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Abstract

Commonsense reasoning in natural language001
is a desired capacity of artificial intelligent sys-002
tems. For solving complex commonsense rea-003
soning tasks, a typical approach is to enhance004
pre-trained language models (PTMs) by a005
knowledge-aware graph neural network (GNN)006
encoder that leverages commonsense knowl-007
edge graphs (CSKGs). Despite the effective-008
ness, these approaches are built in heavy archi-009
tectures, and can’t clearly explain how external010
knowledge resources improve the reasoning ca-011
pacity of PTMs. Considering this issue, we con-012
duct a deep empirical analysis, and find that it is013
indeed relation features from CSKGs (but not014
node features) that mainly contribute to the per-015
formance improvement of PTMs. Based on this016
finding, we design a simple MLP-based knowl-017
edge encoder by utilizing statistical relation018
paths as features. Extensive experiments con-019
ducted on five benchmarks demonstrate the ef-020
fectiveness of our approach, which also largely021
reduce the parameters for encoding CSKGs.022

1 Introduction023

In the era of artificial intelligence, it is desirable024

that intelligent systems can be empowered by the025

capacity of commonsense reasoning in natural lan-026

guage. For this purpose, a surge of commonsense027

reasoning tasks and datasets are proposed to evalu-028

ate and improve such an ability of NLP models, e.g.,029

CommonsenseQA (Talmor et al., 2019) and So-030

cialIQA (Sap et al., 2019b). Although large-scale031

pre-trained models (PTMs) (Devlin et al., 2019; Liu032

et al., 2019) have surpassed human performance in033

a number of NLP benchmarks, it is still hard for034

PTMs to accurately capture and understand com-035

monsense knowledge for accomplishing complex036

reasoning tasks (Talmor et al., 2021).037

In order to enhance the reasoning capacity, com-038

monsense knowledge graphs (CSKGs) (e.g., Con-039

ceptNet (Speer et al., 2017) and ATOMIC (Sap040

et al., 2019a)) have been leveraged for injecting041

external commonsense knowledge into PTMs. By 042

conducting entity linking to CSKGs, existing meth- 043

ods (Yasunaga et al., 2021; Feng et al., 2020a) aim 044

to capture the structured knowledge semantics via 045

knowledge graph (KG) encoders (e.g., graph neu- 046

ral network (GNN) (Velickovic et al., 2018; Kipf 047

and Welling, 2017)), and then integrate the KG en- 048

coders for improving the commonsense reasoning 049

capacity of PTMs (Yasunaga et al., 2021). 050

Despite the effectiveness, these approaches are 051

built on highly complicated network architectures 052

(involving both PTMs and GNNs), and require 053

specific training strategies to achieve good per- 054

formance on benchmark datasets. Thus, it is 055

difficult to explain how and why external com- 056

monsense knowledge improves the commonsense 057

reasoning capacity of PTMs. Besides, existing 058

CSKGs (Mehrabi et al., 2021; Nguyen et al., 2021) 059

are mostly crowdsourced from massive web cor- 060

pora, containing a variety of contents. Without 061

a clear understanding of how these external re- 062

sources should be utilized, it is likely to incor- 063

porate irrelevant concepts or even knowledge bi- 064

ases (Mehrabi et al., 2021; Nguyen et al., 2021) 065

into PTMs, which might hurt the reasoning perfor- 066

mance. Indeed, some researchers have noted this 067

issue and questioned whether existing GNN-based 068

modules are over-complicated for commonsense 069

reasoning (Wang et al., 2021a). Furthermore, they 070

find that even a simple graph neural counter can 071

outperform all the existing GNN modules on Com- 072

monsenseQA and OpenBookQA benchmarks. 073

However, existing studies can’t well answer the 074

fundamental questions about knowledge utiliza- 075

tion for commonsense reasoning: How do external 076

knowledge resources enhance the commonsense 077

reasoning capacity of PTMs? What is necessar- 078

ily needed from external knowledge resources for 079

PTMs? Since the simplified knowledge-aware 080

GNN has already yielded performance improve- 081

ment to CommonsenseQA (Wang et al., 2021a), 082
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we speculate that there might be a simpler solution083

