
OPT2023: 15th Annual Workshop on Optimization for Machine Learning

Understanding the Role of Optimization in Double Descent

Chris Yuhao Liu YLIU298@UCSC.EDU
Department of Computer Science and Engineering
University of California, Santa Cruz
Santa Cruz, CA, USA

Jeffrey Flanigan JMFLANIG@UCSC.EDU

Department of Computer Science and Engineering
University of California, Santa Cruz
Santa Cruz, CA, USA

Abstract
The phenomenon of model-wise double descent, where the test error peaks and then reduces as the
model size increases, is an interesting topic that has attracted the attention of researchers due to the
striking observed gap between theory and practice [2]. Additionally, while double descent has been
observed in various tasks and architectures, the peak of double descent can sometimes be noticeably
absent or diminished, even without explicit regularization, such as weight decay and early stopping.
In this paper, we investigate this intriguing phenomenon from the optimization perspective and
propose a simple optimization-based explanation for why double descent sometimes occurs weakly
or not at all. To the best of our knowledge, we are the first to demonstrate that many disparate factors
contributing to model-wise double descent (initialization, normalization, batch size, learning rate,
optimization algorithm) are unified from the viewpoint of optimization: model-wise double descent
is observed if and only if the optimizer can find a sufficiently low-loss minimum. These factors
directly affect the condition number of the optimization problem or the optimizer and thus affect
the final minimum found by the optimizer, reducing or increasing the height of the double descent
peak. We conduct a series of controlled experiments on random feature models and two-layer
neural networks under various optimization settings, demonstrating this optimization-based unified
view. Our results suggest the following implication: Double descent is unlikely to be a problem for
real-world machine learning setups. Additionally, our results help explain the gap between weak
double descent peaks in practice and strong peaks observable in carefully designed setups.

1. Introduction

The phenomenon of double descent [2, 40], where the generalization error first decreases, increases,
and then decreases again as the model size P surpasses the dataset size N (the interpolation threshold),
has attracted a lot of attention from the machine learning community. This unexpected behavior calls
into question the traditional understanding of generalization in both under- and over-parameterized
regimes. Over the past few years, the double descent phenomenon has been observed in various
models [5, 16, 40, 51] and learning paradigms [8, 9, 21, 40, 50]. Previous research has contributed
to our understanding of the double descent phenomenon in various contexts and from different
perspectives, including bias-variance trade-off tools [11, 57], VC theory [34], condition numbers
[32, 52] (the ratio between the maximum and the minimum singular values of the data matrix for
linear regression), and aspects of optimization [17, 18, 29]. Although double descent is ubiquitous

© C.Y. Liu & J. Flanigan.



UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

across many machine learning and deep learning setups, it is not always observed [1, 4, 10, 24, 54],
and depends heavily on various factors [12, 19, 30, 35, 40, 47, 48].

Many factors contribute to double descent occurring or not occurring in any given deep learning
setup. These include the initialization, learning rate, scale of features, normalization, batch size,
and choice of optimization algorithm. For the first time, we demonstrate that the effect of all these
disparate factors is unified into a single phenomenon from the viewpoint of optimization: double
descent is observed if and only if the given optimizer1 can find a sufficiently low-loss minimum.
For hyper-parameters affecting the underlying optimization problem, the condition number (the
ratio between the largest and the smallest singular values of the feature matrix) is affected, which
in turn affects the minimum being found by the optimizer. For hyper-parameters affecting the
optimizer directly, those that lead to a worse minimum reduce the peak of double descent. Although,
in hindsight, these results are intuitive and almost obvious, we are unaware of any prior work
connecting these phenomena in this simple manner.

Our results on simple random feature models and two-layer neural networks indicate that
classifiers in practice are unlikely to exhibit the peaking phenomenon. First, inductive biases and
hyperparameters are usually chosen carefully using a validation set to prevent overfitting so that no
model is over-trained. Second, even if a model overfits, many iterations are required for critically
parameterized models to exhibit a strong double descent curve (Section 6). Therefore, realistic setups
already act as a “natural” mitigator of double descent. While no existing theoretical framework
explains all our results, we believe our results are particularly useful for suggesting avenues for
further theoretical study.

2. Related Work

There has been some previous work investigating when the double descent phenomena occur and
when it doesn’t [1, 4, 10, 19, 24, 30, 41, 54]. Previous work has shown that the number of iterations
(early-stopping) can affect the double descent peak, and sometimes eliminate it [3, 40, 57]. A recent
study also argues that the double descent occurs due to label noise [20], but we show that double
descent can be observed with clean datasets. However, we are unaware of any work investigating
the effect of normalization, learning rate, batch size, choice of optimization algorithm, or the other
hyperparameters we investigate on the observed peak in double descent.

Apart from the double descent phenomenon in generalization error, prior work, from the optimiza-
tion perspective, has also identified a similar descent-like phenomenon in the condition number for
simple linear regression problems. Specifically, for least-squares linear regression, prior theoretical
and experimental work has shown that the condition number increases near the peak of the double
descent, where the condition number here is the ratio between the maximum and the minimum
singular values of the data matrix for linear regression. Poggio et al. [46] is the first to show that the
condition number for a random matrix peaks when the number of rows equals the number of columns
for linear regression. Rangamani et al. [49] demonstrated that the condition number regulates the
stability of the least squares solution, which is why the error peaks at P = N . Kuzborskij et al. [32]
argued that the condition number of the feature matrix is determined only by the minimal singular
value under the assumption that the maximum singular value is constant. Their theory included
dependence of the excess risk on the minimal eigenvalue. Mei and Montanari [38] hypothesized

1. We use the term “optimizer” to refer to an optimization algorithm configured with the corresponding hyperparameters.

2



UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

that the peaking at P = N can be explained by the explosion of the variance, which is related to the
condition number.

To the best of our knowledge, previous studies have theoretically identified the peak in the
condition number of random matrices and observed it in some real datasets but have not established
a connection to the double descent curve. Our work connects the previous finding on the peaking of
the condition number and its effect on a double descent curve. In Figure 1, the condition number is
largest at P = N (the double descent peak), which agrees with theoretical results. We find that this
makes optimization harder at P = N , so models are less likely to converge, which causes the peak
of double descent to be reduced or disappear, but reappear with longer training (Section 6). This
finding extends the previous ones because we show the interplay of the condition numbers in features
and other elements in optimization. Our observation on condition number also extends the previous
work in that we can control the magnitude of double descent by controlling the condition number, as
shown in Figures 1, 6 and 7. Our work is also related to the mitigation of double descent, which we
briefly discuss in Appendix B.

