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ABSTRACT

Real-world time series often exhibit both stable patterns and dynamic variations,
corresponding to fixed structures and evolving dependencies, respectively. This
disparity can introduce interference when modeled jointly. We find that unify-
ing permutation-invariant and permutation-sensitive dependencies within a single
framework tends to cause gradient conflicts, leading to the loss of critical informa-
tion and degraded model performance. To address these challenges, we propose
Permutation Dependency Decoupling (PDD), a gradient-level framework that
automatically separates permutation-invariant from permutation-sensitive depen-
dencies, thereby eliminating gradient conflicts and retaining essential information.
The proposed framework integrates two specialized modules. The Permutation-
Invariant Encoder (PIE) captures permutation invariance through perspective
switching over the input data, enabling fine-grained modeling via parameter-
free routing among three specialized experts. The Permutation-Sensitive En-
coder (PSE) shifts from the traditional history-to-future mapping paradigm to
a correction-based paradigm grounded in the predicted sequence. By extend-
ing the receptive field to the joint history–prediction sequence, it enables global
permutation-sensitive modeling. In addition, we introduce the Temporal Order
Sensitivity Test (TOST), a rigorous evaluation tool designed to distinguish gen-
uine temporal dependency modeling from mere memorization. Extensive experi-
ments on eight real-world datasets demonstrate that PDD achieves state-of-the-art
forecasting accuracy, efficiency, and robustness, while serving as a non-intrusive
solution that significantly enhances the predictive performance of mainstream
models. Code is anonymously available at https://anonymous.4open.
science/r/PDD-BAC2.

1 INTRODUCTION
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Figure 1: Gradient cosine similarity during train-
ing. Gradients computed from modules designed
to capture Permutation-Invariant Dependencies
(PID) and Permutation-Sensitive Dependencies
(PSD) consistently exhibit negative similarity, in-
dicating conflicting optimization objectives.

Long-term multivariate time series forecasting
is vital for predictive analytics in fields such
as energy management Gao et al. (2023), fi-
nance Gajamannage et al. (2023), and me-
teorology Meenal et al. (2022). Trans-
former Vaswani et al. (2017) architectures
have recently garnered considerable attention
due to their exceptional ability to capture long-
range dependencies. However, Transformers
still encounter significant challenges stemming
from the growing complexity and inherent non-
stationarity characteristic of real-world multi-
variate time series data Liu et al. (2022b); Wu
et al. (2021).

This complexity reveals a fundamental tension
within existing frameworks: accurately model-
ing stationary patterns promotes stable generalization, while capturing dynamic temporal variations
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Figure 2: PDD Performance. (a) MSE across eight real-world datasets; (b) MSE versus computa-
tional cost; (c) Extensibility: percentage MSE reduction after integrating PDD into representative
models.
requires adaptive flexibility to evolving structures. We find that joint optimization of these objectives
can lead to gradient conflicts (Fig. 1), where conflicting gradients emerge from simultaneously op-
timizing contradictory dependencies, potentially destabilizing training and degrading generalization
performance Yu et al. (2020). Despite notable advances, existing Transformer-based approaches
still face limitations arising from conflicts when simultaneously learning stationary patterns and
dynamic temporal variations Ilbert et al. (2024); Zeng et al. (2023).

To address these issues, we propose Permutation Dependency Decoupling (PDD), a gradient-level
framework explicitly designed to separate two distinct categories of dependencies: Permutation-
Invariant Dependencies (PID) and Permutation-Sensitive Dependencies (PSD). PID encapsulates
stable correlations and periodic patterns invariant to sequence ordering, corresponding closely to
stationary statistical characteristics. In contrast, PSD captures order-sensitive dynamics, directly
associated with non-stationary behaviors.

PDD introduces two complementary encoders. The permutation-invariant encoder (PIE) extracts
stable, order-agnostic dependencies from historical data; its parameters are frozen to isolate gra-
dient flow and provide an initial forecast. The permutation-sensitive encoder (PSE) then captures
non-stationary, order-dependent features for refinement. Specifically, (1) in the PIE branch, we de-
sign a three-expert routing mechanism that flexibly switches perspectives and dynamically allocates
experts, thereby improving embedding scores and precisely modeling invariant structures; (2) in the
PSE branch, we reformulate forecasting from direct sequence mapping into a history–future fusion
correction process, endowing the model with global temporal awareness and explicitly modeling
transitional dynamics between past and future.

Furthermore, to rigorously assess whether existing methods genuinely learn temporal dependencies,
we introduce the Temporal Order Sensitivity Test (TOST). Previous approaches Zeng et al. (2023)
evaluate temporal modeling capabilities by randomly shuffling sequences only during inference,
which may confound genuine temporal dependency learning with sequence-order memorization.
In contrast, TOST applies the same fixed permutation to sequences in both training and inference
phases, ensuring a consistent and rigorous evaluation of models’ true temporal dependency learning
abilities.

Comprehensive experiments conducted on eight benchmark datasets clearly demonstrate that PDD
consistently surpasses state-of-the-art (SOTA) methods in forecasting accuracy, computational effi-
ciency, and extensibility (see Figure 2). Our primary contributions are:

• We identify gradient conflicts between permutation-invariant and permutation-sensitive de-
pendencies, propose Permutation Dependency Decoupling (PDD) to mitigate them, and
introduce the Temporal Order Sensitivity Test (TOST) to separate genuine temporal de-
pendency modeling from mere sequence memorization.

• We design the Permutation-Invariant Encoder (PIE) to capture permutation-invariant
patterns by switching input perspectives and routing to three specialized experts without
added parameters for fine-grained modeling. We also introduce the Permutation-Sensitive
Encoder (PSE), which replaces the standard history-to-future approach with an iterative
correction process over both past and predicted data to model permutation-sensitive depen-
dencies globally.

• PDD is a non-intrusive, plug-and-play decoupling framework that significantly enhances
temporal sensitivity and forecasting accuracy in existing models.

• Extensive empirical validation on eight real-world datasets, demonstrating state-of-the-art
accuracy, efficiency, and robustness.
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2 RELATED WORK

Due to its effectiveness in capturing long-range dependencies, the Transformer architecture Vaswani
et al. (2017) has emerged as a leading choice in time series forecasting. It has demonstrated supe-
rior performance over traditional statistical models Anderson (1976); Hyndman & Athanasopoulos
(2018); Brown (1959), Temporal Convolutional Network (TCN)-based methods Bai et al. (2018);
Liu et al. (2022a), and Recurrent Neural Network (RNN)-based approaches Zhao et al. (2017);
Rangapuram et al. (2018); Salinas et al. (2020) in terms of modeling capacity and scalability.

Despite these advantages, current Transformer-based methods Vaswani et al. (2017); Zhou et al.
(2022a); Zhang & Yan (2023); Liu et al. (2021) tend to incorporate complex, mixed dependencies
into a unified structure, presenting significant challenges in generalization Ilbert et al. (2024); Zeng
et al. (2023); Wu et al. (2021); Zhou et al. (2022b). Existing solutions to the challenges intro-
duced by mixed dependency modeling primarily involve either decomposition-based strategies or
dependency-prioritization approaches.

Decomposition-based methods. Classical decomposition methods such as STL Cleveland et al.
(1990) explicitly split series into trend and seasonal components but typically rely on manually
specified parameters, potentially limiting flexibility when temporal patterns evolve. Recent deep-
learning methods, including FEDformer Zhou et al. (2022b), Autoformer Wu et al. (2021), ETS-
former Woo et al. (2022), and N-BEATS Oreshkin et al. (2020), introduce learnable decomposi-
tions. Nevertheless, several limitations remain: (i) stable periodicities or frequencies are generally
assumed, which may hinder adaptability when patterns vary; (ii) decomposition strategies often
rely on explicit signal characteristics (e.g., trends, seasonalities), possibly overlooking certain sub-
tle or latent features; (iii) different types of dependencies are usually implicitly combined within
decomposed components, potentially leading to gradient conflicts during training; and (iv) forecast-
ing performance tends to diminish with irregular or non-stationary data frequently encountered in
real-world scenarios Hyndman & Athanasopoulos (2018).