if we could identify the essential knowledge for084

commonsense reasoning.085

Focused on this issue, we consider designing the086

solution by further simplifying the KG encoder.087

Based on our empirical analysis, we observe a088

surprising result that it is indeed relation features089

from CSKGs, but not node features, that are the090

key to the task of commonsense reasoning (See091

more details in Section 3). Based on this finding,092

we propose a rather simple approach to leverag-093

ing external knowledge resources for enhancing094

the commonsense reasoning capacity of PTMs. In-095

stead of using the heavy GNN architecture, we096

design a lightweight KG encoder fully based on097

the multi-layer perceptron (MLP), which utilize098

Statistical relation pAth from CSKGs as FEatures,099

namely SAFE. We find that semantic relation paths100

can provide useful knowledge evidence for PTMs,101

which is the key information that PTMs lack for102

commonsense reasoning. By conducting exten-103

sive experiments on five benchmark datasets, our104

approach produces superior or competitive perfor-105

mance compared with the state-of-the art methods,106

especially when training data is limited. Besides107

performance improvement, our approach largely108

reduces the parameters for encoding the CSKGs109

(fewer than 1% trainable parameters compared to110

GNN-based KG encoders (Yasunaga et al., 2021)).111

Our main contributions can be summarized as112

follows: (1) We empirically find that relation fea-113

tures from CSKGs are the key to the task of com-114

monsense reasoning; (2) We design a simple MLP-115

based architecture with relation paths as features116

for enhancing the commonsense reasoning capacity117

of PTMs; (3) Extensive experiments conducted on118

five benchmark datasets demonstrate the effective-119

ness of our proposed approach, which also largely120

reduces the parameters of the KG encoder.121

2 Task Description122

According to (Talmor et al., 2019; Mihaylov et al.,123

2018), the commonsense reasoning task can be gen-124

erally described as a multi-choice question answer-125

ing problem: given a natural language question q126

and a set of n choices {c1, · · · , cn} as the answer127

candidates, the goal is to select the most proper128

choice c⋆ from these candidates to answer the ques-129

tion based on necessary commonsense knowledge.130

To explicitly capture commonsense knowledge,131

external commonsense knowledge graphs (CSKGs)132

have often been utilized in this task, e.g., Concept- 133

Net (Speer et al., 2017). A CSKG can be for- 134

mally described as a multi-relational graph G = 135

(V,R, E), where V is the set of all concept (or en- 136

tity) nodes (e.g., hair and water), R is the set of 137

relation types (e.g., relatedto and atlocation), and 138

E ⊆ V × R × V is the set of relational links that 139

connect two concept nodes in V . 140

Following prior studies (Lin et al., 2019), we 141

consider solving the commonsense reasoning task 142

in a knowledge-aware setting, where a CSKG G 143

is available as input. We first link the mentioned 144

concepts from the question and answer candidates 145

to the CSKG, so that we can leverage rich seman- 146

tic knowledge from the CSKG for commonsense 147

reasoning. Based on the linked concepts in the 148

question and candidates, we further extract their 149

neighbouring nodes from G and the relational links 150

that connect them, to compose a subgraph Gq,ci for 151

characterizing the commonsense knowledge about 152

the question q and answer candidate ci. 153

3 Empirical Analysis on the 154

Commonsense KG Encoder 155

In this section, we conduct an empirical study to in- 156

vestigate how the external KG encoder helps PTMs 157

for commonsense reasoning. 158

3.1 Analysis Setup 159

To conduct the analysis experiments, we select 160

QA-GNN (Yasunaga et al., 2021), a representative 161

approach that integrates PTM with GNN for the 162

commonsense QA task, as the studied model. We 163

adopt the CommonsenseQA (Talmor et al., 2019) 164

and OpenBookQA (Mihaylov et al., 2018), two 165

of the most widely used commonsense reasoning 166

benchmarks, for evaluation, with the same data 167

split setting in (Lin et al., 2019). 168

We consider performing two analysis experi- 169

ments: one examines the effect of the common- 170

sense KG encoder, and the other one examines the 171

effect of different features in the commonsense KG 172

encoder. To be specific, the two experiments focus 173

on two key questions about commonsense reason- 174

ing: (1) what is the effect of the commonsense KG 175

encoder on PTMs? (2) what is the key information 176

to the commonsense KG encoder? 177

3.2 Results and Findings 178

Next, we conduct the experiments and present our 179

findings about commonsense reasoning. 180
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Figure 1: Performance comparison on Common-
senseQA and OpenBookQA (Dev accuracy).