3. Experimental Setup

We present empirical evidence on random feature models trained on MNIST [33] and include
additional results for both random feature models and two-layer neural networks on Fashion-MNIST
[56] and CIFAR-10 [31] in Appendix C. Full experimental details are given in Appendix A. We also
emphasize that we choose a setup that avoids known factors that could mitigate the double descent
phenomenon as much as possible. Specifically, we do not use early stopping, which is known to
remove the double descent phenomenon [3, 40, 57] . On the contrary, in the default setup, we train
all models for a sufficient number of epochs (1000) so that most models converge in the first 1/10 of
the epochs. To further exclude the possibility of stopping too early, even in this scenario (which is
not likely), we extend it to 10,000 epochs in Section 6. We also do not use any norm-based weight
penalty to restrict the parameter space [41] or add dropout layers during training. See Appendix A
for a detailed experimental setup.

4. Poor Conditioning Reduces Double Descent

It is well-known from optimization theory that better conditioning leads to faster convergence for
gradient descent optimization [42]. We observe that the height of the double descent peak negatively
correlates with the condition number of the random feature matrices. In Figure 1, we see that, at
P = N , the peak in condition number is always present, regardless of the peak in double descent.
However, the height of the condition number matters because the setting with a lower condition
number (lighter color in row 1) corresponds to a more prominent double descent peak (lighter color
in row 2). Here, the poor conditioning of the optimization problem makes it more difficult for
the model around P/N = 1 and the optimization algorithm to converge to a sufficiently low-loss
minimum, as illustrated in the third row in Figure 1. Previous studies also have shown the condition
number peaks at the peak of the double descent (which occurs at P = N ) [7, 23, 32, 46, 49]. We
observe this to be the case in Figure 1, confirming the findings of these previous studies.

We see that the double descent peaks disappear when the feature matrix is 1) unnormalized, or
when the random matrix/features have a smaller scale due to the 2) scaling of the features (e.g.,
scaling the feature matrix by a small constant) or 3) the initialization of the random matrix (e.g.,

3



UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

0 1 2 3 4 5
P/N

10
1

10
3

10
5

m
ax

/
m

in
Normalization

0 1 2 3 4 5
P/N

m
ax

/
m

in

Scale of Features

0 1 2 3 4 5
P/N

m
ax

/
m

in

Random Matrix Initialization Scale

0 1 2 3 4 5
P/N

0.1

0.2

0.3

0.4

0.5

Te
st

 E
rr

or

Unnormalized
Normalized

0 1 2 3 4 5
P/N

Te
st

 E
rr

or
0.1
0.2
0.5
1
1.1
1.2
1.5

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

0.1
0.2
0.5
1
1.1
1.2
1.5

0 1 2 3 4 5
P/N

10
9

10
7

10
5

10
3

10
1

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss

Figure 1: Condition number, test
error, and training loss on random
feature models with varying proper-
ties features on an RFM with ReLU
features. Darker colors represent
higher condition number in row
1, weaker double descent in row
2, and high training loss in row
3. Row 1: Normalizing the data
and increasing the scale of the fea-
tures and random matrix yield bet-
ter (smaller) condition numbers at
P = N . Row 2: Double de-
scent does not occur in unnormal-
ized, small-scale input features and
small random matrix initialization.
Double descent is observed more
strongly when a lower condition
number is at the peak. Row 3: A
higher double descent peak corre-
sponds to a lower training loss at
P = N .

from a normal distribution with a small variance) (because they all change the input features to
the linear classifier). We plot the training loss and observe that the setting where double descent
occurs has a training loss much smaller than one in which double descent does not occur (Figure 1,
bottom). The condition number is largest at P = N (the double descent peak) in Figure 1, which
agrees with prior theoretical results (see Section 2). We find that this makes optimization harder
at P = N , so models do not converge, which causes the peak of double descent to be reduced or
disappear, but reappear with longer training (Section 6). We observe that double descent tends to
occur in better-conditioned matrices because a lower minimum is found by the optimizer.

5. Slow-Convergence Leads to Disappearance of Double Descent

Our results suggest that a slow-convergence setting2 often reduces or removes the peaking phe-
nomenon, and fast-convergence setting (i.e., finding a lower minimum) restores the peaking phe-
nomenon. We observe this pattern in hyperparameters that affect the optimizer, such as learning rate
(constant and decay), batch size, and optimization algorithm. All three factors can be considered as
affecting the convergence of the optimizer directly, where a higher minimum found by the optimizer
corresponds to a less prominent peak.

We observe that a faster-convergence optimization algorithm that finds a lower loss minimum
exhibits double descent more strongly, and slow-convergence settings may not exhibit it at all (last
two columns of Figure 2). We observe that the peak height negatively correlates with the training
loss at P = N . For curves with Cholesky decomposition, the error rate approaches random guessing

2. We use the term “slow-convergence setting” to refer to situations where the model converges slowly given the
optimization problem, the optimization algorithm, its associated hyperparameters, and all other hyperparameters.

4



UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

0 1 2 3 4 5
P/N

0.20

0.25

0.30

0.35

0.40

0.45

0.50
Te

st
 E

rr
or

Learning Rate
1e-3
2e-3
5e-3
1e-2
2e-2

0 1 2 3 4 5
P/N

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Te
st

 E
rr

or

Learning Rate Decay
ISR1
ISR8
ISR16
ISR128
ISR512
Const

0 1 2 3 4 5
P/N

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Te
st

 E
rr

or

Batch Size
Full
256
128
64
32
16
8

0 1 2 3 4 5
P/N

0.2

0.4

0.6

0.8

1.0

Te
st

 E
rr

or

Ridge Regression Optimizer
SGD
SAGA
LSQR
Cholesky

0 1 2 3 4 5
P/N

0.2

0.4

0.6

0.8

1.0

Te
st

 E
rr

or

Logistic Regression Optimizer
SGD
SAGA
Newton-Cholesky

0 1 2 3 4 5
P/N

10
9

10
7

10
5

10
3

10
1

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

10
9

10
7

10
5

10
3

10
1

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

10
11

10
8

10
5

10
2

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

10
19

10
15

10
11

10
7

10
3

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

10
4

10
3

10
2

10
1

10
0

Tr
ai

n 
Lo

ss

Figure 2: Test error and training loss on random feature models with varying learning rates, batch
sizes, and optimization algorithms. Double descent occurs with a sufficiently large and steady
learning rate, a small enough batch size, or a low-enough minimum is obtained by the optimizer.

in both ridge regression and logistic regression. Similar observations can be made on SAGA and
SGD, where the double descent peak occurs mildly with a slight increase in test error.

