpleRL

179 Figure 2: Mean JS divergence by normalized token position, with standard deviation. Both methods
180 concentrate updates at the start and, to a lesser degree, at the end of responses.
181182 Both methods show a clear positional structure: divergences are consistently high at the start of
183 responses, decline in the middle, and modestly increase again toward the end. The early spikes likely
184 reflect adjustments in initial planning and high-stakes decision points, while the end-of-sequence
185 divergence corresponds to formatting and answer-boxing tokens. However, individual sequences
186 still exhibit high divergences throughout the sequence, as indicated by the standard deviation bars.
187 Overall, RL refinements are consistently concentrated at the boundaries of reasoning, but occur
188 across the sequence for individual responses.
189

190

3.3 DIVERGENCE-ENTROPY RELATIONSHIP

191

192 Next, we examine the relationship between divergence and predictive token-level entropy $H_t =$
193 $-\sum_i \pi(i|x_{<t}) \log \pi(i|x_{<t})$, defined for each token t in the sequence x . While previous work
194 suggests that RL may primarily adjust high-entropy (uncertain) predictions, leaving low-entropy
195 (confident) predictions unchanged (Wang et al., 2025), we investigate this relationship by compar-
196 ing the entropy distributions of base and RL models across token distributions with high and low
197 divergence. Token distributions are grouped into low- and high-divergence bins (< 0.1 vs. > 0.1
198 JS), and we compare the entropy distributions of both base and RL models within each bin (Figures 3
199 and 15).(a) Low JS bin (< 0.1).(b) High JS bin (> 0.1).211 Figure 3: Entropy distributions across divergence bins for DAPO. Low-divergence tokens are gener-
212 ally low-entropy, while high-divergence tokens span both high- and low-entropy regions, indicating
213 that DAPO can modify even confident predictions.

214

215

The results confirm that low-divergence tokens are almost always low-entropy. High-divergence to-
kens, however, span a broad entropy spectrum. DAPO modifies both high- and low-entropy predi-

tions, indicating willingness to override even confident base outputs. By contrast, SimpleRL focuses changes in higher-entropy regions (though still with some lower-entropy distributions), following a more conservative approach that avoids modifying confident predictions.

3.4 SEMANTIC IDENTITY OF DIVERGENT TOKENS

We next examine which types of token distributions tend to exhibit high versus low distributional divergence. Figure 4 visualizes representative examples using word clouds, with high-divergence tokens including common words, reasoning/problem-solving related terms, as well as equation fragments. On the other hand, low-divergence tokens are mainly numerals, operators, and equation components.

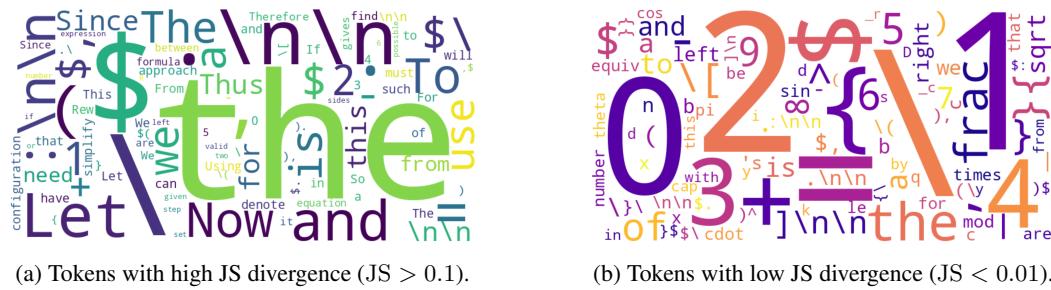


Figure 4: Word clouds of high and low divergence tokens under DAPO.

However, Figure 18 shows the full JS divergence distributions of frequently high and low divergence tokens, demonstrating that many tokens are not inherently divergent, and their behavior is context-dependent. For instance, the word “the” is among the highest frequency high divergence tokens, yet its full distribution of divergence values is mostly in the low regime. This suggests that token identity alone is insufficient to characterize divergence, and that a contextual perspective is essential.

4 CROSS-SAMPLING: FUNCTIONAL IMPORTANCE OF DIVERGENT DISTRIBUTIONS

In the previous section, we showed that, conditioned on RL-generated sequences, only a small fraction of token distributions exhibit substantial shifts between the base and RL models. This observation motivates a fundamental question: are these sparse divergent token distributions directly responsible for the performance improvements of RLVR? Specifically, can we recover the RL model’s gains by generating primarily with π_{base} while introducing only a small number of tokens sampled from π_{RL} ? On the other hand, does the RL model’s performance degrade when a small number of its tokens are replaced with tokens sampled from π_{base} ?

To investigate this, we conduct controlled cross-sampling experiments that selectively swap token choices between the base model π_{base} and the RL-trained model π_{RL} . We employ two complementary interventions: (1) injecting RL tokens into base generations (*forward cross-sampling*), and (2) replacing RL tokens with base tokens (*reverse cross-sampling*). The general procedure for this is provided in Algorithm 1.

4.1 EXPERIMENTAL SETUP

Forward Cross-Sampling. We investigate whether augmenting base model generations with small amounts of RL-sampled tokens can recover RL-level performance. Specifically, we generate sequences under π_{base} but sequentially replace tokens at positions where the divergence between π_{base} and π_{RL} exceeds a fixed threshold. At each such position, a token is sampled from π_{RL} instead, and we measure the resulting accuracy after completing the response with π_{base} .

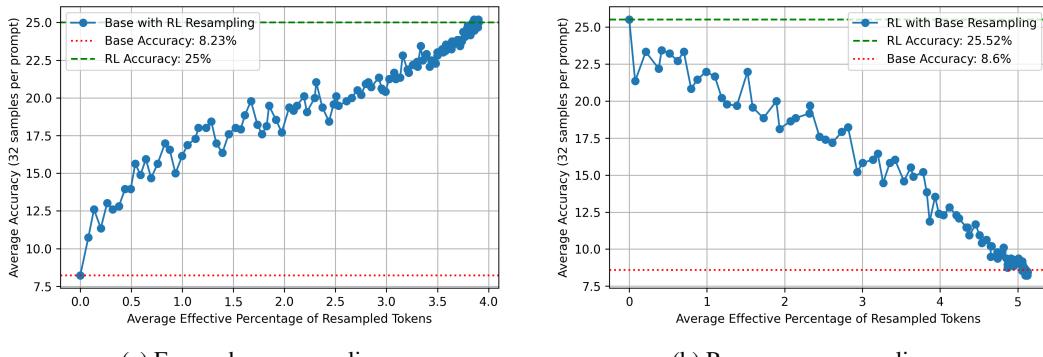
Reverse Cross-Sampling. To assess the robustness of the RL model, we invert the intervention: sequences are generated under π_{RL} , but at high-divergence positions, tokens are sampled from π_{base} .

270 This enables us to quantify the performance degradation when small amounts of RL tokens are
 271 replaced with base tokens in RL generations.
 272

273 **4.2 RESULTS AND FINDINGS**
 274

275 **Forward Cross-Sampling: A small proportion of RL-sampled tokens in base generations**
 276 **steadily increases performance to RL-levels.** Figure 5a presents results for Qwen2.5-32B fine-
 277 tuned using SimpleRL on AIME24. Injecting fewer than 4% of RL-sampled tokens suffices to
 278 recover RL-level performance. Performance improves progressively with additional interventions,
 279 indicating that on average, each RL token systematically contributes to improved reasoning perfor-
 280 mance.
 281

282 **Reverse Cross-Sampling: A small amount of base-sampled tokens in RL generations progres-
 283 sively collapses performance to base-levels.** As shown in Figure 5b, substituting even a small
 284 fraction of base tokens into RL generations rapidly collapses accuracy. Reverting as little as 5%
 285 of high-divergence tokens reduces performance to near base levels. The degradation is consistent,
 286 demonstrating that RL’s gains depend critically on preserving its edits at these positions. Although
 287 substituted base tokens remain semantically valid (Figure 41), they progressively derail the reasoning
 288 trajectory.
 289



300 Figure 5: Cross-sampling results (Qwen2.5 32B SimpleRL on AIME24): injecting RL tokens into
 301 base generations progressively recovers RL accuracy, while reverting RL tokens with base tokens
 302 causes near-monotonic degradation toward base performance.
 303

304 Table 1: Summary of cross-sampled tokens required to achieve approximate RL (forward) or Base
 305 (reverse) performance levels for Qwen2.5-32B on AIME24 and AIME25. Effective token counts
 306 exclude identity swaps during cross-sampling. Percentages are computed at the sequence level.
 307

310 Dataset	311 Method	312 Eff. % 313 Tok.	314 % 315 Tok.	316 Eff. # 317 Tok.	318 # 319 Tok.	320 Start 321 Acc.	322 End 323 Acc.
324 AIME24	SimpleRL	3.86%	7.58%	38	75	8.23	> 25
	SimpleRL Rev.	5%	8.3%	29	51	25.52	< 8.3
	DAPO	7.8%	11.9%	280	410	8.23	> 44
	DAPO Rev.	10.1%	14.9%	173	258	44.8	< 8.5
325 AIME25	SimpleRL	1.53%	2.97%	13	26	5.3	> 14
	SimpleRL Rev.	4.73%	7.87%	31	53	12.71	< 4
	DAPO	6.47%	9.18%	230	326	4.8	> 33
	DAPO Rev.	9.89%	14.19%	181	261	32	< 4.5

324 Forward and reverse cross-sampling yield a consistent conclusion: the improvements from RL fine-
 325 tuning are concentrated in a sparse set of high-divergence tokens. The functional leverage of these
 326 positions demonstrates that RL refinement operates in a highly targeted manner, with performance
 327 gains critically dependent on preserving edits at these specific locations. Additional cross-sampling
 328

324 results, including detailed analyses and results for other model configurations, are provided in Ap-
 325 pendix A.5.

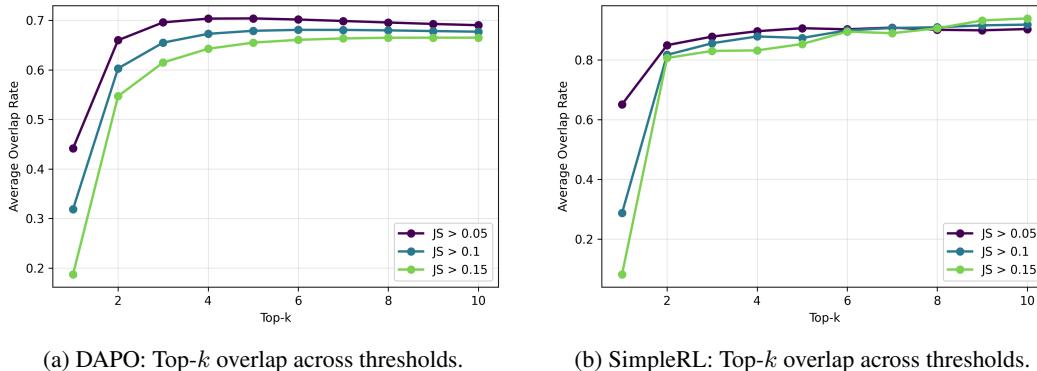
327 5 FINE-GRAINED DYNAMICS OF DISTRIBUTION SHIFTS

330 Having established the overall distributional changes, including their sparsity, positional concen-
 331 tration, and relationship to entropy, we now analyze *how* token-level distributions change at high-
 332 divergence positions. While our previous analyses quantified the extent and spread of these changes,
 333 as well as their relationships with entropy regimes, they did not reveal the detailed mechanics of
 334 how probability mass is redistributed within these critical positions. This finer-grained perspective
 335 reveals the mechanisms of RL-induced refinements, including overlap in candidate sets, rank shifts,
 336 and systematic probability adjustments.

337 5.1 TOP- k OVERLAP AND RANK REORDERING

339 We study how RLVR modifies token predictions by analyzing overlap in top- k candidates and
 340 changes in their relative ranking. The central questions first consider (1) Do base and RL mod-
 341 els consider similar candidate sets? (2) How much does their ordering shift?

342 Figure 6 reports the fraction of shared tokens between the top- k lists of the two models, restricted
 343 to positions with high JS divergence. Despite distributional shifts, overlap remains high for $k \geq 2$.
 344 SimpleRL exceeds 80% average overlap (often > 0.85), indicating that updates mostly reshuffle
 345 probabilities within a common set. DAPO shows slightly lower but still substantial overlap. Both
 346 methods exhibit a sharp jump from $k = 1$ to $k = 2$, suggesting that while the top-1 token often
 347 changes, the replacement was typically already among the base model’s top-3.



359 (a) DAPO: Top- k overlap across thresholds.

360 (b) SimpleRL: Top- k overlap across thresholds.

361 Figure 6: Top- k token overlap between base and RL models at divergent positions (with $JS_t >$
 362 0.1). Computed as the size of the intersection divided by k . High overlap for $k \geq 2$ shows that
 363 distributional shifts occur mostly within shared candidate sets.

365 Re-ranking dynamics are shown in Figure 17, which locates the RL model’s top-3 tokens in the base
 366 distribution (at high-divergence positions). About 30% of RL top-1 tokens were already ranked first
 367 in the base model; over 80% (DAPO) and 90% (SimpleRL) were in the base top-3. RL top-2 tokens
 368 generally fell within the base top-3–4, with SimpleRL showing stronger alignment.

369 Overall, RL refinement acts primarily as a *re-ranking process*, elevating plausible alternatives al-
 370 ready in the base shortlist. The main difference is selectivity: SimpleRL restricts updates to a
 371 narrow consensus of high-priority candidates, while DAPO permits broader rank shifts, consistent
 372 with its exploratory behavior.