Effect of Commonsense KG Encoder. Since ex-181

isting studies have widely utilized a GNN module182

to encode the commonsense knowledge, we ex-183

amine its contribution to improve the reasoning184

performance. We consider comparing three vari-185

ants of QA-GNN: (A) PTM-Only directly removes186

the GNN module and degenerates into a pure PTM,187

(B) PTM-Pred trains the PTM and GNN simultane-188

ously but only makes the prediction with the PTM189

module, and (C) GNN-Pred trains the PTM and190

GNN simultaneously but only makes the predic-191

tion with the GNN module.192

The comparison results are shown in Figure 1.193

As we can see, using the predictions solely based194

on the GNN module (i.e., GNN-Pred) can only195

answer a relatively minor proportion of the ques-196

tions (no more than 60% in CommonsenseQA).197

As a comparison, when trained independently (i.e.,198

PTM-Only) or jointly with the GNN module (i.e.,199

PTM-Pred), the PTM module can answer a large200

proportion of the questions (at least 70% in Com-201

monsenseQA). Furthermore, the incorporation of202

the GNN encoder is useful to improve the perfor-203

mance of PTMs (PTM-Only v.s. QAGNN). These204

results show that:205

• In the joint PTM-GNN approach, PTM con-206

tributes the most to the commonsense reasoning207

task, which is the key to the reasoning performance.208

• Commonsense KG encoder is incapable of209

performing effective reasoning independently, but210

can enhance PTM as the auxiliary role.211

Effect of Node/Relation Features from KG. The212

major aim of the KG encoder is to characterize the213

commonsense knowledge and provide necessary214

knowledge evidence for enhancing the reasoning215

capacity of PTMs. Generally, a CSKG consists216

of concept nodes and relational links. To identify217

the key knowledge information that is necessarily218
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Figure 2: Performance examination for KG encoder on
CommonsenseQA and OpenBookQA (Dev accuracy).

needed, we now examine the effect of node and 219

relation features from CSKG. By freezing the PTM 220

module, we prepare two variants for comparison: 221

(A) reducing the dimension of node embeddings 222

to d (PCA (Jolliffe, 1986) is applied to select d 223

most informative dimensions), and (B) randomly 224

removing p percent of relational links in the KG 225

subgraph for a question-candidate pair. 226

As shown in Figure 2, we surprisingly find that 227

even after reducing the dimension of node embed- 228

dings to 1, the performance of GNN encoder can 229

be still improved. These results show that node 230

features are not the key to be utilized by the GNN 231

encoder. In contrast, removing a considerable pro- 232

portion of links significantly reduces the perfor- 233

mance. From these observations, we can conclude 234

that: The relation features from the CSKG is in- 235

deed the key knowledge information that is actually 236

needed by the KG encoder. 237

4 Approach 238

The former sections show that the role of the KG 239

encoder on CSKGs is to mainly complement the 240

PTMs in the task of commonsense reasoning. In- 241

stead of node features, relation is the key to the 242

KG encoder for improving PTMs. Based on these 243

findings, we develop a simple commonsense KG 244

encoder based on the statistical relation features 245

from CSKGs, namely SAFE. Figure 3 presents the 246

overview of our model. 247

4.1 Capturing High-Order Relation 248

Semantics 249

Since relation features are shown useful to improve 250

the performance of commonsense reasoning, we 251

consider extracting relational features for better 252

capturing the knowledge semantics from CSKG. 253

Inspired by KG reasoning studies (Lin et al., 2018; 254

Feng et al., 2020b), we construct multi-hop rela- 255
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Figure 3: The illustration of our approach. We adopt
an all-MLP KG encoder to model the extracted relation
features from CSKG to enhance the PTM.