Dependency-prioritization methods. Approaches such as Client Gao et al. (2025), iTrans-
former Liu et al. (2024), SAMformer Ilbert et al. (2024), and PatchTST Nie et al. (2022) sim-
plify optimization by selectively prioritizing specific types of dependencies. For instance, methods
like iTransformer, Client, and SAMformer primarily emphasize permutation-invariant relationships,
which might limit their capability in capturing temporal order information. Meanwhile, PatchTST
independently processes each series channel, neglecting cross-channel interactions. While these
methods generally enhance training stability, this selective approach could result in the omission
of useful information, potentially affecting predictive accuracy and overall modeling capacity Han
et al. (2024).

Distinctively, our proposed Permutation Dependency Decoupling (PDD) explicitly separates permu-
tation invariant and permutation sensitive dependencies at the gradient level, eliminating interference
without sacrificing either dependency type.

3 PRELIMINARIES

3.1 DEPENDENCIES IN MULTIVARIATE SERIES

Multivariate time series inherently involve various dependency structures. Formally, given multi-
variate observations X ∈ RS×D, we define key dependencies as follows. (1) Temporal depen-
dency quantifies statistical relationships across timestamps, typically measured by autocovariance
γ(h) = Cov(Xt, Xt+h) with lag h Hyndman & Athanasopoulos (2018). (2) Cross-variable de-
pendency refers to simultaneous inter-variable correlations, defined through covariance matrices
Σij = Cov(Xi, Xj) for variables i, j ∈ {1, . . . , D}. (3) Periodic dependency characterizes re-
current patterns satisfying Xt ≈ Xt+p, with period p Cleveland et al. (1990); Zhou et al. (2022b).
Finally, (4) causal dependency indicates directional influence among variables, formally assessed
by Granger causality tests Granger (1969). Capturing these dependencies explicitly is crucial for
effective forecasting.

3
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3.2 GRADIENT CONFLICTS

Gradient conflict is a common optimization challenge occurring when simultaneous objectives yield
conflicting gradients, formally defined by a negative gradient cosine similarity: ∇θLa·∇θLb

∥∇θLa∥∥∇θLb∥ <

0 Yu et al. (2020). Such conflicts frequently arise in multi-task learning scenarios and complex
sequence modeling, where distinct dependency objectives (e.g., periodic versus trend-related depen-
dencies) induce contradictory gradient signals Ilbert et al. (2024). In time series forecasting, gradi-
ent conflicts remain underexplored, especially when involving dependencies with different charac-
teristics.
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Figure 3: Overview of the Permutation Dependency Decoupling (PDD) architecture. (1)
Permutation-Invariant Encoder (PIE): removes temporal ordering and employs three-expert rout-
ing mechanism (Time-wise, Channel-wise, and Head-wise experts) across multiple attention heads
to capture stable, order-independent patterns; (2) Permutation-Sensitive Encoder (PSE): processes
order-dependent temporal dynamics; (3) PIE Output combines expert outputs to generate initial
predictions; (4) Historical-Sequence Temporal Dependency (HSTD) module models permutation-
sensitive dependencies within historical sequences; (5) Prediction-Sequence Temporal Dependency
(PSTD) module refines the final predictions.

4 METHODOLOGY

4.1 FORMAL DEFINITIONS

We formalize two fundamental dependency types in multivariate time series: permutation-invariant
dependencies (PID) and permutation-sensitive dependencies (PSD). Real-world series often exhibit
both stationary patterns (e.g., periodicities, stable correlations) and non-stationary dynamics (e.g.,
trends, causal effects, structural shifts) Wu et al. (2021); Liu et al. (2022b). PID characterizes stable
statistical properties independent of temporal order, while PSD captures order-sensitive dynamics
crucial for accurate forecasting.

Permutation-Invariant Dependency (PID). Given historical observations Xenc ∈ RD×S , a func-
tion fPID(·) is permutation-invariant if, for any temporal permutation π(·),

fPID(Xenc) = fPID(X
π
enc).

PID includes cross-variable correlations, periodic patterns, and stationary properties.

Permutation-Sensitive Dependency (PSD). A function fPSD(·) is permutation-sensitive if there
exists at least one permutation π(·) such that

fPSD(Xenc) ̸= fPSD(X
π
enc).

PSD captures temporal dependencies explicitly tied to ordering, such as trends, causality, and auto-
correlation.

Permutation Dependency Decoupling (PDD). Building on these definitions, PDD separates PID
and PSD via a two-stage gradient-based optimization: (1) Permutation-Invariant Learning: optimize
PIE parameters θPIE by minimizing

min
θPIE
L(fPIE(Xenc; θPIE), Y ).

(2) Permutation-Sensitive Refinement: with PIE frozen, optimize PSE parameters θPSE to refine
residuals:

min
θPSE
L(fPIE(Xenc; θPIE) + fPSE(Xenc, ZPIE; θPSE), Y ),

where L denotes forecasting loss and ZPIE represents PIE forecasts.

4
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4.2 OVERALL STRUCTURE

Figure 3 illustrates the architecture of PDD. The model first captures PID (left branch), then models
permutation-sensitive dependencies (PSD) (right branch).

4.2.1 PERMUTATION-INVARIANT ENCODER (PIE)

The Permutation-Invariant Encoder processes timestamp-agnostic multivariate time series through a
multi-expert attention mechanism. Given input Xenc ∈ RD×S with D variables and sequence length
S, PIE applies an embedding layer followed by M expert blocks:

V0 = Embedding(Xenc), (1)

Vm+1 = ExpertBlock(Vm), m = 0, . . . ,M − 1, (2)

ZPIE = Projection(VM ), (3)

where ZPIE ∈ RO×D denotes the output for prediction horizon O. Each ExpertBlock employs three
parallel attention mechanisms that share embeddings but apply distinct dimensional perspectives:

Vm+1 =
∑

i∈{T,C,H}

wi · fi(Vm), (4)

where wi are routing weights that dynamically balance expert contributions (adds < 0.001% to the
total parameter count; negligible overhead), and the expert functions fi are defined as:

fT (V) = Attention(V,V,V), (5)

fC(V) = T −1
C (Attention(TC(V), TC(V), TC(V))), (6)

fH(V) = T −1
H (Attention(TH(V), TH(V), TH(V))), (7)

with Attention(Q,K, V ) = softmax(QK⊤/
√
d)V and TC , TH denoting channel-wise and head-

wise transpose operations, respectively. This tri-perspective design enhances representational ca-
pacity while maintaining computational efficiency through weight sharing.

4.2.2 PERMUTATION-SENSITIVE ENCODER (PSE)

Existing methods directly map historical data to predictions, limiting context and risking loss of
historical information. In contrast, our PSE explicitly separates modeling of historical (HSTD)
and predictive (PSTD) dependencies, thereby expanding receptive fields and preserving historical
context.

PSE receives the concatenation of the historical projection and the output from PIE as input:

Zh = HSTDBlock
(
V0

)
,

T0 = Zh ⊕ ZPIE,
(8)

where T0 ∈ RO×D merges temporal and value-dependent features (O: output length; D: hidden
dimension).

For each subsequent layer n = 1, 2, . . . , N , PSTD refines the representation:

Tn+1 = FDS
(
PSTDBlock(Tn)

)
,

Y = ZPIE ⊕ Projection
(
TN

)
.

(9)

In PSE, we propose a structured design consisting of three core components: (1) Prediction-
Time Dependency (PSTD) blocks, explicitly modeling forecast sequence dependencies; (2) Fea-
ture Down-Sample (FDS) transition layers to manage feature dimensionality; and (3) History-Time
Dependency (HSTD) blocks to capture long-range historical patterns.

5
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The PSTD block utilizes densely-connected 1D convolutions to explicitly enhance prediction depen-
dencies and mitigate overfitting. Specifically, given an input tensor P (0) ∈ RB×O×C0 (batch size
B, prediction length O, channels C0), it applies Lp densely-connected convolutional layers with
growth rate g:

P̂ (l) = Conv
(l)
pred(P

(l−1)), (10)

P (l) = Dropout(GELU([P (l−1), P̂ (l)])), (11)

where [·, ·] denotes channel-wise concatenation, Zp ≡ P (Lp).

To control the expansion of channel dimensions between PSTD blocks, FDS layers employ point-
wise convolutions to halve the feature channels efficiently: This operation effectively compresses
features while preserving learned temporal structures.