We observe that low learning rates, which are insufficient to reach a low-loss minimum, reduce
or eliminate the double descent peak (first column of Figure 2). When the overparameterization
ratio P/N is greater than 3, using a lower learning rate has almost no impact on the test error, but it
eliminates the peak without any form of explicit regularization. The same result holds for learning
rate decay. We observe that faster learning rate decay has a similar effect to a small constant learning
rate, and decaying every iteration removes the peak entirely. Both imply that the emergence of double
descent requires maintaining a stable and large enough learning rate during training, corresponding
to a faster convergence optimization setting that lands at a lower minimum loss.

We observe that large batch sizes reduce or eliminate the double descent phenomenon. In
Figure 2, the peaking phenomenon disappears on the generalization curve for batch sizes of 500
(full-batch) and 256. Modifying the batch size changes the number of updates the optimization
algorithm performs. Thus, large batch sizes take fewer steps.

6. Training Longer Recovers Double Descent

We show that for hyper-parameter setups that do not exhibit double descent, we can recover this
phenomenon simply by running the optimization procedure longer to reach a lower training loss.
In Figure 3, we increase the number of iterations by a factor of 10 so that the training loss of a
slow-convergence setting is aligned with or approaches the default (a much lower one). We observe
that the double descent peak is recovered for all factors. Precisely, in Figure 3 for the learning rate
(column 4) and batch size (column 6), both the test error and training loss curves with ten times the
original epochs exactly overlap with curves produced by the faster-converging optimization setup
(i.e., the larger learning rate of 1e−2 or the smaller batch size of 32). Our results suggest that the
optimization length is a simple but strong indicator of why double descent is observed in some
realistic settings.

5



UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

0 1 2 3 4 5
P/N

0.1

0.2

0.3

0.4

0.5
Te

st
 E

rr
or

Normalization
Unnormalized
Unnormalized (10x)
Normalized

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

Scale of Features

0.2
0.2 (10x)
1

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

Random Matrix Init Scale

0.2
0.2 (10x)
1

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

Learning rate

1e-3
1e-3 (10x)
1e-2

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

Learning Rate Decay

ISR8
ISR8 (10x)
Const

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

Batch Size

Full
Full (16x)
32

0 1 2 3 4 5
P/N

10
9

10
7

10
5

10
3

10
1

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss
0 1 2 3 4 5

P/N

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss

Figure 3: Test error and training loss on random feature models with varying learning rates, batch
sizes, and optimization algorithms at 10x iterations. The peaking phenomenon is recovered as long
as a sufficient number of gradient updates is applied, even for ill-conditioned features.

In practical settings, proper regularization often prevents models from reaching 0 training error.
Even though no explicit regularization is applied, we usually do not continue training for a large
number of epochs when the model has already overfit the training set. In our experiments, for double
descent to recover Figure 3, models are usually trained 200-400 times longer after converging to 0
training error, which is not realistic for deep and large models used in practice. This also implies that
the peak’s emergence rate largely depends on the specific optimization setup, where optimization
settings that converge slowly do not exhibit the peaking behavior.

7. Experiments with Two-Layer Neural Networks

We present results on two-layer neural networks in Figure 9 in the Appendix. Despite the fact that
two-layer neural networks are fully non-linear models, we observe that the results on two-layer
neural networks are consistent with our previous findings on random feature models.

8. Conclusion

In dissecting the occurrence of double descent in machine learning, our study elucidates a unify-
ing underlying phenomenon tied to optimization: double descent occurs when the optimizer can
achieve a low-loss minimum. While seemingly disconnected, factors like initialization, learning rate,
normalization, batch size, and optimizer choice work together to influence the overall optimization
trajectory, thereby affecting the optimizer’s path to a minimum. Our findings not only simplify the
understanding of these variables but also shed light on the practical likelihood of double descent,
which is minimized due to careful hyperparameter selections and inherent inductive biases in real-
world setups. Although current theoretical frameworks fall short of encapsulating our observations
entirely, our results shed light on promising directions for deeper theoretical scrutiny into the interplay
between optimization and double descent, thereby paving the way for a deeper understanding of the
intriguing phenomenon.

6



UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

References

[1] Jimmy Ba, Murat A. Erdogdu, Taiji Suzuki, Denny Wu, and Tianzong Zhang. Generalization of
two-layer neural networks: An asymptotic viewpoint. In 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. URL https://openreview.net/forum?id=H1gBsgBYwH.

[2] Mikhail Belkin, Daniel J. Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias-variance trade-off. Proceedings of the National Academy
of Sciences, 116:15849–15854, 2018.

[3] Anthony Bodin and Nicolas Macris. Model, sample, and epoch-wise descents: exact solution
of gradient flow in the random feature model. In Neural Information Processing Systems, 2021.
URL https://api.semanticscholar.org/CorpusID:239616354.

[4] Sebastian Buschjäger and Katharina Morik. There is no double-descent in random forests.
ArXiv preprint, abs/2111.04409, 2021. URL https://arxiv.org/abs/2111.04409.

[5] Xiangyu Chang, Yingcong Li, Samet Oymak, and Christos Thrampoulidis. Provable benefits of
overparameterization in model compression: From double descent to pruning neural networks.
In AAAI Conference on Artificial Intelligence, 2020.

[6] John Chen, Qihan Wang, and Anastasios Kyrillidis. Mitigating deep double descent by
concatenating inputs. Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, 2021.

[7] Zhijun Chen and Hayden Schaeffer. Conditioning of random feature matrices: Double descent
and generalization error. ArXiv preprint, abs/2110.11477, 2021. URL https://arxiv.
org/abs/2110.11477.

[8] Andrew Cotter, Aditya Krishna Menon, Harikrishna Narasimhan, Ankit Singh Rawat, Sashank J.
Reddi, and Yichen Zhou. Distilling double descent. ArXiv preprint, abs/2102.06849, 2021.
URL https://arxiv.org/abs/2102.06849.

[9] Yehuda Dar and Richard Baraniuk. Double double descent: On generalization errors in
transfer learning between linear regression tasks. ArXiv preprint, abs/2006.07002, 2020. URL
https://arxiv.org/abs/2006.07002.

[10] Yehuda Dar, Paul Mayer, Lorenzo Luzi, and Richard G. Baraniuk. Subspace fitting meets
regression: The effects of supervision and orthonormality constraints on double descent of
generalization errors. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pages 2366–2375. PMLR, 2020. URL http://proceedings.mlr.press/
v119/dar20a.html.

[11] Stéphane d’Ascoli, Maria Refinetti, Giulio Biroli, and Florent Krzakala. Double trouble in
double descent : Bias and variance(s) in the lazy regime. In International Conference on
Machine Learning, 2020.