tion paths that connect question nodes with answer256

candidate nodes on the CSKG, in order to capture257

higher-order semantic relatedness among entities.258

Formally, given the commonsense subgraph259

Gq,ci for the question q and answer candidate ci,260

we first extract a set of relation paths within k hops261

that connect a question concept node vq ∈ Vq and262

an answer concept node vci ∈ Vci , denoted as263

Pq,ci . Specifically, a path p ∈ Pq,ci can be rep-264

resented as a sequence of nodes and relations as265

p = {v1, r1, · · · , rk−1, vk}. Based on the empiri-266

cal finding in Section 3, we consider a simplified267

representation for relation paths that removes node268

IDs but only keeps the relations on a path. To keep269

the role of each node, we replace a node ID by270

a three-valued type, indicating this node belongs271

to a question node (0), answer node (1) or oth-272

ers (2). In this way, a path p can be represented273

by p = {tv1 , r1, tv2 , r2, · · · , rk−1, tvk}, where tv274

is the role type of node v. Since we remove ex-275

plicit node IDs, our model can concentrate on more276

essential relational features.277

Based on the above method, for a question q and278

an answer candidate ci, we extract all the simplified279

relation paths and count their frequency among all280

the paths. We use Fq,ci = {⟨pj , fj⟩} to denote all281

the paths for question q and candidate ci, where an282

entry consists of the j-th path pj and its frequency283

fj . Unlike prior approaches (e.g., QA-GNN (Ya-284

sunaga et al., 2021)), we consider using very simple285

features of relation paths from CSKGs to improve286

the reasoning capacity of PTMs.287

4.2 A MLP-based KG encoder288

Our KG encoder is built on a full MLP architecture289

based on simplified relation path features, consist-290

ing of a path encoder and a feature aggregator. 291

Path Encoder. The path encoder is a two-layer 292

MLP that encodes a relation path into a scalar fea- 293

ture value. As shown in Section 4.1, we can obtain 294

the path feature set Fq,ci = {⟨pj , fj⟩} for a ques- 295

tion q and candidate ci. Different from general 296

KGs, CSKGs usually contain much fewer types 297

of relations (e.g., 36 relations in ConceptNet), we 298

adopt one-hot representations of these types to rep- 299

resent these relations. For node type (from ques- 300

tion, candidate or others), we also perform the sim- 301

ilar representations. Then, we concatenate these 302

one-hot vectors to compose the sparse representa- 303

tion of a relation path p in order, denoted as vp. 304

Subsequently, the sparse path representation is en- 305

coded by two-layer MLP (i.e., the path encoder) to 306

produce the corresponding scalar feature value xp: 307

308

xp = MLP2(MLP1(vp)), (1) 309

which xp reflects the importance of such a relation 310

path for commonsense reasoning. 311

Feature Aggregator. Based on the above path 312

encoder, we can generate the scalar feature val- 313

ues for all the relation paths in the feature set 314

Fq,ci = {⟨pj , fj⟩}. The feature aggregator aims 315

to aggregate these feature values to produce the 316

confidence score of the answer candidate w.r.t. the 317

question, from the KG perspective. Concretely, we 318

sum the different feature values of relation paths 319

weighted by their frequencies as follows: 320

xq,ci =
∑

⟨pj ,fj⟩∈F

xpj · fj , (2) 321

where xpj is the mapping feature value of path pj 322

and fj is the frequency of path pj . Here, xq,ci aims 323

to capture the overall confidence score based on 324

the subgraph Gq,ci given the question and candidate. 325

However, since the weighted sum is likely to cause 326

extreme values (i.e., too large or too small), we add 327

two extra MLP layers for scaling: 328

SKG(q, ci) = MLP4(MLP3(xq,ci)), (3) 329

where SKG is a prediction score indicating the con- 330

fidence level that candidate ci is the right answer 331

to question q from the perspective of KG. 332

4.3 Integrating KG Encoder with PTM 333

In this part, we integrate the above KG encoder 334

with the PTM for commonsense reasoning. 335
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RGCN MHGRN QAGNN SAFE

Node emb
√ √ √

×
Relation

√ √ √ √

GNN
√ √ √

×
MLP-based × × ×

√

# Params 365K 547K 2845K 2.7k

Table 1: Comparisons of different KG encoders for com-
monsense reasoning. Instead of using node embeddings
and GNN structure, we adopt relation paths as the input
features and incorporate a full MLP architecture.