374 5.2 LOW PROBABILITY BEHAVIOR: DOES RL INVENT OR SELECT?

376 We next ask whether RL encourages tokens that were highly unlikely under the base model. Con-
 377 cretely, for each divergent token distribution, we examine the top-1 token chosen by the RL-trained
 378 model and record its probability under the base distribution. We then measure the proportion of these

tokens that fall below a given base-probability threshold. Results show that under DAPO, roughly 5% of divergent top-1 tokens have base probability < 0.01 (Figure 16), whereas under GRPO, this fraction is nearly zero (Figure 19). Thus, even in DAPO, which is designed to encourage broader exploration, RL still rarely promotes tokens that were very unlikely under the base policy.

5.3 EVOLUTION ACROSS TRAINING

We analyze intermediate checkpoints of Qwen2.5-Math-7B (Yang et al., 2024) when trained with DAPO, conditioning all distributions on the final model’s outputs. This alignment enables tracking of distributional changes over time for a fixed sequence of tokens. Figure 7 shows how JS divergence and divergent token sets evolve during training. JS divergence increases monotonically, with higher percentiles (95th, 99th) rising faster than lower ones (e.g., 80th), indicating that shifts are sparse and intensify over time. A small subset of tokens undergoes progressively stronger refinement, while most remain stable. On the other hand, the Jaccard index between each checkpoint’s set of divergent tokens and the final set rises steadily, then jumps sharply near the end (Figure 7b).

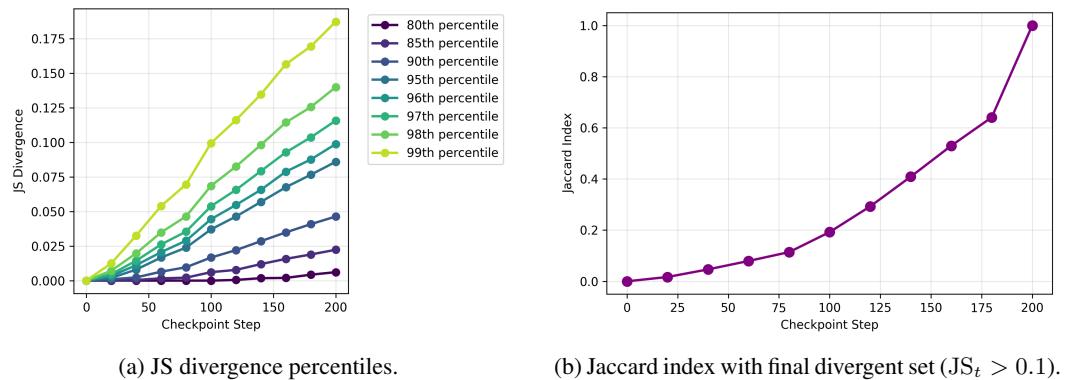


Figure 7: Distributional shifts grow increasingly focused and stable. Most tokens remain unchanged; updates concentrate in a sparse set late in training.

6 EXPLORATORY INVESTIGATION: DIVERGENCE-WEIGHTED ADVANTAGES

Our earlier analyses reveal that RL refinements are *sparse and targeted*, with only a small subset of tokens exhibiting meaningful distributional change. Moreover, cross-sampling experiments demonstrate that these high-divergence tokens are functionally critical, with performance gains hinging on precisely these positions. This raises a natural question: if only a small fraction of tokens drive improvements, can training be more effectively guided by modulating token-level learning signals according to these divergences? Intuitively, if certain tokens undergo substantial distributional shifts and are functionally important, explicitly weighting their advantages during training might amplify learning efficiency or stability. To investigate this possibility, we conduct a preliminary exploration of *divergence-weighted advantages* as a diagnostic intervention, where token-level advantages are reweighted by distributional divergence. We explore two different approaches: *high-KL boost*, which concentrates updates towards token distributions that are already changing substantially, and *low-KL boost*, which focuses updates on distributions that have changed less, potentially encouraging updates in previously stable regions.

6.1 GRPO-BASED METHODS

GRPO in brief. GRPO (Shao et al., 2024) samples G responses $\{o_i\}_{i=1}^G$ from a policy $\pi_{\theta_{\text{old}}}(\cdot | q)$ for a prompt q with ground-truth answer a , assigns sequence-level rewards $\{R_i\}_{i=1}^G$, and computes a *group-normalized* advantage for each sample. GRPO then applies a PPO-style (Schulman et al., 2017) clipped surrogate objective at the *token* level, typically with an explicit KL penalty to a reference model.

DAPO. DAPO (Yu et al., 2025) modifies GRPO with an asymmetric clip-higher mechanism, dynamic sampling of correct/incorrect completions, token-level averaging, and removal of the explicit KL penalty term. Its objective is

$$J_{\text{DAPO}}(\theta) = \mathbb{E}_{(q, a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | q)} \left[\frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \text{clip}(r_{i,t}(\theta), 1 - \epsilon_{\text{low}}, 1 + \epsilon_{\text{high}}) \hat{A}_{i,t} \right) \right] \quad (1)$$

s.t. $0 < |\{o_i \mid \text{is_equivalent}(a, o_i)\}| < G$,

with

$$r_{i,t}(\theta) = \frac{\pi_{\theta}(o_{i,t} \mid q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i,<t})}, \quad \hat{A}_{i,t} = \frac{R_i - \text{mean}(\{R_j\}_{j=1}^G)}{\text{std}(\{R_j\}_{j=1}^G)}. \quad (2)$$

6.2 EXPLORATORY INTERVENTIONS: DIVERGENCE-WEIGHTED ADVANTAGE

Standard RLVR objectives treat all tokens within a sequence uniformly in terms of their advantages. Motivated by our observation that distributional shifts are sparse and concentrated, we investigate whether modulating token-level advantages according to divergence magnitude can help improve or control aspects of training. We explore modifications where advantages are rescaled depending on the per-token divergences.

General formulation. We define a divergence-weighted advantage:

$$\tilde{A}_t = w_t \cdot \hat{A}_t, \quad (3)$$

where \hat{A}_t denotes the standard group-normalized advantage and w_t is a per-token weight based on divergence. To ensure that the introduced divergence weight influences only the weighting and not the gradient computation, divergence values are detached from the computation graph.

Choice of divergence. We employ KL divergence with respect to the old policy as our primary divergence measure:

$$\text{KL}_t^{\text{old}} = D_{\text{KL}}(\pi_{\theta_{\text{old}}}(\cdot | x_{<t}) \parallel \pi_{\theta}(\cdot | x_{<t})), \quad (4)$$

where $\pi_{\theta_{\text{old}}}$ denotes the policy from the previous update iteration, as in PPO/GRPO. This old-policy KL quantifies the magnitude of recent policy updates at each token position, serving as a proxy for the extent of local distributional change. For computational efficiency and compatibility with existing training frameworks such as verl (Sheng et al., 2024), we estimate these quantities using KL estimators computed over sampled tokens only, which may not capture the full distributional structure. Alternative divergence signals, including reference-based KL, are discussed in Appendix A.6.

Weighting schemes. We adopt a simple sigmoid weighting scheme (to ensure bounded weights), which transforms divergence into weights through:

$$w_t = 1 + s(\sigma(\alpha \cdot \text{KL}_t) - 0.5), \quad \sigma(x) = \frac{1}{1+e^{-x}}. \quad (5)$$

The parameter α controls the direction and magnitude of emphasis: $\alpha > 0$ amplifies high-divergence tokens, whereas $\alpha < 0$ emphasizes low-divergence ones. The sigmoid function provides a smooth, bounded nonlinear transformation that enables selective focus on either high- or low-divergence regions depending on the sign of α . This formulation allows us to investigate whether concentrating the learning signal on regions that have already changed or those that remain unchanged yields more effective training dynamics. Alternative weighting schemes, including linear relative weighting, are discussed in Appendix A.6.

Evaluation. We evaluate divergence-weighted advantages using the DAPO training recipe and data on Qwen2.5-Math-7B. Results are presented in Table 2. In the main text, we focus on configurations employing KL divergence with respect to $\pi_{\theta_{\text{old}}}$ and the sigmoid weighting scheme. Additional possible configurations are discussed in Appendix A.6. Detailed training hyperparameters and implementation details are documented in Appendix A.3.3.

486 Table 2: Accuracy (%) under divergence-weighted configurations on Qwen2.5-Math-7B. Results
 487 shown for KL divergence with $\pi_{\theta_{\text{old}}}$ and sigmoid weighting scheme across AIME24, AIME25, and
 488 AMC datasets. The results displayed are the avg@32 scores (or the pass@1 scores computed using
 489 32 samples). Results are each averaged over 3 runs.

Configuration	AIME24	AIME25	AMC	Overall Avg
Baseline DAPO	33.61	18.75	75.08	42.48 ± 1.35
Low-KL boost	35.90	19.90	78.97	44.92 ± 0.05
High-KL boost	36.74	20.00	78.40	45.05 ± 0.79

497 These results demonstrate that weighting token-level updates by divergence can amplify performance
 498 gains, providing empirical support for the hypothesis that targeted tokens disproportionately
 499 drive improvements. Both low-KL and high-KL boost configurations yield improvements over the
 500 baseline, suggesting that different divergence weighting strategies can be effective. However, the optimal
 501 choice between these approaches, and indeed whether divergence weighting provides benefits
 502 at all, may depend on the specific models and training methods used. Effective divergence weighting
 503 across training configurations may require model-specific paradigms or adaptive scheduling mechanisms
 504 to stabilize learning dynamics. We present this approach as a complementary diagnostic tool
 505 that may inform future refinements of token-level training strategies.

507 7 CONCLUSION

509 Our study reveals that reinforcement learning with verifiable rewards (RLVR) reshapes LLMs in a
 510 manner that is sparse, targeted, and structured rather than uniformly diffused across tokens. By
 511 analyzing token-level distributional shifts, we show that only a small subset of tokens undergo
 512 meaningful divergence, and that these divergences carry disproportionate functional importance:
 513 cross-sampling interventions confirm that performance gains hinge on precisely these positions. To
 514 complement these analyses, we explored divergence-weighted advantage, a simple modification that
 515 scales token-level advantages by per-token divergence. These results suggest that weighting strategies
 516 can influence learning dynamics, though stabilizing performance may require model-specific
 517 choices or schedulers.

518 Together, these findings advance a token-level understanding of RL fine-tuning. They highlight that
 519 the essence of RLVR’s success lies not in widespread distributional changes, but in selective refinements
 520 aligned with varying entropy levels. Beyond clarifying the mechanics of existing methods, our
 521 work offers a perspective for designing future RL objectives that explicitly incorporate distributional
 522 structure, opening avenues for more effective, interpretable, and controllable LLM post-training.

524 REFERENCES

526 Zhipeng Chen, Xiaobo Qin, Youbin Wu, Yue Ling, Qinghao Ye, Wayne Xin Zhao, and Guang Shi.
 527 Pass@k training for adaptively balancing exploration and exploitation of large reasoning models,
 528 2025. URL <https://arxiv.org/abs/2508.10751>.

529 Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and
 530 Furu Wei. Reasoning with exploration: An entropy perspective on reinforcement learning for
 531 llms, 2025. URL <https://arxiv.org/abs/2506.14758>.

533 Tianzhe Chu, Shengbang Tong, Jihan Yang, Tianzhe Chu, Yuexiang Zhai, Yi Ma, Saining Xie, Dale
 534 Schuurmans, Quoc V. Le, and Sergey Levine. Sft memorizes, rl generalizes: A comparative study
 535 of foundation model post-training, 2025. URL <https://arxiv.org/abs/2501.17161>.

537 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
 538 Fan, Huayu Chen, Weize Chen, Zhiyuan Liu, Hao Peng, Lei Bai, Wanli Ouyang, Yu Cheng,
 539 Bowen Zhou, and Ning Ding. The entropy mechanism of reinforcement learning for reasoning
 language models, 2025. URL <https://arxiv.org/abs/2505.22617>.

540 Jia Deng, Jie Chen, Zhipeng Chen, Daixuan Cheng, Fei Bai, Beichen Zhang, Yinqian Min,
 541 Yanzipeng Gao, Wayne Xin Zhao, and Ji-Rong Wen. From trial-and-error to improvement: A
 542 systematic analysis of llm exploration mechanisms in rlvr, 2025. URL <https://arxiv.org/abs/2508.07534>.

544 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
 545 degeneration, 2020. URL <https://arxiv.org/abs/1904.09751>.

547 Maggie Huan, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, Minxin Du, Radha Poovendran,
 548 Graham Neubig, and Xiang Yue. Does math reasoning improve general llm capabilities? un-
 549 derstanding transferability of llm reasoning, 2025. URL <https://arxiv.org/abs/2507.00432>.

551 Aayush Karan and Yilun Du. Reasoning with sampling: Your base model is smarter than you think,
 552 2025. URL <https://arxiv.org/abs/2510.14901>.

554 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 555 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 556 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
 557 Systems Principles*, 2023.

558 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
 559 man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\ulu 3: Pushing
 560 frontiers in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

561 Zicheng Lin, Tian Liang, Jiahao Xu, Qizhi Lin, Xing Wang, Ruilin Luo, Chufan Shi, Siheng
 562 Li, Yujiu Yang, and Zhaopeng Tu. Critical tokens matter: Token-level contrastive estimation
 563 enhances llm's reasoning capability, 2025. URL <https://arxiv.org/abs/2411.19943>.

564 Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
 565 Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models,
 566 2025. URL <https://arxiv.org/abs/2505.24864>.