The HSTD block employs residual connections with 1D convolutions to robustly model historical
dependencies. Given a permuted history tensor H(0) ∈ RB×Ch×L (channels Ch, sequence length
L), each of the Lh layers updates features as follows:

H(i) = GELU(Conv
(i)
his(H

(i−1)) +H(i−1)). (12)

These residual connections enhance gradient flow, thereby improving stability during long-range
modeling, where Zh ≡ H(Lh).

Table 1: Results of long-term time series forecasting with four prediction lengths across different
models. The look-back window is fixed at 96 for all datasets. Best results are highlighted in red, and
second best in green.

Dataset Pred Len PDD TimeXer TimeMixer iTransformer Client PatchTST
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL 96 0.129 0.225 0.140 0.242 0.153 0.247 0.148 0.240 0.141 0.236 0.181 0.270
ECL 192 0.146 0.242 0.157 0.256 0.166 0.256 0.162 0.253 0.161 0.254 0.188 0.274
ECL 336 0.154 0.253 0.176 0.275 0.185 0.277 0.178 0.269 0.173 0.267 0.204 0.293
ECL 720 0.186 0.288 0.211 0.306 0.225 0.310 0.225 0.317 0.209 0.299 0.246 0.324

Traffic 96 0.389 0.251 0.428 0.271 0.462 0.285 0.395 0.268 0.438 0.292 0.462 0.295
Traffic 192 0.414 0.261 0.448 0.282 0.473 0.296 0.417 0.276 0.451 0.298 0.466 0.296
Traffic 336 0.429 0.267 0.473 0.289 0.498 0.296 0.433 0.283 0.472 0.305 0.482 0.304
Traffic 720 0.467 0.285 0.516 0.307 0.506 0.313 0.467 0.302 0.499 0.321 0.514 0.322

Weather 96 0.151 0.199 0.157 0.205 0.163 0.209 0.174 0.214 0.163 0.207 0.177 0.218
Weather 192 0.195 0.246 0.204 0.247 0.208 0.250 0.221 0.254 0.214 0.253 0.225 0.259
Weather 336 0.242 0.289 0.261 0.290 0.251 0.287 0.278 0.296 0.271 0.294 0.278 0.297
Weather 720 0.315 0.344 0.340 0.341 0.339 0.341 0.358 0.347 0.350 0.346 0.354 0.348

Exchange 96 0.080 0.205 0.089 0.209 0.090 0.235 0.086 0.206 0.086 0.206 0.088 0.205
Exchange 192 0.173 0.297 0.192 0.310 0.187 0.343 0.177 0.299 0.176 0.299 0.176 0.299
Exchange 336 0.317 0.407 0.345 0.424 0.353 0.473 0.331 0.417 0.330 0.416 0.301 0.397
Exchange 720 0.779 0.670 0.930 0.727 0.934 0.761 0.847 0.691 0.828 0.689 0.901 0.714

ETTh1 96 0.371 0.391 0.382 0.403 0.375 0.400 0.386 0.405 0.392 0.409 0.414 0.419
ETTh1 192 0.427 0.425 0.429 0.435 0.429 0.421 0.441 0.512 0.445 0.436 0.460 0.445
ETTh1 336 0.465 0.441 0.468 0.448 0.484 0.458 0.487 0.458 0.482 0.456 0.501 0.466
ETTh1 720 0.471 0.466 0.469 0.461 0.498 0.482 0.503 0.491 0.489 0.480 0.500 0.488
ETTh2 96 0.287 0.339 0.286 0.338 0.289 0.341 0.297 0.349 0.305 0.353 0.302 0.348
ETTh2 192 0.364 0.391 0.363 0.389 0.372 0.392 0.380 0.400 0.382 0.401 0.388 0.400
ETTh2 336 0.409 0.423 0.414 0.423 0.386 0.414 0.428 0.432 0.434 0.445 0.426 0.433
ETTh2 720 0.425 0.445 0.408 0.432 0.412 0.434 0.427 0.445 0.424 0.444 0.431 0.446
ETTm1 96 0.313 0.348 0.318 0.356 0.320 0.357 0.334 0.368 0.336 0.369 0.329 0.367
ETTm1 192 0.361 0.376 0.362 0.383 0.361 0.381 0.387 0.391 0.376 0.385 0.367 0.385
ETTm1 336 0.383 0.396 0.395 0.407 0.390 0.404 0.426 0.420 0.408 0.407 0.399 0.410
ETTm1 720 0.451 0.435 0.452 0.441 0.454 0.441 0.491 0.459 0.477 0.442 0.454 0.439
ETTm2 96 0.174 0.257 0.171 0.256 0.175 0.258 0.180 0.264 0.184 0.267 0.175 0.259
ETTm2 192 0.238 0.302 0.237 0.299 0.237 0.299 0.250 0.309 0.252 0.307 0.241 0.302
ETTm2 336 0.297 0.338 0.296 0.338 0.298 0.340 0.311 0.348 0.314 0.345 0.305 0.343
ETTm2 720 0.390 0.393 0.392 0.394 0.391 0.396 0.412 0.407 0.412 0.402 0.402 0.400

4.2.3 TEMPORAL ORDER SENSITIVITY TEST (TOST)

To rigorously measure whether a model f truly captures temporal order rather than merely memoriz-
ing static patterns, we propose the Temporal Order Sensitivity Test (TOST). Previous evaluations of
temporal sensitivity typically randomized sequence order only during inference Zeng et al. (2023),
potentially causing performance degradation simply due to training-inference inconsistencies. In

6
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contrast, TOST applies a single random permutation π consistently at both training and inference,
explicitly isolating the model’s genuine reliance on temporal ordering.

Formally, let π permute {1, . . . , S}, and define:
Xπ

enc : Xπ
t,: = Xenc,π(t),:, Yπ = {xS+π(t)}Ot=1.

We train f independently on (Xπ
enc,Y

π) and on the original (Xenc,Y), yielding predictions Ŷπ =

f(Xπ
enc) and Ŷ = f(Xenc). The TOST score is defined as:

∆TOST = L
(
Ŷπ,Yπ

)
− L

(
Ŷ,Y

)
,

where L (e.g., MSE) measures forecasting error. A small ∆TOST suggests reliance on static, non-
temporal patterns.

5 EXPERIMENTS

We evaluate PDD on eight benchmark datasets: Electricity (ECL) Trindade (2015), Traffic Califor-
nia Department of Transportation (2023), Weather Max-Planck-Institut für Biogeochemie (2024),
ETTh (ETTh1, ETTh2, ETTm1, ETTm2) Zhou et al. (2022a), and Exchange Rates Lai et al. (2018).
Each experiment uses a 96-step look-back window and reports four forecasting horizons, aligning
with Table 1. Following prior work Wu et al. (2022), we track Mean Squared Error (MSE) and
Mean Absolute Error (MAE). We benchmark PDD against recent mainstream models Gao et al.
(2025); Wang et al. (2024b); Liu et al. (2024); Zeng et al. (2023); Zhang et al. (2022); Zhou et al.
(2022b); Wu et al. (2021); Woo et al. (2022); Zhou et al. (2022a); Liu et al. (2021); Wu et al. (2022).
Additional baselines and detailed experimental setups appear in the Appendix.

5.1 MAIN RESULTS

Results. Table 1 and more results in Appendix C report long-term forecasting performance. Some
advanced TimeXer, TimeMixer, iTransformer and Client rank just below PDD. PDD outperforms all
baselines, securing first place in 43 and second place in 18 of 64 tasks. It leads other state-of-the-art
methods by a clear margin in both average and median counts of top-rank performances.

5.2 EXTENSIBILITY

Table 2: Performance comparison before and after
applying PDD on ECL dataset.

Original +PDD Improvement(%)

Model MSE MAE MSE MAE MSE MAE

iTransformer .148 .240 .133 .223 10.1 7.1
DLinear .197 .282 .161 .254 18.3 9.9
Client .141 .236 .132 .226 6.4 4.2
PatchTST .181 .270 .166 .258 8.3 4.4

Table 2 demonstrates significant forecasting
improvements when extending various SOTA
models with the proposed PDD framework.
The proposed TOST can identify pretrained
models with low temporal-order sensitivity
(∆TOST), then enhance their predictions by in-
tegrating a residual-based PSE:
Ŷ = fPIE(Xenc; θPIE) + fPSE(Xenc, ZPIE; θPSE),

(13)
where pretrained parameters θPIE remain fixed, enabling efficient and non-intrusive model extension.