The PTM Encoder. Following existing works (Ya-336

sunaga et al., 2021), we utilize a PTM as the back-337

bone of commonsense reasoning. Given a question338

q and an answer candidate ci, we concatenate their339

text to compose the input of the PTM. After encod-340

ing by the multiple Transformer layers, we select341

the output of the [CLS] token in the last layer342

as the contextual representation of the question-343

candidate pair, denoted by hcls. Then, we feed hcls344

into a MLP layer to produce a scalar output SPTM ,345

hcls = PTM(q, ci), (4)346

SPTM (q, ci) = MLP(hcls), (5)347

which is the plausibility score of the answer candi-348

date from the perspective of the PTM.349

Combining the Prediction Scores. To derive the350

prediction scores of candidates, we leverage both351

the PTM and KG encoders to obtain the prediction352

scores for each candidate, based on either textual353

or structured semantics. For a question-candidate354

pair (q, ci), we combine the prediction scores of355

the two modules as:356

S(q, ci) = SPTM (q, ci) + SKG(q, ci), (6)357

where SPTM (q, ci) (Eq. 5) and SKG(q, ci) (Eq. 3)358

are the prediction scores of PTM and KG encoders,359

respectively. Given a set of answer candidates360

{c1, ..., cn}, we further normalize S(q, ci) into a361

conditional probability Pr(ci|q) via the softmax op-362

eration over the n candidates.363

During the training stage, we optimize the param-364

eters of the whole model (including both the PTM365

and KG encoder) with the cross entropy loss be-366

tween the predictions and the ground-truth answer367

(based on the probability distribution {Pr(ci|q)}ni=1368

). During the inference, we first compute the proba-369

bility score Pr(ci|q) for each answer candidate, and370

then select the highest one as the predicted answer.371

4.4 Comparison with Existing KG Encoders 372

For the task of commonsense reasoning, it has be- 373

come a common approach by integrating PTM with 374

an external KG encoder based on CSKGs. The ma- 375

jor difference among these methods (including our 376

approach) lies in the design of KG encoder. Next, 377

we compare these variants for the KG encoder. 378

We summarize the comparison between our KG 379

encoder and representative KG encoders in Table 1. 380

We can see that, our approach no longer uses the 381

node embeddings and the structure of GNNs. In- 382

stead, we mainly utilize relation paths as the fea- 383

tures of the KG encoder, which is built on a simple 384

MLP-based architecture. Therefore, the number 385

of the model parameters involved in our KG en- 386

coder is much smaller than those of existing KG 387

encoders. As will be shown in Section 5, our KG 388

encoder yields better or at least comparable per- 389

formance compared with existing GNN-based en- 390

coders, based on the same configuration for PTMs. 391

Specifically, our approach can largely reduce the 392

computational costs for encoding the CSKGs. For 393

our approach, we need to extract the relation paths 394

from question nodes to all the candidate nodes on 395

the CSKG, and it can be efficiently fulfilled via a k- 396

hop constrained Depth-First Search, which can be 397

pre-computed in offline processing. When the rela- 398

tion paths have been extracted, it is efficient to en- 399

code these paths with our MLP architecture, where 400

d denotes the hidden dimension of the MLP. Such 401

a process can be easily paralleled or accelerated by 402

optimized matrix multiplication. In contrast, exist- 403

ing GNN-based encoders rely on iterative propaga- 404

tion and aggregation on the entire subgraph, which 405

takes a much larger computational time cost. 406

5 Experiment 407

5.1 Experimental Setup 408

In this part, we introduce the experimental setup. 409

Evaluation Tasks. We conduct experiments on five 410

commonsense reasoning tasks, shown in Table 2. 411

• CommonsenseQA (Talmor et al., 2019) is a 412

5-way multiple-choice QA dataset. It is created 413

based on ConceptNet (Speer et al., 2017). 414

• OpenBookQA (Mihaylov et al., 2018) is a 4- 415

way multiple-choice QA dataset about elementary 416

science questions to evaluate the science common- 417

sense knowledge. 418

• SocialIQA (Sap et al., 2019b) is a 3-way 419

multiple-choice QA dataset to evaluate the under- 420
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Task Train Dev Test
CommonsenQA 9,741 1,221 1,140
OpenBookQA 4,957 500 500
SocialIQA 33,410 1,954 -
PIQA 16,113 1,838 -
CoPA - 500 500

Table 2: Statistics of the datasets. “-” denotes the unused
or not available dataset split in our experiments.