568 MistralAI. Mistral small 3, January 2025. URL <https://mistral.ai/news/mistral-small-3>.

570 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 571 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 572 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 573 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 574 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 575 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 576 URL <https://arxiv.org/abs/2412.15115>.

577 Neel Rajani, Aryo Pradipta Gema, Seraphina Goldfarb-Tarrant, and Ivan Titov. Scalpel vs. hammer:
 578 Grpo amplifies existing capabilities, sft replaces them, 2025. URL <https://arxiv.org/abs/2507.10616>.

581 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 582 Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
 583 benchmark, 2023. URL <https://arxiv.org/abs/2311.12022>.

584 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 585 optimization algorithms. *arXiv*, abs/1707.06347, 2017. doi: 10.48550/arXiv.1707.06347. URL
 586 <https://arxiv.org/abs/1707.06347>.

587 Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du,
 588 Nathan Lambert, Sewon Min, Ranjay Krishna, Yulia Tsvetkov, Hannaneh Hajishirzi, Pang Wei
 589 Koh, and Luke Zettlemoyer. Spurious rewards: Rethinking training signals in rlvr, 2025. URL
 590 <https://arxiv.org/abs/2506.10947>.

592 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Y. K.
 593 Li, Yu Wu, Daya Guo, and Mingchuan Zhang. Deepseekmath: Pushing the limits of mathematical
 reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

594 Idan Shenfeld, Jyothish Pari, and Pulkit Agrawal. RI’s razor: Why online reinforcement learning
 595 forgets less, 2025. URL <https://arxiv.org/abs/2509.04259>.

596
 597 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 598 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*
 599 *arXiv*: 2409.19256, 2024.

600 Jean Vassoyan, Nathanaël Beau, and Roman Plaud. Ignore the kl penalty! boosting exploration
 601 on critical tokens to enhance rl fine-tuning, 2025. URL <https://arxiv.org/abs/2502.06533>.

602
 603 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 604 Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
 605 Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
 606 effective reinforcement learning for llm reasoning, 2025. URL <https://arxiv.org/abs/2506.01939>.

607
 608 Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
 609 Wang, Junjie Li, Ziming Miao, Jiang Bian, and Mao Yang. Reinforcement learning with verifiable
 610 rewards implicitly incentivizes correct reasoning in base llms, 2025. URL <https://arxiv.org/abs/2506.14245>.

611
 612 Taiqiang Wu, Runming Yang, Jiayi Li, Pengfei Hu, Ngai Wong, and Yujiu Yang. Shadow-ft: Tuning
 613 instruct via base, 2025. URL <https://arxiv.org/abs/2505.12716>.

614
 615 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
 616 Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
 617 Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
 618 pert model via self-improvement, 2024. URL <https://arxiv.org/abs/2409.12122>.

619
 620 Zhihe Yang, Xufang Luo, Zilong Wang, Dongqi Han, Zhiyuan He, Dongsheng Li, and Yunjian Xu.
 621 Do not let low-probability tokens over-dominate in rl for llms, 2025. URL <https://arxiv.org/abs/2505.12929>.

622
 623 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 624 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
 625 Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
 626 Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying Ma, Ya-
 627 Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-source
 628 llm reinforcement learning system at scale, 2025. URL <https://arxiv.org/abs/2503.14476>.

629
 630 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao
 631 Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the
 632 base model?, 2025. URL <https://arxiv.org/abs/2504.13837>.

633
 634 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
 635 zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
 636 URL <https://arxiv.org/abs/2503.18892>.

637 638 A APPENDIX

639 640 A.1 WEIGHT-LEVEL ANALYSIS OF CHANGES

641
 642 Orthogonal to the analysis done in the main text, we also investigate the degree of modifications
 643 induced by RLVR at the parameter level. More specifically, we employ the relative gap ratio (Wu
 644 et al., 2025), denoted as σ , to quantify the magnitude of weight divergence pre- and post-fine-tuning.
 645 This ratio is formulated as:

$$646 \quad \sigma = \frac{\sum |W_{\text{original}} - W_{\text{tuned}}|}{\sum |W_{\text{original}}| + \sum |W_{\text{tuned}}|}$$

648 where W_{original} and W_{tuned} represent the model parameters before and after fine-tuning, respectively.
 649 A lower σ value signifies greater similarity between the parameter sets, indicating a smaller overall
 650 modification from the fine-tuning process.

651 In our experiment, we utilized the Qwen2.5-32B and Qwen2.5-Math-7B models as foundations.
 652 Each model was independently fine-tuned via two distinct methodologies: RL and Supervised Fine-
 653 Tuning (SFT). To ensure a controlled and equitable comparison, the training regimen for both meth-
 654 ods was standardized, employing an identical dataset size and the same number of training steps.
 655 Subsequently, the σ was computed between each original model and its corresponding tuned coun-
 656 terparts. The results are presented in the following table.
 657

658 Table 3: Relative gap ratio (σ) after RL and SFT fine-tuning.
 659

660 Model	661 Qwen2.5-32B	662 Qwen2.5-Math-7B
663 σ after RL	0.00143	0.00136
663 σ after SFT	0.00347	0.00944

664
 665 The results presented in the table demonstrate a consistent trend across both models: the σ val-
 666 ues corresponding to RL fine-tuning are substantially lower than those from SFT. This quantitative
 667 analysis at the parameter level suggests that the cumulative weight modifications induced by RL
 668 are significantly less extensive than those resulting from SFT. This finding provides empirical sup-
 669 port for the hypothesis that RL achieves performance gains through sparse and targeted parameter
 670 adjustments, contrasting with the more distributed updates characteristic of SFT.
 671

672 A.2 RLVR VS. SUPERVISED FINE-TUNING: CONTRASTING DISTRIBUTIONAL PATTERNS 673

674 A natural question is whether the sparse, targeted distributional shifts we observe are specific to
 675 RLVR, or if they also characterize other fine-tuning approaches. To address this, we compare RLVR-
 676 trained models with models refined through supervised fine-tuning (SFT). We analyze Qwen2.5-32B
 677 trained with SFT alongside Qwen2.5-32B DAPO.
 678

679 Figure 8 shows JS divergence distributions for both approaches. SFT produces a noticeably larger
 680 high-divergence set, whereas RLVR concentrates almost all token distributions below very small JS
 681 values. This directly reflects RLVR’s extreme selectivity and the broader edits introduced by SFT.
 682 The top- k overlap analysis (Figure 11) highlights that SFT consistently achieves lower overlap with
 683 the base model, indicating more aggressive re-ranking, while RLVR largely stays within the base
 684 model’s existing candidate set. The rank reordering analysis (Figure 12) further shows that SFT
 685 promotes many more tokens far outside the base model’s top-3, whereas RLVR mainly promotes
 686 candidates that were already high-ranked.

687 Taken together, the metrics highlight that SFT diverges from RLVR along several axes. The SFT
 688 model exhibits higher median and tail JS divergence as well as a larger mass of high-divergence
 689 tokens (Figure 8), and attains lower top- k overlap with the base model (Figure 11) alongside larger
 690 rank shifts (Figure 12). Moreover, SFT’s divergent tokens concentrate on low-entropy regions and
 691 more frequently elevate low base-probability choices (Figures 13 and 9), whereas RLVR keeps most
 692 divergent tokens within higher-entropy, already plausible candidates. These differences reinforce
 693 that RLVR acts as a targeted editor, while SFT drives broader, less selective reshaping of the distri-
 694 bution.

695 These findings align with recent work suggesting that RL fine-tuning acts as a *scalpel* rather than a
 696 hammer, making sparse, targeted changes compared to the broader modifications induced by super-
 697 vised fine-tuning (Rajani et al., 2025; Chu et al., 2025). The key difference lies in the *token-level*
 698 *distributional changes*: RLVR modifies far fewer token positions (as measured by JS divergence),
 699 and at those positions, the changes are more likely to be re-ranking within the base model’s top can-
 700 didates rather than introducing entirely new token probabilities. In contrast, SFT-based distillation
 701 exhibits more widespread token-level distributional shifts across a larger fraction of positions, as it
 learns to mimic provided outputs by adjusting token probabilities more broadly across the vocabu-
 702 lary space.

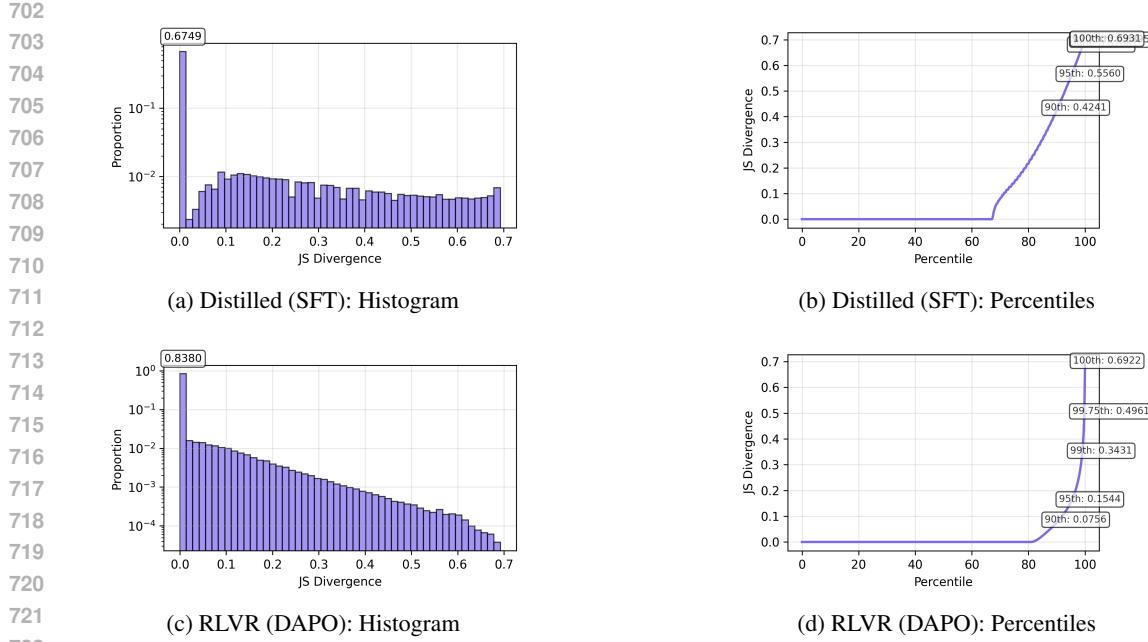


Figure 8: JS divergence distributions comparing supervised fine-tuning (distillation) and RLVR on AIME 2024. RLVR exhibits even sparser distributional shifts than SFT-based distillation, suggesting more targeted refinement.

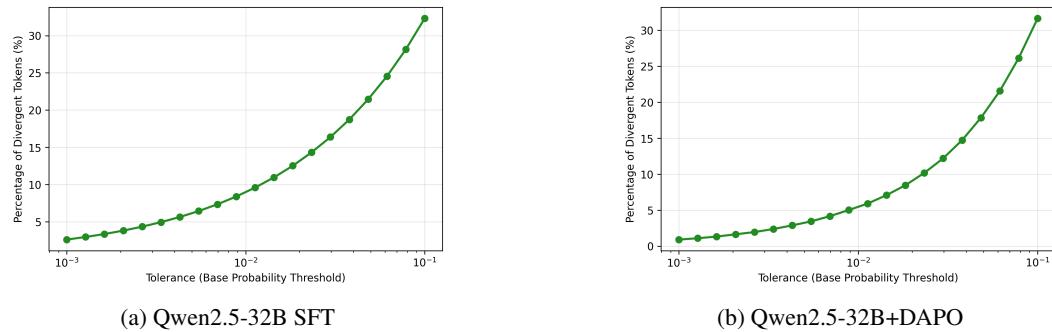


Figure 9: Percentage of divergent tokens whose RL top-1 choice had base probability below a given threshold comparing distilled and RLVR-trained models on AIME 2024.

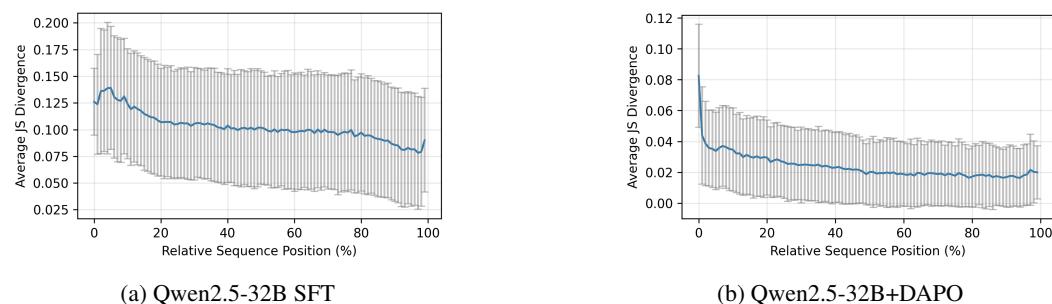
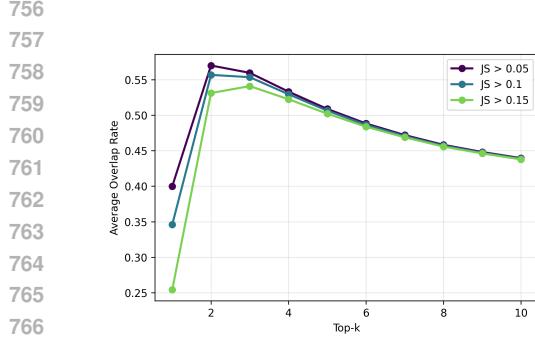
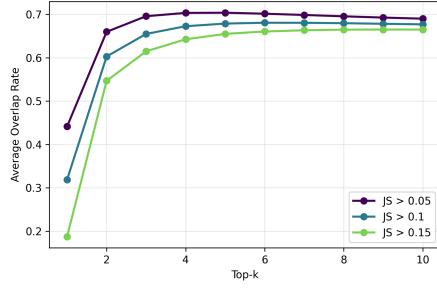


Figure 10: Mean JS divergence by normalized token position comparing distilled and RLVR-trained models on AIME 2024. The positional patterns reveal differences in how distillation and RLVR concentrate their updates.