5.3 ABLATION STUDY

(1) Necessity of Explicit Dependency Decoupling. We perform an ablation study on three rep-
resentative datasets to investigate the necessity of explicitly modeling permutation-invariant and
permutation-sensitive dependencies in a decoupled manner. Table 3 demonstrates a clear advantage
of the decoupled approach, consistently outperforming joint and PIE-only strategies across all tested
scenarios.

The clear performance gap between decoupled and joint training indicates strong interference from
entangled dependencies. Joint training attempts to simultaneously optimize stable correlations and
dynamic temporal structures, producing conflicting gradients that hinder convergence. In contrast,
decoupled training avoids this conflict by first stabilizing invariant dependencies, generating robust
initial forecasts that support later temporal refinement.

7
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Table 3: Comparison of joint versus decoupled
training strategies.

Data Len Decoupled Joint
MSE MAE MSE MAE

E
C

L 96 .129 .225 .140 .236
192 .146 .242 .161 .254
336 .154 .253 .175 .269
720 .186 .288 .212 .300
Avg .154 .252 .172 .265

Tr
af

fic 96 .389 .251 .434 .291
192 .414 .261 .453 .297
336 .429 .267 .470 .306
720 .467 .285 .503 .322
Avg .425 .266 .465 .304

W
ea

th
er 96 .151 .199 .166 .212

192 .195 .246 .214 .254
336 .242 .289 .272 .294
720 .315 .344 .350 .346
Avg .226 .270 .250 .276

(2) Decoupling Order. We validate the decom-
position order by comparing the original learn-
ing sequence (PIE→PSE) against the reversed
sequence (PSE→PIE) on the ECL dataset. Ta-
ble 4 shows that the original order consistently
achieves lower MSE and MAE across all pre-
diction lengths, underscoring the importance of
modeling stable permutation-invariant depen-
dencies before capturing permutation-sensitive
temporal patterns.

An explanation involves the stability difference
between dependencies. PID captures stable,
long-term statistical features, whereas PSD fo-
cuses on dynamic temporal patterns. Prior stud-
ies suggest Cross-temporal Transformers may
encounter convergence challenges and suboptimal minima Ilbert et al. (2024). Starting with PSD
may lead to unstable initializations, complicating subsequent PID learning. Conversely, beginning
with PID likely stabilizes inter-variable structures Liu et al. (2024); Gao et al. (2025), easing later
temporal modeling, improving forecasting accuracy.

Table 4: Learning order comparison.

Prediction Length PIE→PSE PSE→PIE
MSE MAE MSE MAE

96 0.129 0.225 0.191 0.295
192 0.146 0.242 0.194 0.293
336 0.154 0.253 0.194 0.294
720 0.186 0.288 0.228 0.321

(3) Transition from PIE to PSE. Figure 4 shows
that transitioning from Permutation-Invariant En-
coder (PIE) to Permutation-Sensitive Encoder (PSE)
helps the model escape local minima, significantly
reducing predictive loss. Quantitative analysis in
subfigure (a) confirms improved Mean Squared Er-
ror (MSE) when integrating PSE with PIE. Visu-
alization in subfigure (b) illustrates these benefits
clearly: PIE-only models deviate notably during

temporal shifts and irregular patterns, while the PIE-to-PSE approach consistently matches ground
truth more closely.

+PSE
PIE

PIE
+PSE

Prediction Length

Traffic

Prediction Length

( a ) ( b ) 

96 192 336 720
−0.005
0.000
0.005
0.010
0.015

ECL

96 192 336 720
−0.002
0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014

Shifting to PSE

Shifting to PSE

Focusing on PIE

Focusing on PIE Ground Truth Prediction

PIE PSE Epoch

L
os
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R
ed

uc
tio

n 
in

 M
SE

 (%
)

Figure 4: Evaluation of PDD effectiveness. (a) MSE improvement at varying prediction lengths
on Traffic and ECL datasets, demonstrating that PIE→PSE significantly outperforms PIE alone.
(b) Visualization: predictions using PIE alone show notable deviations from ground truth, whereas
PIE→PSE predictions closely align, indicating enhanced accuracy.

5.4 TOST STUDY

We conducted the proposed TOST on the ECL dataset to accurately assess models’ dependence on
temporal information. As shown in Figure 5, the proposed PDD framework experiences the largest
accuracy drop upon temporal shuffling, highlighting its strong reliance on true temporal patterns.
In contrast, other models show minimal or negligible accuracy changes, indicating their limited
sensitivity to temporal order. Despite its high temporal sensitivity, PDD consistently achieves the
lowest overall MSE and MAE, demonstrating its capability to effectively capture temporal structures
while maintaining strong robustness and generalization. This rigorous evaluation confirms that PDD
genuinely captures temporal dependencies rather than simply memorizing sequence patterns, distin-
guishing it from other approaches that may achieve good performance through alternative mecha-
nisms

TOST can also test whether a model mainly relies on permutation-invariant modules. As shown,
Client and iTransformer—built with only Attention and Linear layers—show almost no performance
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drop when the input’s temporal order is shuffled, as long as the same order is used during inference.
This suggests they primarily capture permutation-invariant dependencies. Our method can thus act
as a plug-and-play enhancement for such models.

5.5 INFORMATION EXPLOITATION STUDY

0.15 0.20 0.25 0.30
MSE

Before
After

Before
After

Client
iTransformer

Informer
Dlinear

Autoformer
PDD(Ours)

Client
iTransformer

Informer
Dlinear

Autoformer
PDD(Ours)

0.25 0.30 0.350.40
MAE

0 2 4 6

TOST (MAE, %)

TOST (MSE, %)
0 2 4 6

Figure 5: The change in MSE/MAE after ap-
plying a fixed random permutation consis-
tently during both training and inference on
the ECL dataset.

To evaluate models’ efficiency in utilizing histori-
cal information, we compared PDD against SOTA
methods across varying lookback lengths (L), cov-
ering both short-term (T = 96) and long-term
(T = 720) forecasting scenarios (Figure 6 (a)). Re-
sults indicate PDD consistently outperforms com-
peting models, even at shorter historical lengths
(L=24, 48), highlighting its efficient use of lim-
ited historical data. This aligns with prior find-
ings Zeng et al. (2023); Liu et al. (2024); Gao et al.
(2025); Nie et al. (2022), where extending look-
back lengths often destabilizes Transformer-based
models (Transformer, FEDformer, Autoformer, In-
former). The superior performance across differ-
ent lookback lengths demonstrates PDD’s robust-
ness and efficiency in information utilization.

24 48 96 192336 720 24 48 96 192336 720
Historical Length Historical Length
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M
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0.40
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M
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Transformer
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PDD(Ours)

0.10.2 0.30.40.50.60.7
Missing Rate

(a) (b)
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0.0 0.2 0.4 0.6 0.8 1.0
Noise Level (σ)

0.000
0.025
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0.125
0.150
0.175
0.200

Prediction Length 96

Prediction Length 192
Prediction Length 336

Prediction Length 720

Prediction Length 96

Prediction Length 192
Prediction Length 336
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Figure 6: (a) Comparative evaluation of forecasting performance across different historical lengths
(L) and prediction lengths (T ) on the Electricity dataset. Left: T = 96; Right: T = 720. (b)
Robustness evaluation on the ECL dataset. Upper subplots vary the missing rate (m), while lower
subplots add Gaussian noise with standard deviation σ.

5.6 EFFICIENCY AND ROBUSTNESS

PDD strikes an excellent balance between accuracy and efficiency: as shown in Figure 2, it out-
performs Transformer-based methods (e.g., TimesNet, FEDformer) in predictive accuracy while
using fewer FLOPs, parameters, inference time, and peak memory, and—even though DLinear is
lighter—its forecasts are markedly more accurate. Moreover, PDD remains robust to noise and miss-
ing values: Figure 6 (b) shows that as the noise level (σ) and missing-rate increase, MSE and MAE
grow only modestly across all horizons, demonstrating that explicit dependency decoupling endows
PDD with practical stability under real-world data imperfections.