7

https://openreview.net/forum?id=H1gBsgBYwH
https://api.semanticscholar.org/CorpusID:239616354
https://arxiv.org/abs/2111.04409
https://arxiv.org/abs/2110.11477
https://arxiv.org/abs/2110.11477
https://arxiv.org/abs/2102.06849
https://arxiv.org/abs/2006.07002
http://proceedings.mlr.press/v119/dar20a.html
http://proceedings.mlr.press/v119/dar20a.html


UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

[12] Stéphane d’Ascoli, Levent Sagun, and Giulio Biroli. Triple descent and the two kinds of
overfitting: where and why do they appear? Journal of Statistical Mechanics: Theory and
Experiment, 2021, 2020.

[13] Aaron Defazio, Francis R. Bach, and Simon Lacoste-Julien. SAGA: A fast incremental
gradient method with support for non-strongly convex composite objectives. In Zoubin
Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27: Annual Conference on Neu-
ral Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 1646–1654, 2014. URL https://proceedings.neurips.cc/paper/2014/
hash/ede7e2b6d13a41ddf9f4bdef84fdc737-Abstract.html.

[14] Oussama Dhifallah and Yue M. Lu. A precise performance analysis of learning with random
features. ArXiv preprint, abs/2008.11904, 2020. URL https://arxiv.org/abs/2008.
11904.

[15] Melikasadat Emami, Mojtaba Sahraee-Ardakan, Parthe Pandit, Sundeep Rangan, and Alyson K.
Fletcher. Generalization error of generalized linear models in high dimensions. In Proceedings
of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages 2892–2901.
PMLR, 2020. URL http://proceedings.mlr.press/v119/emami20a.html.

[16] Nayara Fonseca and Veronica Guidetti. Similarity and generalization: From noise to corruption.
ArXiv preprint, abs/2201.12803, 2022. URL https://arxiv.org/abs/2201.12803.

[17] Matteo Gamba, Erik Englesson, Marten Bjorkman, and Hossein Azizpour. Deep double
descent via smooth interpolation. ArXiv preprint, abs/2209.10080, 2022. URL https:
//arxiv.org/abs/2209.10080.

[18] Matteo Gamba, Hossein Azizpour, and Marten Bjorkman. On the lipschitz constant of deep
networks and double descent. ArXiv preprint, abs/2301.12309, 2023. URL https://arxiv.
org/abs/2301.12309.

[19] Yufei Gu, Xiaoqing Zheng, and Tomaso Aste. Unraveling the enigma of double descent: An
in-depth analysis through the lens of learned feature space. ArXiv preprint, abs/2310.13572,
2023. URL https://arxiv.org/abs/2310.13572.

[20] Arunav Gupta, Rohit Mishra, William Luu, and Mehdi Bouassami. On feature scaling of
recursive feature machines. ArXiv preprint, abs/2303.15745, 2023. URL https://arxiv.
org/abs/2303.15745.

[21] Hamed Hassani and Adel Javanmard. The curse of overparametrization in adversarial training:
Precise analysis of robust generalization for random features regression. ArXiv preprint,
abs/2201.05149, 2022. URL https://arxiv.org/abs/2201.05149.

[22] Trevor J. Hastie, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani. Surprises in
high-dimensional ridgeless least squares interpolation. Annals of statistics, 50 2:949–986, 2019.

8

https://proceedings.neurips.cc/paper/2014/hash/ede7e2b6d13a41ddf9f4bdef84fdc737-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/ede7e2b6d13a41ddf9f4bdef84fdc737-Abstract.html
https://arxiv.org/abs/2008.11904
https://arxiv.org/abs/2008.11904
http://proceedings.mlr.press/v119/emami20a.html
https://arxiv.org/abs/2201.12803
https://arxiv.org/abs/2209.10080
https://arxiv.org/abs/2209.10080
https://arxiv.org/abs/2301.12309
https://arxiv.org/abs/2301.12309
https://arxiv.org/abs/2310.13572
https://arxiv.org/abs/2303.15745
https://arxiv.org/abs/2303.15745
https://arxiv.org/abs/2201.05149


UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

[23] Hanwen Huang and Qinglong Yang. Large scale analysis of generalization error in learning
using margin based classification methods. Journal of Statistical Mechanics: Theory and
Experiment, 2020, 2020.

[24] Lang Huang, Chao Zhang, and Hongyang Zhang. Self-adaptive training: beyond empirical risk
minimization. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/
hash/e0ab531ec312161511493b002f9be2ee-Abstract.html.

[25] Lang Huang, Chaoning Zhang, and Hongyang Zhang. Self-adaptive training: Bridging the
supervised and self-supervised learning. IEEE transactions on pattern analysis and machine
intelligence, PP, 2021.

[26] Ningyuan Teresa Huang, David W. Hogg, and Soledad Villar. Dimensionality reduction,
regularization, and generalization in overparameterized regressions. SIAM J. Math. Data Sci.,
4:126–152, 2020.

[27] Like Hui and Mikhail Belkin. Evaluation of neural architectures trained with square loss vs
cross-entropy in classification tasks. ArXiv preprint, abs/2006.07322, 2020. URL https:
//arxiv.org/abs/2006.07322.

[28] Kelvin K. Kan, James G. Nagy, and Lars Ruthotto. Avoiding the double descent phenomenon
of random feature models using hybrid regularization. ArXiv preprint, abs/2012.06667, 2020.
URL https://arxiv.org/abs/2012.06667.

[29] Ganesh Ramachandra Kini and Christos Thrampoulidis. Analytic study of double descent in
binary classification: The impact of loss. 2020 IEEE International Symposium on Information
Theory (ISIT), pages 2527–2532, 2020.

[30] Jesse H. Krijthe and M. Loog. The peaking phenomenon in semi-supervised learning. In
International Workshop on Structural and Syntactic Pattern Recognition, 2016.

[31] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

[32] Ilja Kuzborskij, Csaba Szepesvari, Omar Rivasplata, Amal Rannen-Triki, and Razvan Pascanu.
On the role of optimization in double descent: A least squares study. In Neural Information
Processing Systems, 2021.

[33] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[34] Eng Hock Lee and Vladimir Cherkassky. Vc theoretical explanation of double descent. ArXiv
preprint, abs/2205.15549, 2022. URL https://arxiv.org/abs/2205.15549.

[35] Licong Lin and Edgar Dobriban. What causes the test error? going beyond bias-variance via
anova. J. Mach. Learn. Res., 22:155:1–155:82, 2020.

9

https://proceedings.neurips.cc/paper/2020/hash/e0ab531ec312161511493b002f9be2ee-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e0ab531ec312161511493b002f9be2ee-Abstract.html
https://arxiv.org/abs/2006.07322
https://arxiv.org/abs/2006.07322
https://arxiv.org/abs/2012.06667
https://arxiv.org/abs/2205.15549


UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

[36] Bruno Loureiro, C’edric Gerbelot, Maria Refinetti, Gabriele Sicuro, and Florent Krzakala.
Fluctuations, bias, variance & ensemble of learners: Exact asymptotics for convex losses in
high-dimension. ArXiv preprint, abs/2201.13383, 2022. URL https://arxiv.org/abs/
2201.13383.