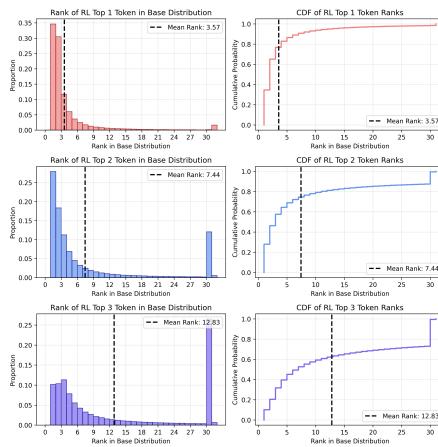


(a) Qwen2.5-32B SFT

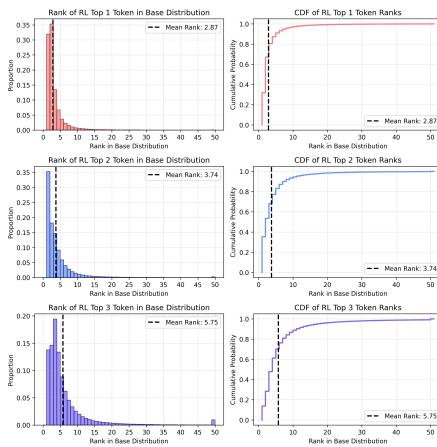


(b) Qwen2.5-32B+DAPO

Figure 11: Top- k token overlap between base and refined models at divergent positions ($JS_t > 0.1$) comparing distilled and RLVR-trained models on AIME 2024.

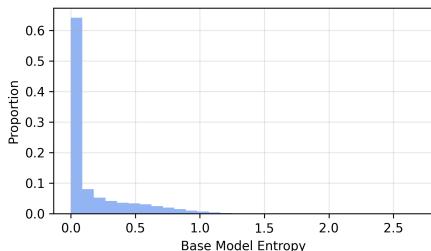


(a) Qwen2.5-32B SFT

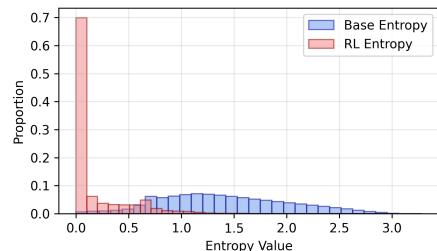


(b) Qwen2.5-32B+DAPO

Figure 12: Distribution of base-model ranks for refined models' top-3 tokens at high-divergence positions ($JS > 0.1$) comparing distilled and RLVR-trained models on AIME 2024.



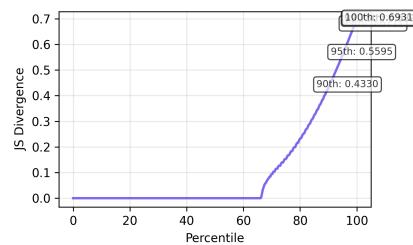
(a) Qwen2.5-32B SFT Low JS bin (< 0.1)



(b) Qwen2.5-32B SFT High JS bin (> 0.1)

Figure 13: Entropy distributions across divergence bins using full vocabulary for Qwen2.5-32B distill on AIME 2025. Patterns are consistent with those observed in the main text, confirming the relationship between entropy and divergence for SFT-based distillation.

810
811
812
813
814
815
816
817



818 (a) Qwen2.5-32B SFT AIME 2025: Per-
819 centiles
820

821 Figure 14: JS divergence distributions for Qwen2.5-32B-distill on AIME 2025. Consistent patterns
822 with AIME 2024 demonstrate robustness across datasets.

824 A.3 EXPERIMENTAL DETAILS

826 Code will be released publicly upon acceptance.

828 A.3.1 TOKEN ANALYSIS

830 We run model inference using `v11m` (Kwon et al., 2023). On AIME, we apply nucleus sampling
831 (Holtzman et al., 2020) with `topp` = 0.7 and `temperature` = 1. For divergence calculations on AIME,
832 we use the top- p truncated distribution to reflect the effective sampling distribution, to provide a
833 more accurate estimate for our cross-sampling experiments. We also look at the distribution of JS
834 divergence values of the distribution without truncation to ensure the results are not affected much
835 by the truncation. For experiments on the fine-training data, we use `topp` = 1 to reflect the training
836 sampling distribution.

837 For token-level distributional analysis, we evaluate multiple model configurations across different
838 datasets. On **Qwen2.5-32B**, we analyze distributional shifts on AIME 2024 and AIME 2025 for
839 DAPO, SimpleRL, and SFT (we train the SFT model as outlined in Section A.3.3). On **Mistral-
840 Small-24B**, we perform token analysis on AIME 2024 and AIME 2025 using SimpleRL. For
841 **Qwen2.5-Math-7B** (trained as outlined in Section A.3.3), we analyze distributional shifts on AIME
842 2024, AIME 2025, and post-training data using both DAPO with the default clip-higher setting and
843 with `clip-higher=0.2`. We also

844 A.3.2 CROSS-SAMPLING

846 For cross-sampling experiments, we use the same inference setup as token analysis. Cross-sampling
847 experiments selectively swap tokens between base and RL models at positions where JS divergence
848 exceeds a threshold, allowing us to measure the functional importance of divergent token distribu-
849 tions.

850 We perform forward and reverse cross-sampling experiments on the following model-dataset combi-
851 nations. For forward cross-sampling, we inject RL-sampled tokens into base generations at positions
852 where JS divergence exceeds the specified threshold. For reverse cross-sampling, we replace RL to-
853 kens with base tokens at high-divergence positions on the RL generations. The divergence thresholds
854 used for each configuration are as follows:

- 855 • **Qwen2.5-32B + SimpleRL:**
 - 856 – AIME 2024: Forward threshold JS > 0.03, Reverse threshold JS > 0.05
 - 857 – AIME 2025: Forward threshold JS > 0.05, Reverse threshold JS > 0.05
- 859 • **Qwen2.5-32B + DAPO:**
 - 860 – AIME 2024: Forward threshold JS > 0.08, Reverse threshold JS > 0.06
 - 861 – AIME 2025: Forward threshold JS > 0.1, Reverse threshold JS > 0.08
- 863 • **Mistral-Small-24B + SimpleRL:**
 - 864 – AIME 2024: Forward threshold JS > 0.002, Reverse threshold JS > 0.02

864 A.3.3 ADDITIONAL TRAINING DETAILS
865866 We implement RLVR training experiments using `ver1` (Sheng et al., 2024) with the standard DAPO
867 recipe (Yu et al., 2025).

868

869 **Qwen2.5-Math-7B DAPO Training.** We follow the public DAPO recipe, namely with clip ratios
870 $\epsilon_{\text{low}} = 0.2$ and $\epsilon_{\text{high}} = 0.28$. However, for token analysis, we also train a variant with $\epsilon_{\text{high}} = 0.2$
871 for comparison. We optimize with learning rate 1×10^{-6} , a 10-step warmup using AdamW, and no
872 explicit reference-KL penalty. Each RLVR step processes 512 prompts with 16 sampled responses
873 per prompt; these are split into mini-batches of 32 prompts, yielding 16 gradient updates per RLVR
874 step. Maximum generation length and the overlong-penalty threshold are set to 8k and 4k tokens.

875

876 **Supervised Fine-Tuning (SFT) Training.** For the SFT model based on on Qwen2.5 32B, we
877 sampled 42k instances from the `AM-DeepSeek-R1-Distilled-1.4M` dataset. The model un-
878 derwent full parameter fine-tuning for 5 epochs, employing DeepSpeed ZeRO-3 optimization.

879

880 For the divergence-weighted advantage experiments on **Qwen2.5-Math-7B**, under the **high-KL**
881 setting we use $s = 0.3$ and set α to increase linearly from 0 to 50 starting at step 100. In the **low-KL**
882 setting, we use $s = 0.3$ and set α to increase linearly from 0 to 50, which we linearly increase
883 beginning at step 150.

884

885 For **Qwen2.5-7B**, in the high-KL relative setting we set $\alpha = 4$. In the configuration with an addi-
886 tional scheduler, we initialize $\alpha = 2$ and linearly increase it to 3 from step 80 onward.

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918
919

A.4 ADDITIONAL TOKEN DISTRIBUTION ANALYSES

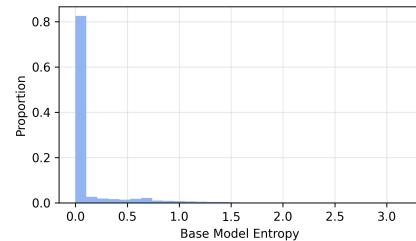
920
921
922
923

This section provides supplementary and extended token distribution analyses. We first present supplementary figures for the main models (Qwen2.5-32B with DAPO and SimpleRL on AIME 2024), then extend the analysis to additional models and datasets to demonstrate the generalizability of our findings.

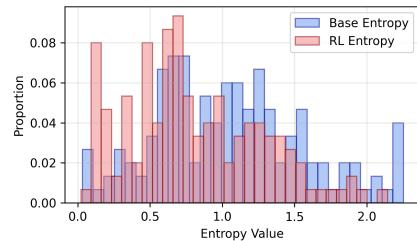
924
925
926
927
928

A.4.1 SUPPLEMENTARY FIGURES FOR MAIN MODELS

We provide additional figures for Qwen2.5-32B with DAPO and SimpleRL that complement the analyses in the main text.



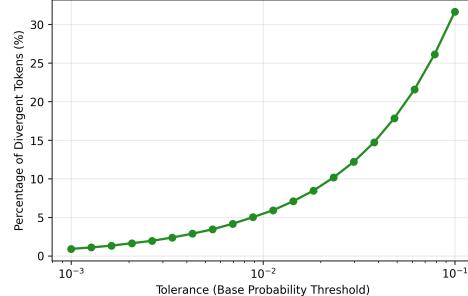
(a) Low JS bin (< 0.1).



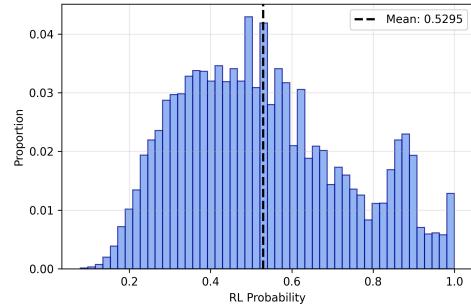
(b) High JS bin (> 0.1).

937

Figure 15: Entropy distributions across divergence bins for **SimpleRL**. Low-divergence tokens are mostly low-entropy, while high-divergence tokens are concentrated in higher-entropy regions, reflecting a more conservative update strategy.



(a) Percentage of divergent tokens with low base probability.



(b) Histogram of RL probabilities for low base-probability tokens.

943
944
945
946
947
948
949
950
951
952
953

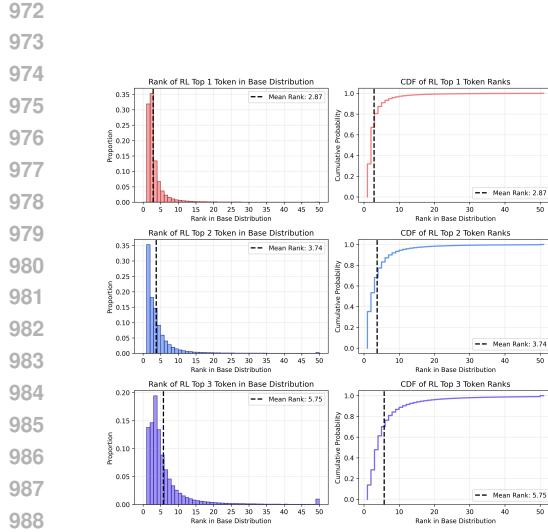
Figure 16: Analysis of tail behavior under DAPO for divergent token distributions ($JS > 0.1$). (a) shows the fraction of divergent tokens whose RL top-1 choice had base probability below a given threshold. (b) shows the distribution of RL probabilities for the subset with base probability < 0.01 .

954
955
956
957
958
959
960
961
962

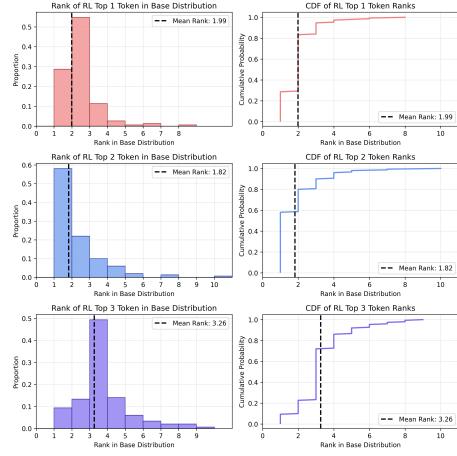
To supplement the positional analysis in the main text, we also examine localized averages of JS divergence near the start of the generation and near the final answer span.

963
964
965
966
967
968
969
970
971

Results on GPQA-Diamond. We extend our analysis to GPQA-Diamond to demonstrate the generalizability of our findings across different reasoning benchmarks. Figure 23 shows JS divergence percentile curves and positional concentration for Qwen2.5-32B with DAPO on GPQA-Diamond, revealing consistent sparsity patterns. Figure 24 shows entropy distributions across divergence bins.