standing of social commonsense knowledge.421

• PIQA (Bisk et al., 2020) is a binary-choice422

QA dataset about physical commonsense.423

• CoPA (Roemmele et al., 2011) is a common-424

sense inference dataset, to select the most plausibly425

alternative with the causal relation to the premise.426

Data Preprocessing. For CommonsenQA and427

OpenBookQA, we use their original train/dev/test428

split settings. Since the test set of Common-429

senseQA is not available, we follow Lin et al.430

(2019) that extract 1,241 examples from the origi-431

nal training set as the test set. Besides, the test sets432

of SocialIQA and PIQA are not available. Follow-433

ing previous works (Shwartz et al., 2020), we report434

the experimental results on their development sets435

for a fair comparison. For CoPA that provides de-436

velopment and test sets, we follow Niu et al. (2021)437

to train models on the development set and evaluate438

the performance on the test set. For commonsense439

KG, we adopt ConceptNet (Speer et al., 2017), a440

general-domain and task-agnostic CSKG, as our441

external knowledge source G for above models and442

tasks. For each question and answer choice pair443

(q, ci), we follow previous works (Lin et al., 2019;444

Feng et al., 2020a) to retrieve and construct the445

subgraph Gq,ci from the CSKG G.446

Baseline Methods. We compare our model with447

the following six baseline methods, including a448

fine-tuned PTM and five PTM+GNN models:449

• Fine-tuned PTM directly fine-tunes a PTM450

without using KG. We use RoBERTa-large (Liu451

et al., 2019) for all tasks. Additionally, we also452

use BERT-large (Devlin et al., 2019) and Aris-453

toRoBERTa (Clark et al., 2020a) for OpenBookQA454

to evaluate the generality of our KG-encoder.455

• PTM+GNN models integrate PTM with ad-456

ditional GNN-based KG encoders. Based on the457

same PTM (the above baseline), we consider five458

variants with different KG encoders: (1) Rela-459

tion Network (RN) (Santoro et al., 2017) using460

a relational reasoning structure over CSKG; (2) 461

GcoAttn (Lin et al., 2019) using a graph concepts at- 462

tention model to aggregate entity information from 463

the CSKG; (3) RGCN (Schlichtkrull et al., 2018) 464

extending GCN with relation-specific weight; (4) 465

MHGRN (Feng et al., 2020a) using a novel GNN 466

architecture reasoning over CSKG that unifies both 467

GNNs and path-based models; (5) QA-GNN (Ya- 468

sunaga et al., 2021) using a GAT to do joint reason- 469

ing over CSKG. 470

For all the methods, we adopt the same architec- 471

ture and configuration for the PTM, so that we can 472

examine the effect of different KG encoders. 473

5.2 Results Analysis 474

Following previous works (Yasunaga et al., 475

2021; Wang et al., 2021a), we take the results 476

on CommonsenseQA and OpenBookQA as the 477

main experiments to compare different meth- 478

ods. In order to test their robustness to data 479

availability, we examine the performance under 480

five different proportions of training data, i.e., 481

{5%, 10%, 20%, 50%, 80%, 100%}. 482

CommonsenseQA and OpenBookQA. The re- 483

sults of different methods on CommonsenseQA 484

and OpenBookQA datasets are presented in Ta- 485

ble 3. 486

First, we can see that all the PTM+GNN methods 487

perform better than vanilla PTM (i.e., RoBERTa- 488

large). It indicates that the KG encoder on CSKG is 489

able to incorporate useful knowledge information 490

to improve PTMs on commonsense reasoning tasks. 491

Additionally, among all the PTM+GNN baselines, 492

QA-GNN performs the best. The major reason is 493

that QA-GNN uses LMs to estimate the importance 494

of KG nodes and connects the QA context and 495

CSKG to form a joint graph, which is helpful to im- 496

prove the reasoning ability on CSKG. Finally, our 497

method consistently outperforms all the baselines. 498

Our approach incorporates a lightweight MLP ar- 499

chitecture with relation paths as features as the KG 500

encoder. It reduces the parameter redundancy of 501

the KG encoder and focuses on the most essen- 502

tial features for reasoning, i.e., semantic relation 503

paths. Such an approach is effective to enhance the 504

commonsense reasoning capacity of PTMs. 505

Comparing the results under different sparsity 506

ratios of training data, we can see that the perfor- 507

mance substantially drops when the size of training 508

data is reduced. While, our method performs con- 509

sistently better than all baselines. It is because 510
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Methods CommonsenseQA OpenBookQA

5% 10% 20% 50% 80% 100% 5% 10% 20% 50% 80% 100%

RoBERTa-large 29.67 42.84 58.47 66.13 68.47 68.69 37.00 39.4 41.47 53.07 57.93 64.8

+ RGCN 47.89 44.56 61.72 65.70 68.04 68.41 37.73 40.73 49.13 56.60 61.20 62.45
+ GconAttn 45.15 50.42 57.75 65.99 68.33 68.59 38.93 41.07 47.93 50.93 51.47 64.75
+ RN 38.97 49.85 58.93 64.87 67.15 69.08 35.13 35.27 47.73 59.87 64.40 65.20
+ MHGRN 44.61 51.02 63.31 68.44 70.88 71.11 38.87 37.73 44.93 59.67 66.50 66.85
+ QA-GNN 33.04 40.10 58.72 67.61 71.18 73.41 36.90 39.70 43.40 58.00 64.80 67.80

+ SAFE(Ours) 50.87 53.73 65.07 71.13 73.49 74.75 39.46 43.80 51.20 59.90 66.60 70.10

Table 3: Performance comparison on CommonsenseQA and OpenBookQA with different proportions of training
data. We report the average test performance of three runs, and the best results are highlighted in bold.

Methods SocialIQA PIQA CoPA

RoBERTa-large 78.25 77.53 67.60

+ RGCN 78.30 79.34 69.60
+ GcoAttn 78.85 78.24 70.00
+ RN 78.15 76.88 70.20
+ MHGRN 78.13 77.15 71.50
+ QAGNN 78.10 78.24 53.20

+ SAFE (Ours) 78.86 79.43 71.60

Table 4: Performance comparison on SocialIQA, PIQA,
and CoPA (Dev accuracy).