[37] Lorenzo Luzi, Yehuda Dar, and Richard Baraniuk. Double descent and other interpolation
phenomena in gans. ArXiv preprint, abs/2106.04003, 2021. URL https://arxiv.org/
abs/2106.04003.

[38] Song Mei and Andrea Montanari. The generalization error of random features regression:
Precise asymptotics and the double descent curve. Communications on Pure and Applied
Mathematics, 75, 2019.

[39] Diganta Misra. Mish: A self regularized non-monotonic activation function. In 31st British
Machine Vision Conference 2020, BMVC 2020, Virtual Event, UK, September 7-10, 2020.
BMVA Press, 2020. URL https://www.bmvc2020-conference.com/assets/
papers/0928.pdf.

[40] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.
Deep double descent: Where bigger models and more data hurt. In 8th International Con-
ference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.net/forum?id=B1g5sA4twr.

[41] Preetum Nakkiran, Prayaag Venkat, Sham M. Kakade, and Tengyu Ma. Optimal regularization
can mitigate double descent. ArXiv preprint, abs/2003.01897, 2020. URL https://arxiv.
org/abs/2003.01897.

[42] Yurii Nesterov. Lectures on convex optimization. 2018. URL https://api.
semanticscholar.org/CorpusID:125291746.

[43] Christopher C. Paige and Michael A. Saunders. Lsqr: An algorithm for sparse linear equations
and sparse least squares. ACM Trans. Math. Softw., 8:43–71, 1982.

[44] Pratik V. Patil, Jin-Hong Du, and Arun K. Kuchibhotla. Bagging in overparameterized learning:
Risk characterization and risk monotonization. 2022.

[45] Pratik V. Patil, Arun K. Kuchibhotla, Yuting Wei, and Alessandro Rinaldo. Mitigating
multiple descents: A model-agnostic framework for risk monotonization. ArXiv preprint,
abs/2205.12937, 2022. URL https://arxiv.org/abs/2205.12937.

[46] Tomaso A. Poggio, Gil Kur, and Andy Banburski. Double descent in the condition number.
ArXiv preprint, abs/1912.06190, 2019. URL https://arxiv.org/abs/1912.06190.

[47] Victor Qu’etu and Enzo Tartaglione. Can we avoid double descent in deep neural networks?
2023.

[48] Victor Qu’etu and Enzo Tartaglione. Dodging the sparse double descent. ArXiv preprint,
abs/2303.01213, 2023. URL https://arxiv.org/abs/2303.01213.

10

https://arxiv.org/abs/2201.13383
https://arxiv.org/abs/2201.13383
https://arxiv.org/abs/2106.04003
https://arxiv.org/abs/2106.04003
https://www.bmvc2020-conference.com/assets/papers/0928.pdf
https://www.bmvc2020-conference.com/assets/papers/0928.pdf
https://openreview.net/forum?id=B1g5sA4twr
https://arxiv.org/abs/2003.01897
https://arxiv.org/abs/2003.01897
https://api.semanticscholar.org/CorpusID:125291746
https://api.semanticscholar.org/CorpusID:125291746
https://arxiv.org/abs/2205.12937
https://arxiv.org/abs/1912.06190
https://arxiv.org/abs/2303.01213


UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

[49] Akshay Rangamani, Lorenzo Rosasco, and Tomaso A. Poggio. For interpolating kernel ma-
chines, minimizing the norm of the erm solution maximizes stability. Analysis and Applications,
2020.

[50] Leslie Rice, Eric Wong, and J. Zico Kolter. Overfitting in adversarially robust deep learning. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages
8093–8104. PMLR, 2020. URL http://proceedings.mlr.press/v119/rice20a.
html.

[51] Mojtaba Sahraee-Ardakan, Tung Mai, Anup B. Rao, Ryan A. Rossi, Sundeep Rangan, and
Alyson K. Fletcher. Asymptotics of ridge regression in convolutional models. In International
Conference on Machine Learning, 2021.

[52] Rylan Schaeffer, Mikail Khona, Zachary Robertson, Akhilan Boopathy, Kateryna Pistunova, Ja-
son W. Rocks, Ila Rani Fiete, and Oluwasanmi Koyejo. Double descent demystified: Identifying,
interpreting & ablating the sources of a deep learning puzzle. ArXiv preprint, abs/2303.14151,
2023. URL https://arxiv.org/abs/2303.14151.

[53] Vasu Singla, Sahil Singla, David Jacobs, and Soheil Feizi. Low curvature activations reduce
overfitting in adversarial training. 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 16403–16413, 2021.

[54] Jianxin Wang and José Bento. Optimal activation functions for the random features regression
model. ArXiv preprint, abs/2206.01332, 2022. URL https://arxiv.org/abs/2206.
01332.

[55] Andrew Gordon Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic
perspective of generalization. ArXiv preprint, abs/2002.08791, 2020. URL https://arxiv.
org/abs/2002.08791.

[56] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. ArXiv preprint, abs/1708.07747, 2017. URL
https://arxiv.org/abs/1708.07747.

[57] Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, and Yi Ma. Rethinking bias-variance
trade-off for generalization of neural networks. ArXiv preprint, abs/2002.11328, 2020. URL
https://arxiv.org/abs/2002.11328.

11

http://proceedings.mlr.press/v119/rice20a.html
http://proceedings.mlr.press/v119/rice20a.html
https://arxiv.org/abs/2303.14151
https://arxiv.org/abs/2206.01332
https://arxiv.org/abs/2206.01332
https://arxiv.org/abs/2002.08791
https://arxiv.org/abs/2002.08791
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/2002.11328


UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

Appendix A. Experimental Setup and Hyperparameters

In this section, we described the detailed setup of the dataset, models, and training.

A.1. Datasets

We perform all experiments on MNIST [33], Fashion-MNIST [56], and CIFAR-10 [31]. We select
small subsets of size N from the full training set as our training data and evaluate the generalization
error using the complete test set. We trained models for RFMs with a random feature size of up to
P/N = 5, while for two-layer NNs, we utilize models up to P/N = 5 · C parameters, where C is
fixed at 10 in our setting. For two-layer NNs, the interpolation threshold is at N · C instead of N
[2]. By default, we normalize the image pixel features to follow a normal distribution by applying
the transformation X−µ

s · γ, where µ, s, γ are the mean, standard deviation, and the scaling factor,
respectively.