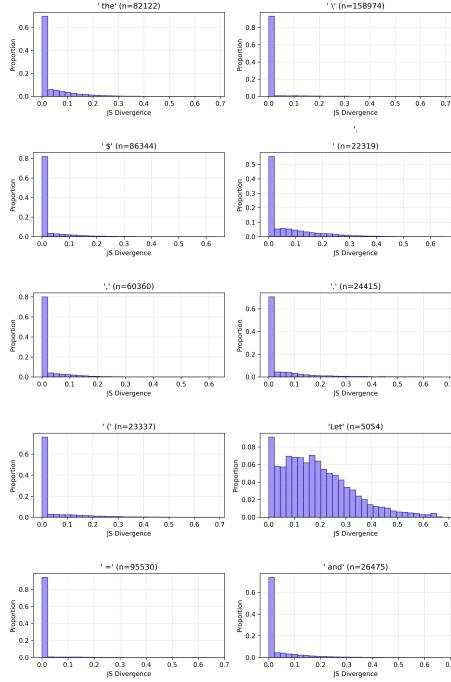


(a) Qwen2.5 32B DAPO.

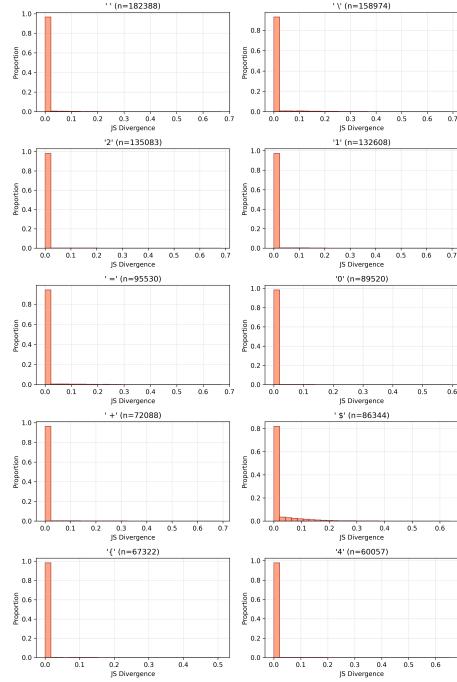


(b) Qwen2.5 32B SimpleRL.

Figure 17: Distribution of base-model ranks for RL's top-3 tokens at high-divergence positions ($JS > 0.1$). Most RL-selected tokens were already highly ranked in the base model, especially under SimpleRL.



(a) Frequent high JS tokens.



(b) Frequent low JS tokens.

Figure 18: Histogram of divergences for frequent high JS tokens and frequent low JS tokens (Qwen2.5 32B with DAPO).

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

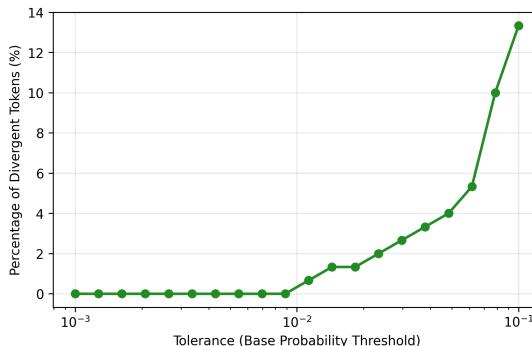
1075

1076

1077

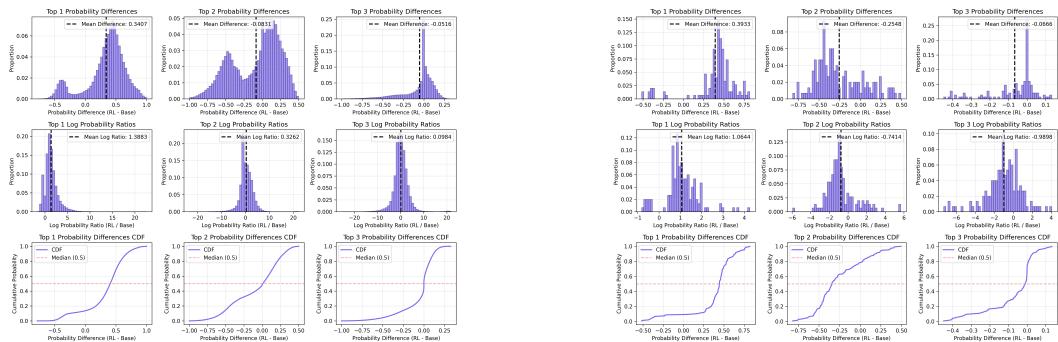
1078

1079



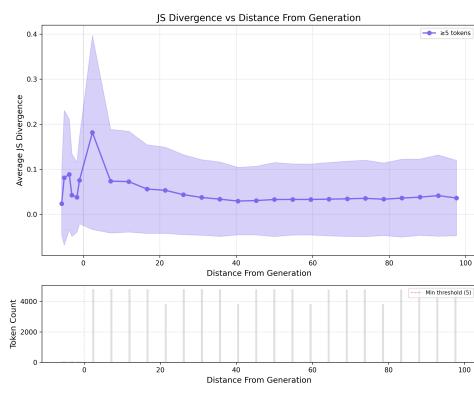
(a) SimpleRL

Figure 19: Percentage of divergent tokens whose RL top-1 choice had base probability below a given threshold.

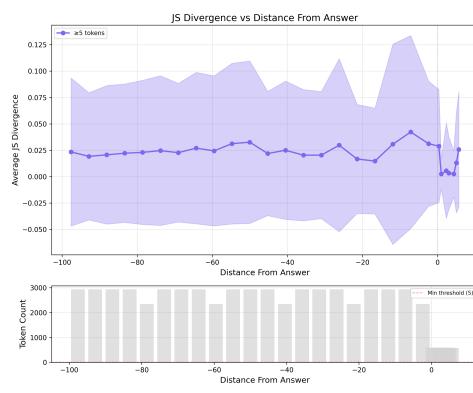


(a) DAPO.

(b) SimpleRL.

Figure 20: Probability differences and ratios for top-3 tokens under DAPO and SimpleRL among divergent distributions ($JS > 0.1$).

(a) Near the start of generation



(b) Near the answer span

Figure 21: Local averages of JS divergence as a function of distance from key regions (prompt beginning and answer) for Qwen2.5-32B models on AIME 2024. Divergence peaks occur in the same early and late windows highlighted by the positional analysis.

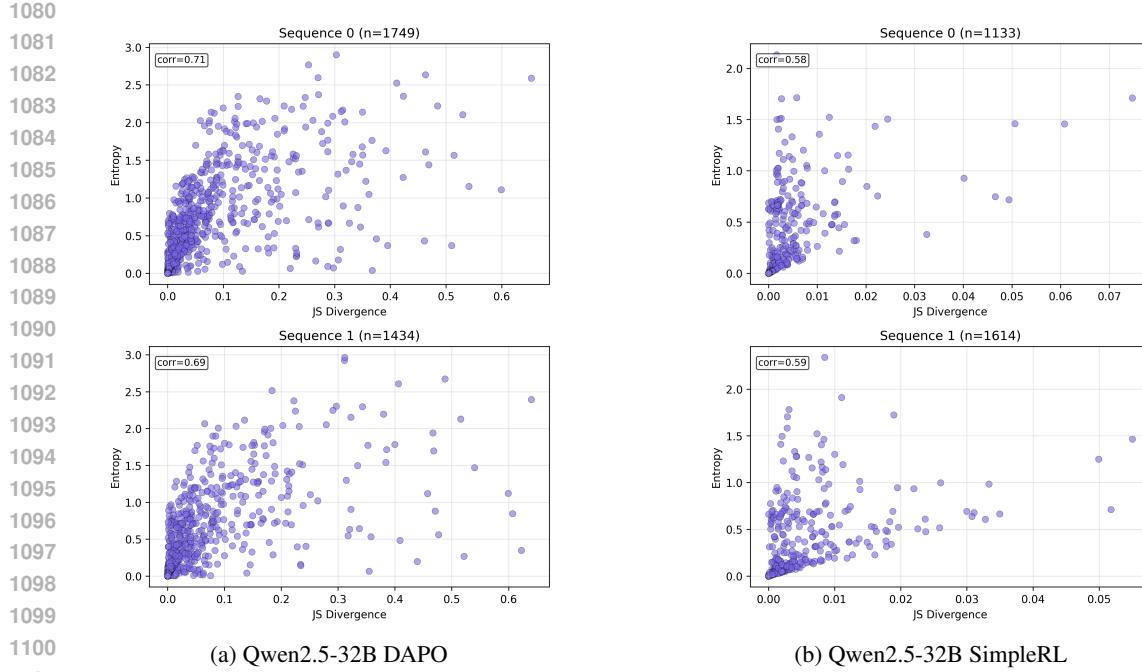


Figure 22: Per-sequence scatter plots relating entropy to JS divergence for Qwen2.5-32B DAPO and SimpleRL on AIME 2024. DAPO exhibits a broader entropy spread among divergent tokens, whereas SimpleRL concentrates divergence in higher-entropy regions.

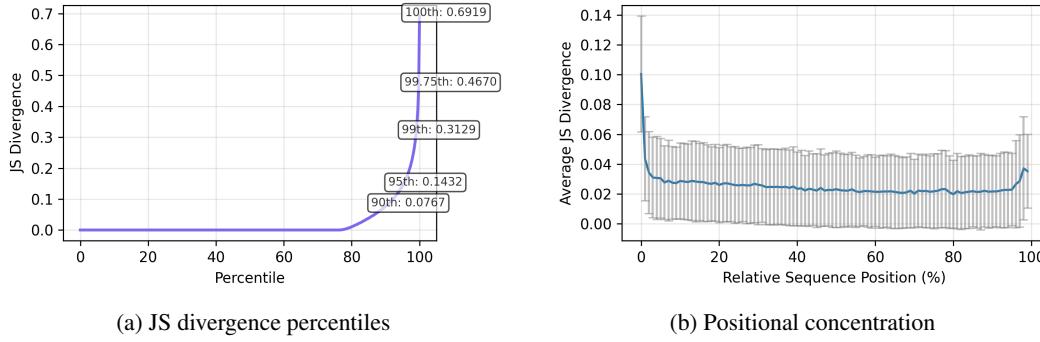


Figure 23: JS divergence analysis for Qwen2.5-32B with DAPO on GPQA-Diamond. The sparsity patterns and positional concentration are consistent with findings on AIME datasets.

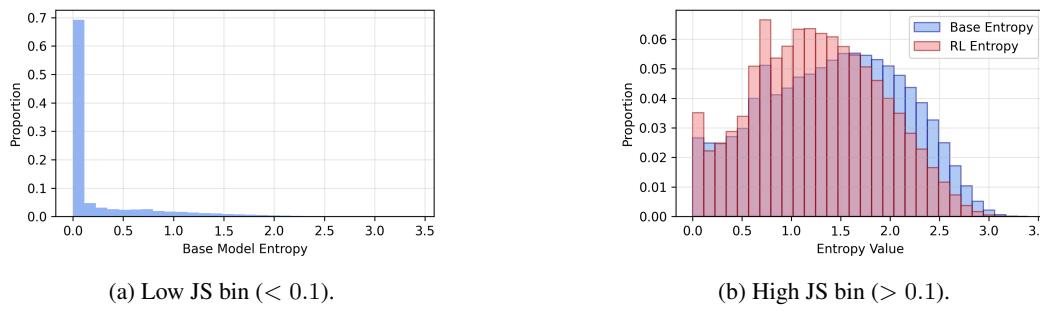
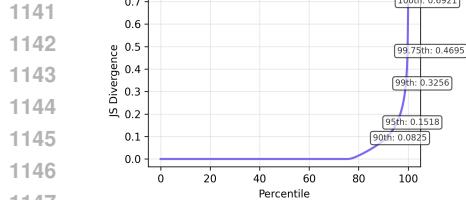
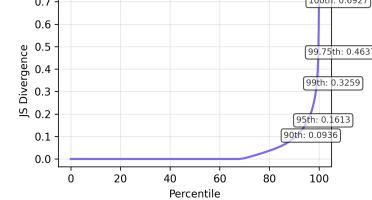


Figure 24: Entropy distributions across divergence bins for Qwen2.5-32B with DAPO on GPQA-Diamond. Patterns are consistent with those observed on AIME datasets.

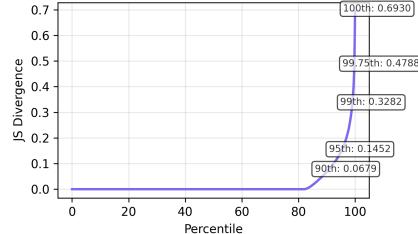
1134
 1135 **Effect of Top- p Sampling on JS Divergence.** To verify that our findings are robust to different
 1136 top- p sampling settings, we compare JS divergence distributions across different sampling config-
 1137urations. The default setting uses top- p = 0.7 for sampling. We also evaluate configurations where
 1138 sampling is performed with top- p = 0.8 and top- p = 0.9. Figure 25 shows that the sparsity patterns
 1139 remain consistent across different sampling top- p values, confirming that our results are not sensitive
 to the specific sampling top- p value used.

1140

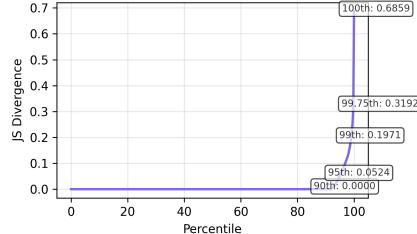
(a) Sampling top- p = 0.8(b) Sampling top- p = 0.9

1153
 1154 Figure 25: JS divergence percentile curves for Qwen2.5-32B with DAPO on AIME 2024 under
 1155 different top- p sampling settings. The sparsity patterns remain consistent across different sampling
 1156 top- p values, indicating robustness to the specific sampling configuration.