that our KG encoder consists of significantly fewer511

parameters than the baselines, which endows our512

approach better robustness in data scarcity scenar-513

ios and reduces the risk of overfitting.514

Other Commonsense Reasoning Datasets. To515

further verify the effectiveness of our method, we516

also compare the results of different methods on517

other commonsense reasoning datasets that are518

from different domains or with different tasks.519

These results are shown in Table 4. Similarly, our520

approach also achieves the best performance in521

most cases. It indicates that our approach is gen-522

erally effective to a variety of commonsense rea-523

soning datasets or tasks, by outperforming com-524

petitive but complicated baselines. Among all the525

datasets, our approach improves the performance526

of the PTM on CoPA dataset by a large margin.527

The reason is that CoPA is a small dataset with528

only 500 training examples. Baselines with heavy529

architectures are easy to overfit on it. In contrast,530

our KG encoder is lightweight and simple, which531

is more capable of resisting the overfitting issue.532

5.3 Evaluation with Other PTMs533

The major contribution of our approach lies in the534

lightweight KG encoder, which can be also used535

to enhance the commonsense reasoning capacity536

Methods BERT-large AristoRoBERTa

Fine-tuned PTMs 59.07 78.40

+ RGCN 44.13 75.35
+ GconAttn 48.20 75.35
+ RN 48.60 75.35
+ MHGRN 46.20 80.40
+ QA-GNN 58.47 82.77

+ SAFE (Ours) 59.60 87.13

Table 5: Evaluation with other PTMs on OpenBookQA
(average test accuracy of three runs). Methods with
AristoRoBERTa use the textual evidence by Clark et al.
(2020b) as an additional input to the QA context.

of various PTMs. To validate it, we examine the 537

performance of our KG encoder when integrated 538

with two other PTMs i.e., BERT-large and Aris- 539

toRoBERTa on OpenBookQA dataset. 540

As shown in Table 5, the enhanced BERT-large 541

and AristoRoBERTa by our KG encoder achieve 542

better performance than original PTMs. Especially, 543

our KG encoder can improve the performance of 544

AristoRoBERTa by a large margin (with 8.73% im- 545

provement). These result show that our KG encoder 546

is a general method to improve PTMs for common- 547

sense reasoning. In constrast, when adapting other 548

KG encoders to these two PTMs, the performance 549

decreases in most cases. It is mainly because that 550

these KG encoders have complicated architectures, 551

which may not easy to be adapted to other PTMs. 552

5.4 Case Study 553

We propose a rather simple KG encoder to effec- 554

tively utilize the relation features from CSKGs, 555

which first computes the feature values of the rela- 556

tion paths and then aggregator these values as the 557

confidence score of the question and the choice. 558

In this way, we can generate a table that maps 559

each type of relation path into its feature value that 560
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Figure 4: The generated feature values x of relation
path examples by the path encoder. Q and A denote
the concept nodes from the question and the answer
candidate, respectively.