A.2. Training

Models. For random feature models, we use static first-layer weights W0 ∈ Rd×P and trainable
second-layer weights W1 ∈ RP×C , where P and C represent the projected feature dimension and
the number of classes, respectively. We initialize both weight matrices from W0 ∼ N

(
0, k0√

D

)
and

W1 ∼ N
(
0, k1√

P

)
, where k0 is a scaling factor for the standard deviation of the weight matrix, and

D represents the input feature dimension. k1 is always 1 in all experiments. Bias terms are always
set to 0, and the ReLU nonlinearity is used by default. Our setup for two-layer neural networks
resembles that of a random feature model. The only difference is that the first layer weights are
trained.

Optimization. In our learning rate decay experiments, we adopt an inverse square root schedule
similar to Nakkiran et al. [40], but we multiply the initial learning rate by the factor 1√

⌊t/l⌋+1
, where

t is the current iteration and l is an interval parameter. By controlling the interval l, we modify
the decay frequency during the training trajectory. In optimizer experiments, we select numerical
solvers, Cholesky and QR [43], for ridge regression and Newton-Cholesky for logistic regression
because they obtain solutions with much lower loss than SGD. We also chose SAGA [13] as an
alternative gradient-based algorithm that (empirically) converges slower than SGD with momentum
for comparison. A small regularization constant 1e-8 is used for numerical stability. In the 10x
iteration experiments, we ensure that the number of gradient updates matches that in a mini-batch
case. Given a full-batch setting, we calculate the extended number of iterations by Tnew = ⌈N/b⌉ · T ,
which is equal to the number of gradient updates in a mini-batch setting with batch size b and T
iterations.

Producing double descents. Consistent with Belkin et al. [2] and Nakkiran et al. [40], we employed
the same set of hyperparameters for all model sizes and trained them using SGD with a fixed number
of epochs and constant step size. The default hyperparameters are selected based on two training
error constraints: 1) the largest model has to attain 0 training error within the first 1/10 iterations,
and 2) (at least) all models with P ≥ N have to converge to 0 training error before the final iteration.
These constraints, derived from empirical observations, are fast in convergence and effective in
generating the double descent phenomenon for both RFM and two-layer NN trained with SGD on

12



UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

MNIST and Fashion-MNIST. After some exploration, we use SGD with a Nesterov momentum
of 0.95, a mini-batch size of 32, and a constant step size of 1e-2 for 1000 epochs. For two-layer
NNs, we increase the step size to 5e-2 and the number of epochs to 1500. By default, we utilize
the standard MSE loss. When a specific hyperparameter is studied, all other parameters follow the
default ones. We primarily focus on the MSE loss because it has been heavily studied in the literature
[2, 14, 15, 22, 38]. We follow the previous implementation and do not include softmax at the network
output Belkin et al. [2], Hui and Belkin [27]. In our experiments, we strictly control the confounding
variables with potential effects on the peak in all experiments, such as label noise, which could
exacerbate the curve [19, 40], and all forms of weight decay and early stopping, which are known to
flatten the peak [41]. This ensures the robustness of our results. All experiments are repeated at least
five times.

Appendix B. Related Work on Double Descent Mitigation

While we do not intend to mitigate the double descent, our work investigates conditions under
which the peak of double descent does or does not occur. Related, various techniques have been
demonstrated to successfully reduce the peak, including ℓ2 regularization [12, 28, 35, 38, 40, 41, 47,
48], ensemble methods [12, 36, 44, 55], cross-validation [45], dimensionality reduction [26], input
concatenation [6], and the type of non-linear random features [14]. Several works claim that double
descent is not observed in certain settings, even without the explicit mitigation techniques mentioned
above. These settings include self-adaptive training [24, 25], level of supervision [10, 37], random
forest models [4], a two-layer neural network with certain initialization of the first layer weight [1],
and special activation functions [53, 54]. We highlight that our focus in this paper is not to propose
a technique to mitigate double descent. Instead, we find that the conditioning of the optimization
problem and specific setups significantly affects the magnitude of the peaking phenomenon, and
models in slower-convergence settings do not exhibit the peak. However, this observation might
be helpful as a simple technique to mitigate double descent in practice, which we leave to future
research. We also emphasize the importance of carefully examining the effect of optimization in
producing double descent. This is because optimization is involved in almost all settings mentioned
above. Therefore, it is crucial to identify whether the absence of double descent is due to optimization
before examining other more complicated factors.

Appendix C. Additional Experiments

Here, we present the exact figures as in the paper’s main text but on additional datasets (Fashion-
MNIST and CIFAR-10) and two-layer neural networks. Our findings in the paper’s main text
generalize to these datasets and models.

C.1. Time Evolution of A Double Descent Curve

We present the temporal evolution of a double descent curve through gradient descent iterations,
demonstrating that the peaks form only post-model convergence. This aligns with the theoretical
findings and synthetic experiments by Bodin and Macris [3], indicating that the peaking phenomenon
at P ≈ N appears only beyond a certain iteration, with a monotonic curve prevailing prior. Figure
Figure 4 illustrates the iteration-wise change in training/test error and loss. We discern that models
at P ≈ N converge on the training set after 50 epochs. Moreover, a training span of fewer than

13



UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

0 1 2 3 4 5
P/N

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai

n 
E

rr
or

0 1 2 3 4 5
P/N

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Te
st

 E
rr

or

50 epochs
100 epochs
200 epochs
400 epochs
600 epochs
800 epochs
1000 epochs

0 1 2 3 4 5
P/N

10
9

10
7

10
5

10
3

10
1

Tr
ai

n 
Lo

ss

Figure 4: The time evolution of a double descent curve. At the interpolation threshold P = N , all
models have achieved zero training error, and the peak starts to emerge only after zero training error
is obtained.

200 epochs is inadequate for these models to manifest the peaking phenomenon. Despite the model
maintaining a zero training error up to the 1000-th epoch, the peak in test error initiates and escalates
as the training loss goes down. This insight corroborates preceding studies [3, 40], asserting that
early stopping diminishes the peak. Yet, we contend that the use of early stopping in hyperparameter
tuning might be excessive for this goal, given double descent necessitates a substantial number of
iterations post-convergence to appear. Hence, from an optimization standpoint, mitigating double
descent is feasible, provided a model is not over-trained.

C.2. Ill-Conditioned Non-Linear Features

For random feature models, another way to modify the input features is the choice of the non-linear
function. Previous work shows that activation functions reduce the peaking phenomenon [14], but we
show that we can recover the peak by simply increasing the number of iterations. In the left figure of
Figure 5, we employ ReLU, mish [39], softsign, and sigmoid nonlinearities. ReLU and sigmoid show
consistent behavior for both RFM and two-layer neural networks, even though activation functions
operate differently on these two models (i.e., one with the input and the other with the intermediate
embeddings). However, for mish and softsign, double descent is only observed in RFMs. In the
second figure of Figure 5, we show that the absence of double descent on sigmoid follows the same
pattern as our previous experiments in Figure 3. Non-linear features produced by sigmoid make
optimization difficult, resulting in monotonicity, but we can recover the peaking phenomenon by
scaling the number of iterations by 10.