1157
 1158 **JS Divergence on AIME 2025.** Figure 26 shows JS divergence percentile curves for Qwen2.5-
 1159 32B with DAPO and SimpleRL on AIME 2025, demonstrating consistent sparsity patterns across
 1160 datasets.



(a) DAPO: Percentile curve



(b) SimpleRL: Percentile curve

1170
 1171 Figure 26: JS divergence distributions for Qwen2.5-32B with DAPO and SimpleRL on AIME 2025.
 1172 The sparsity patterns are consistent with those observed on AIME 2024, confirming the robustness
 1173 of our findings across datasets.

1174
 1175 **Effect of Top- p Truncation on JS Divergence.** To verify that our use of top- p truncated distri-
 1176 butions (with $\text{topp} = 0.7$) does not significantly impact our findings, we compare JS divergence
 1177 distributions computed using the estimated full distribution ($\text{top-}p = 1$) with those using truncated
 1178 distributions. Figure 27 shows that the patterns remain consistent: distributional shifts are highly
 1179 sparse regardless of truncation, with the vast majority of tokens showing near-zero divergence.

A.4.2 COMPARISON OF DAPO VARIANTS: CLIP-HIGHER SETTINGS

1180 DAPO’s clip-higher mechanism controls the degree of exploration during training. We compare two
 1181 Qwen2.5-Math-7B models trained with DAPO: one with the default clip-higher setting (0.28) and
 1182 another with a more restrictive setting (0.2). Figure 28 shows their JS divergence distributions on
 1183 AIME 2024 and AIME 2025, revealing how the clip-higher parameter affects distributional shifts
 1184 across datasets.

1185 Figure 29 compares positional concentration patterns on AIME 2024 and AIME 2025, while Fig-
 1186 ure 30 and Figure 31 examine top- k overlap and rank reordering, respectively. Figure 32 shows the
 1187 percentage of divergent tokens whose RL top-1 choice had base probability below a given thresh-
 1188 old for both DAPO variants across different datasets. Figure 33 shows entropy distributions across
 1189 divergence bins for both DAPO variants.

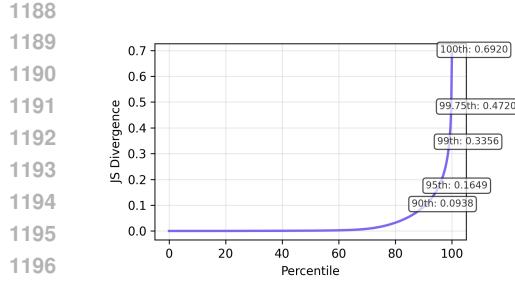
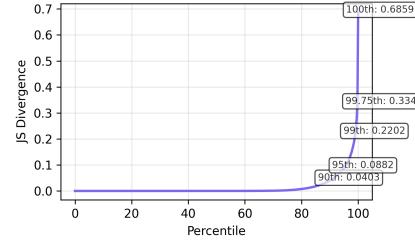


Figure 27: JS divergence distributions computed using $\text{top-}p = 1$ for Qwen2.5-32B with DAPO and SimpleRL on AIME 2025. The sparsity patterns are consistent with those observed using $\text{top-}p$ truncated distributions, confirming that truncation does not significantly impact our findings.

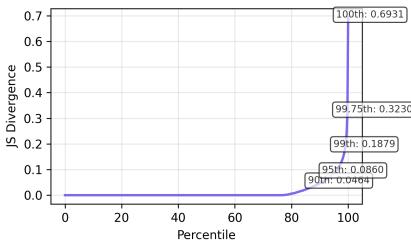
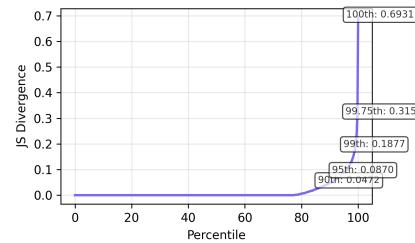
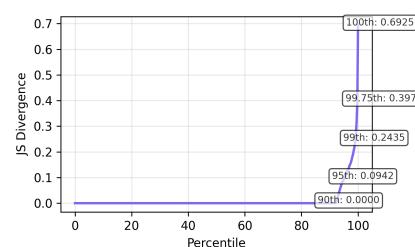


Figure 28: JS divergence distributions for Qwen2.5-Math-7B trained with DAPO under different clip-higher settings on AIME 2024 and AIME 2025. The more restrictive clip-higher=0.2 setting leads to sparser distributional shifts compared to the default 0.28 setting across both datasets, with a smaller proportion of tokens exhibiting nonnegligible divergence. However, on its divergent token set, the JS values are higher as indicated by the higher upper percentiles.

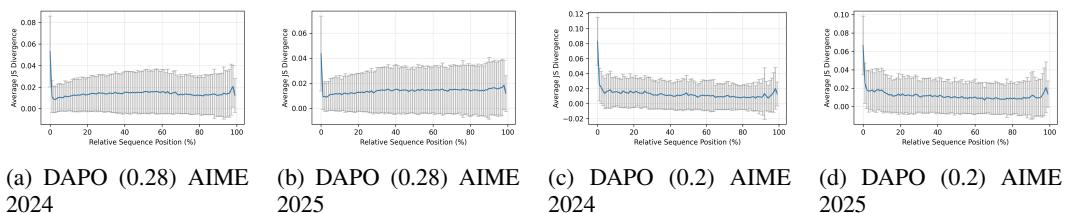


Figure 29: Mean JS divergence by normalized token position for DAPO variants with different clip-higher settings on AIME 2024 and AIME 2025.

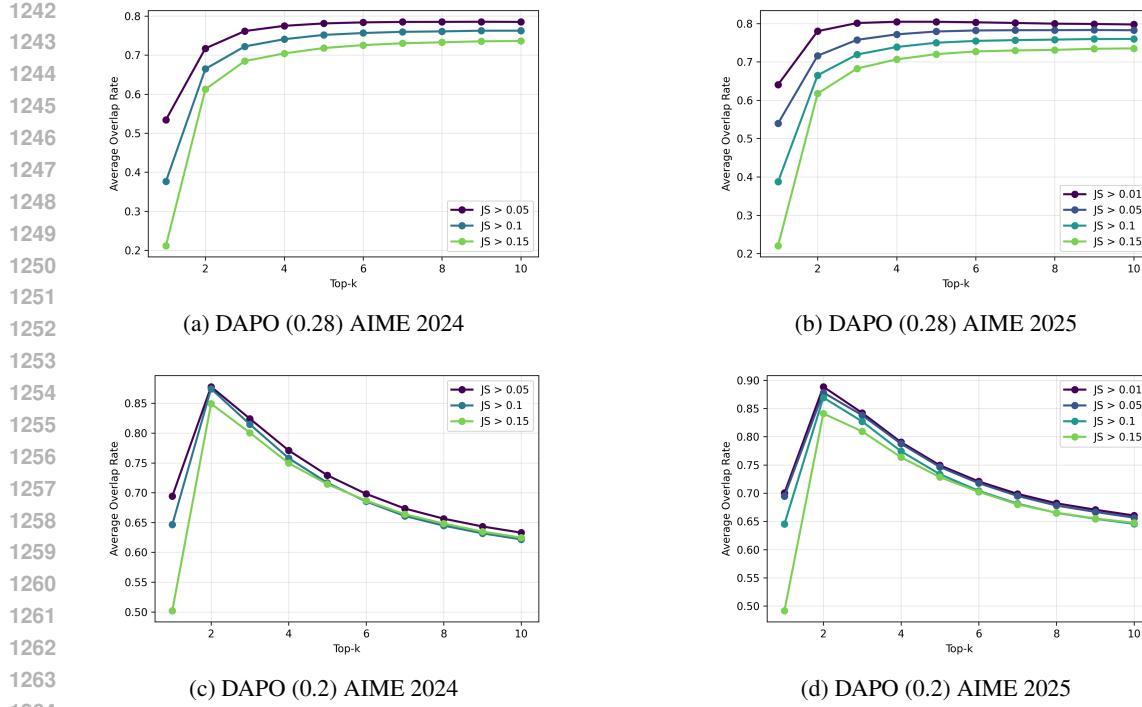


Figure 30: Top- k token overlap between base and RL models at divergent positions ($JS_t > 0.1$) for DAPO variants on AIME 2024 and AIME 2025.

Fine-tuning Data Results. We also analyze distributional shifts on the fine-tuning data to examine how models behave on data they were fine-tuned on. Figure 34 shows JS divergence distributions, while Figures 35, 36 show additional analyses.

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

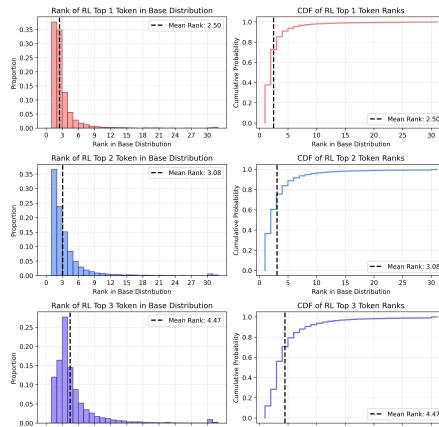
1317

1318

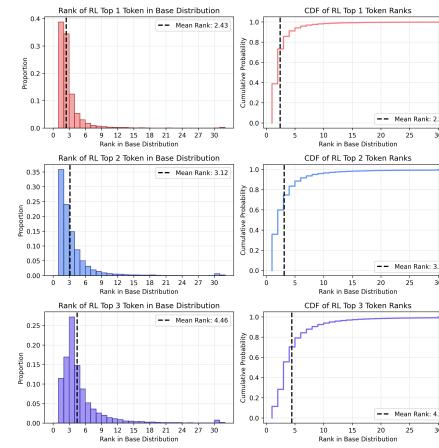
1319

1320

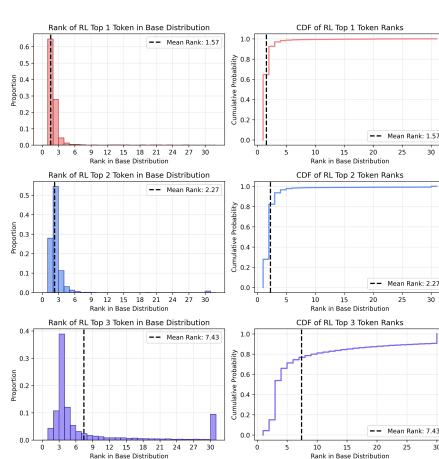
1321



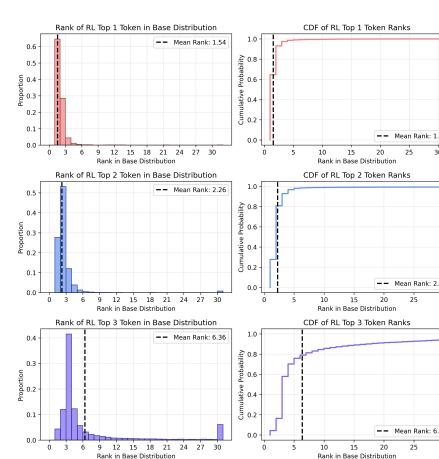
(a) DAPO (0.28) AIME 2024



(b) DAPO (0.28) AIME 2025



(c) DAPO (0.2) AIME 2024



(d) DAPO (0.2) AIME 2025

Figure 31: Distribution of base-model ranks for RL's top-3 tokens at high-divergence positions (JS > 0.1) for DAPO variants on AIME 2024 and AIME 2025.

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

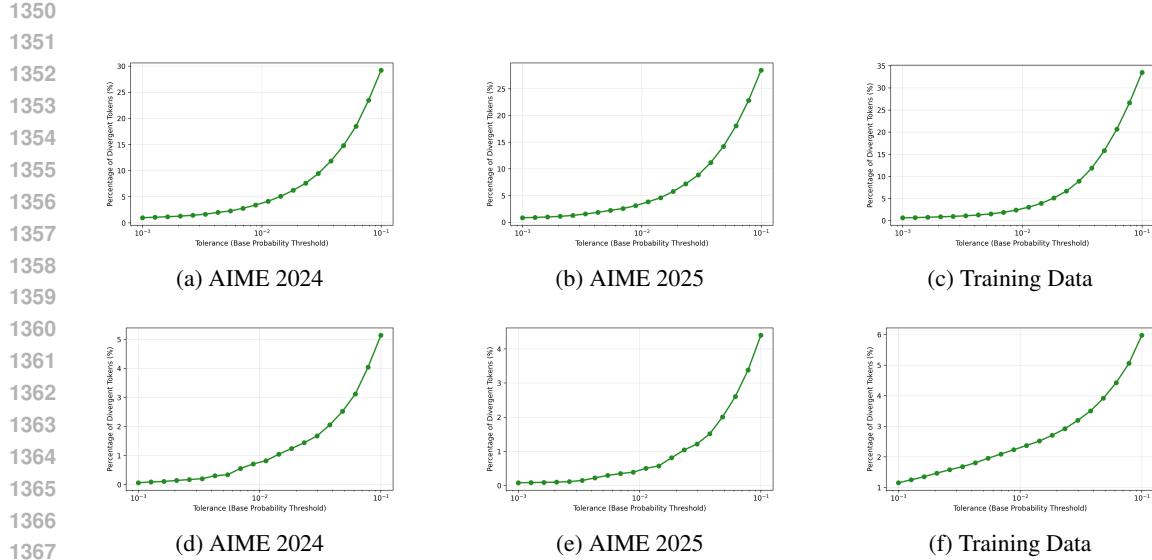


Figure 32: Percentage of divergent tokens whose RL top-1 choice had base probability below a given threshold for Qwen2.5-Math-7B with DAPO variants. Top row: DAPO (clip-higher=0.28); bottom row: DAPO (clip-higher=0.2). Consistent with findings in the main text, RL rarely promotes tokens with very low base probability, even under more exploratory settings like DAPO. We further observe a distinction between the two clip-high settings, with the more restrictive setting (0.2) promoting fewer tokens with very low base probability.