reflects its contribution to confidence score. Fig-561

ure 4 shows some examples. As we can see, the562

paths with the higher values indeed provide a more563

persuasive evidence (causes and capableof ) that564

indicates the choice is more likely to be the an-565

swer of the question. In contrast, the path with the566

lower value usually represent an ambiguous rela-567

tionship (e.g., relatedto). Based on this table, it is568

convenient to judge the importance of the relation569

path and make a quick assessment of the confidence570

if the choice is the answer of the question.571

6 Related Work572

We review the related studies in two aspects, i.e.,573

commonsense reasoning and KG-enhanced pre-574

trained models.575

Commonsense Reasoning. Commonsense rea-576

soning tasks aim to evaluate the understanding577

about commonsense knowledge (Davis and Mar-578

cus, 2015), e.g., physical commonsense (Zellers579

et al., 2019), which are mostly formulated as a580

multi-choice QA problems. Early studies either581

rely on explicit text features (Clark et al., 2016)582

to capture the relations between the question and583

answer candidates, or adopt neural network (Yu584

et al., 2014; Chen et al., 2017). Recently, pre-585

trained models (PTM) (Devlin et al., 2019; Liu586

et al., 2019) have achieved remarkable performance587

on commonsense reasoning tasks. Furthermore,588

a surge of works incorporate external knowledge589

resources to further improve the reasoning per-590

formance. Among them, CSKG (e.g., Concept-591

Net (Speer et al., 2017)) has been widely studied,592

and existing works mainly adopt graph neural net-593

works to learn useful commonsense knowledge594

from the CSKG to enhance PTMs. Based on these595

works, we systemically study what is necessarily596

needed from CSKGs for improving PTMs. Our597

analysis leads to an important finding that relation 598

features mainly contribute to the performance im- 599

provement, and design a lightweight MLP architec- 600

ture to simplify the KG encoder. 601

KG-Enhanced Pre-trained Models. Recently, a 602

surge of works focus on enhancing PTMs with ex- 603

ternal KG to improve the performance on factual 604

knowledge understanding (Sun et al., 2020; Wang 605

et al., 2021b) and knowledge reasoning tasks (Tal- 606

mor et al., 2019; Zhang et al., 2019). These works 607

inject the structured knowledge from KG into 608

PTMs in either pre-training or fine-tuning stages. 609

The first class of works mainly focus on devising 610

knowledge-aware pre-training tasks (Wang et al., 611

2021b; Zhang et al., 2019) to improve the under- 612

standing of entities or triples from the KG, e.g., 613

knowledge completion (Wang et al., 2021b) and 614

denoising entity auto-encoder (Zhang et al., 2019). 615

Another class of works adopt task-specific KG en- 616

coders to enhance PTMs during fine-tuning, e.g., 617

path-based relation network (Feng et al., 2020a) 618

and GNN (Yasunaga et al., 2021). Different from 619

them, we aim to enhance PTMs with a KG encoder 620

on commonsense reasoning tasks, and design a 621

rather simple yet effective KG encoder. 622

7 Conclusion 623

In this work, we study how the external common- 624

sense knowledge graphs (CSKGs) are utilized to 625

improve the reasoning capacity of pre-trained mod- 626

els (PTMs). Our work makes an important con- 627

tribution to understand and enhance the common- 628

sense reasoning capacity of PTMs. Our results 629

show that relation paths from the CSKG are the 630

key to performance improvement. Based on this 631

finding, we designed a rather simple MLP-based 632

KG encoder with relation paths from the CSKG 633

as features, which can be generally integrated with 634

various PTMs for commonsense reasoning tasks. 635

Such a lightweight KG encoder has significantly 636

fewer than 1% trainable parameters compared to 637

previous GNN-based KG encoders. Experimen- 638

tal results on five commonsense reasoning datasets 639

demonstrated the effectiveness of our approach. 640

As future work, we will study how to effec- 641

tively leverage the commonsense knowledge from 642

large-scale unstructured data to improve PTMs. 643

We will also consider applying our approach to 644

other knowledge-intensive tasks, such as knowl- 645

edge graph completion and knowledge graph based 646

question answering. 647
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8 Ethical Consideration648

This work primarily investigates how external com-649

monsense knowledge graph (CSKG) enhances the650

commonsense reasoning capacity of pre-trained651

models (PTMs) and proposes a simple but effective652

KG encoder on CSKG to enhance PTM. A poten-653

tial problem derives from the usage of PTMs and654

CSKG in our approach. PTMs have been shown655

to capture certain biases from the data thay have656

been pre-trained on (Bender et al., 2021). And657

existing works (Mehrabi et al., 2021) have found658

that CSKGs are likely to contain biased concepts659

derived from human annotations. However, a com-660

prehensive analysis of such biases is outside of the661

scope of this work, it is a compelling direction to in-662

vestigate to what extent the combination of CSKG663

and PTMs can help mitigate such biases. An al-664

ternative consideration is to consider the filtering665

of biased concepts in the process of subgraph ex-666

traction from the CSKG. By devising proper rules,667

it is promising to reduce the influence of biased668

concepts on our approach.669
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Figure 5: Overview of our SAFE model.

A Implementation Details922

We implement all PTMs based on HuggingFace923

Transformers (Wolf et al., 2020). For all the base-924

lines, their hyperparameters are set following the925

suggestion from the original paper. In our approach,926

we extract the relation paths within 2 hops. We tune927

the hidden dimension of MLPs from the path en-928

coder and feature aggregator in {32, 64, 100}, and929

the batch size in {32, 64, 128}. The parameters930

of the model are optimized by RAdam (Liu et al.,931

2020), and the learning rate for the PTMs and KGs932

are also tuned in {1e-5, 2e-5, 3e-5} and {1e-4,933

1e-3, 1e-2}. To accelerate the training, we don’t934

incorporate Dropout regularization in our model.935

All the above hyperparameters are tuned on the936

development set.937

B Hyper-parameters Analysis938

For hyper-parameter analysis, we study the hid-939

den dimension size of the MLP layers in our KG940

encoder. Concretely, we evaluate our model with941

varying values of hidden dimension size on the942

CommonsenseQA and OpenBookQA datasets us-943

ing RoBERTa-large model. The results are shown944

in Figure 5. We can see that with the increasing of945

the hidden dimension size, the performance drops946

to some extent. One possible reason is that larger947

hidden dimension size enlarges the parameter num-948

ber of our KG encoder, which may rise the risk of949

overfitting and cause performance degradation.950
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