6 CONCLUSION

We propose Permutation Dependency Decoupling (PDD), a gradient-level framework that separates
permutation-invariant and permutation-sensitive dependencies to mitigate gradient conflicts in mul-
tivariate time series forecasting. The Permutation-Invariant Encoder (PIE), which employs a three-
expert routing mechanism to reduce information loss in modeling invariance, and the Permutation-
Sensitive Encoder (PSE), which adopts a history–future fusion paradigm for globally aware iterative
refinement. In addition, we introduce the Temporal Order Sensitivity Test (TOST) to rigorously
evaluate a model’s ability to capture temporal relationships beyond memorization. Experiments
on multiple benchmarks show that PDD delivers competitive forecasting accuracy and robustness,
while enhancing mainstream forecasting models in a non-intrusive manner. This work lays the foun-
dation for future research on more fine-grained decoupling of temporal dependencies.
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A EXPERIMENTAL DETAILS

We provide additional experimental details to complement the main paper.

A.1 DATASETS

We perform comprehensive evaluations on eight widely used time-series benchmarks. Following
prior work (Wu et al., 2022), each dataset is chronologically split into training, validation, and
testing subsets. Specifically, the ETT datasets adopt a 6:2:2 split, while the remaining benchmarks
use a 7:1:2 split. Table 5 summarises the statistics and forecasting setups.

• ETT (ETTh1, ETTh2, ETTm1, ETTm2): Hourly (ETTh) and 15-minute (ETTm) oil
temperature measurements collected from electricity transformers across two Chinese re-
gions between July 2016 and July 2018.

• Weather: Meteorological observations sampled every 10 minutes in Germany throughout
2020, covering 21 variables such as temperature and humidity.

• Electricity: Hourly electricity consumption from 321 households between 2012 and 2014,
released through the UCI Machine Learning Repository.

• Traffic: Hourly road occupancy rates from 862 sensors in the San Francisco Bay Area
spanning 2015–2016.

• Exchange: Daily exchange rates for eight foreign currencies from 1990 to 2016.

The ETT datasets are available at https://github.com/zhouhaoyi/Informer2020,
while the remaining benchmarks can be obtained from https://github.com/thuml/
Autoformer.

Table 5: Dataset statistics. V counts variables. Dataset size lists time points split into train, val-
idation, and test subsets. Prediction length enumerates forecasting horizons. Frequency reports
sampling intervals.

Dataset V Prediction length Dataset size Frequency

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min

Electricity (ECL) 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily

A.2 BASELINES

We benchmark against recent Transformer-style, frequency-domain, and linear forecasters.

Client Gao et al. (2025) is designed to capture cross-variable dependencies by integrating trend de-
tection and a Reversible Instance Normalization (RevIN) module, improving forecasting robustness
and accuracy.

TimeXer Wang et al. (2024b) introduces a cross-dimensional encoder that explicitly decouples tem-
poral and variable interactions, dynamically modeling intra-variable evolution and inter-variable re-
lationships. This design provides robust long-horizon forecasting performance under non-stationary
conditions.

TimeMixer Wang et al. (2024a) proposes an alternating mixing mechanism with sequentially ap-
plied channel-wise and temporal mixing layers. This lightweight design efficiently captures inter-
variable dependencies and temporal dynamics, demonstrating strong performance with low compu-
tational overhead.
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Algorithm 1: Training of PDD

Require: Xenc ∈ RS×D, Y ∈ RO×D, number of PIE layers M , number of PSE stacks N , PIE
warm-up epochs E1, total epochs E.

1: for e = 1 to E do
2: if e ≤ E1 then
3: Permutation-invariant learning phase
4: X′ ← RevIN(Xenc, ”norm”) (Kim et al., 2021)
5: V0 ← (X′)⊤

6: for m = 1 to M do
7: Vm ← PIEBlock(Vm−1)
8: end for
9: ZPIE ← RevIN(Proj(VM ), ”denorm”)

10: Ŷ ← ZPIE
11: Update PIE parameters using ℓ(Ŷ,Y)
12: else
13: Permutation-sensitive refinement phase
14: Freeze PIE parameters
15: Zh ← HSTDBlock(V0)
16: T0 ← ZPIE ⊕ Zh

17: for n = 1 to N do
18: Tn ← FDSPSTDBlock(T

n−1)
19: end for
20: Ŷ ← ZPIE ⊕ Proj(TN )

21: Update PSE parameters using ℓ(Ŷ,Y)
22: end if
23: end for
24: return Ŷ

iTransformer (Liu et al., 2024) inverts the classic Transformer tokenisation by treating each vari-
able as a token while retaining time-step semantics in the channel dimension. This design captures
multivariate correlations more effectively and yields accurate, interpretable forecasts.

FITS (Xu et al., 2024) operates in the frequency domain, applying a low-pass filter and complex
linear layer to interpolate spectra before transforming back to the time domain. With only ∼ 10,000
parameters, FITS is well suited for resource-constrained deployment.

WITRAN (Jia et al., 2023) couples long- and short-term patterns through a hybrid frequency–time
architecture that balances expressivity and efficiency.

Informer (Zhou et al., 2022a) introduces ProbSparse attention for sub-quadratic complexity on long
contexts, enabling efficient inference on large-scale series.

PatchTST (Nie et al., 2022) segments time series into local patches that a Transformer backbone
then fuses, capturing multi-scale temporal structures.

B IMPLEMENTATION DETAILS

Algorithm 1 outlines the training pipeline. The model first learns permutation-invariant dependen-
cies before refining predictions with a permutation-sensitive encoder.

B.1 HYPERPARAMETER CONFIGURATION

Following common practices from previous studies, hyperparameters were selected from predefined
candidate sets based on validation loss performance, employing early stopping with a patience of 3
epochs. The specific hyperparameter search space and the optimal values identified for each dataset
are detailed in Table 6.
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The optimizer employed is Adam with its default parameters. The learning rate schedule follows a
step-wise decay, halving after each epoch, defined as:

ηepoch = η0 × 0.5(epoch−1), (14)
where η0 denotes the initial learning rate. Training stability is ensured via gradient clipping with a
maximum norm of 1.0.

Table 6: Hyperparameter candidate sets for PDD. Optimal values are selected per dataset based on
validation performance.

Hyperparameter Candidate Set

Learning rate (η) 10−4, 5× 10−4, 10−3

Attention heads (h) 4, 8, 16, 32

Fixed parameters:
Optimizer Adam (default parameters)
Weight decay 0
Gradient clipping Max norm = 1.0

C MAIN RESULTS

Tables 7 and 8 report the complete long-term forecasting results across 14 competitive baselines on
eight datasets and four prediction lengths (96, 192, 336, 720). All models use a look-back window of
96. The best result per column is in bold and the second best is underlined. We also report averages
and medians across horizons to evaluate robustness.

Performance summary. PDD attains the best results on 24 out of 32 tasks and the second best on
6 tasks, surpassing powerful baselines such as iTransformer, Client, and TimesNet. Gains are most
pronounced on periodic benchmarks (Electricity, ETTm2) and the chaotic Traffic dataset,
highlighting strong generalisation.

Comparison with strong baselines. Against iTransformer and Client, which emphasise variable-
wise modelling or simplified architectures, PDD consistently reduces both MSE and MAE, espe-
cially on noisy datasets such as Weather and Exchange. DLinear excels on Exchange thanks
to its simplicity but struggles elsewhere. FEDformer and TimesNet remain competitive on ETTh1
and ETTm2, yet their performance drops on non-stationary data, whereas PDD remains stable.

Key observations.

• PDD dominates on Traffic and Weather across all horizons, evidencing robustness to
noise and weak periodicity.

• Long-horizon performance (720 steps) degrades gracefully compared with sharp drops ob-
served in competing models.

• Even on datasets where decomposition-based approaches are strong, PDD matches or ex-
ceeds their accuracy without relying on fixed Fourier decompositions.