14



UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

0 1 2 3 4 5
P/N

0.2

0.3

0.4

0.5

Te
st

 E
rr

or

RFM
Sigmoid
Softsign
Mish
ReLU

0 10 20 30 40
P/N

0.10

0.15

0.20

0.25

0.30

Te
st

 E
rr

or

Two-layer NN
Sigmoid
Softsign
Mish
ReLU

0 1 2 3 4 5
P/N

10
8

10
5

10
2

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

10
5

10
3

10
1

Tr
ai

n 
Lo

ss

(a) Varying nonlinearities

0 1 2 3 4 5
P/N

0.2

0.3

0.4

0.5

Te
st

 E
rr

or

RFM
Sigmoid
Sigmoid (10x)

0 10 20 30 40
P/N

0.10

0.15

0.20

0.25

0.30

Te
st

 E
rr

or

Two-layer NN
Sigmoid
Sigmoid (10x)

0 1 2 3 4 5
P/N

10
4

10
2

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

10
5

10
3

Tr
ai

n 
Lo

ss

(b) Increasing iterations

Figure 5: Left: Test error and training loss curves for RFMs trained and four different activation
functions. Models with activation functions that converge a higher training loss tend to avoid double
descent. Given the same optimization and hyperparameter setup, the sigmoid activation does not
exhibit double descent in RFM and two-layer neural networks. Right: Test error and training loss
curves for RFMs trained and sigmoid activation. 10x iterations recover double descent. This matches
our findings on the impact of a slow-convergence setting on double descent.

0 1 2 3 4 5
P/N

10
1

10
3

10
5

m
ax

/
m

in

Normalization

0 1 2 3 4 5
P/N

m
ax

/
m

in

Scale of Features

0 1 2 3 4 5
P/N

m
ax

/
m

in

Random Matrix Initialization Scale

0 1 2 3 4 5
P/N

0.1

0.2

0.3

0.4

0.5

Te
st

 E
rr

or

Unnormalized
Normalized

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

0.1
0.2
0.5
1
1.1
1.2
1.5

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

0.1
0.2
0.5
1
1.1
1.2
1.5

0 1 2 3 4 5
P/N

10
10

10
8

10
6

10
4

10
2

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss

Figure 6: Additional results to support Figure 1 using the Fashion-MNIST dataset.
15



UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

0 1 2 3 4 5
P/N

10
1

10
3

10
5

10
7

m
ax

/
m

in

Normalization

0 1 2 3 4 5
P/N

m
ax

/
m

in

Scale of Features

0 1 2 3 4 5
P/N

m
ax

/
m

in

Random Matrix Initialization Scale

0 1 2 3 4 5
P/N

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 E
rr

or

Unnormalized
Normalized

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

0.1
0.2
0.5
1
1.1
1.2
1.5

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

0.1
0.2
0.5
1
1.1
1.2
1.5

0 1 2 3 4 5
P/N

10
12

10
9

10
6

10
3

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss

Figure 7: Additional results to support Figure 1 using the CIFAR-10 dataset.

16



UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

0 10 20 30 40
P/N

0.1

0.2

0.3

0.4
Te

st
 E

rr
or

Normalization
Unnormalized
Normalized

0 10 20 30 40
P/N

Te
st

 E
rr

or

Scale of Features
0.1
0.2
0.5
1
1.1
1.2
1.5

0 10 20 30 40
P/N

Te
st

 E
rr

or

Scale of Initialization
0.1
0.2
0.5
1
1.1
1.2
1.5

0 10 20 30 40
P/N

Te
st

 E
rr

or

Learning Rate
5e-3
1e-2
2e-2
5e-2
8e-2

0 10 20 30 40
P/N

Te
st

 E
rr

or

Learning Rate Decay
ISR1
ISR4
ISR16
ISR64
ISR256
ISR1024
Const

0 10 20 30 40
P/N

Te
st

 E
rr

or

Batch Size
Full
512
256
128
64
32
16
8

0 10 20 30 40
P/N

10
5

10
3

10
1

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss
0 10 20 30 40

P/N

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss

(a) Two-layer neural network on MNIST

0 10 20 30 40
P/N

0.20

0.25

0.30

0.35

0.40

Te
st

 E
rr

or

Normalization
Unnormalized
Normalized

0 10 20 30 40
P/N

Te
st

 E
rr

or

Scale of Features
0.1
0.2
0.5
1
1.1
1.2
1.5

0 10 20 30 40
P/N

Te
st

 E
rr

or

Scale of Initialization
0.1
0.2
0.5
1
1.1
1.2
1.5

0 10 20 30 40
P/N

Te
st

 E
rr

or

Learning Rate
5e-3
1e-2
2e-2
5e-2
8e-2

0 10 20 30 40
P/N

Te
st

 E
rr

or

Learning Rate Decay
ISR1
ISR4
ISR16
ISR64
ISR256
ISR1024
Const

0 10 20 30 40
P/N

Te
st

 E
rr

or

Batch Size
Full
512
256
128
64
32
16
8

0 10 20 30 40
P/N

10
5

10
3

10
1

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss
(b) Two-layer neural network on Fashion-MNIST

Figure 8: Additional results to support Figures 1 and 2. Test error and training loss curves by
(using) normalization, varying scale of features or initialization, learning rate, batch size, and
optimization algorithm of a two-layer neural network on MNIST and Fashion-MNIST. The peaking
phenomenon becomes less prominent as the features become worse-conditioned or directly using a
slow-convergence setting.