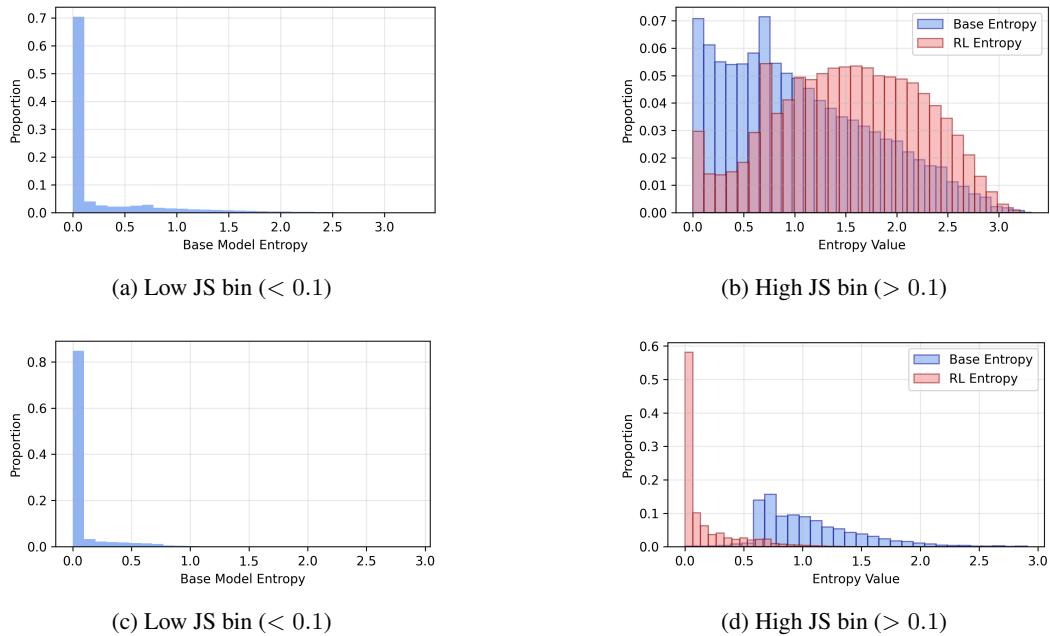
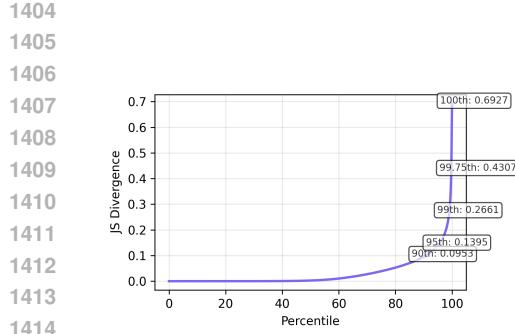
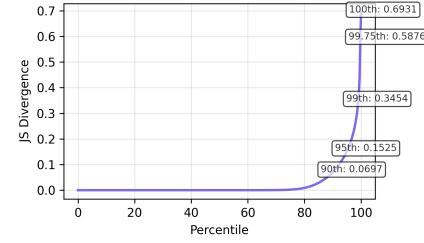


Figure 33: Entropy distributions across divergence bins for Qwen2.5-Math-7B with DAPO variants on AIME 2025. Top row: DAPO (clip-higher=0.28); bottom row: DAPO (clip-higher=0.2). Patterns are consistent with those observed in the main text, confirming the relationship between entropy and divergence across different clip-higher settings.

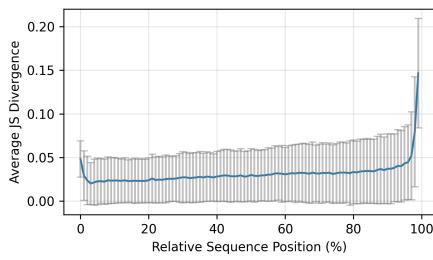


(a) DAPO (clip-higher=0.28): Percentiles

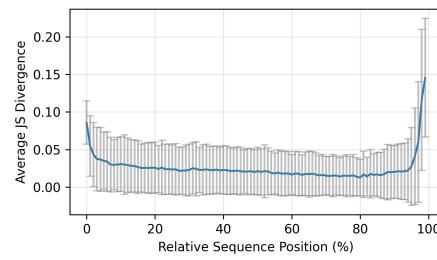


(b) DAPO (clip-higher=0.2): Percentiles

Figure 34: JS divergence distributions for DAPO variants on fine-tuning data. Distributional shifts on training data may differ from those on evaluation sets.

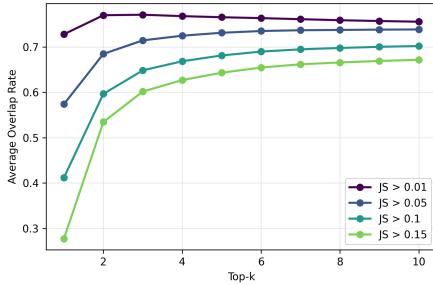


(a) DAPO (clip-higher=0.28)

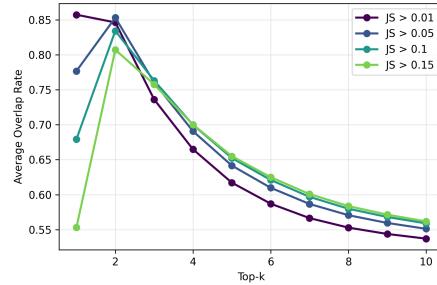


(b) DAPO (clip-higher=0.2)

Figure 35: Mean JS divergence by normalized token position for DAPO variants on post-training data.



(a) DAPO (clip-higher=0.28)

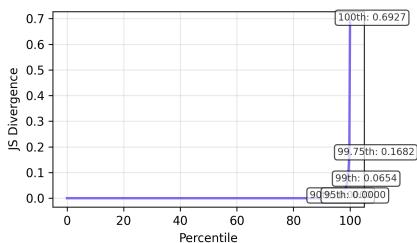


(b) DAPO (clip-higher=0.2)

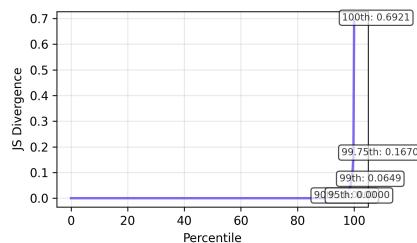
Figure 36: Top-k token overlap between base and RL models at divergent positions ($JS_t > 0.1$) for DAPO variants on training data.

1458 A.4.3 MISTRAL-SMALL-24B WITH SIMPLERL
1459

1460 We analyze Mistral-Small-24B with SimpleRL on AIME 2024 and AIME 2025 to demonstrate the
1461 generalizability of our findings across different model architectures. Figure 37 shows JS divergence
1462 percentile curves, revealing consistent sparsity patterns. Figure 38 shows positional concentration,
1463 Figure 39 shows entropy distributions across divergence bins, and Figure 40 shows tail behavior
1464 analysis.

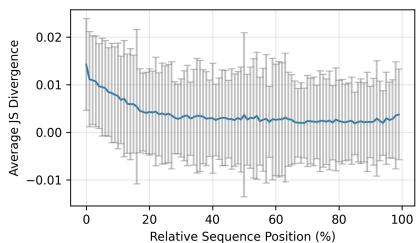


(a) AIME 2024: Percentiles

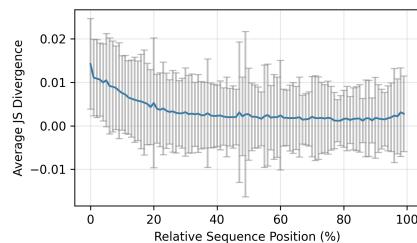


(b) AIME 2025: Percentiles

1475 Figure 37: JS divergence distributions for Mistral-Small-24B with SimpleRL on AIME 2024 and
1476 AIME 2025. Sparse distributional shifts are consistent with findings in the main text across both
1477 datasets.

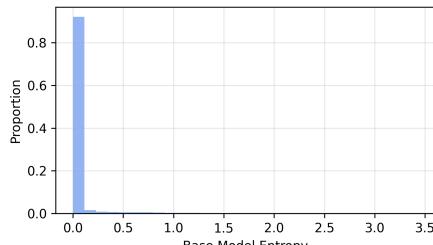


(a) AIME 2024

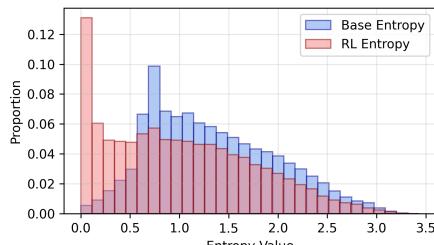


(b) AIME 2025

1489 Figure 38: Mean JS divergence by normalized token position for Mistral-Small-24B with SimpleRL
1490 on AIME 2024 and AIME 2025. Consistent with findings for other models, divergences are concen-
1491 trated at the start and end of responses.

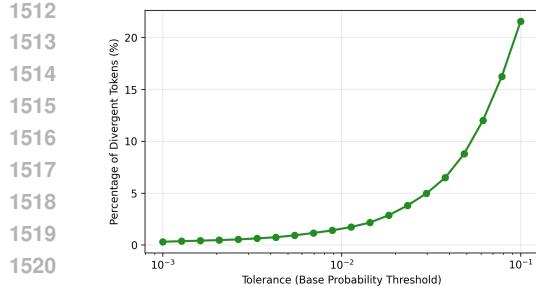


(a) Mistral-24B+SimpleRL Low JS bin (< 0.1)

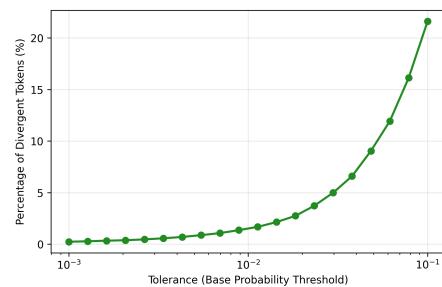


(b) Mistral-24B+SimpleRL High JS bin (> 0.1)

1505 Figure 39: Entropy distributions across divergence bins using full vocabulary for Mistral-Small-
1506 24B with SimpleRL on AIME 2024. Patterns are consistent with those observed in the main text,
1507 confirming the relationship between entropy and divergence across different model architectures.



(a) Mistral-24B+SimpleRL AIME 2024



(b) Mistral-24B+SimpleRL AIME 2025

1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 40: Percentage of divergent tokens whose RL top-1 choice had base probability below a given threshold for Mistral-Small-24B with SimpleRL on AIME 2024 and AIME 2025.

A.5 ADDITIONAL CROSS-SAMPLING RESULTS

This section provides supplementary cross-sampling results and the algorithm used for cross-sampling experiments. Algorithm 1 describes the general procedure for cross-sampling, which generates sequences with one model, and selectively swaps tokens with another model at positions where divergence exceeds a threshold.

Algorithm 1 Cross-Sampling for a single prompt

Require: Prompt prefix $x_{<1}$, primary policy π_{primary} , alternate policy π_{alt} , threshold τ , max steps T
Ensure: Generated sequence $x_{1:t}$, swap count k

- 1: $k \leftarrow 0$
- 2: Initialize prefix $x_{<1}$
- 3: **for** $t = 1 \dots T$ **do**
- 4: Compute $d_t = D(\pi_{\text{primary}}(\cdot | x_{<t}) \| \pi_{\text{alt}}(\cdot | x_{<t}))$
- 5: **if** $d_t > \tau$ **then**
- 6: Sample $x_t \sim \pi_{\text{alt}}(\cdot | x_{<t})$
- 7: $k \leftarrow k + 1$
- 8: **else**
- 9: Sample $x_t \sim \pi_{\text{primary}}(\cdot | x_{<t})$
- 10: **end if**
- 11: Append x_t to prefix $x_{<t+1}$
- 12: **if** $x_t = \text{EOS}$ **then**
- 13: **break**
- 14: **end if**
- 15: **end for**
- 16: **return** generated tokens $x_{1:t}$ and swap count k