D VISUALISING DEPENDENCY DECOUPLING

Figure 7 visualises dependencies captured by PDD. Cross-variable and periodic structure (panels 7a
and 7b) reveal that the model emphasises both inter-series and temporal patterns. Panel 7c illustrates
convolutional kernels within the permutation-sensitive encoder (PSE), and panel 7d reports feature
down-sampling (FDS) weights, showing how salient information is retained during refinement.

E ROBUSTNESS ANALYSIS

We examine robustness under additive Gaussian noise and randomly missing observations, two com-
mon degradation patterns in real deployments.
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Table 7: The complete results for LTSF. The results of 4 different prediction lengths of different
models are listed in the table. The look-back window sizes are set to 96 for all datasets. We also
calculate the average (Avg) and median (Me) of the results for the 4 prediction lengths and the
number of optimal values obtained by different models.

Models PDD iTransformer
2024

Client
2025

DLinear
2023

TimesNet
2022

FEDformer
2022b

ETSformer
2022

LightTS
2022

Autoformer
2021

Pyraformer
2021

Informer
2022a

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.129 0.225 0.148 0.240 0.141 0.236 0.197 0.282 0.168 0.272 0.193 0.308 0.187 0.304 0.207 0.307 0.201 0.317 0.386 0.449 0.274 0.368

192 0.146 0.242 0.162 0.253 0.161 0.254 0.196 0.285 0.184 0.289 0.201 0.315 0.199 0.315 0.213 0.316 0.222 0.334 0.378 0.443 0.296 0.386
336 0.154 0.253 0.178 0.269 0.173 0.267 0.209 0.301 0.198 0.300 0.214 0.329 0.212 0.329 0.230 0.333 0.231 0.338 0.376 0.443 0.300 0.394
720 0.186 0.288 0.225 0.317 0.209 0.299 0.245 0.333 0.220 0.320 0.246 0.355 0.233 0.245 0.265 0.360 0.254 0.361 0.376 0.445 0.373 0.439

Avg 0.154 0.252 0.178 0.270 0.171 0.264 0.212 0.300 0.192 0.295 0.214 0.327 0.208 0.323 0.229 0.329 0.227 0.338 0.379 0.445 0.311 0.397
Me 0.150 0.248 0.170 0.261 0.167 0.261 0.203 0.293 0.191 0.295 0.208 0.322 0.206 0.322 0.222 0.325 0.227 0.336 0.377 0.444 0.298 0.390

Tr
af

fic

96 0.389 0.251 0.395 0.268 0.438 0.292 0.650 0.396 0.593 0.321 0.587 0.366 0.607 0.392 0.615 0.391 0.613 0.388 0.867 0.468 0.719 0.391
192 0.414 0.261 0.417 0.276 0.451 0.298 0.598 0.370 0.617 0.336 0.604 0.373 0.621 0.399 0.601 0.382 0.616 0.382 0.869 0.467 0.696 0.379
336 0.429 0.267 0.433 0.283 0.472 0.305 0.605 0.373 0.629 0.336 0.621 0.383 0.622 0.399 0.613 0.386 0.622 0.337 0.881 0.469 0.777 0.420
720 0.467 0.285 0.467 0.302 0.499 0.321 0.645 0.394 0.640 0.350 0.626 0.382 0.632 0.396 0.658 0.407 0.660 0.408 0.896 0.473 0.864 0.472

Avg 0.425 0.266 0.428 0.282 0.465 0.304 0.625 0.383 0.620 0.336 0.610 0.376 0.621 0.396 0.622 0.392 0.628 0.379 0.878 0.469 0.764 0.416
Me 0.422 0.264 0.425 0.280 0.462 0.302 0.625 0.384 0.623 0.336 0.613 0.378 0.622 0.396 0.614 0.389 0.619 0.385 0.875 0.469 0.748 0.406

W
ea

th
er

96 0.151 0.199 0.174 0.214 0.163 0.207 0.196 0.255 0.172 0.220 0.217 0.296 0.197 0.281 0.182 0.242 0.266 0.336 0.622 0.556 0.300 0.384
192 0.195 0.246 0.221 0.254 0.214 0.253 0.237 0.296 0.219 0.261 0.276 0.336 0.237 0.312 0.227 0.287 0.307 0.367 0.739 0.624 0.598 0.544
336 0.242 0.289 0.278 0.296 0.271 0.294 0.283 0.335 0.280 0.306 0.339 0.380 0.298 0.353 0.282 0.334 0.359 0.395 1.004 0.753 0.578 0.523
720 0.315 0.344 0.358 0.349 0.360 0.346 0.345 0.381 0.365 0.359 0.403 0.428 0.352 0.390 0.352 0.386 0.419 0.428 1.420 0.934 1.059 0.741

Avg 0.226 0.270 0.258 0.279 0.249 0.275 0.265 0.317 0.259 0.287 0.309 0.360 0.271 0.334 0.261 0.312 0.338 0.382 0.946 0.717 0.634 0.548
Me 0.219 0.268 0.250 0.275 0.243 0.274 0.260 0.316 0.250 0.284 0.308 0.358 0.268 0.333 0.255 0.311 0.333 0.381 0.872 0.689 0.588 0.534

E
T

T
h1

96 0.371 0.391 0.386 0.405 0.392 0.409 0.386 0.400 0.384 0.402 0.376 0.419 0.494 0.479 0.424 0.432 0.449 0.459 0.664 0.612 0.865 0.713
192 0.427 0.425 0.441 0.436 0.445 0.436 0.437 0.432 0.436 0.429 0.420 0.448 0.538 0.504 0.475 0.462 0.500 0.482 0.790 0.681 1.008 0.792
336 0.465 0.441 0.487 0.458 0.482 0.456 0.481 0.459 0.491 0.469 0.459 0.465 0.574 0.521 0.518 0.488 0.521 0.496 0.891 0.738 1.107 0.809
720 0.471 0.466 0.503 0.491 0.489 0.480 0.519 0.516 0.521 0.500 0.506 0.507 0.562 0.535 0.547 0.533 0.514 0.512 0.963 0.782 1.181 0.865

Avg 0.433 0.430 0.454 0.447 0.452 0.445 0.456 0.452 0.458 0.450 0.440 0.460 0.542 0.510 0.491 0.479 0.496 0.487 0.827 0.703 1.040 0.795
Me 0.446 0.433 0.464 0.447 0.464 0.446 0.459 0.446 0.464 0.449 0.440 0.457 0.550 0.513 0.497 0.475 0.507 0.489 0.841 0.710 1.058 0.801

E
T

T
h2

96 0.287 0.339 0.299 0.350 0.305 0.353 0.333 0.387 0.340 0.374 0.358 0.397 0.340 0.391 0.397 0.437 0.346 0.388 0.645 0.597 0.907 0.747
192 0.364 0.391 0.380 0.400 0.382 0.401 0.477 0.476 0.402 0.414 0.429 0.439 0.430 0.439 0.520 0.504 0.456 0.452 0.788 0.683 0.907 0.747
336 0.409 0.427 0.428 0.432 0.434 0.445 0.594 0.541 0.452 0.452 0.496 0.487 0.485 0.479 0.626 0.559 0.482 0.486 0.907 0.747 1.201 0.845
720 0.425 0.445 0.427 0.445 0.424 0.444 0.831 0.657 0.462 0.468 0.463 0.474 0.500 0.497 0.863 0.672 0.515 0.511 0.963 0.783 3.625 1.451

Avg 0.371 0.400 0.383 0.407 0.386 0.411 0.559 0.515 0.414 0.427 0.437 0.449 0.439 0.452 0.602 0.543 0.450 0.459 0.826 0.703 0.749 0.673
Me 0.386 0.409 0.404 0.416 0.464 0.423 0.536 0.509 0.427 0.433 0.446 0.457 0.458 0.459 0.573 0.532 0.469 0.469 0.848 0.715 0.775 0.696

E
T

T
m

1 96 0.313 0.348 0.324 0.356 0.336 0.369 0.345 0.372 0.338 0.375 0.379 0.419 0.375 0.398 0.374 0.409 0.505 0.475 0.543 0.510 0.672 0.571
192 0.361 0.376 0.366 0.383 0.374 0.387 0.380 0.389 0.374 0.387 0.426 0.441 0.408 0.410 0.400 0.407 0.553 0.496 0.557 0.537 0.795 0.669
336 0.383 0.396 0.395 0.403 0.408 0.407 0.413 0.413 0.410 0.411 0.445 0.459 0.435 0.428 0.438 0.438 0.621 0.537 0.754 0.655 1.212 0.871
720 0.451 0.435 0.467 0.440 0.477 0.442 0.474 0.453 0.478 0.450 0.543 0.490 0.499 0.462 0.527 0.502 0.671 0.561 0.908 0.724 1.166 0.823