17



UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

C.3. Slow-Convergence Settings in Optimization

0 1 2 3 4 5
P/N

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Te
st

 E
rr

or

Learning Rate
1e-3
2e-3
5e-3
1e-2
2e-2

0 1 2 3 4 5
P/N

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Te
st

 E
rr

or

Learning Rate Decay
ISR1
ISR8
ISR16
ISR128
ISR512
Const

0 1 2 3 4 5
P/N

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Te
st

 E
rr

or

Batch Size
Full
256
128
64
32
16
8

0 1 2 3 4 5
P/N

0.2

0.4

0.6

0.8

1.0

Te
st

 E
rr

or

Ridge Regression Optimizer
SGD
SAGA
LSQR
Cholesky

0 1 2 3 4 5
P/N

0.2

0.4

0.6

0.8

1.0

Te
st

 E
rr

or

Logistic Regression Optimizer
SGD
SAGA
Newton-Cholesky

0 1 2 3 4 5
P/N

10
10

10
8

10
6

10
4

10
2

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

10
10

10
8

10
6

10
4

10
2

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

10
12

10
9

10
6

10
3

Tr
ai

n 
Lo

ss
0 1 2 3 4 5

P/N

10
18

10
14

10
10

10
6

10
2

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

10
3

10
2

10
1

10
0

Tr
ai

n 
Lo

ss

(a) RFM on Fashion-MNIST

0 1 2 3 4 5
P/N

0.75

0.80

0.85

0.90

Te
st

 E
rr

or

Learning Rate
1e-3
2e-3
5e-3
1e-2
2e-2

0 1 2 3 4 5
P/N

0.75

0.80

0.85

0.90

Te
st

 E
rr

or

Learning Rate Decay
ISR1
ISR8
ISR16
ISR128
ISR512
Const

0 1 2 3 4 5
P/N

0.75

0.80

0.85

0.90

Te
st

 E
rr

or

Batch Size
Full
256
128
64
32
16
8

0 1 2 3 4 5
P/N

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 E
rr

or

Ridge Regression Optimizer
SGD
SAGA
LSQR
Cholesky

0 1 2 3 4 5
P/N

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 E
rr

or

Logistic Regression Optimizer
SGD
SAGA
Newton-Cholesky

0 1 2 3 4 5
P/N

10
12

10
9

10
6

10
3

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

10
12

10
9

10
6

10
3

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

10
12

10
9

10
6

10
3

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

10
18

10
14

10
10

10
6

10
2

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

10
3

10
2

10
1

10
0

Tr
ai

n 
Lo

ss

(b) RFM on CIFAR-10

Figure 9: Additional results to support Figure 2. Test error and training loss curves by varying
learning rate, batch size, and optimization algorithm of a random feature model on Fashion-MNIST
and CIFAR-10. The peaks are reduced on slow-convergence settings with too small a learning rate,
too frequent learning rate decay, too large batch size, and slow-convergence settings.

18



UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

0 1 2 3 4 5
P/N

0.20

0.25

0.30

0.35

0.40
Te

st
 E

rr
or

Normalization
Unnormalized
Unnormalized (10x)
Normalized

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

Scale of Features
0.2
0.2 (10x)
1

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

Random Matrix Init Scale
0.2
0.2 (10x)
1

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

Learning rate
1e-3
1e-3 (10x)
1e-2

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

Learning Rate Decay
ISR8
ISR8 (10x)
Const

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

Batch Size
Full
Full (16x)
32

0 1 2 3 4 5
P/N

10
10

10
8

10
6

10
4

10
2

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss
0 1 2 3 4 5

P/N

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss

(a) RFM on Fashion-MNIST

0 1 2 3 4 5
P/N

0.75

0.80

0.85

0.90

Te
st

 E
rr

or

Normalization
Unnormalized
Unnormalized (10x)
Normalized

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

Scale of Features

0.2
0.2 (10x)
1

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

Random Matrix Init Scale

0.2
0.2 (10x)
1

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

Learning rate

1e-3
1e-3 (10x)
1e-2

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

Learning Rate Decay

ISR8
ISR8 (10x)
Const

0 1 2 3 4 5
P/N

Te
st

 E
rr

or

Batch Size

Full
Full (16x)
32

0 1 2 3 4 5
P/N

10
12

10
9

10
6

10
3

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss

0 1 2 3 4 5
P/N

Tr
ai

n 
Lo

ss
(b) RFM on CIFAR-10

Figure 10: Additional results to support Figure 3. Test error and training loss curves of slow-
convergence settings with 10x iterations of RFMs on Fashion-MNIST and CIFAR-10. We are able to
recover the peaking phenomenon in all cases by scaling the number of iterations by a factor of 10.

19



UNDERSTANDING THE ROLE OF OPTIMIZATION IN DOUBLE DESCENT

0 10 20 30 40
P/N

0.10

0.15

0.20

0.25

0.30
Te

st
 E

rr
or

Normalization
Unnormalized
Unnormalized (10x)
Normalized

0 10 20 30 40
P/N

Te
st

 E
rr

or

Scale of Features
0.2
0.2 (10x)
1

0 10 20 30 40
P/N

Te
st

 E
rr

or

Scale of initialization
0.1
0.1 (10x)
1

0 10 20 30 40
P/N

Te
st

 E
rr

or

Learning rate
5e-3
5e-3 (10x)
5e-2

0 10 20 30 40
P/N

Te
st

 E
rr

or

Learning Rate Decay
ISR4
ISR4 (10x)
Const

0 10 20 30 40
P/N

Te
st

 E
rr

or

Batch Size
Full
Full (16x)
32

0 10 20 30 40
P/N

10
8

10
6

10
4

10
2

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss
0 10 20 30 40

P/N

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss

(a) Two-layer neural network on MNIST

0 10 20 30 40
P/N

0.20

0.25

0.30

0.35

0.40

Te
st

 E
rr

or

Normalization
Unnormalized
Unnormalized (10x)
Normalized

0 10 20 30 40
P/N

Te
st

 E
rr

or

Scale of Features
0.2
0.2 (10x)
1

0 10 20 30 40
P/N

Te
st

 E
rr

or

Scale of initialization
0.1
0.1 (10x)
1

0 10 20 30 40
P/N

Te
st

 E
rr

or

Learning rate
5e-3
5e-3 (10x)
5e-2

0 10 20 30 40
P/N

Te
st

 E
rr

or

Learning Rate Decay
ISR4
ISR4 (10x)
Const

0 10 20 30 40
P/N

Te
st

 E
rr

or

Batch Size
Full
Full (16x)
32

0 10 20 30 40
P/N

10
7

10
5

10
3

10
1

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss

0 10 20 30 40
P/N

Tr
ai

n 
Lo

ss
(b) Two-layer neural network on Fashion-MNIST

Figure 11: Additional results to support Figure 3. Test error and training loss curves of slow-
convergence settings with 10x iterations of two-layer neural networks on MNIST and Fashion-
MNIST. We are able to recover the peaking phenomenon in all cases by scaling the number of
iterations by a factor of 10.

20


	Introduction
	Related Work
	Experimental Setup
	Poor Conditioning Reduces Double Descent
	Slow-Convergence Leads to Disappearance of Double Descent
	Training Longer Recovers Double Descent
	Experiments with Two-Layer Neural Networks
	Conclusion
	Experimental Setup and Hyperparameters
	Datasets
	Training

	Related Work on Double Descent Mitigation
	Additional Experiments
	Time Evolution of A Double Descent Curve
	Ill-Conditioned Non-Linear Features
	Slow-Convergence Settings in Optimization