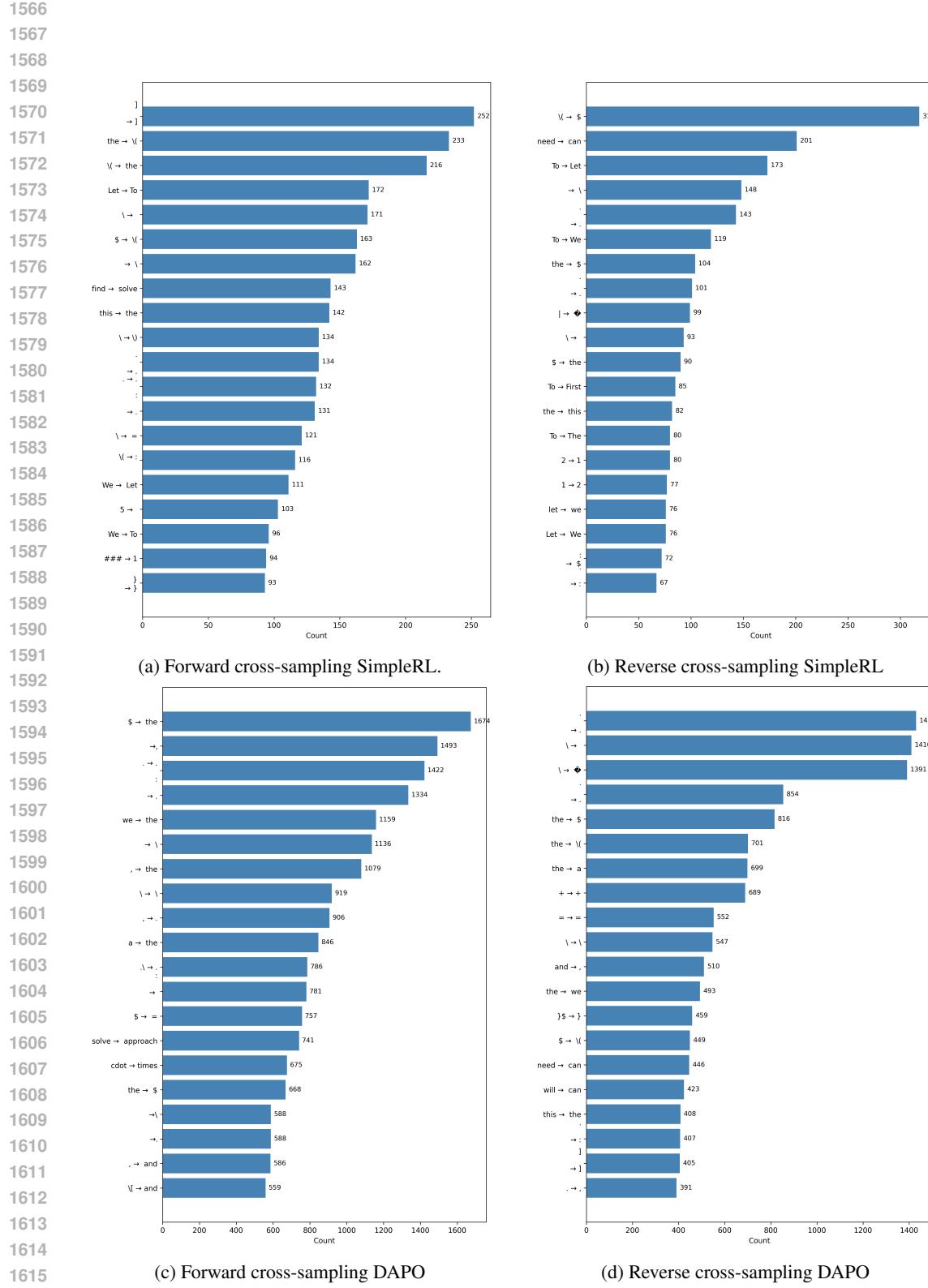
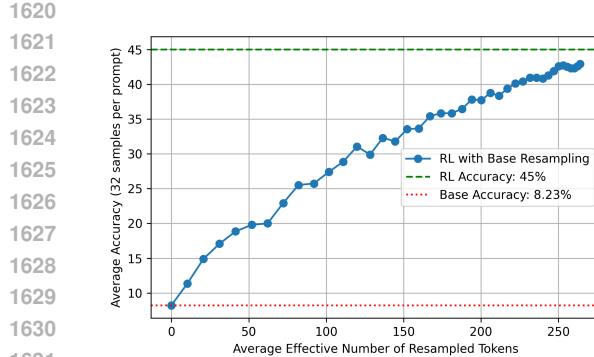
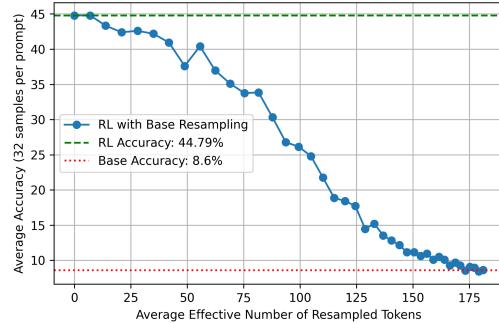


Figure 41: Cross-sampling token pair histograms.

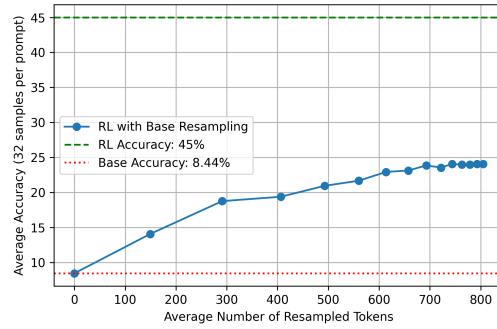


(a) Forward cross-sampling

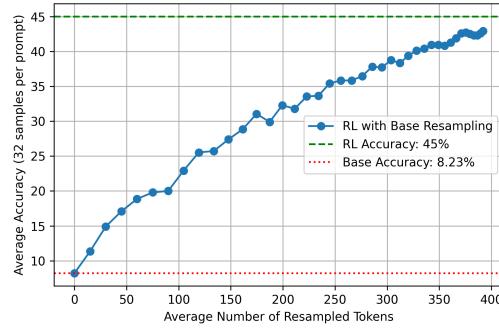


(b) Reverse cross-sampling

Figure 42: Cross-sampling results (DAPO on AIME24): injecting RL tokens into base generations progressively recovers RL accuracy, while reverting RL tokens with base tokens causes near-monotonic degradation toward base performance.

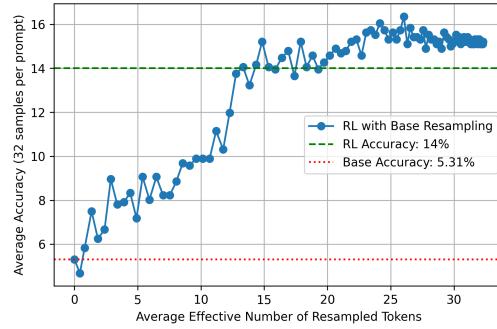


(a) Random baseline

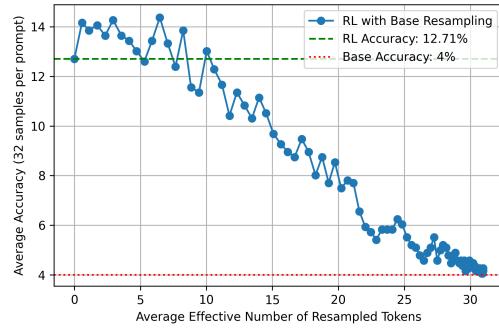


(b) DAPO

Figure 43: Comparison of random baseline and DAPO cross-sampling on AIME24: average number of tokens (including identity swaps) replaced versus accuracy. The random baseline shows minimal performance improvement, demonstrating that targeted RL token selection is critical for performance gains.



(a) Forward cross-sampling



(b) Reverse cross-sampling

Figure 44: Cross-sampling results (SimpleRL on AIME25): injecting RL tokens into base generations progressively recovers RL accuracy, while reverting RL tokens with base tokens causes near-monotonic degradation toward base performance. Interestingly, in the base with RL resampling case, the performance actually meaningfully exceeds the RL model’s performance.

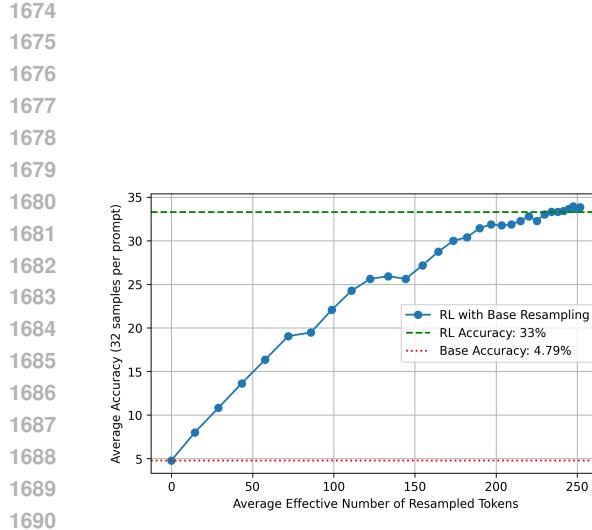
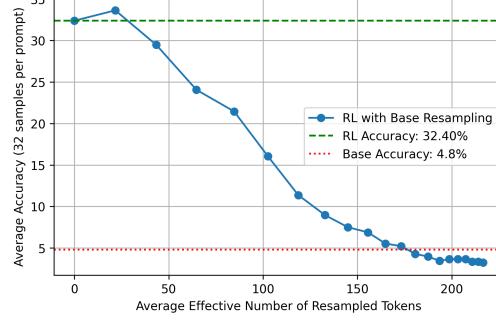


Figure 45: Cross-sampling results (DAPO on AIME25): injecting RL tokens into base generations progressively recovers RL accuracy, while reverting RL tokens with base tokens causes near-monotonic degradation toward base performance.

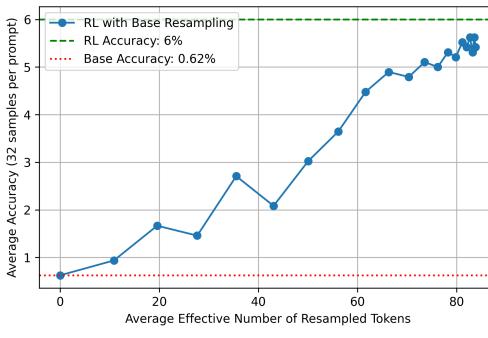
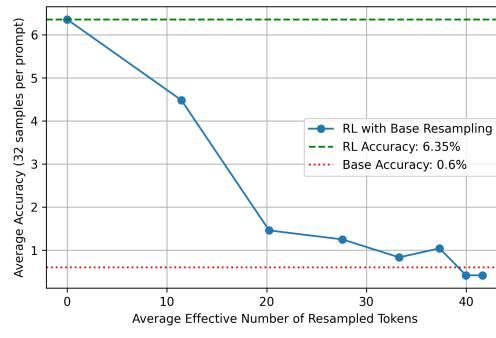


Figure 46: Cross-sampling results (Mistral-Small-24B + SimpleRL on AIME 2024): injecting RL tokens into base generations progressively recovers RL accuracy, while reverting RL tokens with base tokens causes near-monotonic degradation toward base performance.

1728 A.6 ADDITIONAL DIVERGENCE-WEIGHTED ADVANTAGE DISCUSSION/RESULTS
17291730 This section presents supplementary results for divergence-weighted advantages, including alterna-
1731 tive configurations and evaluations on Qwen2.5-7B. The main text focuses on Qwen2.5-Math-7B
1732 with KL divergence computed with respect to $\pi_{\theta_{\text{old}}}$ and sigmoid weighting. Here we discuss alterna-
1733 tive schemes, along with additional results.1734 A.6.1 ALTERNATIVE DIVERGENCE CHOICES
17351736 Beyond the old-policy KL divergence presented in the main text, one could also use the reference-
1737 based KL divergence:
1738

$$\text{KL}_t^{\text{ref}} = D_{\text{KL}}(\pi_{\theta_{\text{old}}}(\cdot | x_{<t}) \| \pi_{\text{ref}}(\cdot | x_{<t})), \quad (6)$$

1739 where π_{ref} denotes the base reference model. The reference-based KL quantifies the alignment
1740 between the current policy and the original base model, measuring the cumulative divergence from
1741 the initial model at each token position. This contrasts with the old-policy KL, which captures only
1742 the magnitude of recent policy updates within a single training iteration. In our experiments we
1743 mainly just use the old-policy KL as this does not require additional pass through the base model.
17441745 A.6.2 ALTERNATIVE WEIGHTING SCHEMES
17461747 In addition to the sigmoid weighting scheme presented in the main text, we examine linear relative
1748 weighting:
1749

$$w_t = 1 + \alpha(\text{KL}_t - \mu_{\text{KL}}), \quad \mu_{\text{KL}} = \frac{1}{T} \sum_{t=1}^T \text{KL}_t. \quad (7)$$

1750 The linear relative scheme scales weights linearly with the deviation from the mean KL divergence
1751 across the sequence, offering a simpler alternative to the sigmoid transformation. As in the sigmoid
1752 case, $\alpha > 0$ amplifies high-divergence tokens, while $\alpha < 0$ emphasizes low-divergence ones.
17531754 A.6.3 RESULTS ON ADDITIONAL CONFIGURATIONS
17551756 Table 4 summarizes the performance of these alternative configurations, including evaluations using
1757 linear relative weighting on Qwen2.5-7B.
17581759 Table 4: Accuracy (%) under additional divergence-weighted configurations on Qwen2.5-7B. Re-
1760 sults shown across AIME24, AIME25, and AMC datasets. The results displayed are the avg@32
1761 scores.
1762

Configuration	AIME24	AIME25	AMC	Overall Avg
Baseline DAPO	16.77	8.12	70.78	31.89
High-KL Lin. Rel. (sched.)	19.58	12.40	71.12	34.37
High-KL Lin. Rel.	20.00	12.29	73.31	35.20

1763 Table 5: Accuracy (%) for 80/20 clip entropy configuration on Qwen2.5-Math-7B. Results shown
1764 across AIME24, AIME25, and AMC datasets. The results displayed are the avg@32 scores.
1765

Configuration	AIME24	AIME25	AMC	Overall Avg
80/20 clip entropy	35.26	17.03	72.68	41.66

1782 **A.7 LLM USAGE**

1783

1784 LLMs were used to assist with minor polishing of the writing.

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835