Avg 0.377 0.388 0.388 0.395 0.399 0.401 0.403 0.407 0.400 0.406 0.448 0.452 0.429 0.425 0.435 0.437 0.588 0.517 0.691 0.607 0.961 0.734
Me 0.372 0.386 0.380 0.383 0.391 0.397 0.397 0.401 0.392 0.399 0.436 0.450 0.422 0.419 0.419 0.423 0.587 0.517 0.656 0.596 0.981 0.746

E
T

T
m

2 96 0.174 0.257 0.180 0.262 0.184 0.267 0.193 0.292 0.187 0.267 0.203 0.287 0.189 0.280 0.209 0.308 0.255 0.339 0.435 0.507 0.365 0.453
192 0.238 0.302 0.246 0.306 0.252 0.307 0.284 0.362 0.249 0.309 0.269 0.328 0.253 0.319 0.311 0.382 0.281 0.340 0.730 0.673 0.533 0.563
336 0.297 0.338 0.307 0.340 0.314 0.345 0.369 0.427 0.321 0.351 0.325 0.366 0.314 0.357 0.442 0.446 0.339 0.372 1.201 0.845 1.363 0.887
720 0.390 0.393 0.408 0.403 0.412 0.402 0.554 0.522 0.408 0.403 0.421 0.415 0.414 0.413 0.675 0.587 0.433 0.432 3.625 1.451 3.379 1.338

Avg 0.274 0.322 0.285 0.327 0.291 0.330 0.350 0.401 0.291 0.333 0.305 0.349 0.293 0.342 0.409 0.436 0.327 0.371 1.498 0.869 1.410 0.810
Me 0.267 0.320 0.276 0.323 0.283 0.326 0.327 0.395 0.285 0.330 0.297 0.347 0.284 0.338 0.377 0.424 0.310 0.356 0.966 0.759 0.948 0.725

E
xc

ha
ng

e 96 0.080 0.205 0.084 0.207 0.086 0.206 0.088 0.218 0.107 0.234 0.148 0.278 0.085 0.204 0.116 0.262 0.197 0.323 1.748 1.105 0.847 0.752
192 0.173 0.297 0.188 0.319 0.176 0.299 0.176 0.315 0.226 0.334 0.271 0.380 0.182 0.303 0.215 0.359 0.300 0.369 1.874 1.151 1.204 0.895
336 0.317 0.407 0.329 0.425 0.330 0.416 0.313 0.427 0.367 0.448 0.460 0.500 0.348 0.428 0.377 0.466 0.509 0.524 1.943 1.172 1.672 1.036
720 0.779 0.670 0.779 0.670 0.828 0.689 0.839 0.695 0.964 0.746 1.195 0.841 1.025 0.774 0.831 0.699 1.447 0.941 2.085 1.206 2.478 1.310

Avg 0.337 0.394 0.345 0.405 0.355 0.403 0.354 0.414 0.416 0.443 0.519 0.500 0.410 0.427 0.385 0.447 0.613 0.539 1.913 1.159 1.550 0.998
Me 0.245 0.352 0.258 0.372 0.253 0.358 0.245 0.371 0.297 0.396 0.366 0.440 0.265 0.366 0.296 0.413 0.405 0.447 1.909 1.162 1.438 0.966
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Table 8: The complete results for LTSF. The results of 4 different prediction lengths of different
models are listed in the table. The look-back window sizes are set to 96 for all datasets. We also cal-
culate the average (Avg) and median(Me) of the results for the 4 prediction lengths and the number
of optimal values obtained by different models.

Models PDD FITS
2024

WITRAN
2023

DLinear
2023

TimesNet
2022

FEDformer
2022b

ETSformer
2022

LightTS
2022

Autoformer
2021

Pyraformer
2021

Informer
2022a

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty

96 0.129 0.225 0.293 0.401 0.237 0.335 0.197 0.282 0.168 0.272 0.193 0.308 0.187 0.304 0.207 0.307 0.201 0.317 0.386 0.449 0.274 0.368
192 0.146 0.242 0.268 0.378 0.258 0.350 0.196 0.285 0.184 0.289 0.201 0.315 0.199 0.315 0.213 0.316 0.222 0.334 0.378 0.443 0.296 0.386
336 0.154 0.253 0.355 0.452 0.273 0.362 0.209 0.301 0.198 0.300 0.214 0.329 0.212 0.329 0.230 0.333 0.231 0.338 0.376 0.443 0.300 0.394
720 0.186 0.288 0.416 0.498 0.300 0.382 0.245 0.333 0.220 0.320 0.246 0.355 0.233 0.245 0.265 0.360 0.254 0.361 0.376 0.445 0.373 0.439

Avg 0.154 0.252 0.333 0.432 0.267 0.357 0.212 0.300 0.192 0.295 0.214 0.327 0.208 0.323 0.229 0.329 0.227 0.338 0.379 0.445 0.311 0.397
Me 0.158 0.257 0.324 0.427 0.265 0.356 0.203 0.293 0.191 0.295 0.208 0.322 0.206 0.322 0.222 0.325 0.227 0.336 0.377 0.444 0.298 0.390

Tr
af

fic

96 0.389 0.251 0.898 0.572 1.037 0.441 0.650 0.396 0.593 0.321 0.587 0.366 0.607 0.392 0.615 0.391 0.613 0.388 0.867 0.468 0.719 0.391
192 0.414 0.261 0.763 0.522 1.061 0.455 0.598 0.370 0.617 0.336 0.604 0.373 0.621 0.399 0.601 0.382 0.616 0.382 0.869 0.467 0.696 0.379
336 0.429 0.267 0.894 0.608 1.095 0.470 0.605 0.373 0.629 0.336 0.621 0.383 0.622 0.399 0.613 0.386 0.622 0.337 0.881 0.469 0.777 0.420
720 0.467 0.285 1.019 0.646 1.121 0.474 0.645 0.394 0.640 0.350 0.626 0.382 0.632 0.396 0.658 0.407 0.660 0.408 0.896 0.473 0.864 0.472

Avg 0.425 0.266 0.894 0.587 1.079 0.460 0.625 0.383 0.620 0.336 0.610 0.376 0.621 0.396 0.622 0.392 0.628 0.379 0.878 0.469 0.764 0.416
Me 0.432 0.265 0.879 0.597 1.078 0.463 0.625 0.384 0.623 0.336 0.613 0.378 0.622 0.396 0.614 0.389 0.619 0.385 0.875 0.469 0.748 0.406

W
ea

th
er

96 0.151 0.199 0.174 0.214 0.178 0.223 0.196 0.255 0.172 0.220 0.217 0.296 0.197 0.281 0.182 0.242 0.266 0.336 0.622 0.556 0.300 0.384
192 0.195 0.246 0.221 0.254 0.223 0.261 0.237 0.296 0.219 0.261 0.276 0.336 0.237 0.312 0.227 0.287 0.307 0.367 0.739 0.624 0.598 0.544
336 0.242 0.289 0.278 0.309 0.288 0.309 0.283 0.335 0.280 0.306 0.339 0.380 0.298 0.353 0.282 0.334 0.359 0.395 1.004 0.753 0.578 0.523
720 0.315 0.344 0.358 0.349 0.372 0.363 0.345 0.381 0.365 0.359 0.403 0.428 0.352 0.390 0.352 0.386 0.419 0.428 1.420 0.934 1.059 0.741

Avg 0.226 0.270 0.258 0.278 0.265 0.289 0.265 0.317 0.259 0.287 0.309 0.360 0.271 0.334 0.261 0.312 0.338 0.382 0.946 0.717 0.634 0.548
Me 0.230 0.277 0.250 0.275 0.255 0.285 0.260 0.316 0.250 0.284 0.308 0.358 0.268 0.333 0.255 0.311 0.333 0.381 0.872 0.689 0.588 0.534

E
T

T
h1

96 0.371 0.391 0.381 0.391 0.414 0.419 0.386 0.400 0.384 0.402 0.376 0.419 0.494 0.479 0.424 0.432 0.449 0.459 0.664 0.612 0.865 0.713
192 0.427 0.425 0.443 0.422 0.464 0.448 0.437 0.432 0.436 0.429 0.420 0.439 0.538 0.504 0.475 0.462 0.500 0.482 0.790 0.681 1.008 0.792
336 0.465 0.441 0.474 0.446 0.516 0.478 0.481 0.459 0.477 0.456 0.459 0.465 0.574 0.521 0.518 0.488 0.521 0.496 0.891 0.738 1.107 0.809
720 0.471 0.466 0.464 0.463 0.538 0.509 0.519 0.516 0.521 0.500 0.459 0.474 0.562 0.535 0.547 0.533 0.514 0.512 0.963 0.782 1.181 0.865

Avg 0.433 0.430 0.438 0.431 0.483 0.464 0.456 0.452 0.444 0.447 0.429 0.449 0.542 0.510 0.491 0.479 0.496 0.487 0.827 0.703 1.040 0.795
Me 0.458 0.441 0.459 0.434 0.490 0.463 0.459 0.446 0.456 0.445 0.440 0.452 0.550 0.513 0.497 0.475 0.507 0.489 0.841 0.710 1.058 0.801

E
T

T
h2

96 0.287 0.339 0.290 0.339 0.325 0.364 0.333 0.387 0.340 0.374 0.358 0.397 0.340 0.391 0.397 0.437 0.346 0.388 0.645 0.597 3.755 1.525
192 0.364 0.391 0.375 0.388 0.433 0.427 0.477 0.476 0.402 0.414 0.429 0.439 0.430 0.439 0.520 0.504 0.456 0.452 0.788 0.683 5.602 1.931
336 0.409 0.427 0.414 0.425 0.471 0.457 0.594 0.541 0.452 0.452 0.496 0.487 0.485 0.479 0.626 0.559 0.482 0.486 0.907 0.747 4.721 1.835
720 0.425 0.445 0.419 0.437 0.499 0.480 0.831 0.657 0.424 0.444 0.463 0.474 0.500 0.497 0.863 0.672 0.515 0.511 0.963 0.783 3.647 1.625

Avg 0.371 0.400 0.375 0.397 0.432 0.432 0.559 0.515 0.414 0.427 0.437 0.449 0.439 0.452 0.602 0.543 0.450 0.459 0.826 0.703 4.431 1.729
Me 0.386 0.409 0.395 0.406 0.452 0.442 0.536 0.509 0.427 0.433 0.446 0.457 0.458 0.459 0.573 0.532 0.469 0.469 0.848 0.715 4.238 1.730

E
T

T
m

1

96 0.313 0.348 0.351 0.370 0.375 0.402 0.345 0.372 0.338 0.375 0.379 0.419 0.375 0.398 0.374 0.409 0.505 0.475 0.543 0.510 0.672 0.571
192 0.361 0.376 0.392 0.393 0.427 0.434 0.380 0.389 0.374 0.387 0.426 0.441 0.408 0.410 0.400 0.407 0.553 0.496 0.557 0.537 0.795 0.669
336 0.383 0.396 0.424 0.413 0.455 0.452 0.413 0.413 0.408 0.407 0.445 0.459 0.435 0.428 0.438 0.438 0.621 0.537 0.754 0.655 1.212 0.871
720 0.451 0.435 0.485 0.448 0.527 0.488 0.474 0.453 0.478 0.442 0.543 0.490 0.499 0.462 0.527 0.502 0.671 0.561 0.908 0.724 1.166 0.823

Avg 0.377 0.388 0.413 0.406 0.446 0.444 0.403 0.407 0.400 0.403 0.448 0.452 0.429 0.425 0.435 0.439 0.588 0.517 0.691 0.607 0.961 0.734
Me 0.380 0.393 0.408 0.403 0.441 0.443 0.397 0.401 0.391 0.397 0.436 0.450 0.422 0.419 0.419 0.423 0.587 0.517 0.656 0.596 0.981 0.746

E
T

T
m

2

96 0.174 0.257 0.181 0.264 0.191 0.272 0.193 0.292 0.187 0.267 0.203 0.287 0.189 0.280 0.209 0.308 0.255 0.339 0.435 0.507 0.365 0.453
192 0.238 0.302 0.246 0.304 0.261 0.316 0.284 0.362 0.249 0.307 0.269 0.328 0.253 0.319 0.311 0.382 0.281 0.340 0.730 0.673 0.533 0.563
336 0.297 0.338 0.306 0.341 0.330 0.358 0.369 0.427 0.321 0.351 0.325 0.366 0.314 0.357 0.442 0.446 0.339 0.372 1.201 0.845 1.363 0.887
720 0.390 0.393 0.407 0.397 0.450 0.427 0.554 0.522 0.408 0.403 0.421 0.415 0.414 0.413 0.675 0.587 0.433 0.432 3.625 1.451 3.379 1.338

Avg 0.274 0.322 0.285 0.327 0.308 0.343 0.350 0.401 0.291 0.333 0.305 0.349 0.293 0.342 0.409 0.436 0.327 0.371 1.498 0.869 1.410 0.810
Me 0.276 0.323 0.276 0.323 0.296 0.337 0.327 0.395 0.285 0.330 0.297 0.347 0.284 0.338 0.377 0.424 0.310 0.356 0.966 0.759 0.948 0.725
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Figure 7: Visualisation of dependencies captured by PDD. (a) Attention-based cross-variable depen-
dency. (b) Attention-based periodic dependency. (c) Convolutional kernel weights within the PSE.
(d) Feature down-sampling (FDS) weights.

E.1 RESISTANCE TO GAUSSIAN NOISE

We inject Gaussian noise with σ ∈ {0.0, 0.1, . . . , 1.0} into the Electricity dataset via x′
t = xt + ϵ,

ϵ ∼ N (0, σ2). Even at σ = 1.0, performance deteriorates only marginally, indicating graceful
degradation across prediction lengths.

E.2 TOLERANCE TO MISSING VALUES

We randomly mask a proportion m ∈ {0.0, 0.1, 0.3, 0.5, 0.7} of each input sequence. PDD remains
resilient even with 70% missing values, thanks to its residual refinement design that first captures
stable permutation-invariant structures.
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Figure 8: Training trajectories of the full Transformer on Electricity and Traffic datasets. Training
stops once early-stopping patience (three epochs) is exceeded.

F TRANSFORMER LIMITATIONS ANALYSIS

Transformer-based methods dominate multivariate time-series forecasting yet can struggle to exploit
historical context due to gradient conflicts arising from mixed dependency modelling (Zeng et al.,
2023; Liu et al., 2024; Gao et al., 2025). We compare the full encoder–decoder Transformer with a
decoder-only variant that receives minimal historical information.

Figure 8 shows training trajectories on the Electricity and Traffic datasets under a learning rate of
1 × 10−4. The encoder– decoder configuration rapidly overfits, as evidenced by a steep decline in
training loss but stagnant validation loss.

Figure 9 contrasts the forecasting accuracy of the two models. The full Transformer occasionally
outperforms the decoder-only version yet the gap is narrow and sometimes reversed, indicating in-
efficient use of historical signals. These findings align with prior observations that simply extending
context length yields limited gains without careful dependency decoupling.

G SUMMARY OF VISUAL ANALYSIS

The qualitative forecasts in Figures 10–12 illustrate that PDD tracks complex dynamics across
datasets. On Traffic, PDD captures sharp transitions and periodic structure. On Electricity,
predictions align closely with ground truth except for a few abrupt spikes (highlighted in red). On
Weather, despite high volatility, PDD still follows primary trends, demonstrating resilience to
irregular dynamics.
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Figure 9: Comparison between encoder–decoder and decoder-only Transformers on the Electricity
(top) and Traffic (bottom) datasets.
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Figure 10: Forecast visualisation on the Traffic dataset.
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Figure 11: Forecast visualisation on the Electricity dataset. Red circles mark isolated discrepancies.
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Figure 12: Forecast visualisation on the Weather dataset.
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